Literature¶
Here is a brief list of references that may be useful in understanding the basics and applications of the approach used in this software. The list here is not complete: it is intended to serve as a starting point only.
W. Belzig, et al., “Quasiclassical Green’s function approach to mesoscopic superconductivity”. Superlatt. Microstruct. 25, 1251 (1999). http://dx.doi.org/10.1006/spmi.1999.0710
P. Virtanen, T. Heikkilä, “Thermoelectric effects in superconducting proximity structures”, Appl. Phys. A 89, 625 (2007). http://dx.doi.org/10.1007/s00339-007-4189-0
V. Chandrasekhar, “An introduction to the quasiclassical theory of superconductivity for diffusive proximity-coupled systems”. In The Physics of Superconductors, vol II, eds. Bennemann and Ketterson, Springer-Verlag, (2004). http://arxiv.org/abs/cond-mat/0312507
V. Chandrasekhar, et al., “Thermal transport in superconductor/normal-metal structures”. Supercond. Sci. Technol. 22, 083001 (2009). http://dx.doi.org/10.1088/0953-2048/22/8/083001
F. Giazotto, et al., “Opportunities for mesoscopics in thermometry and refrigeration: Physics and Applications”. Rev. Mod. Phys. 78, 217 (2006). http://dx.doi.org/10.1063/1.2908922
N. B. Kopnin, Theory of nonequilibrium superconductivity. Oxford University Press (2001).
A. M. Gulian, G. F. Zharkov, Nonequilibrium electrons and phonons in superconductors. Kluwer Academic Publishers (2002).
J. Rammer, H. Smith, “Quantum field-theoretical methods in transport theory of metals”. Rev. Mod. Phys. 58, 323 (1986). http://link.aps.org/abstract/RMP/v58/p323
This program utilizes the numerical solvers COLNEW and TWPBVPC detailed in the following publications:
G. Bader, U. Ascher, “A new basis implementation for a mixed order boundary value ODE solver”, SIAM J. Scient. Stat. Comput. 8, 483 (1987). http://dx.doi.org/10.1137/0908047
J. R. Cash, “Two-Point Boundary Value Problems Using Iterated Deferred Corrections. Part 2: The Development and Analysis of Highly Stable Deferred Correction Formulae”, SIAM J. Numer. Anal. 25, 862 (1988). http://dx.doi.org/10.1137/0725049
J. R. Cash, F. Mazzia, “A new mesh selection algorithm, based on conditioning, for two-point boundary value codes”, J. Comput. Appl. Math. 184, 362 (2005). http://dx.doi.org/10.1016/j.cam.2005.01.016
