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Abstract. For a time-independent potential q ∈ L∞, consider the source-to-

solution operator that maps a source f to the solution u = u(t, x) of (□+q)u = f
in Euclidean space with an obstacle, where we impose on u vanishing Cauchy

data at t = 0 and vanishing Dirichlet data at the boundary of the obstacle.

We study the inverse problem of recovering the potential q from this source-to-
solution map restricted to some measurement domain. By giving an example

where measurements take place in some subset and the support of q lies in the
‘shadow region’ of the obstacle, we show that recovery of q is exponentially
unstable.

1. Introduction

Let T > 0 be arbitrary and consider the strictly convex, compact obstacle
O := B1(0) ⊂ Rn with analytic boundary. Here and throughout, for any r0 > 0 and
x0 ∈ Rn, Br0(x0) denotes the open ball of radius r0 about x0 in Rn. Define U :=
BT+4(0) \O (this choice being motivated later on) and introduce X := (−T, T )×U
and X+ := (0, T )× U , where the definitions made so far remain fixed throughout
this document. The wave operator in X is denoted by □ = ∂2

t −∆x.
Let q ∈ L∞(U). We consider the forward problem of finding a solution u = u(t, x)

to

(1.1) □u+ qu = f in X , u|t<0 = 0 , u|(−T,T )×∂U = 0

for any f ∈ L2(X+). In fact, as shown in the appendix, Lemma A.1, there is a
continuous linear operator

Sq : L
2(X+) → C([−T, T ];H1

0 (U)) ∩ C1([−T, T ];L2(U))

so that Sq(f) is the unique solution to (1.1).
The aim of this note is to show that the inverse problem of determining q from Sq is

exponentially unstable in certain partial data settings. This is achieved by appealing
to the machinery in [20] and imposing support conditions on potentials q that induce
Gevrey smoothing of Sq − S0. Throughout this document e1 = (1, 0, . . . , 0) ∈ Rn

refers to the first standard basis vector, r ∈ (0, 1) is a fixed constant, and for sets
A,B we use the notation A ⋐ B to mean that the closure of A is a compact subset
of B.

Theorem 1.1. Let r ∈ (0, 1) be fixed as above, Σ ⋐ Br(2e1),Ξ ⋐ Br(−2e1) be
open, T ′ ∈ (0, T ), and define Ω := (0, T ′) × Ξ. Let µ ∈ R, δ > 0 be fixed so that

µ+ δ > n/2 and define K :=
{
q ∈ Hµ(U) : supp q ⊂ Σ̄ , ∥q∥Hµ+δ(U) ≤ 1

}
.
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If ω is a modulus of continuity so that

∥q1 − q2∥Hµ(U) ≤ ω
(
∥1Ω(Sq1 − Sq2) ◦ 1Ω∥L2(Ω)→L2(Ω)

)
, q1, q2 ∈ K ,

then ω(s) ≳ |log s|−δ 6n+7
n for s small.

That Sq is well-defined for q ∈ K follows from the Sobolev embedding and
Lemma A.1. For a graphical representation of the sets O, Br(±2e1) and the notion
that Br(2e1) lies in the ‘shadow region’ of O from the perspective of Br(−2e1), we
point to Fig. 1 below.

The set U was chosen so that for sources f ∈ L2(X+) with supp f ⊂ [0, T ] ×
B3(0), by the finite speed of propagation, Sq(f) vanishes identically near (−T, T )×
∂BT+4(0), the ‘far’ boundary of X. Thus, the extension of Sq(f) by 0 outside of U
solves

(□+ q)Sq(f) = f in (−T, T )× R
n \ O , Sq(f)|t<0 = 0 , Sq(f)|(−T,T )×∂O = 0 ,

when supp f ⊂ [0, T ]×B3(0), where we recall that T > 0 was chosen freely. This
clarifies that the only significant geometric feature of the space X is the subset of
its boundary (−T, T )× ∂O. Because Br(±2e1) ⊂ B3(0), considering only sources f

satisfying supp f ⊂ [0, T ]×B3(0) is no restriction in the context of Theorem 1.1.
Theorem 1.1 will come as a consequence of the qualitative statement of the

propagation of singularities (Proposition 2.4) together with facts from functional
analysis to get a quantitative statement. Briefly: we have access to a complete
description of the propagation of smooth singularities via [17, Thm. 24.5.3] if q ∈ C∞.
Furthermore, due to [23] (in particular [22], and see also [14, Thm. 2.1]), together
with [15, Thm. 7.3], we have a complete description of the Gevrey-σ singularities for
σ ≥ 1 if q ∈ Cω. We reduce to the case q = 0 by considering Sq − S0 so that these
propagation results become applicable. The existence of the obstacle O prevents
(Gevrey-3-)singularities of sources supported in (0, T )× Σ from propagating and
giving rise to singularities of the solution in Ω. The machinery of [20] will turn this
smoothing behavior into an instability statement.

The significance of Theorem 1.1 lies in the fact that the Boundary Control
method, pioneered by M. Belishev in [4] and extended to Riemannian manifolds in
[5], see also [19], implies that one can indeed recover q uniquely from the knowledge
of Sq (on Ω) for T < ∞ sufficiently large: in the setting of a closed manifold and
with q ∈ C∞, this is shown in [32] (see Remark 1.2 therein), whereas for q ∈ L∞,
in Euclidean space without the presence of an obstacle see [12, Thm. 1.1]. In the
setting without an obstacle, [12, Thm. 1.2] proves log-log stability of the solution
operator Sq. For emphasis we point out that in the situation of Theorem 1.1, despite
the fact that measurements take place in a bounded domain for a large period of
time, recovery is shown to be exponentially unstable.

For a different choice of measurement set Ω, recovery of q from Sq can be
proved by reduction to the closely related inverse problem using the Dirichlet-to-
Neumann (DN) map as data, which we briefly elaborate on here (see also [18] for a
discussion of various equivalent inverse problems). For W ⊂ U open, q ∈ L∞(W )
and H1

+((0, T ) × ∂W ) := {φ ∈ H1((0, T ) × ∂W ) : φ(0, ·) = 0} one considers the
operator Λq : H

1
+((0, T )×∂W ) → L2((0, T )×∂W ) defined via Λq : φ 7→ ∂νv|(0,T )×∂W ,

where ν is the outward pointing unit normal at ∂W and v ∈ C([0, T ];H1(W )) ∩
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C1([0, T ];L2(W )) is the unique solution of

□v + qv = 0 in (0, T )×W , v|t=0 = 0 = ∂tv|t=0 , v|(0,T )×∂W = φ .

That Λq is well-defined is guaranteed, for example, by [6, Lem. 1.2]. One then asks
whether the knowledge of the map Λq uniquely determines q, which is answered
positively in [29] if T > diamW . Here we note that in the case of data on the full
boundary as we have here, the Dirichlet-to-Neumann and Neumann-to-Dirichlet
data formulations are equivalent.

If we denote by η : {φ ∈ C∞((0, T )×∂W ) : suppφ ⋐ {t ≥ 0}} → C∞((0, T )×U)
an extension operator (that is η(φ)|(0,T )×∂W = φ for all φ), then a calculation shows
that for all φ ∈ C∞((0, T )× ∂W ) with suppφ ⋐ {t ≥ 0},

Λq(φ) = ∂ν(η(φ)− Sq((□+ q)η(φ)))|(0,T )×∂W .

We conclude (using a density argument) that if W ⊂ U is open, supp q ⊂ W , and
the measurement set Ω contains a neighborhood of the boundary (−T, T ) × ∂W ,
the inverse problem for the source-to-solution map with data on Ω can be reduced
to that with the DN map as data, which admits a large body of literature. In
particular, for the DN-map formulation with W = BR(0) \ O with R fixed (so one
has measurements on both the outer and inner boundaries of W ), [36] shows that
recovery of q is Hölder stable if T is sufficiently large, see also [6]. We refer also
to [26, 7, 3] and the references therein for further stability results for the case of
DN-map data.

Another related case is where one has access to measurements on the full outer
boundary ∂BR(0), but there is a vanishing Dirichlet boundary condition on ∂O. In
this case, if T is sufficiently large, the DN-map determines Hölder stably the integrals
of q over line segments not touching O via geometrical optics solutions [35]. From
these integrals one can determine q Hölder stably when n ≥ 3 (e.g. by inverting the
X-ray transform on two-dimensional slices), whereas for n = 2 one would also need
to use broken lines reflecting on ∂O [10]. Theorem 1.1 corresponds to a setting where
one has measurements in a smaller region, thus leading to exponential instability of
the inverse problem.

We close the introduction by mentioning that in the setting of the Calderón
problem, it follows from [1] and [24] that recovery of a potential for the Schrödinger
operator using the Dirichlet-to-Neumann map is logarithmically stable, and that
this stability is optimal, see also the discussion in [20, § 1.1]. In the absence of a
potential q, the Gel’fand problem of recovering properties of a manifold (such as its
metric) from spectral data of the Laplacian is discussed in [2, 8, 9], the first of which
establishes an abstract stability result and the latter two show log-log stability.

Acknowledgments. This research was performed while L.B. was visiting the
University of Helsinki. M.L. was partially supported by the Advanced Grant project
101097198 of the European Research Council, Centre of Excellence of Research
Council of Finland (grant 336786) and the FAME flagship of the Research Council
of Finland (grant 359186). L.O. was supported by the European Research Council of
the European Union, grant 101086697 (LoCal), and the Research Council of Finland,
grants 347715, 353096 (Centre of Excellence of Inverse Modelling and Imaging) and
359182 (Flagship of Advanced Mathematics for Sensing Imaging and Modelling).
M.S. was supported by the Research Council of Finland (Centre of Excellence in
Inverse Modelling and Imaging and FAME Flagship, grants 353091 and 359208).



4 LEONARD BUSCH, MATTI LASSAS, LAURI OKSANEN, AND MIKKO SALO

Views and opinions expressed are those of the authors only and do not necessarily
reflect those of the European Union or the other funding organizations.

2. The Proof

Let p(t, x, τ, ξ) = −τ2 + |ξ|2 be the principal symbol of □, which will remain
fixed throughout. We begin with two purely geometric statements that can be
summarized informally as: generalized bicharacteristic arcs of p with a point in
T ∗((0, T )×Br(−2e1)) cannot have ‘originated’ from a neighborhood of T ∗({0} ×
Br(2e1)). The following two statements are immediate when one draws a picture
(see Fig. 1), but we give the full details nevertheless, first fixing some terminology.
If H is a hyperplane in Rn defined by H = {x : (x− x◦) · x◦ = 0} where x◦ ∈ Rn is
some point, we say that a point x ∈ Rn lies above (resp. below) H if (x−x◦) ·x◦ > 0
(resp. < 0).

Lemma 2.1. Let t◦ > 0 and γ : [0, t◦] → Ū be a line segment with γ(0) ∈ Br(−2e1),
γ(t◦) ∈ ∂O, and H the tangential hyperplane of ∂O at the point γ(t◦), oriented so
that the origin lies below H. The set Br(2e1) lies below H.

Proof. Denoting x◦ = γ(t◦), the normal of ∂O at x◦ is given by x◦, so that H is
defined as H = {x : (x− x◦) · x◦ = 0}.

Because any line segment below H intersecting H at x◦ must pass through O
and γ describes a line segment in Ū , all of γ(t) and thus γ(0) must lie above (or on)
H. Let γ(0) = x0 ∈ Br(−2e1), which can be written as x0 = −2e1 + y0 for some
|y0| < r. Because x0 lies above (or on) H, we conclude that

0 ≤ (x0 − x◦) · x◦ = −2x◦
1 − 1 + y0 · x◦ ≤ −2x◦

1 − 1/4 ,

where we used that |x◦| = 1 and the Cauchy-Schwarz inequality, and x◦
1 is the first

component of x◦. We conclude that x◦
1 < 0.

Similarly, any point x ∈ Br(2e1) can be written as x = 2e1 + y with |y| < r so
that

(x− x◦) · x◦ < 2x◦
1r − 1 < r − 1 ,

where we used x◦
1 < 0. This shows that Br(2e1) lies below H, completing the

proof. □

Lemma 2.2. For every ν∗ = (t∗, x∗, τ∗, ξ∗) ∈ T ∗((0, T ) × Br(−2e1)) \ {0} with
|τ∗| = 1 and ν∗ ∈ p−1(0), the forward generalized bicharacteristic arc γ (according
to [17, Def. 24.3.7] or [25]) on R × U with initial condition γ(t∗) = ν∗ satisfies
γ(t) ∈ T ∗({t} × (U \ Br(2e1))) \ {0} for t ∈ [0, t∗]. Here, forward means that the
projection of γ onto the t component is an increasing function.

Proof. The following general remark will be used throughout the rest of the proof.
Because γ travels with unit speed forward in time (|πτγ(t)| = |τ∗| = 1, t ∈ [0, t∗])
and the ‘far’ boundary R× ∂BT+4(0) was chosen far away, and πxγ(t

∗) ∈ Br(−2e1),
we have πxγ(t) ̸∈ ∂BT+4(0) for all t ∈ [0, t∗]. We make a case distinction, see also
Fig. 1 for a pictorial view of the behavior of the ray πxγ.

Case 1: the generalized bicharacteristic arc defined by γ(t), when projected
onto the x-component, does not intersect ∂O while t ∈ [0, t∗]. This means that
πxγ(t), t ∈ [0, t∗] describes a line segment with πxγ(0) ∈ Br(−2e1), and if it were to
intersect Br(2e1), some point πxγ(t) must lie on ∂O, a contradiction. We thus find
that πxγ(t) ̸∈ Br(2e1) for all t ∈ [0, t∗], which completes the consideration of this
case.
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Br(−2e1) Br(2e1)
H

O

Figure 1. A pictorial representation of Br(±2e1),O in U consid-
ered the ambient space with ∂BT+4 ⊂ ∂U outside of frame. The
following discussion is in the context of the proof of Lemma 2.2.
The dotted line represents case 1: a line segment with endpoints in
Br(±2e1) must pass through the obstacle O (in particular intersect-
ing ∂O); a ray cannot follow this path. The continuous lines are the
two possible cases 2a, 2b: a ray starting in Br(−2e1) intersects ∂O
either glancingly and continues as the same line segment, staying
away from Br(2e1). Or, the ray intersects ∂O transversally, being
reflected according to Snell’s law off the tangential plane H at the
intersection point, represented here by the dashed line. In the latter
case one sees that the ray always stays on one side of H, whereas
Br(2e1) lies on the other side of H.

Case 2: there is t◦ ∈ (0, t∗) so that π(t,x)γ(t
◦) ∈ (0, T ) × ∂O. We remark here

that the normal of R × ∂O at any (t, x) ∈ (0, T )× ∂O is given by (0, x).
Case 2a: the generalized bicharacteristic arc γ intersects the boundary (0, T )×∂O

tangentially (glancingly) when t = t◦ (which is to say that limt→+t◦ π(τ,ξ)γ(t) ⊥
(0, πxγ(t

◦))). Due to the fact that O is strictly convex and the remarks before [17,
Def. 24.3.2], any glancing intersection of γ with the boundary (0, T )× ∂O must be
diffractive. By the definition of a generalized bicharacteristic arc, γ is unperturbed
by diffractive intersections and continues as the same line segment. This implies that
πxγ(t), t ∈ [0, t∗] intersects ∂U only at t = t◦, so that πxγ : [0, t

∗] → Ū describes a
line segment, which, as in case 1 implies that πxγ(t) ̸∈ Br(2e1) for all t ∈ [0, t∗].

Case 2b: the generalized bicharacterisitc arc γ intersects the boundary (0, T )×∂O
transversally at t = t◦. We are thus in the case of an intersection in the hyperbolic
region. Let γ(t◦±) := limt→±t◦ γ(t) = ((t◦, x◦), σ±) and let H = {y ∈ X : (y −
(0, x◦)) · (0, x◦)} be the tangential hypersurface of (0, T )× ∂O at (0, x◦).

We decompose σ± into tangential and normal components with respect to H:
σ± = σt

± + σn
±, where σn

± ∈ R(0, x◦) and σn
+ ̸= 0 by assumption of transversal

intersection. In fact, because hyperbolic intersections are isolated (and there cannot
have been a glancing intersection) we must have σn

+ · (0, x◦) > 0 since π(t,x)γ(t) ∈ X
for t ∈ (t◦, t◦ + ε) for some ε > 0 (ie. γ ‘comes from inside the set X’). By the
definition of a generalized bicharacteristic arc, we must have σ+

t = σ−
t , and because

γ(t◦±) ∈ p−1(0), we find that σn
− = −σn

+ so that σn
− · (0, x◦) < 0.

We conclude that π(t,x)γ(t) lies above the hypersurface H for t near but unequal
to t◦. Further (using that (0, T )×O lies below H aside from at R × {x◦}), we see
that πxγ(t) does not intersect ∂U for t ∈ [0, t∗] \ t◦, so that π(t,x)γ always lies above
the hypersurface H for t ∈ [0, t∗] \ t◦.
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However, (0, T )×Br(2e1) lies below the hypersurfaceH by Lemma 2.1, completing
the proof. □

Recall the definition of Gevrey spaces.

Definition 2.3. For d ∈ N, σ ∈ [1,∞) and W ⊂ Rd open, we let Gσ(W ) be the set
of all f ∈ C∞(W ;C) so that for every compact K ⊂ W there is some C > 0 so that
for all multi-indices α one has

max
K

|∂αf | ≤ C1+|α| |α|σ|α| .

We remark that G1(W ) is the set of analytic functions on W . The definition of
the Gevrey-σ wavefront set, an analogue of the smooth wavefront set in Gevrey-
σ-regularity, can be found in [16, § 8.4] and [31]; we shall not directly require this
notion.

Let Y := (−T, T )×Br(−2e1) ⊂ X. We exploit our knowledge of the propagation
of singularities together with the geometric statement Lemma 2.2 to give

Proposition 2.4. For any open Σ ⋐ Br(2e1) and any g ∈ L2(U) with supp g ⊂
[0, T ]× Σ̄, if w ∈ H1(X) satisfies

□w = g in X , w|t<0 = 0 , w|(−T,T )×∂U = 0 ,

then w|Y ∈ G3(Y ).

Proof. From [17, Thm. 24.1.4], the fact that Σ is away from ∂U , and a compactness
argument we know that there is some ε > 0 so that w = 0 in X∩(({0}×∂U)+Bε(0))
(Minkowski sum). Combined with an application of [17, Thm. 23.2.7] together with
a compactness argument over U \ ((∂U +Bε(0)) ∪Br(2e1)) implies that

(2.1) ∃ε > 0: w|X∩(({0}×U\Br(2e1))+Bε(0)) = 0 .

In particular, we have already shown that for the same ε > 0 in (2.1), we have
0 = w|(−T,ε)×Br(−2e1) ∈ G3((−T, ε)×Br(−2e1)) = G3(Y ∩ {t < ε}).

Now assume that ν∗ = (t∗, x∗, τ∗, ξ∗) ∈ WF(w) ∩ T ∗(Y ∩ {t > 0}) where we may
assume that |τ∗| = 1 by renormalizing and we know from [16, Thm. 8.3.1] (and
supp g ⊂ [0, T ] × Σ̄) that ν∗ ∈ p−1(0). By Lemma 2.2, the forward generalized
bicharacteristic arc γ from Lemma 2.2 with γ(t∗) = ν∗ satisfies γ(t) ∈ T ∗({t}× (U \
Br(2e1))) \ {0} for all t ∈ [0, t∗].

We note that the support condition we assume on g implies that g ∈ N (X̄)
(defined in [17, Def. 18.3.30]), and according to [17, Cor. 18.3.31], we may assume
w ∈ N (X̄). Note further that the HamiltonianHp, is never radial because ∂(τ,ξ)p ̸= 0
for (τ, ξ) ̸= 0 (see e.g. [27, Rem. 2.1]).

Therefore, from an application of [17, Thm. 24.5.3] (or combination of [17,
Thm. 23.2.9, Thm. 24.2.1, Thm. 24.4.1]), we find that γ(0) ∈ WF(w) (because
γ(t∗) ∈ WF(w), and supp g ⊂ [0, T ]× Σ̄, Σ ⋐ Br(2e1)). However, (2.1) and the fact
that π(t,x)γ(0) ∈ {0} × U \Br(2e1) then leads to the desired contradiction so that
w|Y ∈ C∞(Y ).

Further, because [23, Thm. 1.4] states that Gevrey-3 singularities for w propagate
precisely the same as smooth singularities near the analytic boundary (−T, T )×∂U ⊂
∂X (since g vanishes there), replacing the application of [16, Thm. 8.3.1] with [16,
Thm. 8.6.1], and using the propagation of Gevrey-3 singularities in the interior ([15,
Thm. 7.3]), we have completed the proof. □
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The reason we do not hope to achieve better that Gevrey-3 regularity for w
above comes from the fact that Gevrey-σ singularities for σ ∈ [1, 3) do not behave
like the smooth ones at the boundary ∂O; instead, they behave like ‘analytic rays’
(see [23, 33]). According to [33] and [34, Thm. 0.5], analytic rays can and do bend
around the boundary of the obstacle and penetrate into the ‘shadow region’, in
which the non-regular q is supported (see also [30]).

Since we will appeal to [20, Thm. 4.2(b)] in order to prove Theorem 1.1, we
will have to replace the domain Y by some closed manifold. We will also have to
show mapping properties of Sq into some Banach space rather than G3. We thus
recall the definition of Gevrey spaces on closed manifolds from [20, § 2.6] and their
decomposition into a union of Banach spaces.

Definition 2.5. Let d ∈ N, σ ∈ [1,∞). For a closed smooth manifold (M, g)
of dimension d and any ρ > 0, for (φj)j∈N ⊂ L2(M) an orthonormal basis of
eigenfunctions for −∆g, we introduce the subspace Aσ,ρ(M) of L2(M) defined as
those u ∈ L2(M) so that

∥u∥Aσ,ρ(M) =

 ∞∑
j=0

e2ρj
1
dρ |⟨u, φj⟩|2

1/2

< ∞ .

Furthermore, if (M, g) is analytic, we let Gσ(M) be the set of all u ∈ C∞(M ;C) so
that for all k ∈ N and some C > 0,∥∥∇ku

∥∥
L∞(M)

≤ Ck+1kσk ,

with the convention that 00 = 1.

If (M, g) is a closed analytic manifold and u ∈ Gσ(M) for some σ ∈ [1,∞), then
in each coordinate chart, the function u is of class Gσ according to Definition 2.3,
see [13].

The importance of the spaces Aσ,ρ lies in the fact that
⋃

ρ>0 A
σ,ρ(M) = Gσ(M)

for closed analytic manifolds (M, g), see [20, § 2.6, § B]. There it is also shown that
each Aσ,ρ(M) is a Banach space when (M, g) is a closed smooth manifold.

We shall only need a select amount of properties of the spaces Aσ,ρ, which we
state for the readers’ convenience.

Lemma 2.6 ([20, § 2.6, Lem. B.1]). Let σ ∈ [1,∞) and (M, g) be a closed analytic
manifold. If u ∈ Gσ(M), there is some ρ > 0 so that u ∈ Aσ,ρ(M). Furthermore, if
for some C,R > 0, u ∈ L2(M) satisfies

(2.2)
∥∥(−∆g)

tu
∥∥
L2(M)

≤ CR2t(2t)2tσ

for all t ∈ N, then for some ρ0 > 0 and any ρ ≤ ρ0, we have u ∈ Aσ,ρ(M).

Proof. The first statement is a consequence of [20, Lem. B.1]. For the second, let
u ∈ L2(M) satisfy (2.2). Once we have shown that u satisfies (2.2) for all t ∈ [0,∞),
not just the integers, the proof is completed by [20, Lem. B.1]. The proof of the
sufficiency statement in [20, Lem. B.1(a)] only requires (2.2) for integers t, which we
use to conclude that u ∈ Gσ(M), so that the necessity statement of [20, Lem. B.1(a)]
gives (2.2) for possibly different C,R > 0 and all t ∈ [0,∞), which completes the
proof. □
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Recall that we defined Y = (−T, T )×Br(−2e1). We set up a functional analytic
result that will allow us to replace Y by some closed manifold N ⊃ Y . It will also
later be used to show that Sq − S0 maps into A3,ρ for some ρ > 0. We will rely

on [21], where for any σ > 1, our notation Gσ corresponds to E{Mp} in that paper,
where Mp is the sequence M0 = 1,Mp = p!σ , p ∈ N.

Proposition 2.7. Let σ > 1 and N be a closed analytic (n + 1)-dimensional
manifold with N ⋑ Y . Let F : L2(X+) → Gσ(Y ) be linear with F : L2(X+) → L2(Y )
continuous.

For every χ ∈ Gσ(N) ∩ C∞
c (Y ) there is some ρ > 0 so that χF : L2(X+) →

Aσ,ρ(N) is continuous.

Proof. Because F : L2(X+) → L2(Y ) is linear and continuous, it has closed graph.
Because F : L2(X+) → Gσ(Y ) ⊂ H(n+1)/2+1(Y ) and the following inclusion map
ι : H(n+1)/2+1(Y ) → L2(Y ) is continuous, the closed graph theorem implies that
F : L2(X+) → H(n+1)/2+1(Y ) is continuous and the dual map

F ∗ : H−(n+1)/2−1(Y ) → L2(X+)
′ ,

is well-defined. In particular, we may define

H : Y → L2(X+)
′ , x 7→ χ(x)F ∗(δx) ,

and for all u ∈ L2(X+), applying Lemma 2.6 to χ,

⟨H(x), u⟩ = χ(x)(Fu)(x) ∈ Gσ(Y ) as a function of x .

Thus, [21, Thm. 3.10] implies that in fact H ∈ Gσ(Y,L2(X+)
′), where the meaning

of this space is explained in [21, Def. 3.9], which in our case reduces to: for every
compact K ⊂ Y there are constants C,R > 0 so that for all multi-indices α,

sup
x∈K

∥∂α
xH(x)∥L2(X+)′ ≤ CR|α|α!σ .

(We point also to the remarks near [37, Thm. 27.1,§ 40] for an explanation as to what
differentiation of a topological-vector-space-valued function means.) In particular,
since suppχ =: K ⊂ Y ⊂ N is compact, we find that

sup
∥u∥L2(X+)=1

∥∂α(χFu)∥L2(N) = sup
∥u∥L2(X+)=1

∥⟨∂αH(·), u⟩∥L2(N)

≤ C ′ sup
x∈K

∥∂α
xH(x)∥L2(X+)′ ≤ C ′CR|α|α!σ ,

where C ′ > 0 is the volume of N . With an application of Lemma 2.6 the proof is
complete. □

The above result has immediate consequences for Sq −S0. In the following proofs,
for any set W , 1W will both denote the multiplication by the characteristic function
of W in L2 as well as the restriction to L2(W ) of some function defined on a larger
set.

Lemma 2.8. Let Σ ⋐ Br(2e1),Ξ ⋐ Br(−2e1) be open, T ′ ∈ (0, T ) and Ω =
(0, T ′)×Ξ. There is a closed (n+1)-dimensional torus N ⊃ Ω (thus an analytic closed
manifold), a function χ ∈ G3(N) ∩ C∞

c (Y ), ρ > 0, and a continuous b′ : [0,∞) →
[0,∞) so that the following is true.

For every q ∈ L∞(U) with supp q ⊂ Σ̄, the map

Fq := 1X+
χ(Sq − S0) ◦ χ1X+

, u 7→ 1X+
χ(Sq − S0)(χ1X+

u)
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satisfies

(2.3) Fq : L
2(N) → A3,ρ(N) with ∥Fq∥L2(N)→A3,ρ(N) ≤ b′

(
∥q∥L∞(U)

)
,

and

(2.4) 1Ω(Sq − S0) ◦ 1Ω = 1ΩFq ◦ 1Ω .

Before we move on to the proof, we remark that in the definition of Fq, we
post-compose with 1X+

at the end only so that the adjoint operator of Fq (which
can be determined using Lemma 2.9 below) will be well-defined.

Proof. Consider the torus N ⊂ R1+n defined by identifying opposite sides of the
cube [−R,R]1+n ⊂ R1+n, where R > 0 is chosen sufficiently large so that Y =
(−T, T ) × Br(−2e1) ⋐ N (see also [28, Lem. 3.1.8]). With the euclidean metric,
N is a closed analytic manifold. We take χ ∈ G3(R1+n) to be identically 1 in an
open neighborhood of Ω and supported in a compact subset of Y ⊂ N (that Gevery
cut-offs exist follows from [31, § 1.4] or [16, § 1.4]).

For any g ∈ L2(X+) and q̃ ∈ L∞(U), (Sq̃ − S0)(g) is the unique solution of (1.1)
for f = −q̃Sq̃(g) and q = 0, whereas S0(−q̃Sq̃(g)) is also a solution of (1.1) for the
same f and q, so that Lemma A.1 guarantees that S0(−q̃Sq̃(g)) = (Sq̃ − S0)(g). In
particular, for any q ∈ L∞(U), we have

(2.5) Fq = 1X+
χ(Sq − S0) ◦ χ1X+

= 1X+
χS0 ◦ (−qSq) ◦ χ1X+

,

and because 1X+
χ = 1 on Ω, this proves (2.4).

From Lemma A.1 and Proposition 2.4, we know that S0 ◦ 1(0,T )×Σ : L2(X+) →
H1(Y ) is continuous and maps S0 ◦ 1(0,T )×Σ : L2(X+) → G3(Y ), so that Proposi-
tion 2.7 implies that there is ρ > 0 so that the map

χS0 ◦ 1(0,T )×Σ : L2(X+) → A3,ρ(N) , f 7→ χS0(1(0,T )×Σf)

is continuous, and its operator norm is independent of q. Thus, using (2.5) and
noting that 1X+

χS0 = χS0 and supp q ⊂ Σ̄, we have

∥Fq∥L2(N)→A3,ρ(N) ≤
∥∥χS0 ◦ 1(0,T )×Σ

∥∥
L2(X+)→A3,ρ(N)

∥−qSq ◦ χ∥L2(X+)→L2(X)

≤ C ′ ∥q∥L∞ b (∥q∥L∞) ,

for b from (A.1) and some C ′ > 0 independent of q, which gives (2.3). □

As it will be required later, we introduce an adjoint operator, see also [12,
Lem. 3.1].

Lemma 2.9. Let q ∈ L∞(U) and define

S∗
q : L

2(X+) → H1((0, 2T )×U) , S∗
q = R◦Sq◦R , where Ru(t, x) := u(T−t, x) .

The L2(X)-adjoint of 1X+
Sq ◦ 1X+

is 1X+
S∗
q ◦ 1X+

.

Proof. Let us first point out that by construction, for any g ∈ L2(X+), we have
S∗
q (g) ∈ H1((0, 2T )× U), which satisfies

(2.6) (□+ q)S∗
q (g) = g in (0, 2T )×U , S∗

q (g)|t>T = 0 , S∗
q (g)|(0,2T )×∂U = 0 .

Let f, g ∈ L2(X). Using (2.6), we have∫
X

Sq(1X+
f)1X+

gd(t, x) =

∫
X+

Sq(1X+
f)(□+ q)S∗

q (1X+
g)d(t, x) ,
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where the RHS can be understood as the pairing between an H1 and an H−1

function: by construction, Sq(f) and S∗
q (g) vanish in t < 0 and t > T respectively

(and Sq(f) vanishes in (0, T )× ∂U), and thus this pairing makes sense.
Taking a sequence of smooth functions vj ∈ C∞(X) vanishing on (0, 2T )× ∂U

and in t > T , with vj → S∗
q (1X+

g) in H1(X), the definition of Sq as the solution
operator gives (essentially by partial integration, or rather the definition of a weak
solution, see [19, Eq. (2.67)]),∫

X+

Sq(1X+f)(□+ q)S∗
q (1X+g)d(t, x) = lim

j→∞

∫
X+

Sq(1X+f)(□+ q)vjd(t, x)

= lim
j→∞

∫
X+

1X+fvjd(t, x) =

∫
X

1X+fS
∗
q (1X+g)d(t, x) ,

which completes the proof. □

Finally, we shall introduce one additional piece of notation from [20, Thm. 3.16].
For σ ∈ [1,∞), ρ > 0 and s ∈ R, and some closed smooth manifold M we let

Wσ,ρ(Hs, H−s) := {T ∈ B(Hs, H−s) : T (Hs) ⊂ Aσ,ρ(M) , T ∗(Hs) ⊂ Aσ,ρ(M)} ,

where we wroteHs forHs(M) and B(Hs, H−s) is the set of bounded linear operators
between Hs(M) and H−s(M), and for any T ∈ B(Hs, H−s), T ∗ ∈ B(Hs, H−s)
denotes the formal adjoint of T . It is shown in [20, Thm. 3.16] that Wσ,ρ(Hs, H−s)
is a Banach space with the norm

∥T∥Wσ,ρ(Hs,H−s) := max {∥T∥Hs→Aσ,ρ , ∥T ∗∥Hs→Aσ,ρ} .

We now have all tools in hand to provide the

Proof of Theorem 1.1. We set up notation to apply [20, Thm. 4.2(b)]. For N,Fq

from Lemma 2.8, define the operator

F : K → B(L2(N), L2(N)) , q 7→ Fq ,

where B(L2(N), L2(N)) denotes the set of bounded linear operators between L2(N)
and L2(N).

As a consequence of Lemma 2.8 (in particular (2.3)) and Lemma 2.9, F maps
K into a bounded set in W 3,ρ(H0, H0) for some ρ > 0. By an application of [20,
Thm. 4.2(b)] we conclude that if ω is a modulus of continuity so that

(2.7) ∥q1 − q2∥Hµ(U) ≤ ω
(
∥F (q1)− F (q2)∥L2(N)→L2(N)

)
, q1, q2 ∈ K ,

then we must have ω(s) ≳ |log s|−δ 6n+7
n for s small.

Due to (2.4), ∥1Ω(Sq1 − Sq2) ◦ 1Ω∥L2(Ω)→L2(Ω) ≤ ∥F (q1)− F (q2)∥L2(N)→L2(N),

so that (2.7) completes the proof. □

A. Existence of Solutions.

Lemma A.1. There is a continuous function b : [0,∞) → [0,∞) so that for every
q ∈ L∞(U) there is a continuous linear operator

Sq : L
2(X+) → C([−T, T ];H1

0 (U)) ∩ C1([−T, T ];L2(U)) ⊂ H1(X) ,

with

(A.1) ∥Sq∥L2(X+)→H1(X) ≤ b
(
∥q∥L∞(U)

)
,



EXPONENTIAL INSTABILITY OF AN INVERSE PROBLEM FOR THE WAVE EQUATION11

so that in C([−T, T ];H1
0 (U)) ∩ C1([−T, T ];L2(U)) the unique solution to (1.1) is

u = Sq(f).

Proof. Translating the condition u|t<0 = 0 in (1.1) into vanishing Cauchy data at
t = 0, the uniqueness and existence of the solution u = uf

q as well as the continuity
of Sq are guaranteed by [19, Thm. 2.30] (via extension by 0 to t < 0 of the solution
constructed there).

We turn to finding the explicit norm bound on Sq, assuming at first that q ∈ C1(Ū).
One can directly verify that the solution u constructed above is also a weak solution
according to the definition given in [11, § 7.2], and by inspection of the proof of
[11, § 7.2, Thm. 2] (see also [11, § 7.2, Thm. 5(i)]), one finds the bound in (A.1)
for q ∈ C1(Ū). On the other hand, if q ∈ L∞(U) and we let (qk)k∈N ⊂ C1(Ū)
converge to q in L∞, by direct verification of the definition of a weak solution
(see [19, Eq. (2.66)]), we will see that Sqk → Sq as operators L2(X+) → H1(X),
completing the proof. □
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16. Lars Hörmander. The analysis of linear partial differential operators. I. Classics in Mathematics.
Distribution theory and Fourier analysis, Reprint of the second (1990) edition. Springer-Verlag,

Berlin, 2003, pp. x+440. DOI: 10.1007/978-3-642-61497-2.
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37. François Trèves. Topological vector spaces, distributions and kernels. English. Unabridged

republication of the 1967 original. Mineola, NY: Dover Publications, 2006.

https://doi.org/10.1007/978-3-642-61497-2
https://doi.org/10.1007/978-3-540-49938-1
https://doi.org/10.1007/978-3-540-49938-1
https://doi.org/10.1201/9781420036220
https://doi.org/10.15781/kvf0-ds86
https://doi.org/10.15083/00039571
https://doi.org/10.1080/03605308408820368
https://doi.org/10.1088/0266-5611/17/5/313
https://doi.org/10.1002/cpa.3160310504
https://doi.org/10.1080/03605302.2013.843429
https://doi.org/10.1353/ajm.2024.a917541
https://doi.org/10.1017/9781009039901
https://doi.org/10.1080/03605308808820539
https://doi.org/10.1080/03605308808820539
https://doi.org/10.1512/iumj.1981.30.30030
https://doi.org/10.1142/1550
https://arxiv.org/abs/2503.14676
https://arxiv.org/abs/2503.14676
https://doi.org/10.1080/03605308008820133
https://doi.org/10.1080/03605308008820133
https://doi.org/10.1080/0360530810882185
https://doi.org/10.1080/0360530810882185
https://doi.org/10.2140/apde.2018.11.1381
https://doi.org/10.2140/apde.2018.11.1381
https://doi.org/10.1016/0022-247X(90)90207-V
https://doi.org/10.1016/0022-247X(90)90207-V


EXPONENTIAL INSTABILITY OF AN INVERSE PROBLEM FOR THE WAVE EQUATION13

Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam,
The Netherlands

Current address: Korteweg-de Vries Institute for Mathematics, 1098 XG Amsterdam, The
Netherlands

Email address: l.a.busch@uva.nl

Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland

Email address: matti.lassas@helsinki.fi

Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
Email address: lauri.oksanen@helsinki.fi

Department of Mathematics and Statistics, University of Jyväskylä, Finland
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