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ABSTRACT. We study a generalized boundary rigidity problem, which investigates whether the
areas of embedded minimal surfaces can uniquely determine a Riemannian manifold with boundary.
We prove that for a conformal perturbation of an analytic metric in dimension n + 1 (n > 2), the
metric is determined by these volumes under an ampleness condition. Furthermore, we establish
Holder stability for this determination. This result extends earlier works in dimension 2 + 1.

Instead of relying on reductions to Calderén type problems and complex geometrical optics
solutions, we study the linearized forward operator that gives rise to the minimal surface transform,
a generalization of the X-ray/Radon transform. We demonstrate that this transform fits into the
framework of double fibration transforms and satisfies the Bolker condition in the sense of Guillemin.
Under certain assumptions, including a foliation condition, we prove invertibility of this transform
on an analytic manifold as well as recovery of the analytic wave front set.

The methods developed in this paper offer new tools for addressing the generalized boundary
rigidity problem and expand the scope of applications of double fibration transforms. We antic-
ipate that these techniques will also be applicable to other geometric inverse problems. Beyond
mathematics, our results have implications for the AdS/CFT correspondence in physics.

1. INTRODUCTION

In this work, we investigate whether the areas of embedded minimal surfaces in a compact
Riemannian manifold (M, g) that extend up to the boundary M uniquely determine an unknown
metric g. The smooth manifold M is assumed to be known, with dim(M) = n+1 for n > 2, and the
minimal surfaces ¥ C M are of dimension n (i.e., codimension 1). An embedded minimal surface
is given by an embedding X from an n-dimensional manifold into (M, g), satisfying the minimal
surface equation in local coordinates [HRTO07]:

(1.1) g (00X + T\ 0, X" 0,X* — T, 0, X") =0,

where a,b run over 1,...,n and Greek indices run over 1,...,n 4+ 1. This condition means that
the embedded surface has vanishing mean curvature. Throughout, we adopt the term minimal
surface rather than minimal hypersurface for these submanifolds of codimension 1. This problem
can be interpreted as a generalized boundary rigidity problem, due to the fact that areas of minimal
surfaces generalize the lengths of geodesics that appear in the classical boundary rigidity problem
(see for instance [PU05, SUV21] or [PSU23, Chapter 11]).

We study the problem in a perturbative setting, meaning that the unknown metric is a priori
assumed to be close enough to a known one. As we demonstrate, the perturbative problem reduces
to analyzing the linearized problem, which involves the invertibility of an integral transform of
symmetric 2-tensors over minimal surfaces, which we call the minimal surface transform. We
further reduce our study to perturbations in conformal class, which reduces the transform to act
on scalar functions.




The core of the paper then involves the study of the minimal surface transform, which we show
to be in the class of double fibration transforms satisfying the Bolker condition in the sense of
Guillemin [Gui85]. Recently, this class of double fibration transforms in the analytic category was
studied in [M ], whose results we use and adapt.

To show that the minimal surface transform is in the above class, we generate enough minimal
surfaces as graphs of functions u = u(x). To this aim, we consider the minimal surface equation
(1.1) for X(z) = (x,u(x)) in Fermi coordinates (z,t) with respect to any fixed smooth hypersurface
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(not necessarily a minimal one). In these coordinates the equation reads (see [CLT24]):
h| V2100
(1.2) —|ha| Y20, Jul hir O + C(u, Vu) =0,
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C(u,Vu) = (Dehy V) (Vu, Vu) + S+ (Vul? )2 Tr(hy t9phy).

Here we used the notation hy(x) = g(z,u(z)). We note that uw = 0 is a solution to the equation if
and only if {t = 0} is a minimal surface. If ¥ = {t = 0} is itself a minimal surface, the linearization
of the minimal surface equation is the Schrodinger equation, also called stability equation (see e.g.
[CM11]),

(1.3) (Ap, +qJu=0,

where Ay, is the Laplace-Beltrami operator of the metric h,, ¢ := —|A|?> — Ric(N, N), |A] is the
norm of the second fundamental form of 3, and N is the normal vector field of . Solutions to the
above equation correspond to normal variations of ¥ by minimal surfaces.

1.1. Determining a conformal factor from areas of minimal surfaces. Let us first set up
notation in order to state our results. Let (M, g) be a Riemannian manifold, which we without loss

of generality assume to be a subset of a slightly larger compact Riemannian manifold (M ,g). We
will assume that we know the metric in M \ M and that we know the areas of all minimal surfaces

that have boundary in M \ M. From these measurements we would like to determine information
on the unknown metric g in M.

Next we wish to define a measurement operator that describes the areas of minimal surfaces with
respect to a metric g. One-dimensional minimal surfaces, i.e. geodesics, are easily parametrized by
points (x,v) € dSM where SM is the unit sphere bundle, and x € OM is the starting point and v
is the direction of the geodesic. Then one could consider the measurement operator

Tyt OSM — R
such that 7,(x,v) is the length of the g-geodesic through (x,v).

For higher dimensional minimal surfaces there is no such simple parametrization as for geodesics,
and this makes the definition of the measurement operator more technical. We start by fixing a
background metric ¢° in M and by considering a fixed embedded minimal surface ¥ in (M 9°)
with smooth boundary 0¥ C M \ M. Then we choose Fermi coordinates (x,t) in M such that ¥

corresponds to {t = 0}, and we consider minimal surfaces X/ that are small perturbations of X.
These surfaces are given as graphs in Fermi coordinates,

> = {(z,u (z)) : z € X},



with uf = ugo being the solution of the minimal surface equation (1.2) with given Dirichlet data f,
i.e.

wl oz = f.
Here we assume that the stability equation corresponding to ¥ is well-posed, which can be arranged
by shrinking ¥ slightly (see Proposition 4.3), and that f € Wy where

Ws ={f € C>(0%) : | fllczerx) < 0}

with v > 0 some constant and ¢ > 0 sufficiently small (so that the minimal surface equation has a
unique small solution as stated in Proposition A.6).

Above we considered minimal surfaces ¥/ with respect to the background metric ¢° as graphs
over Y parametrized by small Dirichlet data f € Wj. By an implicit function theorem argument
(see Theorem 2.2), if ¢ is a small perturbation of ¢°, one can similarly construct minimal surfaces Eg
in (]Téf ,g) parametrized by small Dirichlet data f € Ws. These minimal surfaces are still expressed
in the Fermi coordinates for the background metric ¢°. This is the parametrization for minimal
surfaces that we will use.

With the above parametrization, if 3 is the fixed minimal surface and ¢ is a metric close to ¢°,
we define the measurement operator

(1.4) F(g) =Fx(9): Ws = R

that takes a Dirichlet data f to the g-area of the minimal surface Zg.

Finally, we will need a condition ensuring that our background metric admits sufficiently many
minimal surfaces.

Definition 1.1. We say that M satisfies the ampleness condition if there is a neighborhood U of
M in M such that for every (yo, &) € T*U there is a smooth embedded minimal surface

= 2(yoﬁo) in (M’go)

such that (yo,&) € N*X and 9% C M\ M.

If dim(M) = 3 and if there are no closed minimal surfaces inside M, the ampleness condition

holds by [MR22] (see also the earlier work [CK18]). In any dimension, subsets of the Euclidean
and hyperbolic space satisfy the ampleness condition.

We can now give an informal version of our main result on the stable determination of a small
conformal perturbation from measurements of areas of minimal surfaces.

Theorem 1.2 (Informal statement; see Theorem 4.2 for precise statement). Assume that M ‘is an
analytic manifold and g° is an analytic metric such that the ampleness condition in Definition 1.1
holds. There are finitely many minimal surfaces X1, ..., %k of g° with corresponding sets of small

Dirichlet data Wé(k) such that if
F(a19°) = F(azg°) on W(s(k) fork=1,... K,

and if a1, ag are smooth functions sufficiently close to 1 with a1 = a9 in M\ M, then a1 = as.

Moreover, there is a conditional Hélder stability estimate showing that ay — ao must be small if

F(a19°) — F(aag®) are small on each W(S(k).



In fact, we will only use measurements corresponding to certain (2n + 2)-dimensional subspaces

of the infinite dimensional parameter manifolds Wé(k). These spaces depend on the background
metric g° and on Y, but not on the unknown conformal factors.

The minimal surface transform. The proof of Theorem 1.2 is based on studying the Fréchet
derivative, or first linearization, of the nonlinear measurement operator F'. We will show that this
linearization is the minimal surface transform, which is a Radon type transform that integrates a
function over a suitable family of minimal surfaces. Under certain conditions we will prove that this
transform is invertible together with stability estimates. A version of the inverse function theorem,
see [SU09], will then imply local uniqueness and stability in the nonlinear inverse problem as stated
in Theorem 1.2.

__As above, we fix a background metric ¢° in M and an embedded minimal surface ¥ with 9% C
M\ M. If « is a smooth positive function close to 1, we define the measurement operator for the
conformal metric ag® as in (1.4) by

F(a):Wg—HR

such that F'(«) takes a Dirichlet data f to the area of the minimal surface Eigo with respect to
metric ag°.

It follows from Theorem 2.2 and Proposition 2.3 that F is a C? map acting on functions close
to 1 in a suitable Sobolev norm, and its linearization satisfies

n

(DFWA)() = [ Bavols,
»f
where [ is a function on M (the infinitesimal variation of ), ¥/ is the minimal surface correspond-
ing to Dirichlet data f, and the volume form dVoly is induced on ¥/ by the background metric ¢°.
Thus the linearization of F' indeed corresponds to integrating the function 8 over minimal surfaces
>/, If one considers general perturbations of the metric (not just conformal ones), then one obtains
integrals of 2-tensor fields as stated in Proposition 2.3. This is completely analogous to the classical
boundary rigidity problem, where the linearization of the boundary distance function results in the
geodesic X-ray transform [PSU23, Chapter 11].

In the setting of a fixed minimal surface ¥ as above, we introduce the notation

(1.5) Rep: Ws - R, (ReB)(f) = /Ef B dVolyy.

Furthermore, if S is the set of all compact smooth embedded minimal surfaces in M that have
smooth boundary contained in M \ M, we consider the minimal surface transform

RB:S =R, (Rﬁ)(E):/EBdVolg.

The crux of the present paper is to study the properties of the minimal surface transform and to
show its invertibility under suitable conditions.

The operator Ry maps smooth functions in M to functions on the infinite dimensional manifold
Ws. We will show that formally Ry, is a double fibration tmnsform which is a natural class of
Radon type transforms studied in integral geometry, see e.g. [GS77, GGGO03, Helll, MST23]. Such
transforms are Fourier integral operators acting between finite dimensional mamfolds. Since the
manifold Wj parametrizing the minimal surfaces is infinite dimensional, we will need to introduce
a way of restricting to certain finite dimensional submanifolds in order to apply this theory.

4




A key property for the inversion of double fibration transforms is the so called Bolker condition,
which corresponds to (microlocal) ellipticity of the Fourier integral operator and recovery of wave
front sets [Gui85]. If the transform integrates over one-dimensional curves, the Bolker condition
is typically only satisfied under a no conjugate points condition (see [MST23]). Surprisingly, for
our minimal surface transform the relevant Bolker condition always holds, with no restrictions on
the metric. Here the fact that our minimal surfaces are generated as solutions of an elliptic PDE
creates more flexibility than for standard Radon transforms.

The Bolker condition is verified in Section 3 by constructing suitable variations of the original
minimal surface by controlling the values of solutions of the stability equation. In fact, we need
finitely many solutions vy, ..., vy of the stability equation such that (v1,...,vy) is an embedding of
the minimal surface ¥ to some RY. We construct such an embedding for some large N by a Runge
approximation argument, and following [GW75a, GW75b, AC22] we apply Whitney projections to
obtain an embedding with N = 2n + 2. ThlS means that for each base minimal surface, we only
use an (2n + 2)-dimensional subspace of the infinite dimensional data set W.

Given the Bolker condition, we can recover smooth singularities of a function from the knowledge
of its minimal surface transform. Moreover, if all the underlying structures are real-analytic, one

D)

can apply the methods of [MST23] to recover information of the analytic wave front set WF
as follows. The analytic microlocal approach to Radon type transforms was introduced in [B
and further developments may be found in [SU05, SU08, Kri09, HZ17, MST23, Bus25].

Theorem 1.3. Assume that (M 9°) is analytic, and let > be an embedded minimal surface with
ox c M \M. Ifge C(M M) vanishes outside M and satisfies

(Rep)(f) =

for all f € Wy, then
WF,(B)NN*E = 0.

The benefit of recovering analytic singularities is that we can combine it with microlocal analytic
continuation (Hormander-Kashiwara theorem) to obtain uniqueness results. Thus if (M, g°) is
analytic we obtain uniqueness and stability for the minimal surface transform under the ampleness
condition in Definition 1.1, but uniqueness also holds under the following foliation condition (see
e.g. [UV16, PSUZ19, MST23] for related notions). In this condition the leaves €5 of the foliation
are not required to be minimal surfaces, but there should be a suitable minimal surface normal to
each point of €.

Definition 1.4. We say that (M, g), where (M,g) cC (M,g), satisfies the foliation condition

if the following holds: there is an open M° C M with M° > M and p € C*(M°;[0,00)) with
m,, = maxy p and level sets Qs = p~1({s}) C M°,s € [0,m,] so that

(1) Qo C M°\ M and | Qs DO M,
(2) For every s € [0,m,) and every g € ;N M there is a minimal surface ¥ for (M, g) so that
dp(xo) € Ny, ¥\ 0 and 0¥ C M \ M.

(3) For every sg € [0,m,) and every open neighborhood U of Q4 N M in M°, there is 6 > 0 so
that Q; N M C U for all s € (sg —d,50 +9) N [0,m)).

s€[0,mp)

Theorem 1.5. Assume that (M, 9°) is analytic, and suppose that either the ampleness condition
in Definition 1.1 or the foliation condition in Definition 1.4 holds for M. If 8 € C(]Téf/) vanishes
outside M and satisfies

(RB)(X) =0
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for any smooth embedded minimal surface ¥ with 0¥ C M\ M, then
B =0.
Moreover, if the ampleness condition holds for M, there is a stability estimate where the L*(M)

norm of 3 is bounded by a finite sum of Sobolev norms of Ry, 3 in suitable balls (see Theorem 4.8
for the precise statement).

1.2. Motivation. The generalized boundary rigidity problem, formally posed in the mathematics
literature in [ABIN20], asks if the areas of minimal surfaces embedded in a Riemannian manifold
determine the Riemannian manifold. If the minimal surfaces are 1-dimensional (i.e. geodesics),
this reduces to the the classical boundary rigidity problem. A key motivation for studying this
generalization arises from its deep connection to the AdS/CFT correspondence, a profound duality
in theoretical physics proposed by Maldacena [Mal99]. This conjecture establishes an equivalence
between two distinct physical theories: conformal field theories (CFTs) and the geometry of Anti-de
Sitter (AdS) spacetimes (the “bulk”).

A notable proposal within this correspondence, introduced by Ryu and Takayanagi [RT06
RT06al], connects the entanglement entropies of a CFT to the areas of minimal surfaces in an
AdS spacetime. In this framework, the subregion A resides on the conformal boundary of the AdS
spacetime, and determines a minimal surface ¥ in the bulk, anchored at infinity to the boundary 9 A
of A. The Ryu-Takayanagi conjecture posits that the entanglement entropy of A in the CFT equals
(4G)~1Vol(%), where G is Newton’s constant and Vol(X) denotes the volume of . Entanglement

entropy measures the quantum correlations between A and its complement.

In the physics literature, the generalized boundary rigidity problem is called the bulk reconstruc-
tion problem. It means constructing a mapping between the dual variables or degrees of freedom.
Progress has been made in highly symmetric settings [Bil08, Billl, FGST15, JP21, 9, JIST25]
with formal arguments for reconstruction outlined in [BCFK19]. The work [LMOS ] computes
the stress-energy tensor from the area data of minimal surfaces on a perturbative level (i.e. near the
boundary) by inverting a Radon transform over hyperbolic spaces. We refer to [JLST25, CLT24]
for further physics references on the matter.

Arguably, results in bulk reconstruction have been constrained by the limited mathematical
tools traditionally used in physics. The work [JLST25], building on [CLT24], marks a shift by
leveraging modern methods from inverse problems (such as the higher order linearization method).
The present study expands this direction, offering new state of the art tools for bulk reconstruction.
We also study stability, which is important for bulk reconstruction and was previously considered
for a special case in [JP21].

Another mathematical outcome of the current work is to provide further examples of double
fibration transforms that can be analyzed by using the framework in [MST23].

1.3. Novelty of the results. The previous works [ABN20, CLT24, CLLO24] that study the in-
verse problem of recovering a Riemannian metric from the area data only consider 2-dimensional
minimal surfaces. The restriction to two dimensions arises because these works rely on lineariza-
tion techniques that reduce the problem to the anisotropic Calderén problem for the stability
operator, which is understood in two dimensions but remains widely open in dimensions > 3.
Additionally, [CLT24, CLLO24] require a solution to a density problem involving products of so-
lutions to the stability equation, which is also unresolved in dimensions > 3. The known density
results on Riemannian manifolds hold only for cylindrical (CTA) geometries under further assump-
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optics solutions, which limits possible generalization of the method [LS12]. Other works, such as
[Nur23, Nur24] and [MK24] (in the asymptotically hyperbolic case), consider the case of higher
dimensional minimal surfaces, but they only recover the Taylor series of quantities related to the
metric at a suitable boundary and thus do not really recover information in the interior. The
work [JLST25] considers the problem in the special case of small symmetric perturbations of a pure
AdS background, and argues a result similar to Theorem 1.2.

The approach presented in this paper overcomes the aforementioned obstacles and restrictions.
To our knowledge, this is the first work where minimal surfaces may be of any dimension > 2
when there are no additional symmetry assumptions, and one recovers information in the interior.
(Note that Theorem 1.2 requires analyticity of the background metric ¢°, but not of the conformal
factors.) Moreover, Theorem 1.2 establishes Holder stability for the recovery, marking a significant
improvement over the (at best) logarithmic stability achievable by the methods of [AE CLT24,
CLLO24], which rely on solutions to Calder6n type problems. A key reason for this stronger result
lies in the nature of the data used: the prior methods rely on a reduction to the Dirichlet-to-
Neumann map, for which the corresponding linearized problem is unstable, whereas our analysis
uses a subset of the data for which the linearization is a generalized Radon transform type operator
that happens to be stably invertible.

Furthermore, we note that small perturbations of a fixed minimal surface are parametrized by
an infinite dimensional Banach manifold, whereas the unknown metric depends on n + 1 variables.
This heuristic dimension count makes the generalized boundary rigidity problem extremely overde-
termined (the unknown depends on finitely many variables, whereas the measurements depend on
infinitely many). This strong overdetermination also suggests that one might be able to extract
information from areas of minimal surfaces in different ways.

As discussed above in connection with the Bolker condition, we only use a finite dimensional
subset of the data in our results. Under the ampleness condition, our data set can be parametrized
by points (y,§, 2) where (y,£) € S*M is a unit conormal of a minimal surface ¥, ¢) and z € R27+2
parametrizes a subspace of Dirichlet data on 9%, . Thus in Theorem 1.2 we determine an
unknown depending on n 4 1 variables from a data set having dimension 4n 4+ 3. On the other
hand, when proving injectivity of the minimal surface transform under the foliation condition in
Theorem 1.5, our data is parametrized by points (y, z) where y € M (so there is a minimal surface
through y with normal dp(y)) and z € R?"*2. Thus in this case the data set is (3n 4 3)-dimensional.

1.4. Organization. This article is organized as follows. Section 1 is the introduction. In Section 2
we compute the linearization of the measurement operator and show that it is given by the minimal
surface transform. Section 3 considers the minimal surface transform, which is shown to be a double
fibration transform (at least after restricting to suitable finite dimensional submanifolds), and it
is proved that the Bolker condition always holds. In Section 4 we give the microlocal arguments
proving injectivity of the minimal surface transform and prove the main theorems stated in the
introduction.

Appendix A includes functional analysis results required for proving Theorem 2.2. Appendix B
gives a boundedness result for pseudodifferential operators with finite regularity. Finally, Appendix
C includes the argument that one can always avoid the case where 0 would be a Dirichlet eigenvalue
of the stability equation by slightly modifying the boundary.

Acknowledgements. T.L. and M.S. are partly supported by the Research Council of Finland
(Centre of Excellence in Inverse Modelling and Imaging and FAME Flagship, grants 353091 and
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359208). L.T. is partially supported by Australian Research Council Discovery Project DP190103451
and DP220101808.

2. AREA FUNCTIONAL AND ITS LINEARIZATION

Throughout this section let g° be a fixed smooth metric on M. In order to generate new minimal
surfaces near a given one, of central importance is an assumption on the operator in (1.3).

Definition 2.1 (Admissible minimal surface). For a smooth Riemannian manifold (N, g), we say
that a minimal surface ¥ of (N, ¢g) with non-empty smooth boundary 0¥ C N is admissible if it is
an embedded smooth submanifold of N and its stability operator does not have Dirichlet eigenvalue
0.

It will turn out that given a minimal surface ¥ with boundary 9% C M \ M, by modifying
the boundary 9% slightly, we can always guarantee that any individual smooth embedded minimal
surfaces is made admissible, see Proposition 4.3.

Assume now that X° a fixed admissible minimal surface for (M ,9°). Let g be any metric on M ,
v € (0,1) and u € C?7(%°). Introduce g° Fermi coordinates so that an open neighborhood of %° is

{(z,t) |z € £°,t € (—€,€)} C M.
The area (or volume) of the hypersurface ¥, = {(z,u(x)): x € ¥°} is given by

(2.1) Ag(u) :/ dvol3, ,

where dVol%u is the volume form induced on ¥, by the metric g.
For v € (0,1) as above, define
(2.2) G = H3+ ()24 (1\7; o (T*JTJ@ TJTJ)) c o3 (1\7; o (T*M@ TJTJ)) ,
where o is the symmetrization operator. Observe that when G° C G is a small enough open
neighborhood of ¢°, then each element of G° is a metric on M.

We record a consequence of the implicit function theorem, the proof of which can be found in
Appendix A. For any § > 0 we will use the notation

Us = {f € C¥(05°): || fllcmmowe) < 0.
Theorem 2.2. There is an open neighborhood G° of ¢° in G and a 6 > 0 so that for all (g, f) €
G° x Us there is ug € C%7(X°) with ug‘azo = f so that the graph defined using g°-Fermi coordinates
(23) 2°(f,9) = {(a,uf(2) |z € 5°} € M
is a minimal surface for the metric g.
Furthermore, the map
(2.4) F:G° = C(Us;R), F(g)(f) = Agluf)

is C?-Fréchet differentiable from G° to C(Us;R). In particular, for each g € G°, there are operators
DF(g) and Ry depending continuously on g so that for all H € G small enough we have

(2.5) F(g+ H) = F(9) + DF(g)H + Rg(H), and ||Ry(H)|cw,z < CIH|%,
where the constant C > 0 is uniform over G°. Finally, for every g € G°, f € Us, H € G,

(2.6) DF(g)H(f) = (DgAg)(uf;)H-
8



For appropriate X, f, g, the notation X(f, g) == {(z, ug(x)) | z € ¥} used in Theorem 2.2 will be
used throughout.

In particular we will show

Proposition 2.3. There is an open neighborhood G° of ¢° in G and § > 0 small so that for any
g€ G, any f € Us and any H € G we have

1

(27) (P =5 | oy Tt (501 FOAVOIL 1.

where gg is notation for the induced metric of g on 3°(f, g). If the deformation is within a conformal
class, meaning that H(xz,t) = f(x,t)g(x,t) for some function B € C(M), this reduces to

n

(2.8) (DF@)GaN (D = | o, Hr @Ol

Before moving on to the proof, we state
Lemma 2.4. For G° C G a small neighborhood of g°, let {gs | s € R} C G° be a one-parameter

family of metrics on M and let Y be an embedded smooth hypersurface. We have

1 . .
DsdVols |s—¢ = 5 a0 (¢5540)d Vol

Proof. Suppose (x,t) € ¥ x (—¢,€),e > 0 is a Fermi coordinate system for the metric go = gs|s=o-
Suppose that in this coordinate system, the metric g; has the expression

9s = Gjks(, 1)z da? + gu.s (2, t)dt? + ws(2,t) @ dt + dt @ ws(, 1),
where wg(+,t) is a smooth family of one-forms on ¥ parametrized by t € (—¢, €) and g4 4.s(x,t) > 0.

Notice that the volume form dVol%s = dVolgzgs has the local coordinate expression
(2.9) dVolf: = [det (gjp:s(x,0)) |2
By the choice of gg-Fermi coordinate system, we know that
90 = gjk:0(x, t)dxjdazk + dt?.
Combine (2.9) with Jacobi’s formula to get

1 1.
OdAVOI; [s=o= B [det (gjus(,0)) [/ |omo= 3Idet (g0(z: 0)) [2x ((g0(w,0)) ™" g0(,0)) -

The right side is precisely %trbggo (¢5,0)d Vol in coordinates. O
We are now in position to compute the linearization DF of F'.

Proof of Proposition 2.3. Let f € Us, g € G° with G° a small enough neighborhood of ¢° in G
and § > 0 small enough. Let g5 for s € R be a smooth curve in G° with g9 = g, and H = g9 =
0s9s|s=0 € G. Using (2.6), we have

— f . s
(DF(9)H)(f) = (DgAg)(uy)H = Os /EO(f,g) dV012o(f7g) a0’
Applying Lemma 2.4 we obtain (2.7). When H is conformal to g, this formula reduces to (2.8),
which completes the proof of Proposition 2.3. O
9



3. CANONICAL RELATION AND BOLKER CONDITION

In this section we will show that the minimal surface transform Ry, restricted to a suitable finite
dimensional space of Dirichlet data on 9%, is a double fibration transform. We also use the Runge
approximation property for the stability equation to show that the Bolker condition is satisfied at
every point of the canonical relation. These results are true in the C'™ category, which is the setting
of Section 3.1. If all underlying structures are analytic, the results are also true in the analytic
category. We will work in the analytic setting from Section 3.2 on.

3.1. Heuristic calculation. As before, let ¢g° be a fixed smooth metric on M and ¥° a fixed
admissible minimal surface for (M, ¢°), from which we obtain a Fermi coordinate system for ¢°
around Y°. We consider a subset of nearby minimal surfaces which can be represented as graphs
¥°(f,g°) where f € Uy, see Theorem 2.2. In fact, throughout this subsection we replace Us by
Wy == Us N C°.

According to Theorem 2.2, we have a well-defined transform on 2-tensor fields,
C®(M;o(T*M x T*M)) > H — DF(¢°)H € C(Wg;R)
defined via (2.7). To simplify the analysis we will consider conformal deformations of metrics, in

which case our transform will act on scalar functions as in [Gui85, MST23] (see also [G579, § 8] and
[GS77]). The relevant transform is the map 5 — DF(g°)Bg° given in (2.8), which can be rewritten

as in (1.5) (omitting the constant factor 5) as the minimal surface transform

(3.1) Ry : C2(M) = C(Ws:R), (RsoB)(f) = / BdVol?,

0 (£.°) (f,9°)

A further technical issue persists: for each § € CX° (]\7 ), Ryof takes its input from an infinite
dimensional parameter space, Wy, rather than, say, some finite dimensional manifold. While this
“overdetermination” suggests that the analysis of the transform Rye might become easier, infinite
dimensionality prohibits us from directly applying the Fourier integral operator (FIO) machinery
of [Gui85, MST23|.

Nevertheless, for the purpose of motivation, let us consider the (infinite dimensional) double
fibration:

Z N*Z\ 0
(3.2) ”V YT y L
Ws M T*W; \ 0 T*M \ 0
where the submanifold Z C Wy x M is defined by
(3.3) Z = {(f;x,t)ew5x1\7|(a:,t)eEO(f,gO)cM}.

We will adopt notation from Appendix A that characterizes solutions u of the minimal surface
equation (1.2) for (M,g¢°) as solutions u of Lgo(u) = 0, where Lgo is the elliptic second-order
differential operator from Lemma A.3. For the minimal surface ¥°, u = 0 satisfies Lgo(0) = 0,
and the stability operator of ¥° is given by D, L4 (0), so that solutions of (1.3) are precisely those
functions v satisfying D, Lgo(0)v = 0. For brevity, we will denote the stability operator at u = 0
by
Q = DuLgo (0) = Abgogo + q.
10



In (3.3), we may thus reformulate

(3.4) S°(f,9%) = {(z,ule (2)): 2 € 2°, (Lgo(ule), ulelose) = (0, f)}

Formally, the tangent and cotangent bundle of Wy are identified with C*°(9%X°) and D'(9%°)
respectively. We wish to compute the normal bundle of Z near the point (0;z,0) for arbitrary
x € ¥°. A direct computation and an application of Lemma A.3 show that at (0;x,0) € Z, by

looking at tangent vectors of Z given by curves (fs; s, ts) with ts = ugi (xs) where Lgo (ui;o) =0,
we have

(3.5) To.0.0)Z = {(fo; 20 +v(2)8y): fo € C®(95°), do € T3, (Qu,vlose) = (0, fo)}

By our admissibility assumption on X° that translates to the well-posedness of (1.3), which is
equivalent to the bijectivity of (Q-, -|oxe) over certain function spaces (see Lemma A.3), the function
v in (3.5) is uniquely determined.

More generally, according to Lemma A.3, for every f € Wj sufficiently small, there is a linear

elliptic second order differential operator E(ui;o): C?7(x2°) — C%7(¥°) so that the map

C2(2°) 3 v = (B(ul)v,v]oxe) € CO(2°) x C27(95°)

is bijective. (The operator E(ugo) is merely D, Lo (ui;o)) Therefore, we may introduce P(-, -; ugo) €
D'(0%°,%°) defined as the Poisson kernel of the Dirichlet problem for (E(ui:o)-, ‘|oze). More pre-
cisely, P(, ‘;ugo) is uniquely determined by the property that for every h € C*7(9%°), v(x) =
Jose Py, x; ugo)h(y)dy satisfies

E(ugo)v =0 and v|gze =h.

These observations allow us to calculate that the tangent bundle of Z over (f;zx, ugo (z)) € Wsx M
is given by

(3.6) Z = {( ford + (duls (@) - & + v(2))dy) € C(I°) X Ty 0)M:

Tirauls @)
T e Ty’ E(ugo)v =0, v|gxe = fo} .

Therefore, the conormal bundle of Z at (f;zx, ugo (x)) € Z can be expressed as

(3.7) N*

e . / o * r. o . f
(f;x7u£0(x))Z - { <bﬂ é.) € D (82 ) X T(I,O)M é. = )\( dugo(x) + dt)7

b(-) = —AP(,z;uls), A€ R\ {0}} .

Note that by Lemma A.3, at (0;x,0) € Z, P(-,x;0) = P(-, ) is precisely the Poisson kernel of the
Schrodinger operator Q = Dy Lgo(0) = A g0 + ¢ from (1.3), which is the stability operator of ¥°.

ZO
Before we move on to consider the Bolker condition, we will state for the convenience of the
reader a consequence of Runge approximation that follows from [L1.520, Appendix A].

Lemma 3.1. Let X° be an admissible minimal surface for (M, g°). For every f € C™(9%°) let
vl € C%(X°) be the unique solution of Qul =0 in X° with vf|gse = f. Then:

(1) For any x,y € X°, x # y, there is f € C™(9X°) so that vf(x) # v/ (y).
(2) For any x € (X°)™, a € R and £ € T¥X° there is f € C°(9%°) so that v/ (x) = a and
dvf (z) = €.
11



If all underlying structures are analytic, we obtain the same statement with f € C¥(9X°) and
vl e Cv(2°).

Proof. The admissibility assumption for 3° ensures that 0 is not a Dirichlet eigenvalue of the second
order elliptic operator @ in X°. This shows that for any f there is a unique solution v/. Upon
extending ¥° smoothly and placing sources outside ¥°, the statements (1) and (2) follow from
[LLS20, Proposition A.7 and its proof]. If the underlying structures are analytic and the sources
are outside X.°, the analyticity of f and v/ follows from elliptic regularity since @ has analytic
coefficients. g

We will later use a Whitney projection argument to obtain an analogue of Lemma 3.1 where f
lies in an (2n + 1)-dimensional space.

Now let us return to considering N*Z, whose points will be denoted by (f,b; z, ugo (x),&) where

(f;z, U;o (x)) € Z and (b,§) € N(*fm f (x))Z. Recall that the Bolker condition for a double fibration
bl ’ugo

as in (3.2) is that 7z is an injective immersion. Thus let us explore whether the left projection
i+ N*Z — T*W; is injective at (0, Py(-,20);z0,0,dt) € N*Z; that is, whether there exists a
yo € 3° with Py(-,y0) = Py(-,z0) and yo # x¢. The existence of such yg is excluded by Lemma 3.1.
Therefore we have that for all (0, P,(-, z0); zo,0,dt) € N*Z,

(3.8) 7710, Py(+, 20)) = {(0, Py(-, x0); w0, 0, dt)}.
We now explore whether the left projection ny, : N*Z — T*Wj is an immersion at a given point
(0, Py(-,x0); z0,0,dt) € N*Z. Using the representation of N(*f.x o (x))Z given in (3.7), let
b b gO
(fs, =AsP(:, xs;ug‘é);xs, ugi (xs), )\S(—dug‘é (xs) +dt), seR

be a curve in N*Z with fy = 0 (so that ugg = 0). Applying 77, to this curve and differentiating at
s = 0 yields that

OslsomL (fsr =N P( wsiuls ) wg, wls (2), As(—duls (z5) + dt))
= (f07 —Aodqu(',l’O) : i‘O - }\OPq('a'IO) + B(a :EU)fO) ;

where for each (y,z) € 9X° x X°, B(y,z): C*°(0X°) — R is a linear map. So if the right hand side
is zero, then fy =0 and

/\odggpq(-, Jfo) - T+ /‘\OPq(‘v xo) =0.
That is, for all f € C*°(9%°),

(3.9) )\Odvf(xo) - Zo + }\va(xﬂ) = / (/\Odwpq@/: ) |p=ao - Lo + )'\qu(y, 7)) f(y)dy =0
0X°

where (Quf,vf|gse) = (0,f). By Runge approximation again (Lemma 3.1), we can prescribe

dv! () and v/ (2¢) freely at xzg. Combined with (3.9), this implies that

NoZo = Ao = 0.

Thus @9 = Ao = 0, so that dry is injective at all points of the form (0, —Py(-, z0); 0, 0,dt) €

N0 0)Z With g € 3,

The non-compactness of Wy prevents us from concluding that 77, is an injective immersion on all

of N*Z. Furthermore, the infinite dimensionality of W5 means that the double fibration transform
12



given by (3.2) is not in the framework of [MST23]. To this end we will consider double-fibration
transforms over a finite dimensional set of admissible minimal surfaces.

3.2. Finite dimensional set of minimal surfaces. We now assume that all underlying struc-
tures are analytic. Let g° be a fixed analytic metric on M and X° C M a fixed admissible minimal
surface and fix Fermi coordinates for g° around X° so that

{dgo (-, X°) < €} = 3° X (—¢,€).

Choose 6 > 0 so that (Lgo(-),|ase) = (0, f) is solvable for all f € Us, which is possible according
to Proposition A.6. For each finite dimensional subspace B of C*¥(0%°) we define

(3.10) Gs(B) :=UsNB
and
(1) Zs(B) = {(f2.) € G5(B) x M | ¢ = ufe (), (Lgo(ule)ulolose) = (0.6)} -

Recall from [MST23, Def. 1.5] or [GS79, § 8] the notion of double fibrations. The main result of
this section is

Proposition 3.2. There exists a subspace B C C*(0%X°) of dimension N = 2n + 2 such that if
0 > 0 is chosen sufficiently small, the double fibration defined by
(3.12)

Zs(B) N*Zs(B)\ 0

Gs(B) M T*G5(B)\ 0 T*M\ 0

satisfies the Bolker condition; that is, mr is an injective immersion. Furthermore, if (]\7, g°) is
analytic and if we choose a basis f1,..., fx € B and identify Gs(B) with the unit ball BY c RY,

then the interior of Z5(B) is embedded analytically in B x M.

After the possible introduction of a suitable weight function, double fibrations give rise to double
fibration transforms defined in [MST23, Def. 1.5], which according to [MST23, Thm. 2.2] are FIOs.
In what follows, for any N € N we use the notation

BN = {z€RY | |z| +...+|en| < 1}

to denote the closed unit ball in (RY,¢'). We use the ¢! norm to ensure that if ||f;|| < ¢ for
1 < j < N, then for z € BY we still have |[z1f1 +...2xfn| < §. Akin to the representation (3.1),
a straightforward application of Proposition 3.2 gives

Corollary 3.3. Let 3° C M be an admissible minimal surface with respect to the metric g°. Let
also N =2n + 2. There are 6 > 0 small and

Fiveeos fx € CHOS%) with | fjlloan =
so that the operator DF(g°) : CSO(M) — C(BY) defined as
(DF(g°)h)(2) = (DF(g9°)h)(z1f1 + - + 2N [N),

with the right hand side being the minimal surface transform in (2.8), is a Fourier integral operator

satisfying the Bolker condition at all points of its canonical relation. When (M, ¢°) is analytic, this
operator is an analytic double fibration transform.
13



Recall that £° = =° is closed and compact. In order to give the proof of Proposition 3.2 we
begin with

Lemma 3.4. There exists an € > 0 and a finite set S' C C¥(9%X°) such that for all x,y € ¥° with
x #y and dyo(z,y) < €/4, there exists a solution v € C¥(X°) of

(3.13) Qu = DyLg(0)v = (A g +q)v =0

with boundary condition v|gse € S’ such that v(x) # v(y). Furthermore, for all points x € ¥°,
(3.14) span{dv(z): v solves (3.13), v|gse € S’} = Ti¥°.

Proof. By Lemma 3.1, for all x € ¥°, there are C* solutions (ui(-;x),...un(-;x)) of (3.13) in X°
such that {du;(x;x)}]_; is linearly independent. As such, in a small ball B, (z) centered around
x of radius €, > 0,

(Ul(‘;l’),...un(-;I)) : Be, () - R"
forms a coordinate system of ¥° near x.

Define the finite set S; = {ui(-;x)|oxe, ..., un(-;2)|ose}. Now consider the covering of X°
given by {B%z (z): = € ¥°}. By compactness, there exist points x1,...,xx € X° such that the set

N
{Bex, (71),...,Beay (xy)} is a finite cover of ¥°. Set 8" := |J Sg;.
2 J=1

21
By the fact that for each z;, j =1,..., N,
(ur(-325), -y un(-525))  Be,(z) = R"

is a coordinate system near z;, (3.14) is automatically satisfied. Now choose € := min{e;,, ..., €;5 }
so that any two distinct points x,y € X° with dyo(z,y) < €/4 must both belong to Be,, (xj) for
some j = 1,...,N. Using again the fact that

(ur(-325), ..., un(-;25)) : Be,(z) = R

is a coordinate system, there must be w;(-;x;), [ € 1,..., N which separates these two points and
satisfies w;(-;2;)|ose € Sz; C S’ The proof is complete. O

Lemma 3.5. There ezists a finite set S C C*(90X°) such that the set
{v e C¥(X°): v solves (3.13), v|gse € S}
separates points on %°. Furthermore, for all points x € 3°,

(3.15) span{dv(z): v solves (3.13), v|gs. € S} =T, 3°.

Proof. Consider the product manifold
Y x X\ {(z,y) € £° x X° | dyo(x,y) < €/8}

where € > 0 is given by Lemma 3.4. For any (z,y) in this set, we can use Proposition A.7 (a)
of [LLS20] to find v(-;z,y) € C*°(X°) solving (3.13) on X° such that v(z;z,y) # v(y;z,y). By
perturbation, if necessary, we may assume that v(-;z,y)|gze € C¥(0%°) and v(-;x,y) € C¥(X°).
By continuity, there is €, , > 0 such that

(3.16) v(Be,, (r);z,y) Nv(Be, ,(y);z,y) = 0.
The set

{B,,(x) x Be, ,(y): dse(z,y) > €/8}
14



is clearly an open cover of the compact set
Y x X\ {(z,y) € £° x X°: dyo(x,y) < €/8}

So we may find a finite cover {B% " (xj) x Be,, ,, (yj): j=1,..., N} with corresponding solutions
{v(-;zj,y;): 5 =1,...,N} of (L 3) Set S” := {U( 21, Y1) oo, -, v( 52N, YN )|gse b Then for
any two points z,y € EO, with dso(z,y) > €/8, there exists j € {1,..., N} such that (z,y) €
Beﬁj,y (x) % Bex v, (yj) which by (3.16) means that v(z; x;,y;) # v(y; acj,y]) with v(-;2;,y;)|ase €
S”. Now set S := S’ US” where S’ is as in the statement of Lemma 3.4. The condition (3.15)
is satisfied by Lemma 3.4. Furthermore, solutions of (3.13) with boundary values in S separate

distinct points x,y € ¥° both when dyo(z,y) > €/8 and when dyo(z,y) < €/8. This completes the
proof. O

We will next improve Lemma 3.5 and show that one can take S to have cardmahty 2n + 1. By
using Runge approximation and a Whitney projection method, it was proved in [GW75a] that an
n-dimensional Riemannian manifold can be embedded into ]R2”+1 by a mapping whose component
functions are harmonic. In the subsequent work [GW75b], they generalized this result to solutions
of elliptic equations lacking a zeroth-order term.

Using Lemmas 3.4 and 3.5, we extend these results to include a zeroth-order term. An immediate
consequence is that the set S in Lemma 3.5 can be chosen to have (possibly) reduced cardinality
2n + 1. In order to have a double fibration transform later, we will need that all of the solutions
cannot vanish at a fixed point, and this can be arranged by adding one more solution.
Proposition 3.6. Let QQ = Abgog" +q be as above, where the coefficients are in C*(X). Then there
is a C* embedding of X° in R*™+1 | whose component functions are solutions of

Qv =0 on X and v|py € C¥

If the embedding is taken into R*" 2, then the embedding can be chosen to avoid the origin.

Proof. We extend X to a slightly larger, connected, non-compact C* manifold % and extend the
coefficients of ) to ¥ with the same regularity. Let S = {f1,..., fy} be as in Lemma 3.5, and let
{vf1,... v/¥} be the corresponding solutions to Qv = 0 in ¥ with vfi|gs = fj-

While Lemma 4 of [G1
instead consider the map

75b] constructs an embedding into R! using harmonic functions, we

F=@" . vV):8 RN
and set [ = N. To confirm that F' is an embedding, note that injectivity follows because S
separates points, and the injectivity of its differential is guaranteed by condition (3.15). With this,
the remainder of the proof then follows identically to that in [GW75b]. (In the proof of Lemma 11
in [GW75b], one applies Lemma 3.1.)

To show that we can arrange the embedding to avoid the origin by adding one more solution,
suppose there exists a point xg € 3 such that

vfl(wo) =... = vf2”+1(330) =0.
If such a point exists, it would be the unique point mapping to the origin since the mapping is an
embedding. Now choose fo, 1o € C¥(9%) such that v/2n+2(x4) # 0 and we are done. O

Remark 3.7. Proposition 3.6 also holds for general second order elliptic operators with analytic
coefficients, and if the coefficients are smooth then the corresponding result holds in the smooth
category. This is true since Runge approximation and consequently Lemmas 3.4 and 3.5 hold for
such operators (see [LLS20, Proposition A.7]).
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Using Proposition 3.6, we immediately obtain:
Corollary 3.8. There exists a set S = {f1,..., fony2} C C¥(0%) such that the set
{veC¥X): Qu=0, v|gpx € S}

separates points on X, the map

(3.17) z = (v (z),. .. o2 ()
avoids the origin, and for all x € 3,
(3.18) span{dv(z): Qu =0, v|py € S} =T, X.

Proof. Let (v1,...,v2n42) be the embedding from Proposition 3.6 that avoids the origin, let f; =
vjlas, and define

S={f1,.-., fonya}

Then v; = v/i| and the result follows since the embedding (v1,...,v2,42) is injective, avoids the
origin, and its differential is injective. ([l

We now proceed toward the proof of Proposition 3.2. Let ¥ = 3° and N = 2n + 2, and let
vft, ..., vV be the solutions in Corollary 3.8. We define the finite dimensional space B as

B =span{fi,..., fn}.
Let {ff,..., fx} be the dual basis in D'(0%°) to {fi,..., v}, and define B* = span(f,..., fx) (in
other words, f7 is the distribution mapping C*°(9%°) > ¢ — (f7,¢) = fazo fj®). We consider now
G5(B) and Z5(B) as defined in (3.10) and (3.11) respectively for this choice of B. The cotangent
bundle 7*G5(B) can then be identified with Gs(B) x B*. Let P(-, z; ugo) € D'(0%°) be the Poisson
kernel which appeared in (3.7) and set

N
(3.19) P(aulo)ls =Y P(fjzulo)(ff, ), Py(2)B = P(.2;0)B.
j=1

We now prove a lemma which will be useful for ignoring the conic direction in N*Z5(B).

Lemma 3.9. Let X and Y be smooth manifolds and let L C (T*Y x T*X)\ 0 be an embedded
conic Lagrangian submanifold satisfying the following condition:

(3.20) there is no (z,€) € T*X \ 0 such that (y,0;x,&) € L.

Suppose the left projection 7y, : L/Ry — T*Y /Ry is an injective immersion. Then the left projec-
tion wp, : L — T*Y 14s an injective immersion.

Proof. We need to show that w7, : £ — T*Y is an injective immersion. To this end, we note that
due to (3.20), for any auxiliary metric || - || on Y,

L/Ry = L= {(y,m;x,8) € L] |In] =1}
so that 77, : £ — S*Y is an injective immersion by assumption. Now suppose that (yo, 70; 21, £1)
(Y0, M0; T2,62) € L are such that their images under 7, coincide. By (3.20), we can choose A >
so that (yo, Amo; 1, A1), (Yo, Ano; 2, A2) € L. Using that 77, is an injection, we see that (x1,&1)
(z2,&2), which makes 7y, injective.

Il o

To see that dmp is injective at all points on L, it suffices to show that it is an injection on
L for (y,n;z,£) € L. To this end, we write

EZZXR+
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so that T(y p.. o)L = T(ym;x@ZEB R for all (y,n;x,€) € L. Here and below, R denotes the space of
tangent vectors corresponding to the conic direction. Now suppose V' € T} )L is in the kernel

of dr,. We write V=V @R for V € T

Ys1i,€
v, g)f and R € R. We then have that

(3.21) O*dﬂL‘yng@,g V= dTrL‘ yizE) V+d7TL| yiaE) RET(ym)S*Y@R.

By construction, if V' € TL, then dn )V € TS*Y and similarly dr, R € R. Using (3.21), we see
that

dry, ’(y,n;l‘,é) Ve T(ym)S*Y NR = {0}

This implies that V' = 0 by our assumption that 7 is an immersion. Going back to (3.21), we see

that dr R = 0 for some vector R € T(y ., ¢)£ in the conic direction. By (3.20), this means that
R=0. O

We now consider the double fibration given by (3.12).

Lemma 3.10. The set Zs(B) has the following properties.
(i) The conormal bundle N*Z5(B) is given by

N*Z5(B) = {(f,)\P(-, I g, ull (@), A(—du? (@ )+dt)) € T*Gs(B) x T*M: xEZO,)\>O}

where ugo solves (1.2), te. Lgo (ugo) =0, and u§0|82}° = f.
(ii) For ¢ > 0 sufficiently small, the projections mgym) : Zs(B) — G5(B) and ny7 : Zs(B) — M
are submersions.

(iii) We have that
(3.22) N*Zs(B)/Ry = L; :=

{(f,P(., g, ul (@), —dul. () + dt) € T*G5(B) x T*M : z € 20}.
Denote by 7y, the left projection acting on Ls. For each x € ¥.°,
(3.23) 710, Py, 2)[B) = {(0, Py(-,2)|B3 2, 0,d0)}
and
(3.24) drr(0, Py (- )| 2,0, dt): T(o,p, (- )\ i.0.)Ls — T(G5(B) x BY)

18 injective.
Proof. (i) The expression for N*Zs5(B) can be obtained following the heuristic computation in
Section 3.1 so we will not repeat it here.
(ii) By Lemma 5.3 of [MST23] it suffices to check that
(3.25) there are no (z,§) € T*M, y € Gs(B) such that (y,0;x,£) € N*Zs(B)\ 0
and
(3.26)  there are no (y,n) € T*Gs(B), = € M such that (y,n;,0) € N*Zs(B) \ 0.

Condition (3.26) can be verified by observing that —dui;o (x) + dt never vanishes. To see (3.25), we

need to check that P(-,z; ugo)\B # 0 for all x € X°. In the particular case f = 0 we observe first
that for all ¢ € B,

(P(-,230)[B, ) = (P (-, 2)|B, ¢) = v°(x)
17



where v? is the solution of (3.13) with boundary value ¢ € B. We have chosen B = span(S) and
by Corollary 3.8, the embedding via (3.17) avoids the origin. Therefore, for all x € ¥° we can find
an element ¢ € B such that (P(-,z;0)|B,¢) # 0. Therefore, P(-,x;0)|g # 0 for all z € ¥°, which
shows that (3.25) holds when f = 0.

For general f € Gs(B) sufficiently small, we will apply a perturbation argument. For any fixed
xo € X°, let ¢ € B so that (P(-,z0;0)|B, o) # 0. According to Corollary A.5 and Proposition A.6,
the map

C*1(9Z°) x CP1(OE%) 3 (h, f) = | Ply.-5uje)h(y)dy € C*(£°)
o%e
is continuous. In particular,

(z, f) = - P(y,z;ul)do(y)dy € R
as a map from X° x C?7(9%°) to R is continuous. Therefore, there are open neighborhoods Uy of
zo in X° and Wy of 0 in C%7(9%°) so that Josso P(y,x;ugo)gbo(y)dy # 0 for (z, f) € Uy x Wp. In
particular, P(~,x;u£o)|13 # 0 for (z, f) € Uy x W.

Using the compactness of ¥° and the fact that g € 3° was chosen arbitrarily above, we cover
3° by open neighborhoods Uy, ..., Uy, so that there exist open neighborhoods Wy, ..., Wy, of 0 in
C?7(0%°) so that P(-,x;ugo)\B # 0 for (z,f) € Uj x Wj,j € {1,...,m}. In particular, for any
f e ML, Wj, we find that P(-,x;ugo)hg #0forallz € UL, U; O ¥°.

In conclusion, by choosing § > 0 sufficiently small, for every f € Gs5(B) and every z € X°,
P(-, x; ugo)\B # 0, completing the verification of (3.26).

(iii) Equation (3.22) is obvious. To check (3.23), following the calculation in Section 3.1 shows

that this is equivalent to showing that x — F,(-, z)|g from 3° — B* is injective. But by Corollary
3.8 solutions v to Qu = 0 with boundary conditions in B separate points in 3°. So (3.23) holds.

Next we follow the calculation in Section 3.1, with the modification that (3.9) holds with Ag = 0
due to that fact that the conic direction was modded out in (3.22). Thus (3.24) is equivalent to
showing that at all points = € >.°,

span{dv(z): Qu =0, v|gse € B} =T,%°.

This is precisely what B is constructed to do by Corollary 3.8. The proof is complete. g

We need to extend the injectivity part in Lemma 3.10 (iii) from the case f = 0 to small f.

Lemma 3.11. Let 69 > 0 be sufficiently small so that Zs,(B) is well-defined. There is a finite
collection of open subsets U; C Lsy,7 € {1,...,J} with {(0, Py(-,z)|B;2,0,dt): x € £°} C U‘j]:1 U;
such that if for some j € {1,...,J},

(f, P(-,y; ugo)\B; y,ugo (y), —dugo(y) +dt) e Uj, (f,P(-,; ugo)]B;x, ugo (x), —dugo(x) +dt) € U;

and (f,P(,y,ugoﬂB) = (f,P(',:E;Ugo”B), then x = Y.

Proof. As a consequence of Lemma 3.10 (iii), the map d7ry : TLs, — TT*Gs,(B) is injective on

{(0, Py(-,z)|B; %,0,dt): x € £°}. This implies that for each z € ¥°, 7 : L5, — T*Gs,(B) is

injective in a small neighborhood of (0, P,(-,z)|B;,0,dt) in N*Zs,(B). By compactness, we can

find a finite open cover {U; C 250}3-7:1 of {(0,P,(-,x)|B;2,0,dt): x € X°} such that the map

7L : Uy = T*Gs,(B) is injective for each j =1,...,J. O
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Finally, we verify that under our assumptions the minimal surfaces and the solutions are analytic.

Lemma 3.12. Let (M g°) be an analytic Riemannian manifold with boundary OM and M € M be

an open subset. Suppose 3 C M is a smooth embedded minimal surface with boundary 0% C M\M
Then Y™ is an analytic hypersurface.

Furthermore, if w solves (1.2) on ¥° with w|gse € C*(0%°), then w € C¥(X°).

Proof. 1t suffices to show that X is an analytic embedding in a neighborhood of every point p € yint,
To this end, suppose py € L. Since ¥ C M is a smooth embedding, there exists an open subset
) C ¥ containing py and an analytic hypersurface H intersecting €2 tangentially at pg. In (analytic)
Fermi coordinates normal to H,

Q= {(l’/,l?n) | 2 = u(xl)}v

with u(2’) solving the nonlinear elliptic PDE (1.2). According to Lemma A.3, the linearization of
(1.2) at w is an elliptic differential operator so that u is an elliptic solution of (1.2) so that we have
u € C¥(R) according to [Bes87, Appdx. Thm. 41] (see also [KN15, Cor. 1.4]). The same references

also prove the second statement of this lemma. ]

We can now give the

Proof of Proposition 3.2. Let dg > 0 be sufficiently small Then by Lemma 3.10 (ii), diagram (3.12)
gives a double fibration transform in the sense of [MST23].

To verify the Bolker condition, it suffices by Lemma 3.9 to show that 7y, : L5 — T*Gs(B) is an
injective immersion for some ¢ > 0. Let {Uy}/_, be the collection of open sets in Lg, constructed
in Lemma 3.11 such that

J
(3.27) {(0, Py(,2)|Bs 2,0,dt): z € 2°} C | U
j=1
By Lemma 3.10 we have injectivity of 7, and d7;, on the submanifold

{(0, Py(-,2)|p; 2,0,dt): = € £°} € N*Z5(B).

We now need to choose § > 0 small enough so that this property extends to all of Ls, via a
perturbation argument. First, we look at injectivity of 7;,. Suppose to the contrary that, for any
§ > 0, 71, is not injective on Ls,. This implies that for any j > 1, there exist distinct x;,y; € X°
and f; € G;/;(B) for which

(3.28) 7L ((fj,P(-,xj;ugi)\B;xj,ugi (z;), —dugf; (z;) + dt))
=71 (f5: Py ulf) s g, wlh (), —dudd () + dt))
By the definition of G5(B), f; — 0 in C*7(9%°), which implies that u;c] 0 in C?7(X°) by

Proposition A.6. By compactness we may assume, after passing to a subsequence, that x; — g €
¥° and y; — yo € X°. Taking this limit in (3.28) gives

TL ((Oa P(a Zo; 0)|B7 Zo, 07 dt)) =T ((07 P(? Yo, 0)|B7 Yo, 07 dt)) .
Lemma 3.10 then states that xg = yg which means that
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as j — oo. Now (0, P(-, z¢;0)|B; x0,0,dt) € Uy for some k € {1,...,J} so
fi i i i fi fi

(f5: P(Crxgiuge) B2, ugs (25), —duge (x5) +dt), (fj, P(, xj5u50) |83y, uge (v5), —duge (z5) + dt) € Uy,
for j € N sufficiently large (1/j < dg). The construction of Uy guarantees that 77 is injective in
Uk. So (3.28) implies that x; = y; which is a contradiction to our assumption that y; and z; are
distinct. So there is indeed a jo € N such that 7, is injective when acting on £; /jo» and we set
61 = 1/jo.

We now need to verify the injectivity of d7; over the tangent space of each point in Ls,.
Lemma 3.10 states that this property is satisfied at points in the set

{(O,Pq(-,x);x,O,dt): LS EO} - Z51 :

Injectivity of d7y, is an open condition, so there is a neighborhood U of {(0, (-, x); x,0,dt): € ¥°}
in L5, on which d7, is injective.

By Proposition A.6 we know that uio — 01in C?7(x°) if f — 0 in C*7(0%°). Therefore, for
some ¢ € (0,01) sufficiently small, we have

Z(; cU,
so that we have guaranteed that 77, is an injective immersion on Lj.

Finally, that the interior of Z5(B) is embedded analytically in B;(0) x M when ¢° is analytic is
guaranteed by Lemma 3.12 and the consequence of Proposition A.6 that a solution to (1.2) depends
analytically on its boundary value. O

4. STABILITY IN THE CASE OF CONFORMAL DEFORMATIONS

The purpose of this section is to show that one can identify a small conformal deformation of
an analytic metric on any compact subset strictly within the manifold M from knowledge of area
data of minimal surfaces with prescribed boundary. From this section onward we will have need of
multiple minimal surfaces so we replace the notation X° by 3.

Let ¢° be a fixed, real analytic metric. Let ¥y be an arbitrary admissible minimal surface for
(M ,g°) with 0%y C M \ M. As a consequence of Theorem 2.2, there is an open neighborhood
N C H3+“T+1+7(M) containing 1 and a § > 0 so that for all & € N the operator F(ag®)(f) given
by (2.4) is well-defined for all f € Us. In particular, let f1,..., fy € Us be a basis of By C C¥(9%))
as constructed by Corollary 3.3, where N = 2n + 2 is its dimension. We consider the map

(4.1) Fo: N = C(BY), Fola)(2) = Flag®)(z1fi + - +2nfn),

Recall thag B{V is the closed unit ball in the ¢! norm, which ensures that z; fit--+z2vfnveUs
when z € BY.

Our first main result considers the case where we use areas of minimal surfaces to distinguish an
analytic metric satisfying the ampleness condition from its small conformal perturbations (i.e. one
of the conformal factors is assumed to be 1).

Theorem 4.1. Assume that g° is analytic and that the ampleness condition in Definition 1.1 holds
for M. There is a finite set of admissible minimal surfaces 31,...,%K for (]\7, g°) with 0X; C
M\ M so that on each 0%; there is an N = (2n+ 2)-dimensional subspace B; C C*(0%;) spanned
by elements {f1,..., fn} C C¥(9%;) each with C%7-norm equal &, and a map F; : N'— C(BY)

defined as in (4.1) so that the following holds.
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There are pu € (1/2 1) and s > 1 so that for any L > 0 there are C' > 0, > 0 so that for any

g € G metric on M conformal to ¢°, g = ag®, satisfyinga =1 on M\M |l —1]| Tt <e,

+’Y(M)
and ||| gs(ary < L, we have

(42) o= Ul gy < OZHF E [

The previous theorem will pave the way to the following more general local uniqueness and
stability result. Its proof is similar but somewhat more involved than that of Theorem 4.1, and
it involves an explicit calculation of the amplitude of the normal operator of a double fibration
transform.

Theorem 4.2. Assume that ¢g° is analytic and that the ampleness condition in Definition 1.1 holds
for M. There is a finite set of admissible minimal surfaces ¥1,..., Xk for (M, g°) with 0¥, C
M\ M so that on each 0% there is an N = (2n + 2)-dimensional subspace B; C C¥(0%;) spanned
by elements {f1,..., fn} C C¥(0%;) each with C*7-norm equal to §;, and a map F;: N'— C(BY)
defined as in (4.1) so that the following holds.

There are pn € (1/2,1) and s > 1 so that for any L > 0 there are C,e > 0 so that for any
91,92 € G N O +72n439 1y evrics on M conformal to g°, g; = a;9°,1 € {1,2}, satisfying a1 = a
on M\ M, |loz — 1||016n2+72n+39(M) <e, and || gs(ary < L,i € {1,2}, we have

K
lon = @]y < CZIIFj(oq) RFICO] [

Note that the operator in (4.1) is only well-defined when the base minimal surface ¥ is admissi-
ble, i.e. 0 is not a Dirichlet eigenvalue of the stability operator. In Theorems 4.1 and 4.2, however,
the minimal surfaces coming from the ampleness assumption may not be admissible. In order for
these to become admissible, we will replace them by some slightly smaller minimal surfaces. This
is facilitated by

Proposition 4.3. Let g be a smooth metric on M and let X° be a smooth embedded minimal surface
of (M g) such that 0%° C M\M Then there exists an open subset X! CC X° with smooth boundary

which is admissible and satisfies 0¥ C M \ M. If g and X° are analytic, then the boundary of ¥’
can be chosen analytic.

The proof is found in Appendix C.

4.1. The linearization of Fjy. Fix Xy C M an admissible minimal surface for the metric g°.
We may assume that (M, ¢°) is a compact subset of some (n + 1)-dimensional closed Riemannian

manifold (S, ¢°) (see e.g. [PSU23, Thm. 3.1.8]). Let xo € C*(R),0 < xo < 1 be compactly
supported in (—1,1) and identically 1 in the set [—1/2,1/2], and denote

(4.3) X(2) = xo(V'N|2)

where z € RY. With this choice x is supported in the Euclidean ball of radius \/N’ which is

strictly contained in the unit ¢!-ball BN where z lives.

We will investigate the Fréchet derivative DF( evaluated at o« = 1. Here we employ terminology
related to double fibration transforms as in [MST23].
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Proposition 4.4. i) The operator DF((1): H3+”T+1+7(M) — C(BY) is an analytic double fibration
transform. Considered as an FIO, its canonical relation Co = (N*Zs(Bg) \ 0)' C T*BYN x T*M \ 0
satisfies the Bolker condition at every point of Coy with

(4.4) N*%o € 7r(Co).

ii) For any X € CSO(M) with 0 < x < 1 the following holds: For every (yo,&) € N*Xo,
there exists an open conic neighborhood Uy C T*M of (yo,&0) and a map TFEI Uy — Cy such that

TR O ﬂ'E =id on Uy. The conic neighborhood Uy C T*M can be chosen sufficiently small so that,
for x from (4.3), x =1 on 7, 0w o wg(Up), in which case the operator

(4.5) X(DFo(1))*X*DFo(1)Y: C2(S) — C*(8)

is @ VDO of order —n. Its principal symbol has a non-negative representative and is elliptic in
Uo N~ (supp(X)™).

Proof. We have

2 . °
(4.6) - DFo(1)5(2) = (mg;(80) )« (37 8dVOIG - o)) 5

which is an FIO that satisfies the Bolker condition on all points of its canonical relation by Corol-
lary 3.3. According to the same result it is in fact an analytic double fibration transform.

Using Lemma 3.10 to calculate the canonical relation of DF(1), namely Cy = (N*Z5(B)\{0})’,
leads to

(4.7) 7R (Co) = {(x,t,g): v €%o,3z € BY: t =l (2),€ € NJ,  Solf?,9°), uls solves (1.2)} .

In particular, if on the RHS of (4.7) z = 0, the RHS is equal to N*¥ in Fermi coordinates around
Yo. Thus, for any ((zo,%0),&0) = (v0,&0) € N*Xo, there is some (y so that

(0, ¢o,¥0,%0) € Co.

The Bolker condition and [SHO2, Lem. 4.3] guarantee that 7g: Co — T *M is a submersion, which
guarantees the existence of an open neighborhood Uy of (yo,&p) in T*M so that Uy C 7R (Cp).
Furthermore, the constant rank theorem (or Ehresmann’s theorem, see [IKKXMS93, Lem. 9.2]) guar-
antees the existence of a continuous map TI'E so that 7 o 77;{? = id on an open neighborhood of
(y0,&0). In particular, due to the continuity of TrE, perhaps after contracting the neighborhood Uy
about (yo, &), for all z € m, oy o} (Up) we have |z| < 1/(2V/N), which guarantees that y = 1 on
T, O], O WE(U()).

Following [Gui&5], using (4.6) and the clean intersection calculus, see e.g. [H609, Thm. 25.2.3],
we find that Y(DFo(1))*x?DFo(1)x is a ¥DO on S of order dim(Gs(Bg)) — dim(Zs(Bg)) = N —
(N+n) = —n. Because x is identically 1 on 7, owLowg(Uo), by direct computation of the principal
symbol (see also [SU25, Cor. B.4.9]), it has a non-negative representative on S and this ¥DO must
be elliptic in the conic neighborhood Uy N7~ (supp(¥)™) of (yo, o). This concludes the proof. [J

In fact, in Proposition 4.12, we shall sketch the proof of the computation of the full amplitude
of (4.5). In either case, we now have all tools to give the

Proof of Theorem 1.3. Let ¥ be a smooth embedded minimal surface for (]\7 ,g°) with ¢° analytic

and % C M \ M. According to Proposition 4.3, there is an admissible minimal surface agreeing
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with ¥ in an open neighborhood of M, which we shall call ¥y in order to apply results from this
section.

Inclusion (4.4) of Proposition 4.4 implies that
(4.8) WEF,(8) N N*E = WF,(8) N N*3y C WF(8) N7r(Ch).

Now let 3 € C(M ) vanishing outside of M satisfy Rx(f) = 0 for all f € Ws This means that
Ry, (B) = 0, which implies that DF((1)3 = 0. Since by Proposition 4.4 i), DF(1) is an analytic
double fibration transform satisfying the Bolker condition, we may apply [MST23, Thm. 1.2] to
conclude that WF,(8) N mr(Cy) = 0. Combining this with (4.8) completes the proof. O

4.2. Sufficiently many minimal surfaces. We assume the ampleness condition (see Definition
1.1) throughout this section. To achieve global ellipticity, we need to patch together many admis-
sible minimal surfaces {¥;};cs to cover all microlocal directions in S*M .

Lemma 4.5. Let M satisfy the ampleness condition. There exists a finite collection of analytic
admissible minimal surfaces X1,..., Xk in (M,g°) with 0X; C M \ M so that the following is
true. Defining F; according to (4.1) with the underlying minimal surface ¥o replaced by 3; and By
replaced by some finite-dimensional subspace B; C C¥(0%;), and defining x as in (4.3), for any

X € C(M),0 < x <1, the normal operator
(4.9) XDF;(1)*x*DF;(1)x: C2(S) — C%(S)
is a DO of order —n. Its principal symbol has a non-negative representative, and is elliptic in
U; N~ (supp(x)™) for some U; C T*S satisfying
K K
(4.10) Mc v, Mel|rnU).
j=1 J=1

Proof. According to the ampleness condition for M, there is some open W C M with M ¢ W
so that we can find a minimal surface X . for each (y,€) € T*W so that (y,§) € N*¥} ; and

82; ¢ C M \ M. According to Proposition 4.3 there is some admissible minimal surface ¥, ¢ C E; ¢
with 0%, ¢ C M\ M. By Lemma 3.12, 3, ¢ is an analytic hypersurface.

We introduce the operator Fy ¢ as in (4.1) with underlying admissible minimal surface ¥, ¢. The
operator in (4.9) with F; replaced by F, ¢ will be microlocally elliptic in some conic neighborhood
Uye N7 Y (supp (%)) € T*W of (y, &) according to Proposition 4.4.

Denoting by Uy7£ the restriction of Uy ¢ to S*W, we see that
S*M & U Uy ¢

)

(yL)eT*W
The proof is completed by exploiting the compactness of S*M. O
From now on we let ¥y,..., Xk and By,...,Bg be defined as in Lemma 4.5. In particular, due

to (4.10) we may define x € C°(M),0 < x < 1 so that x = 1 on some open neighborhood of M
and

K
(4.11) supp(¥) € |J 7(U;),
j=1
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which fits the assumptions of Proposition 4.4.

Denoting z == (z',...,2%) € REN with 27 € RV, N = 2n + 2, we define the vector valued
nonlinear area functional by

. X(ZF1(a)()
(4.12) F: C®(M) = X CRY), am Fla)(z) = :
7= X(Z")F () ()
The choice of ¥1,...,%Xk,B1,...,Bg as well as the definition of ¥ and F remain fixed in this
section.

Proposition 4.6. For F as defined in (4.12), set

_ DF(1)x
QW = (4p, w1 )
The operator
(4.13) Q(1)*Q(1) = x(DF(1))*"DF(1)X + (1 — X){Dge) (1 = X): C°(S) = C™(5)

is an elliptic WDO of order —n. Furthermore, if (M, g°) is analytic this operator is injective on

the space E'(S).

Proof. To prove that Q(1)*Q(1) is elliptic, we proceed as follows: the operator x(DF(1))*DF(1)x
is given by

K
X(DF(1))*DF(1)x = > X(DF;(1))*x*DF;(1)x,
j=1

whose summands are all YDOs of order —n with principal symbols having a non-negative represen-
tative by Proposition 4.4. Because each x(DF;(1))*x?DF (1) is elliptic on U; N7~ (supp(x)™*) C
T*S, and because there is no cancellation occurring in the principal symbols when summing up
these operators, the operator x(DF(1))*DF(1)x is elliptic on Ule 7(U;) Nsupp(¥)™™ C S. How-
ever, using (4.11), this means that y(DF(1))*DF(1)y is elliptic on SNsupp(¥)™, and in particular,
Q(1)*Q(1) is elliptic on all of S. This guarantees that Q(1)*Q(1) is an elliptic DO on S.

Finally, to show that the DO Q(1)*Q(1) is injective when ¢° is analytic, we proceed as follows:
since elliptic ¥DOs have parametrices, for any 5 € £'(5), if Q(1)*Q(1)5 = 0 we must have €
C>°(S). We find that

”Q(l)BHQL?(RN)X..‘XLz(RN)XLz(s) = <Q(1)*Q(1)/Ba/3>H"/2(S),H*"/2(S)’
so that Q(1)8 =0 < Q(1)*Q(1)8 = 0. Thus, the problem reduces to the injectivity of Q(1)
acting on C'*°(.5).

To this end, let Q(1)8 = 0 for some § € C*°(S). First, we find by the definition of Q(1) that
(1 —x)B8 =0. Thus let us complete the proof by showing that x5 = 0.

We assume for contradiction that supp(x3) # 0. According to [H603, Prop. 8.5.8], the exte-
rior normal set N, defined in [H603, Def. 8.5.7] satisfies m (N (supp(x3))) # 0, and thus we can
find (9,£) € Ne(supp(xB)) with g € U]K:17T(Uj). By microlocal analytic continuation, [Ho03,
Thm. 8.5.6'], we conclude that (9, +£) € WF,(¥f).

By (4.10), there is some j € {1,..., K} so that (¢,£) € Uj, so that for some (2,¢) € T*BY with
12| < 1/(2V/N) we have (,(,9,€) € Cj, with C; the canonical relation of DF;(1). By assumption
of Q(1)5 = 0, we have that xDF;(1)x5 = 0, and because x is identically 1 in a neighborhood of
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2, we find (,¢,9,€) & WF,(DF;(1)xf). Recalling that ¢° is analytic, by Proposition 4.4, DF;(1)
is an analytic double fibration transform and it satisfies the Bolker condition at (2, é Y, f) Thus,
by [MST23, Thm. 1.2], we know that (ﬂ,é) ¢ WF,(xf), which is a contradiction. We therefore
conclude that supp(xf) is empty, which finishes the proof. O

Recall that x was chosen so that ¥ = 1 on an open neighborhood of M. We are now in position
to prove

Proposition 4.7. Assume that (]\7, g°) is analytic and the ampleness condition in Definition 1.1
holds. There is a constant C > 0 so that for all 3 € L*>(M),

Proof. By Proposition 4.6, Q(1)*Q(1) is an elliptic ¥DO of order —n on the closed manifold S, so
that it is Fredholm and thus has closed range as an operator from L2(S) to H™(S), see [Shu01,
Thm. 8.1]. Thus, Q(1)*Q(1): L?(S) — H"(S) is a closed, self-adjoint, injective operator and thus
invertible. We denote this inverse by T': H"(S) — L?(S).

Let 8 € L?(M) be arbitrary, and write 3 also for its extension by 0 to L?(S). Using the
observation that ¥ = 1 on an open neighborhood of M and thus

Q(1)*'Q(1)8 = x(DF(1))"DF(1)x8 = x(DF(1))"DF(1)3,
we calculate that

181l L2ary = 1Bl 2(s) = ITX(DF(1))*DF (1) 12(5) < ClIX(DF(1))"DF (1) pn(s) -
The proof would thus be complete by showing that there is some C' < oo so that

which we prove now. Notice that for any uw € H™"(95),
IXDF (V)X 72y = ({Dgo) ™ u, (Dge)" X(DF;(1))*x(D) "X DF ;(1)X(Dyge)" (Dgo) ™" u) 12(s)

ewo

The operator on the right side of the inner product applied to (Dgo) "u is a YDO of order 0 on
S by the clean intersection calculus, as in the proof of Proposition 4.4. Thus the Cauchy-Schwartz
inequality gives, for some C' > 0, that

IXDF; (1) xull3; o vy < Cllullz-ns)
We conclude that DF(1)x: H"(S) — H 2 (RN) x --- x H~2(RY) is bounded, which directly
implies (4.14). O
4.3. Proof of Theorem 4.1.

Proof of Theorem 4.1. Following [SU09, Thm. 2], we define the Banach spaces
Xy = H3 (M), XL = LA(M),
for v > 0 from (2.2), as well as
Xy = L*(RY) x - x LA(RY) = (L2RV)X, Ay =H:(RY) x--- x H2(RY) = (Hz(RV))K.
We see that X} C X and X5 C X,. As a consequence of (2.5) in Theorem 2.2, we have that for all
a e A,

F(a+ 1) — F(1) = DF(1)a + Ry(ag°)
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with
. - <112
1R1(69°)lx, < ClIRL(G9%) (V) xxcBy) < C'llA%, -
This is because there are cut-offs x present on the output side of R; as they are present in the
definition of F. Furthermore, according to Proposition 4.7, for all 3 € X1 C L?(M) we have

IDF(1)Bllx; = CllBIl ;-

We now set X] == H* (M) and XY = H*2(RN) x --- x H2(RY) for s1,s2 > 1. By [Tri78],
we tiave |3 S IBI4I01%" and ulag S [ullg el with v, € (0.1] and g > 1/2.
Furthermore, if s; > s9, Proposition 4.4 shows that that DF(1): X{" — X3 is bounded by standard
norm estimates for FIOs (or recall that DF(1)*DF(1) is a YDO). We are thus in position to apply
[SU09, Thm. 2] to conclude the following: for any L > 0 there are C, (", e > 0 so that if [|&[|xy < L

and ||&|lx, < e, we have

K K
a2, < CLP702 Y By (G o+ 1) = xFy (D17 < C'LZ712 Y IR (G+1) = By (D)7 G -
j=1 J=1
As a consequence of this estimate, for any o € H3* ";h”(ﬁ ) with & =1 on M \ M, we can apply
the above estimate to & = a — 1 which gives the estimate (4.2). O

4.4. Injectivity and stability for the minimal surface transform. Recall the foliation con-
dition from Definition 1.4.

Theorem 4.8. Let (]\7, g°) be analytic and B € C(M) with supp() C M. Assume that M satisfies
either the foliation condition in Definition 1.4 or the ampleness condition in Definition 1.1.

If for all smooth embedded minimal surfaces 3 in (M, g°) with 0% C M\ M, we have
(4.15) (RB)(S) =0,
then 8 = 0.

Furthermore, in case the ampleness condition holds, there is a finite set of admissible minimal
surfaces X1, ..., Xk for (M, g°) with 0X; C M \ M so that for some C > 0 independent of 3,

K
(4.16) 181l 2y < CZ ||(R5)(Ej(fz,go))”H%(B{V) ’
7=1

where BYY is the £*-unit ball in RN and N = 2n+2, and X(f, g°) is given by (3.4). The expression
in the norm brackets on the RHS is a function of the variable z € BY, of which the norm is taken.

Proof. In the case of the ampleness condition, this result and (4.16) are a consequence of Propo-
sition 4.7. We thus give the proof in the case of the foliation condition, for which we let p be the
function guaranteed to us by Definition 1.4.

We begin a layer stripping procedure, for which we introduce the set
Ji={s€[0,m,): B=0o0np '([0,s])}.

which is a closed set by the continuity of 5 and p. We wish to show that J is open, which will allow
us to conclude by connectedness that J = [0,m,). By conditions (1) and (3) from the foliation,
choosing sop = 0,U = ) in (3), there is § > 0 so that 8 vanishes on Q; for s € [0,0). So let sg € J,
and we may assume that sg > 0.
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Due to (2) in Definition 1.4, for arbitrary xo € €, there is some minimal surface ¥y so that
(z0,&0) = (x0,dp(xp)) € N*Eg and 0Xg C M \ M. Using Proposition 4.3, we find some admissible
minimal surface ¥, C X so that 9X{ C M \ M.

We may define the operator Fy according to (4.1) using this minimal surface {, and we let Cy
denote the canonical relation of the FIO DF((1), which we know to be an analytic double fibration
transform (see Proposition 4.4). By the same proposition, we know that (0, {o;zo, &) € Cy for
some (y and Cp satisfies the Bolker condition there. Let By C C“(9%¢) be the set constructed in
Corollary 3.3 with 2n 4+ 2 = N = dim(By).

By (4.15) and the fact that 3 vanishes outside of M, we thus, in fact, have that for all z € B{¥(0),

n

DF(1)3(:) = DF()Be" () = 5 | o BV ) = SRAS (67 = 0.

23, Thm. 1.2] thus shows that (xq,&o) & WF.(8).

An application of [MS

By the fact that sop € J, we have f = 0 on Q4 for s € [0, so]. Implicitly, part of the assumption
of (2) in the definition of the foliation is that dp(z) # 0 for all x € M. Assume for contradiction
that zo € supp(B3). Using the C'-function —p and the fact that supp(3) C {p > so}, by verifying
the conditions in [H603, Prop. 8.5.8] one finds that (zo, —§n) € Nc(supp(8)), where N is the
exterior normal set defined in [Ho03, Def. 8.5.7]. In particular, [H603, Thm. 8.5.6’] implies that
(z0,&0) € WF,(5), a contradiction. Thus, there is an open neighborhood of zy on which 8 vanishes.

Since xg € (g, was arbitrary, we conclude that there is an open neighborhood of €24, in which 3
vanishes, which by (3) means that there is § > 0 so that [0, so 4+ 6) N [0,m,) C J.

We have concluded that J is non-empty, open and closed and connected in [0,m,) and thus
J =1[0,m,). This implies that § vanishes on Use[o,mp) Qs, and because 8 is continuous it must
vanish on the closure of that set, which according to (1) is all of M. Because supp(f8) C M, we
deduce that 5 = 0. O

4.5. Stability of the Bolker condition under perturbations of the metric. We now turn
to proving Theorem 4.2, which will require us to investigate the Fréchet derivative DF(«a) of F
for any « near 1. Let ¥y as before be a fixed admissible minimal surface for some fixed metric ¢°
(the stability operator of which does not have Dirichlet eigenvalue 0), and recall the definition of
Fo: N — C(BY) from (4.1). The goal is to show that the operator DFg(a)*x?DFg(a) remains a
UDO for a &~ 1 in the appropriate norm, and to do this we will prove that the Bolker condition
holds when « is close to 1. There is a slightly subtle issue here: in the definition of Fy(«) we are
using a fixed parametrization of minimal surfaces and a fixed set of basis elements fi,..., fx (i.e.
we are not allowed to change the parametrization or basis elements when « changes), and we need
to show that the Bolker condition for DFy(a) holds with respect to this fixed parametrization and
these basis elements as « varies among small perturbations of 1.

More precisely, given a smooth, admissible minimal surface Xy C M for the metric g° whose
boundary 0¥¢ C M\ M is non-empty, Proposition 2.3 gives an explicit formula for (DF(ag®)5) (f)
when f € Us C C?7(9%). When a = 1, Corollary 3.3 gives basis elements fi,..., fy € Us such
that the operator

DF(1) : H3 "2 (M) — C(BN)
is an FIO satisfying the Bolker condition. In what follows, for these fixed fi,..., fy and any
z € BY, we write

=20+ +anfn,
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which satisfies f* € Us.

Throughout this section, when we say a € H 3+HTH+7(]\7 ) is near (the constant function) 1, we

will always mean in the H3+nTH+7(/]\Z)—topology. Following (3.3), for « € H3t"2~ n > PY(M ) sufficiently
near 1, we define

(4.17) Z(a) = {(z,z,t) € B x M:t= uf;o(x)},

where we as usual have denoted by uggo € C?7(%)) the function with boundary value f so that in
g°-Fermi coordinates around Yo, 3o (f, ag®) = {(z, ag o(x));x € Xp} is a minimal surface for the

metric ag® in M. (This uﬁzgo exists due to Lemma A.8.) Throughout this section we shall also use
the notation

i N*Z(a) » T'BY . (2,69, = (2,0),
for the left-projection on N*Z(«).

Lemma 4.9. For rany o € H3 (M) sufficiently near 1 there exists an open conic neighborhood
UcCT*BYN x M containing N*Z(1) and a map V,: U — T*BN x T*M homogeneous of degree
1 in the fiber which is a diffeomorphism from N*Z(1) to N*Z(a) when restricted to N*Z(1). As
a — 1 in H3*"5 > TV (M ) the map 7% o Wo|y+z(1) converges in CY(K;T*BY) to mp: N*Z(1) —
T*BY on every compact subset K C N*Z(1).

Proof. For each a near 1 in H3 ' +V(M) Lemma A.8 shows that Z(a) C B (0) x M is a C*
hypersurface. In addition, at a point (z;z,u’ .) € Z(«), the unique conormal direction is given by

9 ag .
p(—dt +dga(z,x)), where p > 0 and ¢ (2, 1) = u! o (x) is C? with respect to (z,2) € BY x M.

ul,
Let O C M be a g°-Fermi neighborhood of ¥y and consider the diffeomorphism
Yot B x O = BY x M, (z,2,t) = (2,2,t + ¢a(z,2) — ¢1(2,2)),
for (z,t) € M in g°-Fermi coordinates around 3. By Lemma A.8 the restriction of 1q to Z(1) =
{(z,z,t) | t = ¢1(z,7)} is a C? diffeomorphism from Z(1) to Z(«).

Denote by U, the lift of 1, to a C! diffeomorphism on the cotangent bundle U := T* BN xT*0 —
T*BY x T*M defined by

ot (29,66 = (Val20), (82") ya)(6:6)

that is homogeneous of degree 1 in the fiber ({,&). The restriction of ¥, to N*Z(1) is a diffeomor-
phism onto N*Z(«) as desired.

As a consequence of Lemma A.8 and the differentiability of ¢, discussed above, we know that
n+1 —

o — ¢ in C% as a — 1 in H>* 3 tY(M). This fact and an explicit computation of 7% o ¥,

complete the proof. O

The following general fact related to stability of embeddings [Ben21, Prop. 4.33] will be useful
later:

Lemma 4.10. Let X,Y be smooth manifolds with X compact. Suppose f : X — Y is an injective
immersion and f; € CY(X;Y) is a sequence of functions converging to f in C*(X;Y). Then f; is
an injective immersion for j € N sufficiently large.
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Proof. The fact that f;’s are immersions is a direct consequence of C' convergence. To see in-
jectivity, suppose by contradiction that there is a sequence of points le #+ $J2 in X such that
f](x}) = f; (x?) By compactness, after passing to a subsequence we can take the limit to arrive at
a;jl — b :r? — 22 with f(z') = f(2?) for 21,72 € X. By the injectivity assumption, 2! = 2% =: 2.
By tlhe fact that f is an injective immersion, there is a coordinate neighbourhood U C X containing

&, zj, and x? such that f |y: U — Y is an embedding onto its image.

We can now estimate, in coordinates, that
0= £} = FEDI = 1Fh) = F@DI = [(fi(ad) = Fah) = (£a2) - F@D)]
> ||f(x5) = f@D) = ldf — dfjlloclz; — 3.
By the fact that f | is an embedding onto the image,

1 2 12 1.2
0= ||fj($j) - fj(l‘j)” > C”ﬂfj - %H — |ldf — dfj”OOij - %H
Convergence in C! means that [|df — dfj|c < ¢/2 for j € N sufficiently large. This means that
0> Hx} - x?”, contradicting our previous assertion that x]l # a:JZ So the proof is complete. O

Below, dVol®?° denotes the volume form induced by dVol®’ to Yo(f?, ag°).

Lemma 4.11. For a € H3+”TH+”’(Z\7) sufficiently close to 1 (in the H3+”T+1+7(M) topology), the
Fréchet derivative evaluated at o,
DFg(a) : C=(M) — C(BY),
where (DFo(a)B) € C(BY) is given by
n

(4.18) (DFo()B)(2) = 5 /E o BdVol®9”.
o(f*,ag°

This is a double fibration transform satisfying the Bolker condition at every point in its canonical
relation.

Proof. According to (2.8), we have for j € CSO(M) and a near 1 in H3+”TH+7(M),
n

(DR =5 [ g,
o(f*,ag°

which gives identity (4.18). This operator is a double fibration transform with canonical relation
N*Z(a) \ 0 due to [MST23, Thm. 2.2].
To verify the Bolker condition for N*Z(«) \ 0, we need to show that the left projection
7% N*Z(a)\ 0 — T*BY
is an injective immersion. Denoting by ¥, the diffeomorphism constructed in Lemma 4.9 (restricted
to N*Z(1)), we instead show that for a € H3+nTH+7(M) sufficiently near 1, 7¢oW¥,: N*Z(1)/R; —

T*B{V is an injective immersion, since ¥, being a diffeomorphism that is homogeneous of degree 1
in the fiber will then lead to the desired conclusion.

To this end, we identify

N*Z(1) /Ry ={(z, G, t,§) € N*Z(1) | (¢, &)l =1}
where || - || denotes the norm in any auxiliary metric. The map 7} = 7y N*Z(1)/Ry — T*BY
is an injective immersion by Corollary 3.3, and by Lemma 4.9, 7¢ o Wy, |n+z(1)/r,— 7L in ct

as o — 1lin H 3+”T+1+7(M ). We now evoke the general principle of Lemma 4.10 to obtain that
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¢ oWy [N+z(1)/r, 18 an injective immersion for a sufficiently close to 1, and the proof is complete
upon applying Lemma 3.9. (|

4.6. Amplitude of the normal operator of a double fibration transform. Recall the setting
of Section 4.1; in particular, ¥ is a fixed admissible minimal surface for the smooth Riemannian
manifold (M, g°), and let y € C>°(B}) as in (4.3) where N = 2n + 2 is the dimension of the space
By constructed in Corollary 3.3.

By Lemma 4.11, for a € H3" n+1+7( M) sufficiently close to 1, the FIO DF(«) satisfies the Bolker
condition. Now for any y € C°(M ), 0 < x < 1, arguing as in the proof of Proposition 4.4, applying
[Gui&5, Thm. 1], we find that, as an operator on C'*°(S) for a closed compact manifold S containing
M,

(4.19) X(DFo(a))"x*DFo(a)x € ¥7"(5).

In other words, the operator on the LHS is a pseudo-differential operator of order dim(Gs(By)) —
dim(Z(a)) = N — (N +n) = —n where Z(«) is given by (4.17).

We mention that in [Qui80], it is calculated how the principal symbol of the normal operator
transforms under the condition that the output and input dimensions are the same. We are not
in that case and also need access to the full amplitude rather than just the principal symbol. We
point the reader also to [HZ17, Lem. 4], [SU05], [DPSU07, Lem. 4.2], [SU04], where results of the
kind we aim to attain are proved by explicit calculatlon.

Proposition 4.12. For any o € H3+RT+1+7(M) sufficiently near 1, the operator
P(a) == XDFo(a)*x*DFg(a)x € ¥ "(S)
is a pseudodifferential operator of order —n on S.
Furthermore, for all o € C*(M) with ||o— 1”CZ(M)
H™(S), depends continuously on « in the C*(M)-norm. Here { = {,, = 16n% + 72n + 39.

small enough, P(a), as an operator L?(S) —

Proof. The fact that P(a) belongs to ¥~"(S) was already shown in (4.19). We thus only need

to show the continuous dependence on the conformal factor o € C’E(M ). To prove this, we will

follow basic references related to Fourier integral operators and clean composition calculus (e.g.
[DG75, H609, Duill]).

In this proof we will explicitly calculate the full amplitude of the ¥DO P(a) and will apply
Proposition B.1 to find the desired continuity statement, which requires that we have control of
4n + 1 derivatives of the amplitude. Working backwards from this number throughout this proof
will lead to requiring control of £ = £, = 16n? + 72n + 39 derivatives of a.

Using the fact from Lemma 4.11 that DFy(«) given by (4.18) is a double fibration transform

satisfying the Bolker condition, from the proof of [MST23, Thm. 2.2], in local coordinates, the
kernel of DFy(«) is given by

(4.20) DFy(a)(z, x,t) :/ei(%(z’x)_t)'"aa(z,a:)dn.
R

It is an easy exercise to show that if we use g°-Fermi coordinates around X°, we may choose
oz, ) = uﬁgo (x).
By Lemmas A.8 and A.2, the map a — €/(®(=2)=01q (2 ) is a continuous map

016n2+72n+39 _ C3+2(8n2+36n+18) C2+8n +36n+18 _ CSn +36n+20

from into
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for each fixed 1. We will write £/ = 8n2+36n+ 20, so that a + €' (¢«(Z2)=1g (2 x) is a continuous
map C! — Cv.

Let w1 € C°(R) be identically 1 near the origin. Inserting wi(n) into the formula (4.20), we can
compute the composition P(a) explicitly to have the kernel

P<a)(y7 87 x’ t) = / el(¢a(27x)_t)n+2(s_¢a (Z7y))0p1,a (y7 S? -CU’ t? Z’ T’? G)dndedz + Rl,a(y7 S? x? t) Y

where

PLa(y, 8,7, 1, 2,1, 0) = aa(2,y)aa(z,2)(1 —wi(n)wi(0)x* (21X (2, 1) X(y, ) -
The remainder Schwartz kernel R o (y, s, z,t) is an integral in the (), 6, z) variable over compactly
supported regions and therefore a — R1 , is a continuous map from o CF.

We perform the change of variable z —» ——2——, and introduce
VI00P+n?’

o((y,8),(x,t),(2,1,0)) = | do L,x — . S — Qa é, -0,
va((y,5), (x,1),(2,n,0)) (¢ < EETE > t> 77+< ¢ ( VEERTE y))

which is homogeneous of degree 1 with respect to the variable o := (7,0, z) so that it is in fact a
phase. We shall also introduce the shorthand § = (y,s) and Z = (z,t) and thus have

(4.21) P(a)(y,7) = / e 0T py o(§, %, 0)do + Ry,
with
~ . z _
p2,a(ya x, 0) = p2,a((y7 8)7 (337 t)a (Za mn, ‘9)) = pl,a (ya S, T, ta W? mn, 0) (\7)|2 + |9‘2) N/2 )

which is homogeneous of degree —N in ¢ for o away from the origin. We are still in the position
that o — py o is a continuous map C! — CY. This is also true for a — e'?e for each fixed o.

Because DF((«) satisfies the Bolker condition, we know from [Gui85] that P(«) is the clean
composition of (omitting the cut-off functions) DFy(«)* with DF((«), which is to say that the
phase ¢, is clean. Furthermore, one can explicitly calculate that the excess is given by e =
dim(G(B)) — dim(M) = N — (n + 1). (Or by calculating that dim{V,¢, = 0} = N +n + 1 and
using the definition of the excess from [Ho07, Def. 21.2.15].)

5, Lem. 7.1] (or see the proof of [H609, Prop. 25.1.5’]) this means

Following the proof of [DC(

that we can (after rearranging the components of o) split o = (7, 0"”) with @ = (01,...,0,43) and
0" = (op44,...,0N+2) so that the manifold {V,p, = 0} is locally defined by
V5-Q0a =0

and that {V,p, = 0} intersects ¢n44, . n4+2 = const transversally. Furthermore, for each fixed ¢,
0a(l,Z,0) = @a(y,&,7,0") is a non-degenerate phase function as a function of (g, , 7).

At this point, by using a microlocal partition of unity, we shall work in a microlocal neighborhood
of some point (%o, Zo, 00) so that V,¢a (g0, Zo, 00) vanishes. In particular, we may assume that p o
has slim conic support with respect to o near .

Introducing a cut-off wy € C°(R"*3) identically 1 near the origin, performing the change of
variables ¢”" — |5|o”" we find

P(a)(§,3) = / / e @331 G N D11 _ 10y (5))py.a(§, 7,3, 6]0™)dad0™ + Rae
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where in the inner integral we interpret ¢” as a fixed parameter and a — Rp, is continuous
ct— o

Because pg o has slim conic support (in o), we see that there is some C' > 0 (independent of
9,Z,0) so that ps (9,2, 0,|c|lc") = 0 for |¢”'] > C. Let us thus focus our attention on the inner
integral for which we introduce new notation

(422) P(a) = /Qg///(a)dU/// + RQ,O&y QO’"’ (O[) = /67:50&,(7”’(gﬁi’&)pg’a;gul(g,i’75')d5"

where

Spa,ﬂ”’(g? z, 5) = @a@]v z,0, ‘5’0”/) s
and
P30 (g7 z, 5) = |5|N_n_1p2,a(g> z,0, |5|0//,) )
which is homogeneous of degree —n — 1 in ¢ away from the origin. We may again assume that
P3,a;0 has support in some microlocal neighborhood of some (%o, Zo, d0).

Following the proof of [DG75, Lem. 7.1], we know that ¢, as a function of (y,%,5) is a
non-degenerate phase function and

Because DF((«) satisfies the Bolker condition, we know that Voo =0 = § = 2, Vjpa (9, Z,0) =
—Viva(y,Z,0). This can be verified either directly or using the fact that we know the canonical
relation related to the phase ¢, to be a subset of the graph of the diagonal. In any case, we have
deduced that

(423) végpa,(f”’ (ga j? 5) =0 = :’j =x ) Vg@a,a”/ (gv i‘a 6) = _vfigpa,o’”/ (gv ja 6) 5
and ¢, o is a non-degenerate phase function. In particular, this reaffirms that P(a) and Qy ()
must be pseudodifferential operators (see for example [Duill, § 2.5]).

We now reduce the dimension of the frequency variables to the minimum possible, which we
know to be n+ 1 by [Duill, Lem. 2.3.5]. Here one may follow the beginning of the proof of [Duill,
Thm. 2.3.4] (see also [Tre2:

(424) gpa,a’”’ (ga 'i'? 6) = ()OZC,O'”’ (g7 '%7 OJ) + gp(ﬁx,o—/// (ZL i.a 6) )
where QDZ o 18 a non-degenerate phase function with

vglwzygn/ =0 < VEQOQ’U/// =0 << o= (O'/,O'//(g,ii‘,O'/)) = v(ﬂ,:ﬁ)‘piy,o-”’ = V(g7i)ﬁpa7aﬁl ,
i

a7o-/ll
relation above near some gy, Zo, 0, so that ao = (o(,, 0" (90, Zo, 03))-

Together with (4.23) we then have

and 02, is non-degenerate and 33,4,02’0,,, = 0. Here, ¢”(+,+,-) is a function defined by the

vo—/<10lzy70/// =0 = g =z s vg(,@l(;p///(g, j’, O',) = *VESDOQU’”(Q, .’i, O'/) s

so that [Ho71, Thm. 3.1.6] implies that there is a diffeomorphism (7,2, 0") = (9, Z, Ya.o (4, &, 0"))
(defined from a conic neighborhood of some point (g, Zo, d()) to a conic neighborhood of the point
Y0, Zo, 0()) so that

(
(425) Soba;a”’(gv z, wa;U”'(ZL z, OJ)) - (g - j) o’
(

See also [Tre22, Def. 18.4.17].) We shall shelve this result for a moment.
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Recalling (4.24), together with the introduction of a smooth cut-off w3 € C°(R"*!) identically
1 near the origin, leads to

P N AP -~
QO’”’ (O[) (y, Z,U) = / » ezwo‘(y’x’o— )p4,a;o’” (y, x, O',)dO', + RS,a;a"“
R

with o = R3 4.0 a continuous map c! — ¥, and R3 .o has compact support with respect to
n
o, and

Y )
Pi.aso (g,i’,OJ) — (1 _ WQ(O_,)) /elsoa(y7xya 0 )p3,a;g”/ (:07.%70_/7 U”)dO'” )
Using substitution ¢” — |0’|c” and the homogeneity of the phase, we find that
. N S P s, B A7) -~
(4.26) Da, ;0" (y,x’g/) =(1- w2<0—’))’0”2/620 loa (32,0’ |~ to’ o )p3,a;o’” (7,z, o, ‘Ulyall)daﬂ.

Recall that we are performing our calculations on a small microlocal neighborhood, so that p3 4.,
has small conic support with respect to . In particular, there is C' > 0 so that p3 4.0 (9,2, 0”, |0'|0”)
vanishes when |0”| > C (see also the remarks near [Ho71, Eq. (3.2.4)]). We will employ the
method of stationary phase to show that ps .. (and a finite amount of its derivatives) behaves
like O(|o’|~™) for large o.

For any k € N we may apply the method of stationary phase ([HH603, Thm. 7.7.6]) to expand the
integral expression in py 4., up to k terms the sum of which we denote by ﬁi J— which is a finite
sum of terms homogeneous of degree < —n in ¢’ for ¢/ away from the origin. Also, for some C' > 0

(421)  [prasor = Phogon| < Clo'PTF S SUplOg Py (5, .0, [o'0")] = O(lo/ 717,
B]<2k 7

since ps .0 was homogeneous of degree —n — 1 in ¢ away from the origin. Because ﬁfj oo 18 the
b )
sum of terms homogeneous of degree < —n in ¢’ away from the origin, and because we have the

explicit formula (4.26), we also deduce that for all multi-indices p € Ng(nH)

(4.28)
107 (pa.com —pia;a,,/” < |0PDa,qiom| + |8p15§f,a;a”/| — O(|O./|—n+1+\p\ + o) = O(‘O_l|—n+1+|ﬂ|) ’

and the quantity on the LHS depends on the first 2k + 2 + |p| derivatives of 4,0& and p3 o0 (by the
explicit formulas for py .o and p¥ ., the latter of which given by [H503, Thm. 7.7.6]).

Following the proof of [H667, Thm. 2.9] we see that for any j > 0 and all compact sets K, Ko C
R3( ) with K; € KM, for some C' > 0,

sup |8p(p4706;o"” - ﬁi,a;o’”’)‘
Ki,|pl=j+1

<C sup 07" (4,307 — pi,a;o‘”/)‘ (|8p1 (Pa,050 — ﬁi,a;o’”’” + 072 (pa,aso — ﬁi,a;o’”’”) .
Ko, |p1]=7,lp2|=j+2

Iteratively plugging in j = 0,7 =1,...,5 = 4n + 2 above, and using (4.27) and (4.28) we find that

sup ‘8p<p4,a;a’” _ ]52&;0///)’ — O(|o_/’(4n+4)(4n+5)/2—2—(4n+3)n—k) _ O(’J/’_n)
lp|<4n+-2

if k > 4n? 4+ 16n + 8. Taking k = 4n? + 16n + 8, we find that

(429) H<0—/>n(p47a;a”’ _ﬁ]Z,a;g”’)HC%ﬁJﬂ/ <00, and H<J/>nﬁ2a;o”’”c‘}"fr2’ < o0,
Yy,xr,0 Y,T,0
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where (¢/) = (1 + |0’|?)"/? is the Japanese bracket. The second part in (4.29) follows from the
explicit formula for ﬁ]i oo and that this expression is the sum of terms homogeneous of degree

< —n in o/ away from the origin.
Writing ps o = (Paaor — i wor) T i won We know from the remarks after (4.28) and the
explicit formula for ]32 oo that sup‘p‘§4n+2\app47agom\ depends on 2k+2+4n+2 = 8n?+36n+20 = ¢/

derivatives of cpg and ps3 4,07. Combined with (4.29), we find that a +— py .o is a continuous map
from C? to the set of functions p satisfying

10")"p(: 3,0V ansa, < o0

Recalling (4.25), if the microlocal support, say I'j z, of the amplitude py o.o is small enough,
it is compactly contained in ¢q,e (7, &,1';z) where I'; z is some conic neighborhood of the point
(9o, To, (). Therefore,

QO”” (a)_R3,a;O'”’ = /

i (77 A

i 0 ~ o~ /
€ Pald )p4,a;a”/ (yv €, o )dO’ )
]Rn+1

s b~ ) .
ezSoa(y,w,U )p4,a;a’” (y’ i, O_/)do_/ _ / )
Yoot (U'g,2)

and using substitution,
QU”’(a)(g7 57) = / ei(gij).a p5,6¥;0’”’(:&7 z, U/)dal + R3,a;a’” )
Fg@

where

P5,a;0 (Zj, z, OJ) = p4,a;0”’(g’ z, wa;ﬁ”’(g7 z, O'/))|detaa’w04;0’”(g7 z, OJ)| .
Since we had assumed that ps ., vanishes outside of a compact subset of fg@,, we extend (the
definition of) ps o0 as 0 outside of I'j z without modifying Q,, so that

Qo””(a)(z% i') = / “ ei(@—:ﬁ)ﬂ' Ps,a;07 (gv :Z'v U,)dal + R3,O¢§U”/ .
Rn

We note that because 1., is homogeneous of degree 1 in o', ps 4.0 (9, Z,0") is indeed still an
amplitude of order —n and o + ps .0 is continuous ct — Skn41, where S7 is the space of
measurable functions p so that

(4.30) Ipllsy = sup [[(o")"p(§,%,0")[ s < oo.
o/ R+ Y,z
In particular, recalling the definition of P and Q,» we have that

/pf),a;a"”(g? f, O'/)dO'I”dO'/ + R47a 5

P(a)(g, %) = / Qo (a)(§, 2)do™ + Ro.o = / (i(7-7) 0’

Rn+ 1
where

Q= R4,a = RQ,a + / RS,a;J”’dam
is continuous C* — C* (recall that R3 .o has compact support with respect to o).

Thus, introducing wy € C°(R™) with [wsdo’ = 1, we have

(4.31) PEGD) = [ | il 5,004
Rn
where

PG,a(?], z, 0/) = /pS,a;a’” (9,7, U/)dgm + W4(0/)6_i@_5&)’0l}24,a )
34



and we recall (from remarks prior to (4.22)) that the integrand in the first term above is compactly
supported with respect to o””. Thus, we know that a — pgq is continuous C* — S ., because

this was true for o — pg o0 for each fixed o’

Note that (4.31) is true in some neighborhood I' ¢ R2("*1) of the diagonal §j = & by using a
microlocal partition of unity and the knowledge that (4.31) holds microlocally near any (¢, Z, 0’) so
that § = Z. Finally, introducing a cut-off ws € C’OO(RQ("H)) that is identically 1 near the diagonal
and vanishes outside of I', we have

(4.32) P(a)(7,%) = / i(§—%)-0

where

Pa(5.%,0") = ws(5, 2)po.a(§, 7,0") + (1 = ws (3, 2))e T~ wy (o) P(0) (5, 7).
and we use the formula (4.21) for P(«)(g,Z) in the definition of p,.

Using the representation of P(«)(y, Z) from (4.21), we verify that for § away from Z, using partial
integration 4n + 1 + 3 times, we can write

P(a)(§,3) = / (iG55, (5 5 o)da,

where P2 (7, Z,0) is a sum of terms homogeneous of degree < —N — 3 — (4n + 1) away from the
origin in o and o + pPo, is a continuous map Ct — of—Untd) — CB8(n*+3n+2) (Akin to the
definition of pg o above, we have absorbed the remainder Ry , from (4.21) into ps,.) We find that
8 e . : .

9; zP(a)(y,T) is given by th'e~1n~tegral of an absolutely integrable function for all |f| < 4n + 1,
so that a — (1 — ws(7,%))e "2 w,(¢")P(a) (7, &) is a continuous map C* — St 41 (the latter
defined in (4.30)).

In total, we conclude that a — pq is continuous C* — S%,. ;. Thus, since the explicit formula

(4.32) is true for all g, Z (in the coordinated neighborhood we are working in), using Proposition B.1
completes the proof. O

4.7. Proof of Theorem 4.2.

Proof of Theorem 4.2. Recall the setting of Section 4.2; in particular, we choose X1,..., Xk to be
the finite set of admissible minimal surfaces for the analytic metric g° constructed in Lemma 4.5 and
take By, ..., B from this result too. Define x € C°(B{¥) as in (4.3) and Yy € C°(M),0 <y <1
satisfying (4.11) and x = 1 on an open neighborhood of M. As a consequence of (4.19), letting
Q(a)*Q(a) be defined analogously as in (4.13) where every occurrence of DF(1) is replaced with
DF(a),

(4.33) Q)" Q(a) = X(DF ()" DF (a)x + (1 = X){Dge) " (1 = X)
Z)Z(DFj(a))*xzDFj(a)fc + (1= X){(Dge) " (1 = x) € ¥7(5).

<

As a consequence of Lemma 4.11, it is not difficult to see that Propositions 4.4 and 4.6 (aside
from the injectivity statement or the statement about being an analytic double fibration transform)
hold true verbatim when every occurrence of DF(1) is replaced by DF(«) for any « near enough
to 1in H3+”T+1+7(M).

35



We will show here that, in fact, for o near 1 in 016"2+72”+39(M), the operator Q(a)*Q(«) is
also invertible. Recall that we showed at the beginning of the proof of Proposition 4.7 that
Q)" Q(1): L*(S) — H™(S)
was invertible with an inverse we denoted by T'. Consider now

TQ()*Qa) =id + T(Q()*Q(a) — Q(1)"Q(1))

where if [[a& — 1| ;16024720430 is small enough, the boundedness of T and Proposition 4.12 imply that
we may invert using a Neumann series to find that indeed Q(a)*Q(«) is also invertible as a map
L?(S) — H™(S). This is because Q(a)*Q(a) — Q(1)*Q(1) is the finite sum of operators of the type
P(a)) — P(1) treated in Proposition 4.12, with the underlying minimal surface ¥y replaced by some
2.5 €{l,...,K}.

Proceeding as in the proof of Proposition 4.7, we can then show that there is a constant C' > 0
so that for all @ near 1 in C167*+72n439 e have

HDF<O‘)BHH%(RN)X...XH%(RN) 2 CH/BHLQ(M) :

Finally, following the proof of Theorem 4.1, an application of [SU09, Thm. 2(b)] completes this
proof. Here one will have to use Sobolev embedding theorems since we are working with spaces of
continuous functions as well as Sobolev spaces. ]

APPENDIX A. DEPENDENCE OF THE AREAS OF MINIMAL SURFACES ON THE METRIC

The purpose of this section is to prove Theorem 2.2 and similar results required in other sections.
For background on Fréchet differentiability we refer to [AMRSE8]. Recall the definition

G = H3+(n+1)/2+'y <M7 O'(T*M@) T*M))

of G from (2.2). Let ¢° € G be fixed, and assume as usual that 3X° is an admissible minimal surface

with boundary 9%° = OMNYe. Furthermore, throughout this section G° C G will be a small open
neighborhood of ¢° and we denote for any k£ € N, and any § > 0

GBI = GO N O CERIOE) = {f € CPRIOR): | fllgasnnose) < 3}
Notice that when k = 0, Cg”(@EO) = Uy.

Minimal surfaces for the metric g° are characterized by solving (1.2). We first give a different
characterization based on the area functional.

Lemma A.1. Let k € N. The map from (2.1),

(A1) G3TRY 5 CFRA(R°) 3 (g, u) = Ay(u) = / dVol{, €R

u

is C%-Fréchet differentiable, where we used the notation ¥, = {(z,u(z)): x € X°} for any u €
C27(x°).

Denote by C%ﬂ“”(z:") C C%TR(2°) those functions with O trace on 0%°, and let g € G. A
function u € C?TF7(2°) defines a minimal surface ¥, for g if and only if

2+k,y (x0 .
(A.2) DuAg(u)|C%<i§»rk;y(Eo): CEIM1(x°) = R, satisfies D“Ag(u)|0123§k’7(20) =0.
Before giving the proof, we calculate a Fermi coordinate expression (see [Leel8, § 5]) for the

volume form dVol%u )
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Lemma A.2. Let G° C G be a small open neighborhood of ¢° and g € G°. Suppose (z,t) €
Y° x (—€,€),e > 0 is a Fermi coordinate system for the metric g° and let u € C%7(X°). Suppose in
normal coordinates of g° the metric g has the expression

g = gjr(x,t)da"dzd + gy (x,t)dt* + w(z, t) @ dt + dt @ w(z,t)

where w(-,t) is a smooth family of one-forms on X° parametrized by t € (—e,€) and gyu(z,t) > 0.

The volume form dVol%u = dVolLEE:g has the local coordinate expression

(A3) dVold

= |hu|1/2\/det (Inxn + gu(z, u(z)) (hatdu) @ du + (hy 'w) @ du + (hyg tdu) ® w)dzy A+ A dxy,
where (Lyxn + gee(x, u(z))(hy tdu) ® du) is invertible.
Proof. Recall that the notation h,, for g(z,u(z)) = gjk(z,u(x))dz*dz?. In Fermi coordinates, the
pull-back metric of ¢ pulled back to 3, is given by
15,9 = (gjk(:c, u(zx)) + gu(z, u(x))@zjuaxku)dxjdxk + w(z,u(r)) @ du+ du @ w(z,u(zx)),
which means that the volume form is given by
(Ad)  det (gjk(x, u(z))dz® ® dz? + 8,5 ududa® @ dod + w(z, u(z)) ® du + du @ w(a, u(x)))
= |hy|det (Inxn + gu(z, u(@))(hy 'du) ® du + (hy'w) ® du + (hy'du) @ w) .
By Sylvester’s determinant theorem,

det (Lxn + gu(z, u(z))(hy 'du) ® du) = (1 + gu(z, u(x))|du

%Lu)’

so that (Iyxn + git(z, u())(hy tdu) @ du) is invertible. O

Proof of Lemma A.1. By direct observation of (A.1) and (A.3) and the fact that g € C37 when
g € G we find the desired Fréchet differentiability.

The second statement is precisely the variational definition of minimal surfaces (see the remarks
prior to [CM11, Chp. 1, Def. 1.4]). O

We shall give another characterization of minimal surfaces.
Lemma A.3. Let k € N.

(1) Let g € GEEY e near g°. There is a nonlinear second order elliptic differential operator
Ly so that u € C**7(2°) defines a minimal surface for g if and only if Ly(u) = 0.
(2) For every s € Z>q, the map

GETRTe7 5 CFTRY(E°) 5 (g,u) = Ly(u) € C7(2°)

is C?TS-Fréchet.
(3) When g € G andu e C2TR7(5°) defines a minimal surface for g, then Dy Ly(u) is the
stability operator for this minimal surface.

In particular, if g = g°, Lgo is given, in Fermi coordinates from g° around X°, by the
operator defined by the LHS of (1.2) and its derivative Dy, Lgo(0) at u = 0 is given by the
linear elliptic operator in (1.3), which is the stability operator for X°.
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(4) For each (g,u) € G5 x C2HR(2°) sufficiently near (¢°,0), the map
DyLg(u): CptF7(5°) — CF7(2°)

1s an tnvertible linear elliptic second order differential operator.
Thus,

(A.5) C?TR7(%°) 3 v = (DyLy(u)v, v|gse) € CF(X°) x CFFRY(9%°)

s a linear homeomorphism: it is continuous and bijective with continuous inverse.

Proof. Let g € G Due to (A.2), our goal is first to calculate D, A,.
In Fermi coordinates of g° around X°, let us have
g = gjr(z,t)dzida® 4 gz, t)dt* + w(z,t) @ dt + dt ® w(a, t)

where w(-,t) is a smooth family of one-forms on ¥° parametrized by ¢t € (—¢,¢€) and gy (z,t) > 0.
We use the notation h, = hy(z) = g(z,u(x)), (g1t)u = gu(z,u(z)) and X, = {(z,u(x)): z € ¥°}
for any u € C?7(X°).

By following the explicit calculations in [CLT24, § 3.1] with the volume form determined in (A.3)
for g (in Fermi coordinates given by ¢° around X°), one finds that

o

(A.6) DA, (u)v = / Lywv  Yoe CEm Iz,

where

Ly(w) = — [ /29 - (|2 /Aet (@) M ()™ 0y @ + (91)u V) ) + Blu)

with
B(w) = & VAT M (1) (@)l + (g1)ulPr, ) Vot + 2001, ")) - T
+ % Aot (M (w)) Tr(h- 04 |
and

M(u) = Inxn + (git)uhy ' du @ du+ hy'du ® w + hy 'w ® du.
Using (A.2) and (A.6), we have shown (1).

The statement (2) follows from the explicit formula for L,; taking derivatives with respect to u
‘costs’ a derivative of g which gives the stated behavior.

In order to see the first part of (3), one merely needs to use the observation from (A.6) that
D2Ag(u)[v]v = [yo DyLg(u)[v]v with the definition of the stability operator in [CM11, Eq. (1.143)].

Either by verification of the explicit formula for L, above, after plugging in g = ¢°, or using
the calculations in [CLT24, § 3.1], one finds that Lgo is given by the operator on the LHS of the
first equation in (1.2). That the derivative D, L0 (0) is given by the operator on the LHS in (1.3)
follows from the explicit calculation in [CLT24, § 3.3], or see the remarks after [CLT24, Prop. 3.1],
or [CM11, Chp. 1 § 8]. This shows (3).

Because for each g € G° sufficiently near g°, the operator L, is a second order elliptic differential
operator, so too must its derivative Dy, L4(u) at any u near 0 be, which follows by direct computation,
see also [GT'77, § 17.2].

The map in (A.5) is continuous and linear. Thus, if we show that it is bijective, the open mapping
theorem will complete proof of (4). In fact, by the the continuity statement (2), it suffices to show
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that the operator D,Lg(0) is invertible from C’%Jirrk”(Eo) — C*7(3°). Due to the assumption
that X° is admissible, its stability operator, which due to (3) is equal to D, L4 (0), does not have
Dirichlet eigenvalue 0. In other words, DyLge(0): H}(X°) — H~1(¥°) is injective. Applying
[Tayll, Chp. 5, Prop. 1.9] and [LLLS21, Lem. B.1] the proof is complete. O

Remark A.4. Lemmas A.1, A.2 and items (1), (2), and (3) of Lemma A.3 are true if ¥° is merely

a smooth embedded minimal surface for (M, g°); that is, 3° must not be admissible.

Corollary A.5. Let k € N. For each (g,u) € G3TRY % C*E7(2°) sufficiently near (g°,0), the map
C2TEA(E°) x C2HR1(95°) 5 (u, f) — vl € C2TF(X°) is continuous, where vl is uniquely defined
by the fact that (DyLy(u)vi, vl]sz) = (0, f).

Proof. Let g € G2 pe sufficiently near ¢°. For each u € C?T%7(%°) sufficiently near 0, denote
by 7 (u) the map
T(u): v (DyLg(u)v,v|pse) .
According to (2) and (4) in Lemma A.3, each 7 (u) is boundedly invertible and
C?HEY(2) 3w T(u) € B(CHHFY(2°), 0F7(2°) x C?HE7(9%°))
is continuous, where B(C2?tF7(£°), CF7(£°) x C*T*7(9%°)) denotes the space of bounded linear
operators from C?E7(£°) to CF7(X°) x C*HE7(9%°).
For each fixed ug € C?T#7(%°) sufficiently near 0, if u is sufficiently near ug, we may write
T(w) ™" = T(uo) ™' (id + (T () = T(uo)) T (uo) ™) ~*,
where the RHS is well-defined and depends continuously on u by a Neumann series argument (recall
T (uo) ™ is bounded). Now v = T (u)~1(0, ) depends continuously on u concluding the proof. [

Proposition A.6. For every k € N there exist C' > 0 and § > 0 so that for every f € C§+k’7(820)
there is a unique solution u]gco € CHFY(2°) of (1.2) (ie. Lgo(ugo) = 0) with |lullc2ry(ze)y <
Cllfllc2tr~(o5ey- The function ugo € C*tF7 depends analytically on f € C*tFY in their respective
topologies.

Proof. Consider the map

(u7 f) = (Lgo (’U,), u ’32" _f)
which is clearly jointly analytic as a map from C?+57(5°) x C2+E7(9%°) to CF7(5°) x C2HR7(9%°).
The image of (u, f) = (0,0) under this map is (0,0) since X° is a minimal surface by assumption.
The differential of this map with respect to u evaluated at (u, f) = (0,0) is an isomorphism by
(4) of Lemma A.3. The analytic implicit function theorem for Banach spaces [Whi65, p. 1081]
completes the proof. O

Throughout the rest of this section, L, will always denote the operator constructed in Lemma A.3,
and ui;o will always refer to the solution constructed in Proposition A.6.
Corollary A.7. For every k € N, the map
L: CFHRY(95°) x G3FH 5 CFH(2°) 5 (f,9,u) = Ly(ule +u) € CFY(2°)
is C2T*_Fréchet differentiable and £(0,g°,0) = 0.
This suffices to prove that we can find minimal surfaces for metrics near g° and boundary values

near 0.
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Lemma A.8. For every k € Z>o there exist C,6 > 0 so that for every (f,g) € C§+k’7(82°) X
GE2RY there is a unique u) € C2F(2°) with HU5H02+I€,7(EO) < O\ fllez+rm(ox0y and boundary
value f that defines a minimal surface for g. Furthermore, the map (f, g) — ug from C§+k’7(620) X
GITRY 4o C2HRA(2°) is C2TR-Fréchet differentiable.

Proof. In light of Corollary A.7, we will apply the implicit function theorem around f =0, g = ¢°,
and u = 0 to find solutions to Ly(u) = 0 which depend (jointly) C?** on g near ¢° and f €

C§+k7’7(820).

By Lemma A.3, D,£(0,¢g°,0) = DyLg(0): C]%ik"y(zo) — C*(¥°) is invertible, where we
used that ugo = 0. Therefore, applying the implicit function theorem (see for example [AMRSES,
Thm. 2.5.7]) we obtain, for all f € C§+k’7(820) with sufficiently small C?*+%7(9%°) norm, for all ¢
sufficiently close to ¢° in G527 there is some vg € C]%Jirrk”(ilo) which solves

(A.7) ,C(f,g,vg) =0.
f f

This means that uy := Ugo + vg solves the minimal surface equation (A.2), has boundary value f
and satisfies the desired norm-inequality. Furthermore the implicit function theorem also asserts
that the mapping (f,g) — vj; from C§+k’7(820) x GET2RT ¢ C’%;rrk’ﬂ’(ilo) is C2+*_Fréchet differen-
tiable. Combining this with Proposition A.6 shows that (f,g) — uf; from C§+k’7(620) x GET
to C?+k7(%°) is C2*F-Fréchet differentiable.

To establish uniqueness, observe that any u € C?+%7(3°) satisfying [ullc2tr(s0y < Cllfllc2rrn ose)s
having boundary value f that defines a minimal surface for g satisfies

lu = ugo o inan ey < C'llfllgzenniome)

for some C’ > 0 independent of f, so that if & > 0 was chosen small enough, we must have

u— ui]co = ’USJ;, since this is the unique small solution of L(f, g, vf;) =0in C%Ji;kfy(zo), 0

Lemma A.9. For every g € G° sufficiently close to g° with g € C*° and every f € C(?’V(@EO)OCOO
with § > 0 sufficiently small, the set

=°(f,9) = {(z,uf (x)): © € £°}

is an admissible minimal surface for (]\7,9).

Proof. We know from Lemma A.8 that ¥°(f, g) is a smooth embedded minimal surface for g. All
that remains to verify is that its stability operator does not have Dirichlet eigenvalue 0. Indeed,
in Fermi coordinates from ¢° around 3°, Lemma A.3 (3) gives us the formula DuLg(uz; ) for this
stability operator, which according to Lemma A.3 (4) does not have Dirichlet eigenvalue 0. g

We are ready to move on to the

Proof of Theorem 2.2. In this proof we use results of this section for £ = 0. The fact that the set
defined in (2.3) is a minimal surface follows from Lemma A.8.

According to Lemma A.1, (g,u) — Ag(u) is C?-Fréchet differentiable. Thus, as a consequence
of the chain rule for Fréchet derivatives, and by Lemma A.8, we observe that F is C2-Fréchet
differentiable from G° x Us to R. In particular, F': G° — C(Us;R) is C2, and Taylor’s theorem
[AMRS8, Thm. 2.4.15] (and the remarks thereafter), particularly the continuity of R,(h), then
imply (2.5).

40



Finally, we note that by the chain rule, for every (f, g) € Us X G° we have
DF(g)(f) = (DgAg)(Uf;) + (DuAg)(Ui;)Dg“]gc'
Notice, that by the construction of ui; we have
Dguf = Dy(uls +v}) = Dgv}

where the operator on the RHS is in fact a bounded linear operator from G° to C’%’J(ZO), where

emphasis is on the vanishing on the boundary (see the proof of Lemma A.8). Because ug is a

minimal surface for g we know that (A.2) must hold for (DuAg)(ug), so that (DuAg)(ug)Dgug =0
which gives (2.6). O

APPENDIX B. H* CONTINUITY OF ROUGH PSEUDODIFFERENTIAL OPERATORS

In the situation we are interested in here a simple argument will lead to the desired estimate;
nevertheless, we direct the interested reader to references for results on the continuity of rough
UDOs and FIOs. Let us first mention [Tay&81, Chp. XI Thm. 2.2] and [H607, Thm. 18.1.11’] which
provide such estimates on L? for some classes of symbols of order 0. For ¥DOs or FIOs in a speciﬁc
form with symbols in L® with respect to space and C'*° in the frequency see [DSFS14] and [RLS13].
For ¥DOs with symbols that are in C” (or rather similar to this) with respect to space and C*°
in the frequency see [Mar88, R HR23], where in [BR84, Mar88] one may find a compositional
calculus for such symbols (partly also of finite smoothness in the frequency). We refer also to
the books [Tay00, Tay91] and references therein. For perhaps the most general statements, see
[Mar96] which provides continuity statements for YDOs with Besov-space-like symbols (in space
and frequency) mapping between Besov- and Triebel-Lizorkin spaces.

é Dy

Proposition B.1. Let m,k € R,n € N. There is a universal constant C > 0 depending only on
the dimension n and the values m,k so that the following is true. Let a: R® x R™ x R™ — C be
a measurable function so that there exists a constant M > 0 so that for all multi-indices o, B with
la| + |8] < 2n+ 14 2max{|k|,|m — k|} we have

(B.1) sup / 028%a(z, y, €)(€) | dady < M.
€ERn

The operator

0= [[ e ata, . fy)ayae

satisfies
[ All e pro—m < CM .

Proof. We follow the proof of [SU97, Thm. A.1] and thus keep our arguments brief. Defining
a(n, ¢, &) = [[ e "@ntvSq(x, y,f)dl‘dy, for any f € H* we have

Af() = (2m) 2 / / a1 — €. — ¢, 6)()H D F(C)dcde
and we let g == (D)*f € L? with || g||z2 = || f|| s#-

Furthermore,

VAfll e = | Billz,  where Bg(n) = (m)* " Af(n) = / b(n, O)3(O)d¢
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with
b(n, €) = (21) 2" / Q- £.€ — € E)AEm) )

Now by the definition of B and the Cauchy-Schwarz inequality (or see [Tay91, Prop. 0.5.A]) we
have

VANt = [Bllgosps < max{ [ can, [ rb<n,c>|d<} .

We remark that if Cy > 0 is the universal constant (depending only on the dimension), so that for
all v € R?, we have Cy ' (1 + |y]) < () < Co(1+ |y]), then for all s € R, 7,5 € R,

(gi) < (ColPl Iy = 8)1, (9)(6) < CB(L+ YD)+ 16]) < C3(L+ 7] + 16])2,

from which we conclude that

(&Y™ m*m(¢)F < (CHIF TGy — g mmlie — M < (CR(L+ In =€+ 1€ = ¢])

The assumption (B.1) implies that for some universal C’ > 0,

|&(777C7§)<£>7m’ < C/M(l + ‘77| + ‘C|)*2n71'

Combining the previous two facts gives

() 0)*aln — €€ — €O < MO'CE I @ 4y — g 4 g — ¢

2 masc{m—kl, [k[}

so that

vt Olan < arereym =D [y — g+ 16 - o> tande,
which is shown to be bounded by some universal constant as in [SU97, Thm. A.1] by substitution
in the integral. Repeating the argument for [|b(n, ¢)|d¢ completes the proof. O

APPENDIX C. DIRICHLET EIGENVALUES OF THE SCHRODINGER OPERATOR

Let (N, g) be a compact connected smooth Riemannian manifold with smooth boundary, and
L = Ay + q with ¢ € L* a Schrodinger operator. All of the results stated in this section for the
Schrodinger operator on Riemannian manifolds are known for any second order elliptic differential
operator on domains of R" (see [Lei67, CH89] and the modern [WP24]) and for the Laplace-Beltrami
operator on Riemannian manifolds ([Cha.

D

For any 2 C N open, according to [KKL01, § 2.2.4], the operator L with domain H?(Q)N H} ()
is self-adjoint on L?(£2) and is associated to the quadratic form

H3(Q) x H}(Q) 3 (u,v) = Q(u,v) = /Q ((du, dv)4 + quv)dVol € C,

where Vol is the volume form on (N, g). This means that (Lu,v)r2q) = Q(u,v) for all u,v €
H%(Q) N HE(Q), see also [KKLO1, Lem. 2.20].

Furthermore, according to [KKL01, Thm. 2.21], the Dirichlet eigenvalues of L on H?(Q) N H} ()
for any open 2 C N can be enumerated as

AL(€) < X(2) <.y

repeated according to multiplicity, with Ag(£2) — oo as k — oo.
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According to the min-max principle [Ste70], for any 2 C N open,

Quuw _ . Quu

(C.1) Ae(2) = min  max =
ccy@uel\0 |ullfaig)  weri @0 [[ullZ2 g
dim L=k ul Ly 4
where L;_1 = span{ui,...,u;—1} and uy,...,ur—; are Dirichlet eigenfunctions for L for the re-

spective eigenvalues A1 (Q),..., A\z—1(£2), see also [LMP24, Prop. 3.1.3, Rem. 3.1.4] and [Fug
Eq. (3)].
According to the Rellich-Kondrakov theorem [Aub98, Thm. 2.34], the inclusion H}(2) — L?(Q)

is compact as long as Q has C'' boundary, so that as a consequence of [Fug09, Lem. 1.1] we have

Lemma C.1. For any open Q,Q C N with C* boundary, denoting by A\p(Q), \(Q) the k-th
Dirichlet eigenvalue of L on H*(Q) N H} () and H*(Q') N HE(Q') respectively, if Q' C €, then

Ae(2) < Ai(9)
for all k € N. If there is equality above for all k, then Q = ).

Furthermore, by [Fu Thm. 1],

Lemma C.2. Let 21,Q2,--- C N be open sets with €; C Q11 for all j € N and open Q =
UjeN 2; C N having C! boundary. We have
() 2725 ()
for all k € N.
The results in [Fug99] are much more powerful than their consequences we have stated here.

Lemma C.1 is called the domain monotonicity of eigenvalues, and Lemma C.2 can be interpreted
as continuous dependence of the eigenvalues on the domain.

We intend to show the strict domain monotonicity property of eigenvalues for which we follow
the proofs in [Wel72, Thm. 2.3], [LMP24, Thm. 3.2.1], [WP24, Thm. 2.21],

Proposition C.3. Let Q,Q C N be open with Q\ €' containing an open set C N. We have
Ae(€) < A(9)

for all k € N.
Proof. Assume for contradiction that there is k € N so that A = \;(2) = A\;(©'). Because we know
that A\;(Q) — oo as j — oo, there must be m € N so that A\, (©2) > .

Define open 4, ...,,,, C N so that

Q=BT =0
and ;41\ ©; contains an open set for all j € 1,...,m — 1. By Lemma C.1 we must have
A= 2(Q) = Me(Un) < Ap(Qin—1) < - < A(Q1) = () = A

and thus equality in each of these inequalities.

Choose eigenfunctions u; € H2(;) N H} () of L restricted to the domain H?(2;) N H} (L)

with eigenvalue A\. Denote by u; the extension of u; by 0 to €2. In order to show that uy,...,uy
are linearly independent in €2, we consider, for some a1, ...,a, € R, h = Z;nzl aju; € H} (). Let

us assume that h = 0. Because h = ayty, in Q, \ Q,—1, and because by the unique continuation
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principle u,, cannot vanish on Q,,\,,,—1, we must have a,, = 0. Proceeding in this manner, we find
that a,, = --- = a1 =0, so that we have indeed shown that uq,...,u,, are linearly independent.

Next we consider the function ¢ := ciuj + ... + ¢y € HE (), where the constants c¢; are
chosen so that ¢ is L%-orthogonal to the first m — 1 eigenfunctions of L on H?(Q) N H(Q) and
l¢llz2() = 1. By the min-max principle (C.1), we then know that

A< An(92) < Qe ).
On the other hand, using the fact that u; are H%(;) N H}(£);) eigenfunctions in Q; gives

Q(e,9) =Y cjaQ(uj,u) = cieMuj,u) 2 = Agll7 = A
il il

which gives a contradiction, completing the proof. O
We now have all tools required to provide the

Proof of Proposition 4.3. Denote by A;(€2) the Dirichlet eigenvalues of the stability operator of ¥°
restricted to the domain H2(Q) N H () for any Q C 2°.

Let us assume first that >° is not admissible. Let m € N be the multiplicity of the zero

eigenvalue of the stability operator of X° so that A\g(X°) = -+ = Agym—1(X°) = 0 for some k € N
and A\,_1(2°) < 0 if & > 1. According to Proposition C.3, there is ¥ C X° with X° \ ¥ open
and as small as desired so that A\g(X),..., Agrm—1(2X) > 0. In particular, we may assume that
% C M\ M.

If k = 1 we choose ¥/ := X. Otherwise proceed as follows. Let X1, 35, -+ C X°so that ¥; C X;41,
X C ¥, Us; =%° 0% C M\ M, and ¥°\ ¥; is open for all j. From Lemma C.2 we know that

)\k,l(Ej) — )\k,l(Zo) <0

as j — oo so that there is some j* € N so that A\;_1(3;+) < 0. Furthermore, since ¥°\ ;- is open
we must have
Aj(357) > Aj(3°)

for all j. In particular, A;(X;+) > 0 for all j > k. Since A\j(3;+) < Ap—1(Ej+) <0 for all j <k —1,
we thus have the desired conclusion for ¥’ := X;«. This completes the proof of the first statement.
If all underlying structures are analytic, one can choose 9%’ to be analytic (e.g. by considering
a boundary defining function that is an analytic approximation of the original boundary defining
function for ¥’ obtained by taking a suitable finite part of its eigenfunction expansion).

g
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