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Abstract. We study the scattering behavior of an anisotropic inhomogeneous Lipschitz
medium at a fixed wave number, continuing our previous work [KSS24] and using free
boundary techniques from [SS25]. Our main results can be categorized into two distinct
cases. In the first case, we show that in two dimensions, piecewise C1 or convex penetrable
obstacles with corners, and in higher dimensions, obstacles with edge points, always induce
nontrivial scattering for any incoming wave. In the second case, we prove that piecewise C1

obstacles with corners in two dimensions (and with edge points in higher dimensions) with
angles /∈ πQ always produce nontrivial scattering for any incoming wave.
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1. Introduction

1.1. Mathematical model. Let D be a bounded Lipschitz domain in Rn (where n ≥ 2)
such that Rn \D is connected. Within this domain, let ρ ∈ L∞(D) be a positive real-valued
function. Additionally, let A ∈ (C0,1(D))n×n be a real matrix-valued symmetric function,
satisfying the condition of uniform ellipticity

(1.1) c−1
ellip|ξ|

2 ≤ ξ · A(x)ξ ≤ cellip|ξ|2 for a.e. x ∈ D and all ξ ∈ Rn

for some constant cellip > 0. Under the assumption that the medium outside D is
homogeneous, if we illuminate the anisotropic medium (D,A, ρ) with an incident field uinc
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having a fixed wave number κ > 0 that satisfies

(1.2) (∆ + κ2)uinc = 0 in Rn,

classical scattering theory (see, e.g. [CCH23, CK19, KG08]) guarantees the existence of
unique scattered field usc ∈ H1

loc(Rn) that is outgoing (i.e., satisfies the outgoing Sommerfeld
radiation condition [KSS24, Definition 1.1]). The total field uto = usc + uinc satisfies(

∇ · Ã(x)∇+ κ2ρ̃(x)
)
uto = 0 in Rn,

where
Ã = AχD + IdχRn\D and ρ̃ = ρχD + χRn\D.

Remark 1.1. For notational convenience, throughout the paper we use A to denote Ã.

If A(x0) ̸= Id or ρ(x0) ̸= 1 at some point x0 ∈ ∂D, then one might expect that the obstacle
(D,A, ρ) is strong enough to produce scattering effects for many incident waves. Moreover,
if the boundary of D has singularity at x0, it might be true that every incident wave scatters
nontrivially (i.e. for any uinc solving (1.2), usc|Rn\D is not identically zero).

Conversely, if the anisotropic medium (D,A, ρ) is nonscattering with respect to an incident
field uinc in the sense that usc = 0 in Rn \D, then the scattered field usc satisfies

(1.3)

{
(∇ · A(x)∇+ κ2ρ(x))usc = −(∇ · (A(x)− Id)∇+ κ2(ρ(x)− 1))uinc in D,

usc = 0, ν · A∇usc = ν · (Id− A)∇uinc on ∂D,

where ν is the inward pointing unit normal vector to ∂D. One could then hope to show thatD
cannot have boundary singularities. In the earlier works [CVX23, KSS24], such results were
established for some anisotropic scatterers by using the free boundary techniques developed
in [CV23, SS21] for nonscattering problems (see also [AI96] for the Calderón problem). In
the present article we continue this line of research by covering cases not included in [KSS24],
based on the new methods introduced in [SS25].

1.2. Definitions and terminology. Before we proceed, let us recall the key definitions,
assumptions, and formalism pertaining to corner domains, as referenced in the paper’s title.
Suppose that x0 ∈ ∂D is the boundary point of interest. In some of our results, we assume
that the contrast

(1.4) h(x) := κ2(ρ(x)− 1)χD

satisfies the following non-degeneracy condition at x0 ∈ ∂D:

(1.5) there is r > 0 such that h ∈ Cα(D ∩Br(x0)) and h(x0) ̸= 0.

Recall the following definition for n = 2.

Definition 1.2. Let k ∈ N ∪ {∞}. An open set D in R2 is said to have a piecewise Ck

boundary if, for any x0, there exist δ > 0 and a rigid motion Φ : Bδ(x0) → V into an open
set V ⊂ R2 such that Φ(x0) = 0 and

Φ(D ∩Bδ(x0)) = {x2 > η(x1)} ∩Br(0),

where η ∈ C([−r, r]) and both η|[−r,0] and η|[0,r] are Ck-functions up to the endpoints of the
respective closed intervals.

We also recall the following definition for n ≥ 3.
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Definition 1.3. Let D be an open set in Rn with n ≥ 3. A boundary point x0 ∈ ∂D is said
to be an edge point if there is δ > 0 and a C1 diffeomorphism Φ : Bδ(x0) → V onto an open
set V ⊂ Rn such that Φ(x0) = 0, (∇⊗ Φ)(x0) is a rotation matrix, and

Φ(D ∩Bδ(x0)) = (S × Rn−2) ∩ Φ(Bδ(x0)),

where (∇ ⊗ Φ)ij = ∂iΦj, S = {(r cos θ, r sin θ) : r > 0, 0 ≤ θ ≤ θ0} is a closed sector with
angle θ0 ∈ (0, 2π) \ {π}. In this case, we also refer to the edge point as having angle θ0.

1.3. Methodology. As noted in [KSS24], the anisotropic nonscattering problem (1.3) can
be reformulated as a Bernoulli-type free boundary problem of the form

(1.6a) (∇ · A(x)∇+ κ2ρ(x))usc = fLn⌊D + gHn−1⌊∂D in Rn, usc|Rn\D = 0,

where

(1.6b) f = −(∇ · (A(x)− Id)∇+ h)uinc, g = ν · (A− Id)∇uinc

and h(x) := κ2(ρ(x) − 1)χD, see (2.1) below. Hereafter, we denote Ln⌊D ≡ χD the n-
dimensional Lebesgue measure restricted to D, and by Hn−1⌊Γ the (n − 1)-dimensional
Hausdorff measure restricted to Γ. Our main strategy is to consider the blowup limit of
problem (1.6). To do this, we suppose that near a boundary point x0 = 0 (say) the quantities
uinc, A− Id, and ρ− 1 have in D the expansions

uinc = H +R(m),

A− Id = B +R(b),

ρ− 1 = η +R(p),

where H,B, η are homogeneous polynomials of degree m, b and p, respectively, and H is
harmonic (since uinc solves (∆ + κ2)uinc = 0). The remainder terms are assumed to vanish
at 0 faster than the main terms, together with relevant derivative bounds.

In the discussion below we will assume that m ≥ 2 to exclude certain special cases. It
follows that near 0, one has in D

f = −∇ ·B∇H − κ2ηH +R(f),

g = ν ·B∇H +R(g),

where R(f) and R(g) vanish at 0 faster than the other terms in f and g, respectively. Note
that ∇·B∇H has degree m+b−2, ηH has degree m+p, and B∇H has degree m+b−1. We
classify the blowup equation corresponding to (1.6) into two cases: b ≥ p+2 and 0 ≤ b < p+2.
Theorems for the case b ≥ p+2 are stated in Section 1.4.1, followed by the case 0 ≤ b < p+2
in Section 1.4.2.

When b ≥ p + 2, we define the blowup sequence ur(x) = usc(rx)/rm+p+2 at 0 (when it
exists). The corresponding blowup equation is

∆u = −κ2ηHχ{u̸=0}.

In this scenario, only the contribution from ρ− 1 survives in the blowup, while the Bernoulli
condition vanishes.

In the case 0 ≤ b < p+2, we define the blowup sequence ur(x) = usc(rx)/rm+b at 0 (when
it exists) that leads to the blowup equation

∆u = −(∇ ·B∇H)Ln⌊D0 + (B∇H · ν0)Hn−1⌊∂D0, u|Rn\D0
= 0,



4 KOW, SALO, AND SHAHGHOLIAN

where D0 is the blowup of D at x0 = 0 (assuming it exists), and ν0 is the unit outer normal
to ∂D0. In this case the contribution from ρ− 1 disappears in the blowup, but the Bernoulli
condition survives.

1.4. Statements of the main results and related work. The discussion in Section 1.3
indicates that the results will be divided into several cases according to the behavior of A,
ρ and uinc at x0. Before presenting the formal statements of the main results, we briefly
highlight them as follows. We say that A(x0) ∼= Id if |A(x) − Id| ≤ C|x − x0|2+α and
|∇A(x)| ≤ C|x− x0|1+α, near x0 in D, for some α > 0.

• If A(x0) ∼= Id and ρ(x0) ̸= 1, any corner with opening angle ̸= π scatters every
incident wave nontrivially (Theorem 1.4).

• If A(x0) ∼= Id but ρ(x0) = 1, corners of any angle may be invisible to certain incident
waves (Example 1.5).

• If A(x0) ̸= Id and ρ(x0) = 1, corners with angles /∈ Qπ scatter every incident
wave nontrivially (Theorems 1.7 and 1.9), whereas corners with angles ∈ Qπ may
be invisible for some incident waves ([KSS24, Example 1.5]).

• The special case A = aId and ρ = a with a ̸= 1, which satisfies A(x0) ̸= Id and
ρ(x0) ̸= 1, was studied in [CHLX25], showing that the scattering behavior is linked
to the interior transmission eigenvalue problem.

We now proceed to the formal statements of the main results.

1.4.1. Vanishing Bernoulli condition. Our first theorem states that convex1 or any piecewise
C1 planar obstacle whose boundary has a singular (non-C1) point always scatter:

Theorem 1.4. Let D be a bounded open set in R2, and suppose that
• either D is convex, or
• D is simply connected and has piecewise C1 boundary.

Let κ > 0, let ρ ∈ L∞(D) be a positive real-valued function, and let A ∈ (C1(D))n×n be a
real symmetric matrix-valued function, satisfying the condition of uniform ellipticity (1.1).
Suppose that there exists x0 ∈ ∂D such that

(i) the contrast h given in (1.4) satisfies the non-degeneracy condition (1.5) at x0, and
(ii) the coefficient A satisfies |A(x)− Id| ≤ C|x− x0|2+α and |∇A(x)| ≤ C|x− x0|1+α.

If ∂D is not C1 near x0, then the anisotropic medium (D,A, ρ) scatters every incident wave
nontrivially.

It is worth remarking that it seems plausible that the assumptions |A(x)−Id| ≤ C|x−x0|2+α

and |∇A(x)| ≤ C|x− x0|1+α, can be relaxed to

(1.7) |A(x)− Id| = ω(|x− x0|)|x− x0|2, |∇A(x)| = ω(|x− x0|)|x− x0|1

where ω(r) is double-Dini, which is used for the monotonicity formula in this paper. Since
this would be a more technical result, we leave it out in this paper.

Example 1.5 (Necessity of condition (1.5)). In the trivial example where A ≡ Id and ρ ≡ 1,
the obstacle D is not present and no incident wave produces scattering effects (i.e. usc ≡ 0
for any incident wave). In particular, D can have corners of any type. This shows that it is
not possible to drop the assumption (1.5) in the theorem above.

1We recall that bounded convex domains always have Lipschitz boundary [Gri11, Corollary 1.2.2.3].
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Another related example is given in [CVX23, Section 3] or [KSS24, Example 1.6] based on
diffeomorphism invariance. Let D be a bounded domain in R2, with piecewise C∞ boundary,
with a corner x0 ∈ ∂D. Let Φ : D → D be a diffeomorphism such that Φ ∈ C∞(D),
Φ−1 ∈ C∞(D), Φ(x) = x for all x ∈ ∂D and (∇⊗ Φ)(x0) = Id. Let

A = Φ∗(Id) =
(∇⊗ Φ)(∇⊗ Φ)⊺

|det(∇⊗ Φ)|
◦ Φ−1 ∈ (C∞(D))2×2

and
ρ = Φ∗(1) =

1

|det(∇⊗ Φ)|
◦ Φ−1 ∈ C∞(D)

be the pushforwards by Φ, which satisfy A(x0) = Id and ρ(x0) = 1. Let uinc ̸≡ 0 solves (1.2).
Choosing v = uinc|D and uto = Φ∗v gives a pair (uto, uinc) satisfying{

(∇ · A∇+ κ2ρ)uto = 0, (∆ + κ2)uinc = 0 in D,

uto = uinc, ν · A∇uto = ∂νu
inc on ∂D,

therefore the function usc := uto − uinc verifies (1.3), i.e., the anisotropic medium (D,A, ρ)
is nonscattering with respect to such incident field uinc. This example does not contradict
Theorem 1.4 since the contrast h defined in (1.4) fails to satisfy the non-degeneracy condition
(1.5) at x0 ∈ ∂D.

An analogous result for domains in Rn with n ≥ 3 that contain edge singularities is the
following.

Theorem 1.6. Let D be a bounded Lipschitz domain in Rn with n ≥ 3 such that Rn \D is
connected. Let κ > 0, let ρ ∈ L∞(D) be a positive real-valued function, let A ∈ (C1(D))n×n

be a real symmetric matrix-valued function, satisfying the condition of uniform ellipticity
(1.1). Assume that there exists x0 ∈ ∂D such that conditions (i) and (ii) in Theorem 1.4
are satisfied. If ∂D contains an edge point x0 ∈ ∂D, then the anisotropic medium (D,A, ρ)
scatters every incident wave nontrivially.

As in Theorem 1.4, it seems plausible to relax the decay conditions to those in (1.7).
The assumptions in our main theorems ensure the following degeneracy

ν · A(x)∇usc(x) = ν · (Id− A(x))∇uinc(x) → 0 as x→ x0,

which was not addressed in our earlier work [KSS24]. Here, we also allow ν · (Id−A)∇uinc to
change sign. In [KSS24], we focused instead on the scattering behavior under non-degeneracy
conditions

(1.8)

{
ν · (Id− A)∇uinc(x) ≥ c > 0 for Hn−1-a.e. x ∈ ∂D near x0; or

ν · (Id− A)∇uinc(x) ≤ −c < 0 for Hn−1-a.e. x ∈ ∂D near x0.

Although it is often possible to construct global solutions of the Helmholtz equation that
are positive in a given set (see [KSS23]), the real-valued functions uinc and ∂ju

inc typically
exhibit numerous zeros, therefore the assumption (1.8) is not guaranteed to hold in many
cases of interest.

In view of condition (i), it is natural to compare our results (Theorems 1.4 and 1.6) with
those of [BPS14], whose proof relies on suitable complex geometric optics (CGO) solutions;
see also [Blå18, BL17, BL21a, BL21b, HSV16, PSV17, VX21] for further refinements of
similar results based on CGO or other harmonic-exponential solutions. This approach was
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extended in [CX21] to scattering problems for general divergence-form operators, modeling
isotropic media rather than the Laplacian. We also refer to recent works [HV25a, VX25] for
further refinements in the case A = Id, based on the asymptotic behavior of suitable integral
expressions. Our results (Theorems 1.4 and 1.6) further extend these findings to general
divergence-form operators modeling anisotropic media.

Other approaches to this type of problem include [EH15, EH18], which use direct
expansions of solutions to the Helmholtz equation, and [SS21, KSS24], which build on results
related to free boundaries. It is also interesting to mention that the analysis in [CV23] is based
on the observation that a nonscattering domain satisfies the assumptions of the Pompeiu
conjecture [Pom29], and hence its boundary must be analytic [Wil76, Wil81]. Although
this may be beyond our scope, we note that the Pompeiu conjecture admits an equivalent
formulation in terms of k-quadrature domains [KLSS24].

1.4.2. Nonvanishing Bernoulli condition. The assumption (ii) in Theorems 1.4 and 1.6
enables us to establish our results by following the approach of [SS25]. A natural question,
however, is what happens when the condition (ii) in Theorem 1.4 fails. We address this in
the following theorem.

Theorem 1.7. Let D ⊂ R2 be a bounded, simply connected open set with piecewise C1

boundary. Let κ > 0, let ρ ∈ L∞(D) be a positive real-valued function, let A ∈ (C1(D))n×n be
a real symmetric matrix-valued function, satisfying the condition of uniform ellipticity (1.1).
Suppose that there exists x0 ∈ ∂D such that

(i) the contrast h given in (1.4) satisfies |h(x)| ≤ C|x− x0|α, and
(ii) A(x) − Id = c0B

−1 + R̃(x − x0) for some real orthogonal matrix B and for some
nonzero constant c0 with |R̃| ≤ C|x|α and |∇R̃| ≤ C|x|α−1.

If ∂D has a corner at x0 with angle θ0 /∈ πQ, then the anisotropic medium (D,A, ρ) scatters
every incident wave uinc ̸≡ 0 nontrivially.

Remark 1.8. One can expand uinc(Bx)−uinc(0) = H(x)+R(x), where H ̸≡ 0 is a harmonic
homogeneous polynomial of order m ≥ 1 and |R(x)| ≤ C|x|m+1. The results of Theorem 1.7
remain valid for any angle θ0 such that sin(mθ0) ̸= 0. We also explain the difficulties of
replacing B−1 by a more general matrix in Remark 3.2.

Adapting Federer’s dimension reduction argument, as in the proof of [SS25, Theorem 1.10]
(compare [Vel23, Lemma 10.9] and [Wei99]), we can conclude an analogous result for domains
in R3 with n ≥ 3:

Theorem 1.9. Let D be a bounded Lipschitz domain in Rn with n ≥ 3 such that Rn \D is
connected. Let κ > 0, let ρ ∈ L∞(D) be a positive real-valued function, let A ∈ (C1(D))n×n be
a real symmetric matrix-valued function, satisfying the condition of uniform ellipticity (1.1).
If x0 ∈ ∂D is an edge point with angle θ0 /∈ πQ, and conditions (i) and (ii) in Theorem 1.7
hold, then the anisotropic medium (D,A, ρ) scatters every incident wave uinc ̸≡ 0 nontrivially.

Remark 1.10. Let m be the integer appearing in Remark 1.8. The results of Theorem 1.9
remain valid for any angle θ0 such that sin(kθ0) ̸= 0 for all k = 1, · · · ,m.

In our previous work [KSS24, Example 1.5], we showed that nonscattering domains may
have corners with opening angles ℓπ/m for integers m ≥ 2 and 1 ≤ ℓ < 2m− 1, highlighting
the necessity of the condition θ0 /∈ πQ. See also [CHLX25] for additional examples of

https://www.scilag.net/problem/G-180522.1
https://www.scilag.net/problem/G-180522.1
https://www.scilag.net/problem/G-180522.1
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nonscattering inhomogeneities. It is also worth mentioning that [CDLZ21, CDLZ22] studied
an inverse problem in R3: 

(∆ + κ2)uto = 0 in R3 \D,

uto = uinc + usc in R3 \D,

∂νu
to + ηuto = 0 on ∂D,

usc is outgoing,
obtaining results for polyhedral domains D with vertices having angles θ0 /∈ πQ. Although
their analysis was restricted to three dimensions, the results can be readily extended to
arbitrary dimensions d ≥ 2 using d-dimensional spherical harmonics [EF14]. They proceed
by examining the vanishing order of general solutions to the Helmholtz equation, which they
refer to as “generalized Laplacian eigenfunctions”. This approach relies on explicit expansions
of Helmholtz solutions and is therefore highly specific to the Laplace operator. It is worth
noting that the analysis in [HV25b] also relies on the observation that a nonscattering domain
satisfies the assumptions of the Pompeiu conjecture [Pom29], incorporating the moving plane
technique from [BK82], and is therefore highly specific to the Laplace operator. In contrast,
our findings show that blowup analysis can be naturally extended to general elliptic operators
beyond the Laplacian.

2. Proof of Theorems 1.4 and 1.6

Suppose that (1.3) holds. For each ψ ∈ C∞
c (Rn), one computes that (we slightly abuse

some notations here)∫
Rn

ψ
(
−(∇ · (A(x)− Id)∇+ κ2(ρ(x)− 1))uinc

)
Ln⌊D dx

=

∫
D

ψ
(
−(∇ · (A(x)− Id)∇+ κ2(ρ(x)− 1))uinc

)
dx

=

∫
D

ψ(∇ · A(x)∇+ κ2ρ(x))usc dx

=

∫
D

(
−A(x)∇ψ · ∇usc + κ2ρ(x)usc

)
dx+

∫
∂D

ψν · A(x)∇usc dS

=

∫
Rn

(
−A(x)∇ψ · ∇usc + κ2ρ(x)usc

)
dx+

∫
∂D

ψ
(
ν · (Id− A)∇uinc

)
dS

=

∫
Rn

ψ(∇ · A(x)∇+ κ2ρ(x))usc dx+

∫
Rn

ψ
(
ν · (Id− A)∇uinc

)
Hn−1⌊∂D dx.

This shows that (1.3) is equivalent to

(2.1a) (∇ · A(x)∇+ κ2ρ(x))usc = fLn⌊D + gHn−1⌊∂D in Rn, usc|Rn\D = 0

in distribution sense, where

(2.1b) f = −(∇ · (A(x)− Id)∇+ h)uinc, g = ν · (A− Id)∇uinc

and h(x) := κ2(ρ(x)− 1)χD.
The above observations allow us to establish Theorems 1.4 and 1.6 by following the

approach of [SS25]. In Section 2.1 we prove the C0,1 regularity and decay rates for solutions
of a certain class of PDE. In Section 2.2, we study blowup limits and prove their homogeneity
by using a modified balanced energy functional, and also recall some results related to blowup

https://www.scilag.net/problem/G-180522.1
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solutions. In Section 2.3, we show non-degeneracy and weak flatness properties and regularity
of the free boundary. Finally, we prove Theorems 1.4 and 1.6 in Section 2.4.

2.1. Lipschitz regularity and optimal decay rate. In this section we study the regularity
and vanishing order for solutions of the equation

(2.2) (∇ · A(x)∇+ q)u = fLn⌊B2 + gHn−1⌊∂D in B2, u|B2\D = 0,

as follows:

Lemma 2.1. Let D be a bounded Lipschitz domain in Rn with 0 ∈ ∂D, let A ∈ (C0,1(D))n×n

be a real symmetric matrix-valued function, satisfying the condition of uniform ellipticity
(1.1), let q ∈ L∞(B2), let m ≥ 0 be an integer and suppose that u ∈ H1(B2) solves (2.2) with
|f(x)| ≤ C|x|m a.e. in B2 and |g(x)| ≤ C|x|m+1 for Hn−1-a.e. x ∈ ∂D ∩B2. Then

|u(x)|+ |x||∇u(x)| ≤ C|x|m+2 in B1.

Remark. We will show in Lemma 2.4 below that this decay rate is optimal.

Proof of Lemma 2.1. First, by [KSS24, Lemma 2.2], we obtain that u ∈ C0.1(B1) and we
see that Sr := ∥u∥L∞(Br)+r∥∇u∥L∞(Br) is monotone non-decreasing, then the set D of points,
at which it is discontinuous, is at most infinitely countable. We consider the set ϕ(D), where
ϕ(r) = r−m−2Sr, which is at most infinitely countable. We want to prove that Sr ≤ Crm+2.
Suppose the contrary: for any increasing positive sequence {ρj} with {ρj} ∩ ϕ(D) = ∅ and
ρj → ∞ as j → ∞, there is r̃j ∈ (0, 1] such that Sr̃j > ρj r̃

m+2
j . Choosing rj ∈ (0, 1] to be the

supremum of all r̃j ∈ (0, 1] with this property, we have

Srj = ρjr
m+2
j , Sr ≤ ρjr

m+2 for r ≥ rj,

and the sequence {rj} is nonincreasing with rj → 0 as j → ∞.
If we define the rescaled functions

uj(x) :=
u(2rjx)

ρjr
m+2
j

for all x ∈ B1/rj ,

then

(2.3) ∥uj∥L∞(B1/2) + ∥∇uj∥L∞(B1/2) =
Srj

ρjr
m+2
j

= 1

and

∥uj∥L∞(B1) + ∥∇uj∥L∞(B1) =
S2rj

ρjr
m+2
j

≤ ρj(2rj)
m+2

ρjr
m+2
j

= 2m+2.

Since (uj) is uniformly bounded in C0,1(B1/2), and by Banach-Alaoglu theorem there is a
subsequence2, still denoted by (uj), converging to some v in C0,1(B1/2) weak-⋆.

On the other hand,

∇x · (A(2rjx)∇uj(x)) +
4

ρj
(qu)(2rjx) =

4

ρj
f(2rjx)Ln⌊B2 +

4

ρjrj
g(2rjx)Hn−1⌊∂D

2By Arzela-Ascoli theorem, the sequence also converges strongly to v in C0(B1/2).



SCATTERING IN CORNER DOMAINS WITH ANISOTROPIC INHOMOGENEITIES 9

in B1, more precisely,

−
∫
B1

A(2rjx)∇uj(x) · ∇ϕ(x) dx

=
4

ρj

∫
B1

f(2rjx)ϕ(x) dx+
4

ρjrj

∫
∂D

g(2rjx)ϕ(x) dSx −
4

ρj

∫
B1

(qu)(2rjx)ϕ(x) dx

for all ϕ ∈ C∞
c (B1). It is not difficult to see that∣∣∣∣ 4ρj
∫
B1

f(2rjx)ϕ(x) dx+
4

ρjrj

∫
∂D

g(2rjx)ϕ(x) dSx

∣∣∣∣ ≤ C∥ϕ∥L∞(B1)ρ
−1
j

and ∣∣∣∣ 4ρj
∫
B1

(qu)(2rjx)ϕ(x) dx

∣∣∣∣ ≤ C∥ϕ∥L∞(B1)r
2
j ,

therefore

(2.4)

∣∣∣∣∫
B1

A(0)∇uj(x) · ∇ϕ(x) dx
∣∣∣∣

≤
∣∣∣∣∫

B1

(A(2rjx)− A(0))∇uj(x) · ∇ϕ(x) dx
∣∣∣∣+ ∣∣∣∣∫

B1

A(2rjx)∇uj(x) · ∇ϕ(x) dx
∣∣∣∣

≤ C∥∇ϕ∥L∞(B1)rj + C∥ϕ∥L∞(B1)(ρ
−1
j + r2j ).

Applying the weak-⋆ convergence of (uj) to v in (2.3) and (2.4), we obtain

∥v∥L∞(B1/2) + ∥∇v∥L∞(B1/2) ≥ 1, ∇ · A(0)∇v = 0 in B1 (distribution sense).

Moreover, since D is a Lipschitz domain with 0 ∈ ∂D and u|B2\D = 0, it follows that there
is an open cone C in Rn so that each uj and hence v vanish in C ∩ B1/2. By the unique
continuation principle for the elliptic operator ∇ · A(0)∇, we conclude v = 0 in B1/2. This
contradicts the condition ∥v∥L∞(B1/2) + ∥∇v∥L∞(B1/2) ≥ 1. □

2.2. Blowup solutions. Throughout this section, we will make the following standing
assumptions: Let D be a bounded Lipschitz domain with 0 ∈ ∂D, let q ∈ L∞(B2) and
let u ∈ C0,1

loc (B2) be a solution to

(2.5a) (∇ · A(x)∇+ q)u = fLn⌊{u ̸= 0}+ gHn−1⌊∂D,
satisfying

(2.5b) |u(x)|+ |x||∇u(x)| ≤ C|x|m+2.

Note that the function ur(x) := u(rx)/rm+2 also satisfies the estimate (2.5b) and solves the
equation

∇ · A(rx)∇ur(x) = (r−mf(rx)− r2q(rx)ur(x))Ln⌊{ur ̸= 0}
+ r−m−1(gHn−1⌊∂D)(rx).

Similar to [SS25, Lemma 2.5], we now assume that

(2.5c)
f = H +R, where H is homogeneous polynomial of degree m

and |R(x)| ≤ C|x|m+α for some α > 0,

as well as

(2.5d) |g(x)| ≤ C|x|m+1+α for Hn−1-a.e. x ∈ ∂D ∩B2.
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We also assume that A ∈ (C0,1(D))n×n is a real symmetric matrix-valued function, satisfying
the condition of uniform ellipticity (1.1), as well as

(2.5e) |A(x)− Id| ≤ C|x|, |∇A(x)| ≤ C.

In view of Banach-Alaoglu theorem, we say that v is a blowup limit of u of order m+ 2 at 0
if there is a sequence rj → 0 so that urj → v in C0,1(B1) weak-⋆.

Similarly as in [SS25, Section 3.1], we introduce a balanced energy functional (see [CSY18,
Lemma 22] or [PSU12, Section 3.5]):

WA(r, u) :=
1

r2m+n+2

∫
Br

(A(x)∇u · ∇u+ 2Hu) dx− m+ 2

r2m+n+3

∫
∂Br

u2 dS

=

∫
B1

(A(rx)∇ur · ∇ur + 2Hur) dx− (m+ 2)

∫
∂B1

u2r dS.

We compute its derivative (we slightly abuse the notations in the computations below)

1

2
∂rWA(r, u) =

∫
B1

(A(rx)∇ur · ∇∂rur +H∂rur) dx+
1

2

∫
B1

∂r(A(rx))∇ur · ∇ur dx

− (m+ 2)

∫
∂B1

ur∂rur dS

=

∫
B1

(−∇ · (A(rx)∇ur) +H) ∂rur dx+
1

2

∫
B1

∂r(A(rx))∇ur · ∇ur dx

+

∫
∂B1

= r∂rur︷ ︸︸ ︷
(∂νur − (m+ 2)ur) ∂rur dS +

∫
∂B1

ν · (A(rx)− Id)∇ur∂rur dS

=

∫
∂B1

r(∂rur)
2 dS −

∫
B1

r−mR(rx)∂rur dx+

∫
B1

r2q(rx)ur∂rur dx

+
1

2

∫
B1

∂r(A(rx))∇ur · ∇ur dx

− r−m−1

∫
B1∩(r−1∂D)

g(rx)∂rur dS +

∫
∂B1

ν · (A(rx)− Id)∇ur∂rur dS.

We introduce the functional

FA(r, u) = 2

∫ r

0

∫
B1

τ−mR(τx)∂τuτ dx dτ − 2

∫ r

0

∫
B1

τ 2q(τx)uτ∂τuτ dx dτ

+

∫ r

0

∫
B1

∂τ (A(τx))∇uτ · ∇uτ dx dτ

+ 2

∫ r

0

∫
B1∩(τ−1∂D)

τ−m−1g(τx)∂τuτ dS dτ

− 2

∫ r

0

∫
∂B1

ν · (A(τx)− Id)∇uτ∂τuτ dS dτ.

in order to extract the following non-negative quantity:

∂r (WA(r, u)− FA(r, u)) = 2

∫
∂B1

r(∂rur)
2 dS ≥ 0.
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We denote

W (r, u) := WId(r, u) =
1

r2m+n+2

∫
Br

(
|∇u|2 + 2Hu

)
dx− m+ 2

r2m+n+3

∫
∂Br

u2 dS.

From (2.5b) and (2.5e) we see that

(2.6) |W (r, u)−WA(r, u)| =
1

r2m+n+2

∣∣∣∣∫
Br

(A(x)− Id)∇u · ∇u dx
∣∣∣∣ ≤ Cr.

Since ur satisfies the estimates (2.5b) and

|∂rur(x)| = |−(m+ 2)r−m−3u(rx) + r−m−2x · ∇u(sx)| ≤ Cr−1|x|m+2,

then

|FA(r, u)| ≤ C

∫ r

0

∫
B1

(τα|x|m+α + τ 2|uτ (x)|)|∂τuτ (x)| dx dτ

+ C

∫ r

0

∫
B1

τ |∇uτ |2 dx dτ + C

∫ r

0

∫
B1∩(τ−1∂D)

τα|x|m+1+α|∂τuτ (x)| dS dτ

+ C

∫ r

0

∫
∂B1

τ |x||∇uτ ||∂τuτ | dS dτ

≤ Crα

It is easy to see that
WA(r, u) ≥ −C.

Thus, the non-decreasing quantity r 7→ WA(r, u) + FA(r, u) has a finite limit as r → 0, and
this limit equals WA(0+, u). Now by (2.6) we see that the quantity r 7→ W (r, u) has a finite
limit as r → 0, and this limit equals W (0+, u) = WA(0+, u). Since

W (rs, u) =W (s, ur) for all r, s ∈ (0, 1],

we can use the standard argument in [Yer16, Lemma 16] (we omit the details here) to conclude
the following lemma:

Lemma 2.2. Suppose u ∈ C0,1
loc (B2) satisfies (2.5). Any blowup limit v (of order m + 2) of

u is homogeneous of degree m+ 2 solves the equation

∆v = HLn⌊{v ̸= 0} in B1.

One has W (s, v) = W (0+, u) for 0 < s ≤ 1. Moreover, the homogeneous degree m + 2
extension of v (still denoted by v) solves the equation

(2.7) ∆v = HLn⌊{v ̸= 0} in Rn.

We recall the following result, which characterizes all blowup limits in two dimensions:

Lemma 2.3 ([SS25, Theorem 3.12]). Let n = 2. Suppose that v ∈ C1,1
loc (R2) is nontrivial,

homogeneous of degree m+ 2 and solves the equation

∆v = HLn⌊{v ̸= 0} in R2

where H is a harmonic homogeneous polynomial of degree m. Then one of the following
holds:

(a) supp (v) is a half space and v is a polynomial3 of order m+ 2.
3After a rotation, the form given in [SS25, Lemma 3.3 or Lemma 3.5].
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(b) supp (v) = R2 and v = 1
4m+4

|x|2H+w where w is a harmonic homogeneous polynomial
of degree m+ 2.

2.3. Non-degeneracy and weak flatness. Throughout this section, we will make the
following standing assumptions: Let D be a bounded Lipschitz domain with 0 ∈ ∂D, let
q ∈ Cα

loc(B2) and let u ∈ C0,1
loc (B2) be a solution to

(2.8a) (∇ · A(x)∇+ q)u = fLn⌊D + gHn−1⌊∂D, u|B2\D = 0.

We assume that

(2.8b)
f = P +R, where P ̸≡ 0 is a homogeneous polynomial of order m ≥ 0

and |R(x)| ≤ C|x|m+α for some α > 0

We also assume that g satisfies (2.5d) and A satisfies (2.5e). In this setting, we say that v
is a blowup limit of u at 0 if there is a sequence rj → 0 so that urj → v in C0,1(B1) weak-⋆,
where ur(x) := u(rx)/rm+2.

On the other hand, since D is a Lipschitz domain, there are δ > 0 and r0 > 0 so that we
have the following consequence of the interior cone property:

(2.9) If x ∈ D ∩Br0 , then Br(x) ∩D contains a ball of radius δr whenever r ≤ r0.

Based on the above observations, as in [SS25, Lemma 4.1], we first prove a non-degeneracy
result showing that u cannot vanish faster than a certain order in supp (u):

Lemma 2.4. Suppose u ∈ C0,1
loc (B2) satisfies (2.8). For any ϵ ∈ (0, 1), there exists a pair of

positive numbers (rϵ, cϵ) such that

∥u∥L∞(Bϵ|x|(x)) ≥ cϵ|x|m+2 for all x ∈ D ∩Brϵ .

Remark. If we further assume that

(2.10) Br0 ∩D ⊂ supp (f) for some r0 > 0,

then Lemma 2.4 remains valid with rϵ replaced by a constant r0 that is independent of ϵ.
The condition (2.10) was valid in the setting of [SS25]. However, the choice made in (2.1b)
does not guarantee (2.10), unless the coefficient A is analytic in a neighborhood of x0 = 0.
Thus the statement and proof of Lemma 2.4 are slightly different from [SS25, Lemma 4.1].

Proof of Lemma 2.4. Suppose, to the contrary, that there exists some ϵ ∈ (0, 1) for
which no such pair of positive numbers (rϵ, cϵ) can be found. That is, for any pair of positive
numbers (r, c), there exists x ∈ D ∩Br such that

∥u∥L∞(Bϵ|x|(x)) < c|x|m+2.

For each j ≥ 1, by choosing the pair (r, c) = (1/j, 1/j), there exists xj ∈ D ∩B1/j such that

(2.11) ∥u∥L∞(Bϵ|xj |(xj)) <
1

j
|xj|m+2.

There exists a subsequence, still denoted as (xj), such that xj → 0. Let rj = |xj| and the
blowup sequence urj(x) := u(rjx)/r

m+2
j . Now using (2.9) with x = xj and r = ϵrj, for each

sufficiently large j ≥ 1 there is yj so that

(2.12) Bδϵrj(yj) ⊂ Bϵrj(xj) ∩D.
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It also follows that (1− ϵ)rj ≤ |yj| ≤ (1 + ϵ)rj. Then by (2.11) we have

∥u∥L∞(Bδϵrj
(yj)) <

1

j
rm+2
j .

Writing zj = yj/rj, this means that

∥urj∥L∞(Bδϵ(zj)) <
1

j
.

By considering a suitable subsequence, we may assume that zj converges to some z with
1− ϵ ≤ |z| ≤ 1 + ϵ. Thus we have

(2.13) urj → 0 in L∞(Bδϵ/2(z)).

On the other hand, since

∇ · A(rjx)∇urj(x) = −r2j q(rjx)urj(x) + r−m
j (fLn⌊D)(rjx)

+ r−m−1
j (gHn−1⌊∂D)(rjx),

and since |g(x)| ≤ C|x|m+1+α, then we have

∇ · A(rjx)∇urj(x) = −r2j q(rjx)urj(x) + r−m
j (fLn⌊D)(rjx) +O(rαj )(Hn−1⌊∂D)(rjx)

uniformly on x ∈ B1. Now (2.12) implies that

∇·A(rjx)∇urj(x) = −r2j q(rjx)urj(x)+P (x)+r−m
j R(rjx)+O(r

α
j )(Hn−1⌊∂D)(rjx) in Bδϵ(zj).

Since rj → 0 and |urj(x)| ≤ C, |R(x)| ≤ C|x|m+α, we have

∇ · A(rjx)∇urj → P in the distributional sense on Bδϵ/2(z).

Since P does not vanish on any open subset of Sn−1, this contradicts (2.13) by uniqueness of
distributional limits, completing the proof by contradiction. □

As shown in Lemma 2.2, the blowup limit u0 in this work is identical to the one in [SS25,
Section 4]. With Lemma 2.4 at hand, we can establish some weak flatness properties for ∂D
at 0, using the exact same argument in [SS25, Lemma 4.3]:

Lemma 2.5. Suppose u ∈ C0,1
loc (B2) satisfies (2.8) and suppose that u0 is a blowup limit of

such u at 0 with supp (u0) = Rn
+. Then for any δ > 0 there is r > 0 so that ∂D ∩ Br ⊂

{|xn| ≤ δr}.

2.4. Conclusions. To prepare for the main results, we summarize the preceding discussion
in the following proposition.

Proposition 2.6 (Properties of blowups: I). Let D ⊂ Rn be a Lipschitz domain such that
0 ∈ ∂D, let q ∈ Cα

loc(B2), let f ∈ Cα
loc(B2), let A ∈ (C0,1(D))n×n be a real symmetric

matrix-valued function, satisfying the condition of uniform ellipticity (1.1) and

|A(x)− Id| ≤ C|x|, |∇A(x)| ≤ C.

Suppose that u ∈ H1
loc(B2) solves

(∇ · A(x)∇+ q)u = fLn⌊D + gHn−1⌊∂D, u|B2\D = 0.

Let m ≥ 0 be an integer. Assume that |g(x)| ≤ C|x|m+1+α for Hn−1-a.e. x ∈ ∂D ∩ B2 and
f = H + R, where H ̸≡ 0 is a homogeneous polynomial of degree m and |R(x)| ≤ C|x|m+α.
Then u has the following properties:



14 KOW, SALO, AND SHAHGHOLIAN

(a) u ∈ C0,1
loc (B2) with |u(x)|+ |x||∇u(x)| ≤ C|x|m+2.

(b) If v is any blowup limit of ur(x) := u(rx)/rm+2, then v is homogeneous of degree
m + 2 and its homogeneous degree m + 2 extension, still denoted by v, solves ∆v =
HLn⌊{v ̸= 0} in Rn.

(c) If v is any blowup limit of ur(x) := u(rx)/rm+2, then supp (v) ̸= ∅ and for any
ϵ ∈ (0, 1) there is cϵ > 0 so that

∥v∥L∞(Bϵ|x|(x)) ≥ cϵ|x|m+2 for all x ∈ supp (v) ∩B1/2.

(d) If there exists a blowup limit v of ur(x) := u(rx)/rm+2 such that its support is the
half-space x·e ≥ 0, then for any δ > 0 there is r > 0 such that ∂D∩Br ⊂ {|x·e| ≤ δr}.

Proof. This follows by combining [SS25, Lemma 2.5], Lemmas 2.1, 2.2, 2.4 and 2.5. □

We refine the above result for our purpose:

Proposition 2.7 (Properties of blowups: II). Suppose that all assumptions in Proposition 2.6
hold. If we additionally assume that H is harmonic and n = 2, then the support of any blowup
limit v is a half space4.

Proof. Since D has Lipschitz boundary, and v vanishes in an exterior cone, it follows that
supp (v) ̸= R2. On the other hand, by using Proposition 2.6(c), we see that supp (v) ̸= ∅.
Finally, our proposition immediately follows from Lemma 2.3. □

We can now prove the free boundary regularity in two dimensions.

Proposition 2.8. Suppose that all assumptions in Proposition 2.7 hold.
(a) If ∂D is piecewise C1, then ∂D is C1 near 0.
(b) If D is convex, then ∂D is C1 near 0.

Proof. (a) Let v be any blowup limit of ur(x) := u(rx)/rm+2. By using Proposition 2.7,
we know that supp (v) = {x · e ≥ 0} for some unit vector e. Then the weak flatness
property in Proposition 2.6(d) ensures that for any δ > 0 there exists r > 0 such that
∂D ∩Br ⊂ {|x · e| ≤ δr}. Since ∂D is piecewise C1, then near 0, ∂D is the union of two C1

arcs meeting at 0 at some angle θ ∈ (0, 2π). If θ ̸= π, one gets a contradiction with the weak
flatness property above. This implies that θ = π and the tangent vectors of the two C1 arcs
are parallel at 0, which concludes that ∂D is the graph of a C1 function near 0. This proves
case (a).

(b) As in the proof of case (a) we already obtain the weak flatness property: for any
δ > 0 there exists r > 0 such that ∂D ∩ Br ⊂ {|x · e| ≤ δr}. Since D is convex, then for
each boundary point near 0, there is a unique supporting plane. Finally, [SS25, Lemma 4.4]
implies that ∂D is C1 near 0. □

We also prove the result for edge points in dimension n ≥ 3.

Proposition 2.9. Suppose that all assumptions in Proposition 2.6 hold. If we additionally
assume that H is harmonic, then 0 ∈ ∂D is not an edge point.

4In this case, the blowup limits have explicit form depending on H, see [SS25, Lemma 3.5].
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Proof. Suppose the contrary: 0 ∈ ∂D is an edge point. After a rotation, we may arrange
that the blowup of D at 0, i.e., the limit of r−1(D∩Br) is (S×Rn−2)∩B1 as r → 0, where S
is a closed sector in R2 with angle ̸= π. Let v be any blowup limit of ur, and we see that C :=
supp (v) ⊂ S × Rn−2, and the non-degeneracy statement in Proposition 2.6(c) implies that
C = S×Rn−2. Following exactly the same argument as in the proof of [SS25, Theorem 1.10],
which utilized Federer’s reduction argument as in [Wei99] or [Vel23, Lemma 10.9], we can
conclude that ∂D is C1 near 0, which contradicts with the assumption that 0 ∈ ∂D is an
edge point. □

We finally prove our main results.

Proof of Theorems 1.4 and 1.6. Without loss of generality, we may assume that
x0 = 0 and Φ ≡ Id. The contrast h is Cα near 0 with h(0) ̸= 0 by (1.5). Since uinc solves
(∆ + k2)uinc = 0 in Rn, then one has uinc = H + R0, where H is a harmonic homogeneous
polynomial of order m and |R0(x)| ≤ C|x|m+1. By using the arguments in [SS25, Lemma 2.5],
one can show that

−huinc = h(0)H +R1, |R1(x)| ≤ C|x|m+α.

Since |A(x)− Id| ≤ C|x|2+α and |∇A(x)| ≤ C|x|1+α, then

|∇ · (A(x)− Id)∇uinc| ≤ C|∇A(x)||∇uinc|+ C|A(x)− Id||∇⊗2uinc| ≤ C|x|m+α,

where ∇⊗2uinc is the Hessian matrix of uinc. Here we used the facts |∇uinc| ≤ C|x|m−1 and
|∇⊗2uinc| ≤ C|x|m−2. Since A ∈ (C0,1(D))n×n, then we conclude that

f = h(0)H +R with |R(x)| ≤ C|x|m+α.

On the other hand, we see that

|g(x)| ≤ C|A(x)− Id||∇uinc| ≤ C|x|m+1+α.

After this reduction, Theorems 1.4 and 1.6 follows from the corresponding free boundary
results in Propositions 2.8 and 2.9, respectively. □

3. Proof of Theorems 1.7 and 1.9

We assume the conditions in Theorem 1.7. Without loss of generality, we may assume
that x0 = 0. Let B denote the real orthogonal matrix specified in (ii). Since uinc satisfies
(∆+k2)uinc = 0 in Rn, it follows that uinc◦B also satisfies the same equation in Rn. Therefore,
we can write uinc(Bx) − uinc(0) = H(x) + R0(x), where H ̸≡ 0 is a harmonic homogeneous
polynomial of order m ≥ 1 and |R0(x)| ≤ C|x|m+1. From (ii) it follows that

(A(y)− Id)∇yu
inc
∣∣
y=Bx

= c0∇xH(x) + R⃗(x)

with |R⃗(x)| ≤ C|x|m−1+α. In view of (2.1), it therefore suffices, without loss of generality, to
prove Theorem 1.7 in the case B = Id.

By a direct application of Lemma 2.1 (with m+ 2 being replaced by m) we obtain

(3.1) |usc(x)|+ |x||∇usc(x)| ≤ C|x|m,
which naturally motivates the scaling function ũr := usc(rx)/rm, which also satisfies the
estimate (3.1) and solves the equation

(3.2)
∇ · A(rx)∇ũr(x) = (r−(m−2)f(rx)− r2κ2ρ(rx)ũr(x))Ln⌊{ũr ̸= 0}

+ r−(m−1)(gHn−1⌊∂D)(rx).
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In this setting, we say that v is a blowup limit of usc of order m at 0 if there is a sequence
rj → 0 so that ũrj → v in C0,1(B1) weak-⋆.

We begin with the case n = 2. Since ∂D is piecewise C1, there exists r0 > 0 such that
∂D ∩ Br0 = (Γ− ∪ Γ+) ∩ Br0 , where the C1 interfaces Γ± intersect at x0 = 0. Without loss
of generality, we may further assume that Γ− ∩ Br0 ⊂ {x1 ≤ 0} and Γ+ ∩ Br0 ⊂ {x1 ≥ 0}.
Since the normal vector ν is a continuous vector field on each Γ±, we can define

ν− := lim
Γ1∋x→0

ν(x), ν+ := lim
Γ2∋x→0

ν(x),

and introduce the straight lines Γ̃− ⊂ {x1 ≤ 0} and Γ̃+ ⊂ {x1 ≥ 0}, each perpendicular to
ν− and ν+, respectively. Any blowup limit v ∈ C0,1(B1) of order m of usc solves the equation

(3.3) ∆v = c0
∑
±

(ν± · ∇H)H1⌊Γ̃± in B1.

At this stage, it is not yet known whether v is homogeneous of degree m. However, this fact
is not needed for the proof of the results in the case n = 2.

First, all half-space solutions can be characterized directly by the same arguments as in
[SS25, Lemmas 3.3 and 3.5]:

Lemma 3.1. There exists a unique blowup limit v that satisfies (3.3) with Γ̃± = {x2 = 0} ∩
{±x1 ≥ 0} and supp (v) = {x2 ≥ 0}. For any m ≥ 1, we write H(reiθ) = armeimθ+brme−imθ

for some constants a, b ∈ C, then the unique solution v is a polynomial of order m given
explicitly by

(3.4) v(reiθ) = c0(a− b)rm
(
eimθ − e−imθ

)
.

for all (x1, x2) ∼= x1 + ix2 = reiθ with 0 < θ < π and 0 < r < 1.

Remark. It is natural to extend (3.4) to all r > 0, and this extension satisfies

(3.5) ∆v = c0
∑
±

(ν± · ∇H)H1⌊Γ̃± in R2.

Remark 3.2. We now explain the difficulty that arises if we replace B in Theorem 1.7(ii)
with a general invertible matrix. Since uinc satisfies (∆ + k2)uinc = 0 in Rn, it follows that
uincB := uinc ◦B satisfies

∇ ·
[
B−1(B−1)⊺∇uincB

]
+ k2uincB = 0 in Rn.

Therefore, we can write uinc(Bx) − uinc(0) = H(x) + R0(x), where H ̸≡ 0 is a harmonic
homogeneous polynomial of order m ≥ 1 and |R0(x)| ≤ C|x|m+1. From Theorem 1.7(ii) it
follows that

(A(y)− Id)∇yu
inc
∣∣
y=Bx

= c0∇xH(x) + R⃗(x)

with |R⃗(x)| ≤ C|x|m−1+α. Using (2.1), we see that the function uscB := usc ◦B satisfies

∇ ·
[
B−1A(Bx)(B−1)⊺∇uscB

]
+ ρ(Bx)uscB = fBLn⌊B−1(D) + gBHn−1⌊∂(B−1(D)),

where
fB = −∇ ·

[
B−1(A(Bx)− Id)(B−1)⊺∇uincB

]
− h(Bx)uincB

and
gB = ν(Bx) · (A(y)− Id)∇yu

inc
∣∣
y=Bx

.
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However, now B−1A(Bx)(B−1)⊺ → B−1(B−1)⊺ as x→ 0, and (3.3) becomes

∇ · (B−1(B−1)⊺∇v) = c0
∑
±

(ν± · ∇H)H1⌊Γ̃± in B1,

which makes the subsequent computations in Lemma 3.1 considerably more complicated.

Proof of Lemma 3.1. We verify that v is a harmonic polynomial of degree m of the form
v = crmeimθ + drme−imθ. Imposing the Dirichlet boundary condition at θ = 0 (or θ = π)
gives d = −c, so

v(reiθ) = crm
(
eimθ − e−imθ

)
.

Finally, imposing the Neumann boundary condition at θ = 0 (or θ = π) gives

imcrm = imcrm
(
eimθ + e−imθ

)∣∣
θ=0

= ∂θv(re
iθ)
∣∣
θ=0

= c0 ∂θH(reiθ)
∣∣
θ=0

= c0 im
(
armeimθ − brme−imθ

)∣∣
θ=0

= c0imr
m(a− b),

which conclude our lemma. □

It is important to note that the blowup limit v satisfies ∆v = g⌊Γ̃± with the special property
that g can be expressed in terms harmonic homogeneous polynomial. This structure allows
us to rule out blowup solutions supported in sectors of angle ̸= π and is crucial for their
characterization, using the same ideas as in [SS25, Lemma 3.9]:

Lemma 3.3. Let θ0 ∈ (0, 2π) \ πQ, let C = {reiθ : r > 0, θ ∈ (0, θ0)}, and suppose that w
solves

∆w = 0 in C, w|θ=0 = 0, w|θ=θ0 = 0

as well as the Bernoulli condition

∂θw|θ=0 = c0 ∂θH(reiθ)
∣∣
θ=0

, ∂θw|θ=θ0
= c0 ∂θH(reiθ)

∣∣
θ=θ0

,

where H(reiθ) = armeimθ + brme−imθ is a harmonic homogeneous polynomial of degree m ≥ 1
on R2. Then w ≡ 0 and H ≡ 0.

Proof. Note that the solution in Lemma 3.1 also extends to 0 < θ < 2π, corresponding
to an antipodally even or odd extension when m is even or odd, respectively. By unique
continuation property, the antipodal extension of the solution v in Lemma 3.1 is the unique
solution to

(3.6) ∆w = 0 in C, w|θ=0 = 0, ∂θw|θ=0 = c0 ∂θH(reiθ)
∣∣
θ=0

.

From the condition w|θ=θ0 = 0, we see that

(3.7a) (a− b)
(
eimθ0 − e−imθ0

)
= 0 (choosing r = 1),

and from the condition ∂θw|θ=θ0
= c0 ∂θH(reiθ)

∣∣
θ=θ0

, we see that

(a− b)
(
eimθ0 + e−imθ0

)
= aeimθ0 − be−imθ0 (choosing r = 1),

equivalently,

(3.7b) −beimθ0 + ae−imθ0 = 0.

The equations in (3.7) can be written in matrix form as

(3.8)
(
eimθ0 − e−imθ0 −eimθ0 + e−imθ0

e−imθ0 −eimθ0

)(
a
b

)
= 0.
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We compute that

det

(
eimθ0 − e−imθ0 −eimθ0 + e−imθ0

e−imθ0 −eimθ0

)
= −e2imθ0 + 2− e−2imθ0 = −(eimθ0 − e−imθ0)2

= −(2i sin(mθ0))
2 = 4 sin2(mθ0) ̸= 0

since θ0 ∈ (0, 2π) \ πQ, therefore we conclude that a = b = 0, which is our lemma. □

We now ready to prove our main result.

Proof of Theorem 1.7. Suppose, to the contrary, that the medium does not scatter for
some incident wave uinc ̸≡ 0. Then, by Lemma 3.3, the blowup limit v of usc of order m at 0
must vanish identically. From (3.5), it follows that

(ν± · ∇H)Hn−1⌊Γ̃± = 0.

Without loss of generality, we may assume x0 = 0, Γ̃+ = {reiθ : r > 0, θ = 0} and Γ̃− =
{reiθ : r > 0, θ = θ0}. In this case,

∂θH(reiθ)
∣∣
θ=0

= ∂θH(reiθ)
∣∣
θ=θ0

= 0.

Any harmonic homogeneous polynomial of orderm ≥ 1 can be written asH(reiθ) = armeimθ+
brme−imθ for some constants a, b ∈ C. The condition ∂θH(reiθ)

∣∣
θ=0

= 0 gives b = a, so

H(reiθ) = a(rmeimθ + rme−imθ).

Then the condition ∂θH(reiθ)
∣∣
θ=θ0

= 0 yields

0 = a
(
eimθ0 − e−imθ0

)
= 2ia sin(mθ0).

Since θ0 /∈ πQ, we must have a = 0, hence H ≡ 0, contradicting the fact that H is a harmonic
homogeneous polynomial of order m ≥ 1. □

Next, we consider the case n ≥ 3. In an earlier work by two of the current authors, the
homogeneity of the blowup limit was needed to apply the well-known Federer’s dimension
reduction argument. This required the introduction of a balanced energy functional and
its monotonicity. In the Bernoulli case this is slightly more complicated, and would need
a technical computation; one such possible monotonicity formula can be found in [CSY18].
Since the situation in our case (and also in the work of [SS25]) is somewhat easier, one can
avoid such a monotonicity functional, and circumvent the issue using the simple geometric
situation.5 The idea is to use the unique continuation property, adapting the ideas in [SS25,
Lemma 3.3]:

Lemma 3.4. Let n ≥ 3 and let

Γ̃± = {reiθ± ∈ C ∼= R2 : r ≥ 0} × Rn−2

with distinct θ± ∈ [0, 2π) and ν± being the corresponding unit normal vectors. Let w ∈
C0,1(B1) be a solution to

(3.9) ∆w = c0
∑
±

(ν± · ∇P )Hn−1⌊Γ̃± in B1 ⊂ Rn,

5It should be remarked that the use of monotonicity formula may actually enhance the main result and
achieve a stronger version of the theorem. We may come back to this in the future, as it is too technical for
the current paper.
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and assume that w = 0 in one connected component of B1 \ (Γ̃+ ∪ Γ̃−), where P is a
homogeneous polynomial of order k. Then w is a homogeneous polynomial of order k.

Proof. Since both the Laplacian and polynomial homogeneity are invariant under orthogonal
transformations, it suffices to prove the lemma in the case θ+ = π/2, that is,

Γ̃+ = {0} × R≥0 × Rn−2.

Let D and V be the connected components of B1 \ (Γ̃+∪ Γ̃−) such that w = 0 in V . Without
loss of generality, assume that w vanishes to the left of Γ̃+ (i.e. V contains B(1

2
e2, δ)∩{x1 < 0}

for some δ > 0). As in the beginning of Section 2, it follows that

(3.10) ∆w = 0 in D ∩ {x1 > 0}, w|B1∩Γ̃+
= 0, ∂1w|B1∩Γ̃+

= −c0∂1P |B1∩Γ̃+
.

By the unique continuation property, there is at most one solution to (3.10). By the Cauchy-
Kowalevski theorem, there exists an analytic solution

w(x) =
∞∑
ℓ=0

∂ℓ1w|Γ̃+

ℓ!
xℓ1 = x1∂1P |Γ̃+

+
∞∑
ℓ=2

∂ℓ1w|Γ̃+

ℓ!
xℓ1

for all x ∈ U with x1 > 0. We compute that

0 = ∆x′w + ∂21w = x1∆x′∂1P |Γ̃+
+

∞∑
ℓ=2

∆x′∂ℓ1w|Γ̃+

ℓ!
xℓ1 +

∞∑
ℓ=0

∂ℓ+2
1 w|Γ̃+

ℓ!
xℓ1

= ∂21w|Γ̃+
+
(
∆x′∂1P |Γ̃+

+ ∂31w|Γ̃+

)
x1 +

∞∑
ℓ=2

(∆x′∂ℓ1w + ∂ℓ+2
1 w)|Γ̃+

ℓ!
xℓ1

for all x ∈ U with x1 > 0. Comparing coefficients, we obtain

∂2ℓ1 w|Γ̃+
= 0, ∂2ℓ+1

1 w|Γ̃+
= (−1)ℓ∆ℓ

x′∂1P |Γ̃+
for all ℓ ∈ N.

Since ∂1P |Γ̃+
is a polynomial of order k − 1, then

∂2ℓ+1
1 w|Γ̃+

= 0 for all ℓ ∈ N with 2ℓ+ 1 > k.

Putting the above discussions together, we conclude

(3.11) w(x) = −c0
⌊ k−1

2
⌋∑

ℓ=0

(−1)ℓ∆ℓ
x′∂1P |B1∩Γ̃+

(2ℓ+ 1)!
x2ℓ+1
1 in D ∩ {x1 > 0}

is the unique solution to (3.10). Again, by the unique continuation property, the solution to
(3.9) must coincide, up to an orthogonal transformation, with (3.11) in D, which establishes
the result. □

We are now in a position to prove Theorem 1.9.

Proof of Theorem 1.9. Suppose, to the contrary, that the medium does not scatter
for some incident wave uinc ̸≡ 0. The first two steps are the same as in the proof of the
two-dimensional case (Theorem 1.7):

• First, one obtains the Lipschitz regularity of usc as in (3.1);
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• Next, one sees that any blowup limit v satisfies

∆v = c0
∑
±

(ν± · ∇H)Hn−1⌊Γ̃± in B1 ⊂ Rn,

and v = 0 in a component of B1 \ (Γ̃+ ∪ Γ̃−).
Without loss of generality, assume θ+ = 0. We now apply Federer’s dimension reduction
argument, as mentioned earlier. Fix a point e = en ∈ Γ+ ∩ Γ−. Then H has a zero at e of
order 1 ≤ k ≤ m. By a direct application of Lemma 2.1,

|v(z + e)|+ |z||∇v(z + e)| ≤ C|z|k,

which naturally motivates the scaling function vr := v(rz + e)/rk. Next, the blowup limit
w of vr satisfies (3.9) for some harmomic homogeneous polynomial of order k satisfying
H(e+z) = P (z)+O(|z|k+1), and w = 0 in a component of B1 \ (Γ̃+∪ Γ̃−). Using Lemma 3.4,
w is homogeneous or order k. Following the arguments in the proof of [SS25, Theorem 1.10],
one can show that w is independent of zn, reducing the problem to Rn−1. Iterating this
procedure eventually reduces the problem to R2, after which the remaining steps follow from
the proof of Theorem 1.7. □
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