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Bulk penetration of edge properties in two-dimensional materials
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Edges are essential for the mechanical, chemical, electronic, and magnetic properties of two-dimensional
(2D) materials. Research has shown that features assigned to edges are not strictly localized but often penetrate
the bulk to some degree. However, mechanical edge properties, such as edge energies and stresses, are typically
assigned at the system level, with spatial bulk penetrations that remain unknown. Here, we use density-functional
tight-binding simulations to study how deep various edge properties spatially penetrate the 2D bulk. We study
nine different edges made of four materials: graphene, goldene, boron nitride, and molybdenum disulfide. By
investigating edge energies, edge stresses, and edge elastic moduli, we find that although the edge properties
typically originate near the edges, they still penetrate the bulk to some degree. An utmost example is goldene
with a staggered edge, whose edge properties penetrate the bulk nanometer deep. Our results caution against
associating system-level edge properties too strictly with the edge, especially if those properties are further used

in continuum models.

DOLI: 10.1103/7png-h2%h

I. INTRODUCTION

During the last couple of decades, the properties of many
two-dimensional (2D) materials have been found to be criti-
cally dependent on their edges [1,2]. Free edges sustain many
important phenomena such as adsorption [3,4], sensing [5],
stabilization [6], catalysis [7], chemical reduction [8], and 2D
material synthesis [9]. Edges also play a central role in lateral
heterostructures [10].

Given their significant role, the character of edge properties
has been investigated both theoretically and experimentally.
For example, scanning probe experiments have demonstrated
that electronic edge states are not strictly localized, but pen-
etrate the bulk depending on the material and nanostructure
geometry [11]. Prominent examples are the zigzag edge states
in graphene [12-14] and metallic edge states in MoS, [15,16].
From an energetic and mechanical point of view, the essential
edge properties are edge energy, edge stress, and edge elastic
modulus [17]. However, these properties are typically as-
signed at the system level, which may cause certain problems.

To see the nature of these problems, let us start by con-
sidering a periodic cell of an infinitely long and very wide
nanoribbon (Fig. 1). The cell length [y derives from the 2D
bulk at the ribbon’s interior. The ribbon energy per unit
length is

Eo/lo = (Epuik + Eedge)/lo = Neap/lp + 24, (D

where N is the number of atoms in the cell, &;p the 2D bulk
binding energy, and A the edge energy, the energy cost per
unit length for creating the edge [18]. The factor of two ac-
counts for the ribbon’s two edges. When the ribbon is axially
strained by € = (I — ly)/ly, the energy per unit length can be
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expanded as
E(e)/ly = Eo/ly + ag + Be. )

First, since the bulk of the ribbon must have no stress, the
linear term is naturally associated with the edges so that « =
27, where 7 is the edge stress [19]. Second, the quadratic term
refers to the ribbons’ elastic behavior. The term has both bulk
and edge contributions,

(;Bbulk + lgedge)g2 = (%Yw + Z%Ye)gz, (3)

where Y is the 2D Young’s modulus, Y, is the (1D) edge elastic
modulus, and w is the ribbon width, conventionally defined by
w = max;{x;} — min;{x;}, with x; as the x coordinate of atom
i[17].

The energy density of a strained ribbon is thus convention-
ally written as [20]

E(e)/lo = Nexp/lo + 21 + 2te + 1Ywe? + YV,e2. (4

With g;p and Y known from the 2D bulk, the edge energies,
stresses, and elastic moduli can be fitted to ribbons under
varying strains. This fitting process is well established in the
literature [17-23]. However, note that Eq. (4) describes the
entire system so that the so-called edge properties are defined
not for the edges but for the system. In principle, there is
nothing in the derivation of the equations that demands the
edge properties to be located at the edges. The spatial charac-
ters and the bulk penetration lengths of these mechanical edge
properties remain unknown.

Therefore, in this article, we use electronic structure sim-
ulations to address the following question: How deep do the
mechanical edge properties penetrate the bulk? We address
the question by studying nine different edges made of four
materials: graphene, goldene, boron nitride, and molybdenum
disulfide. We also investigate how the electronic structures
of ribbons express the presence of their edges. We find that
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FIG. 1. Schematic of a nanoribbon with two edges. The simu-
lation cell is periodic in the y direction, with unstrained length [,
corresponding to 2D bulk bond lengths in the middle. The width w
is measured from the outermost atoms.

electronic properties get localized near the edges, unless they
get affected by long-range Coulomb interactions. While me-
chanical edge properties usually penetrate the bulk much less
than a nanometer, for some edges the penetration length can
be much greater.

II. SYSTEMS AND METHODS

To represent different 2D materials, we chose four well-
known materials: graphene, golden (monolayer hexagonal
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Au), hexagonal boron nitride (hBN), and molybdenum disul-
fide (MoS,). They were chosen to represent different material
categories: Graphene is a semimetal, goldene is a metal, and
MoS; is a semiconductor; graphene, goldene, and hBN are
atomically thin and MoS; has a sandwich structure; goldene
has metallic bonding and the others are bound primarily co-
valently; all materials can have different edges; and all the
materials have been synthesized [8,24-26].

For each material, we studied two or three different edges.
For clarity, we focused on pristine, unpassivated edges. Ter-
mination by hydrogen, for example, could alter the edge
properties significantly [18]. We aimed for both the most
stable and the most studied edge types with the most reference
values. The studied edges are shown in Fig. 2.

The edges were simulated using self-consistent-charge
tight-binding density-functional theory (SCC-DFTB) [28].
DFTB has been shown to describe these four materials well,
and its accuracy is adequate for our purposes [29-33]. In
particular, as discussed later, DFTB lends itself to an easy
and transparent analysis of various properties’ spatial de-
pendence [34]. The spatial analysis is critical for addressing
our question and would be challenging to accomplish us-
ing density-functional theory. At the same time, DFTB still
accounts for all the nonlocal quantum effects, which are
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FIG. 2. The four materials and nine edges studied: armchair (Gr/ac) and zigzag (Gr/zz) edges of graphene, staggered (Au/sta) and straight
(Au/str) edges of goldene, two different S-terminated edges of MoS, (MoS,/zz/S and MoS,/zz/S2) [27], and armchair (hBN/ac), zigzag
B-terminated (hBN/zz/B), and zigzag N-terminated (hBN/zz/N) edges of hBN. The numbers show the atoms’ coordination numbers.
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TABLE 1. Number of ribbons, the minimum and maximum
ribbon widths, and the maximum (absolute) strains used in the cal-
culations of edge properties.

Edge No. minw (A) max w (A) Emax (%)
Gr/ac 25 18 48 0.5
Gr/zz 13 16 41 0.5
Au/sta 7 21 51 2.0
Au/str 8 38 69 1.5
MoS,/S 5 23 34 1.0
MoS,/S2 5 23 34 1.0
hBN/ac 17 18 39 2.0
hBN/zz/B 9 16 34 2.0
hBN/zz/N 9 16 34 2.0

essential for addressing our question reliably. Although ma-
chine learning potentials are very much in vogue, they and
other force fields could not describe quantum effects, charge
transfer effects, or any nonlocal effects, so central to our
question [35,36].

The DFTB simulations were done using the HOTBIT code
[34]. The ribbons were modeled by the simulation cell
shown in Fig. 2 with 1x20x 1 k-point sampling and 0.05 eV
Fermi broadening. The BN parametrizations were adopted
from the MATSCI package [37], and others were native to
HOTBIT [34,38-40]. All systems were relaxed by the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm to forces below
1 meV/A [41].

The system-level edge properties were calculated as usual.
The edge energies were obtained by calculating unstrained
ribbons of different widths and using Eq. (1) to fit the 2D
cohesion energy and edge energy simultaneously, following
Ref. [20]. The ranges of ribbon widths used in the calculations
are shown in Table L.

The system-level edge stresses, edge elastic moduli, and
bulk moduli were obtained by calculating the energies of
strained ribbons and fitting 7, Y, and ¥, to the data (11 strains
& € [—&max, €max], see Table I). (Because of the inevitable nu-
merical inaccuracy in determining bulk [y, a tiny uncertainty
of zero strain was allowed in the fit [20].) All the atoms were
always fully relaxed for given strains, by the definition of
Young’s modulus. (Also, ribbon widths changed due to the
Poisson effect; however, here the values of the Poisson ratios
are irrelevant.) Through Eq. (4), these fits then provided a fully
analytical system-level description of energy E (¢).

At the same time, DFTB allows expressing the total
energy as

N
Epers(e) = Y _ eile), &)
i=1

where N is the number of atoms and ¢;’s are the local con-
tribution to the total energy by an atom at r; [34]. (See the
Appendix for a technical discussion of the expression.) Juxta-
posing Egs. (4) and (5), we can decompose the system-level
edge properties into spatial contributions from local atomic
properties. The edge energy becomes

N
b= ki), (©)
i=1

where X;(g) = [e;(¢) — expl/lp is the spatial edge energy
contribution at r;. The function A;(¢) was constructed by a
quadratic fit to 11 different values of strain, which also al-
lowed evaluating the first A:(0) = dA(e)/de|,—¢ and second
derivatives A/(0) = d?A(g)/de?|e=o. Accordingly, the edge
stress becomes

1 N
T=3 ;Axm 7

with spatial stress contributions t; = 1:(0)/2 at r;. The two
elastic moduli can be expressed as

N
Yw+2Y, =Y /(). (®)
i=1
The two terms can be decoupled by noting that for 2D bulk
Y wouk = NAj, Where Ay, is here calculated as the average
of A7(0) across the middle one-third ribbon of width wp.
Young’s modulus can also be expressed as ¥ = Ay . /wi,
where w; is the nominal width of one atom in the ribbon.
Consequently, the edge elastic modulus becomes

N
1 " "
Yo=Y S0 = aful. ©)
i=1

with spatial contributions Y, ; = %[M(O) — Mgl at ry. Using
these equations, the spatial contributions to the edge proper-
ties were adopted as the averaged contributions from the three
widest ribbons (Table I).

As a final methodological note, the edge energy contri-
butions will be presented at atomic resolution. However, the
edge stress and elastic modulus contributions will be pre-
sented at atomic resolution only for graphene and goldene and
at structural unit resolution for hBN and MoS,. [For example,
within the hBN bulk, the edge stress contribution A(0) can be
positive for B and negative for N, so they need to be averaged
out; edge energy contributions do not have this complexity.]

III. RESULTS

We begin by presenting the edge properties calculated in
the conventional way. Edge energies, edge stresses, Young’s
moduli, and edge elastic moduli are shown in Table II. The
obtained edge properties are in fair agreement with earlier
studies, as will be discussed with their spatial contributions
in what follows.

A. Edge energy

All edge energies are positive, indicating that edge for-
mations cost energy (Table II). The edge energies of ac and
zz edges for graphene and hBN are similar, ac having a
bit smaller energy for both materials. Values are in relative
agreement with the literature, which report energies between
0.34 and 1.54 eV /A2 for Gr(zz), between 0.29 and 1.2 eV /A2
for Gr(ac), between 0.36 and 1.28 eV/AZ for hBN(zz), and
between 0.23 and 0.76 eV/A2 for hBN(ac) [18,19,21,23].
Direct comparisons are difficult because edge energies in the
literature depend considerably on the computational methods.
The edge energies for goldene are slightly smaller than those
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TABLE II. System-level edge energies (1), edge stresses (T),
Young’s moduli (Y), edge elastic moduli (Y,), and effective edge
widths (w,) for the studied edges.

A T Y Y, W,
Edge eV/A)  (V/A) (eV/AY)  (eV/A) (A
Gr/ac 1.10 —1.70 25.4 20 —1.1
Gr/zz 1.30 —0.55 25.4 329 0.5
Au/sta 0.25 0.11 3.8 -306 —03
Au/str 0.21 0.17 4.0 -1.2 1.3
hBN/ac 0.87 —0.62 17.8 —-69 —09
hBN/zz/B 131 —1.00 17.8 29.9 1.1
hBN/zz/N 1.26 0.42 17.8 11.1 0.1
MoS,/zz2/S 0.72 —1.69 8.7 16.5 0.8
MoS,/zz/S2 1.95 0.67 8.7 04 —1.1

from density-functional calculations [20]. MoS,/zz/S has an
edge energy close to those of graphene and hBN [22], whereas
the edge energy of MoS,/zz/S2 is the highest.

The trends in the edge energies with respect to lattices and
edge types are reasonably captured by a simple linear bond-
cutting model based on the atoms’ coordination numbers C;
[42,43]. This model approximates the edge energy as

e = ISznlﬁn, (10)

Co

where C,, is the mean coordination number of the 2D bulk,
C, is the mean coordination number of undercoordinated edge
atoms, and 7 is the edge atom density per unit length [42,44].
Here, & is obtained from a separate DFTB calculation, while
other parameters are given directly by the structure (Fig. 2).
The rough agreement between this model and the calculated
edge energies provides a familiar interpretation for the origin
of edge energy as the edge atom undercoordination (inset in
Fig. 3).

Next, we look at the spatial contributions. The edge energy
contributions are the largest right at the edges, but they die
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FIG. 3. Spatial contributions to edge energies as a function of
bulk depth. Inset: The correlation between calculated edge energies
(1) and estimates based on coordination numbers [A¢ from Eq. (10)].

out within a few lattice constants: The edge energy penetrates
the bulk around half a nanometer (Fig. 3). As shown above, it
is not surprising that the most important contributions to the
edge energies come from the undercoordinated edge atoms.
However, it is curious to see that although edge energies are
positive at the system level, all edges also have at least one
atom whose contribution is negative. These atoms have a
cohesion energy higher than 2D bulk atoms and are usually
the nearest neighbors to the edge atoms. This higher cohesion
presumably arises due to the edge atom, which can bind
stronger to its neighbors due to the absence of competing
bonds on the other side. Deeper in the bulk (>0.5 nm), the
atoms become more bulklike, with edge energy contributions
converging rapidly toward zero. The studied materials and
edges have no exceptions in this regard.

B. Edge stress

Unlike the edge energy, the system-level edge stress can be
either positive or negative (Table II). Ribbon tends to contract
under positive (tensile) edge stress (7 > 0) and elongate under
negative (compressive) edge stress (t < 0). Au/sta, Au/str,
hBN/z/N, and MoS,/zz/S2 have tensile stress, while Gr/ac,
Gr/zz, hBN/ac, hBN/zz/B, and MoS,/zz/S have compres-
sive edge stresses. These results generally agree with previous
calculations, many of which have reported compressive edge
stress for graphene edges [17-19]. Goldene has a tensile edge
stress, in agreement with density-functional simulations [20].
For hBN/ac and hBN/zz, Huang et al. report tensile edge
stresses [21], while for hBN/zz/B and hBN/zz/N, Yang et al.
report compressive edge stresses [23]. Our numbers fall some-
where in between, hBN/zz/N having tensile, and other hBN
edges compressive stress. Qi et al. reported tensile stress for
MoS,;, but their result was a sum of both MoS,/zz/S and
MoS,/zz/Mo edges, the latter of which was excluded from
our set of edges.

Beyond the system-level properties, for most edges, the
spatial contributions for the edge stress penetrate the bulk less
than a nanometer (Fig. 4). A striking exception is goldene
with a staggered edge. Its edge atoms contribute little, but
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FIG. 4. Spatial contributions to edge stresses as a function of
bulk depth.
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contributions deeper in the bulk strengthen and fluctuate—
practically even across the widest 5-nm ribbon. Goldene with
a straight edge does not share this behavior, as it too has
dominant edge contributions and penetrates the bulk less than
half a nanometer.

The fluctuations of stress contributions in Au/sta may be
due to quantum effects causing slight charge inhomogeneities,
which in turn cause long-range effects through Coulomb inter-
actions. These charge inhomogeneities are observable in the
Mulliken charges, which fluctuate slightly for the Au/sta edge
but not for the other edges.

The stress contributions would look different if we used
atomic resolution for hBN and MoS,. In the bulk, B atoms
have positive and N atoms equally negative edge stress con-
tributions (tg + T = 0). Similarly, the bulk Mo atoms have
positive and bulk S atoms half of that negative edge stress
contributions (tvo, + 275 = 0). This way, there are opposite
energetic trends within the structural unit but not between
structural units, so structural units do not contribute to the
stress in the bulk.

C. Edge elastic modulus

The edge elastic moduli at the system level are either
positive or negative and depend on the material and the edge
(Table II). Here, the edges of Gr/zz, Au/str, hBN/zz/B,
hBN/zz/N, and MoS,/zz/S have positive and the other edges
negative elastic moduli. This means that the edges make the
ribbon stiffer for the former edges and looser for the latter
edges; the effect is still small, with |w,| < 1 A. Here, w, =
Y,/Y measures the effective change in ribbon width (at one
edge) required to produce the same effect as the edge elastic
modulus. Comparing elastic moduli to values in the literature
is more difficult than for energies and stresses. The difficulty
arises because the edge elastic modulus depends on the choice
of the width w through Eq. (8). Some studies have reported
the edge elastic modulus without describing the choices made
[18,19]. Using the conventional choice for the width w,
the values for Young’s modulus follow trends reported in
the literature. It is the highest for graphene and hBN, and the
lowest for goldene and MoS, (Table II) [45-48]. The edge
elastic moduli are positive for Gr/ac, Gr/zz, and hBN/zz,
with the highest modulus for Gr/zz and the lowest for Gr/ac,
in agreement with the literature [17,19,23]. Literature values
for Y, vary greatly also due to their numerical sensitivity as
the second energy derivative. With scarce data, the second
derivative and the fitting of Eq. (4) soon becomes numerically
error-prone [19]. Scarcity is a problem typically in expensive
DFT calculations; we paid special attention to produce DFTB
data abundantly and to ensure a numerically robust fit.

A spatial analysis shows that the edge elastic modulus de-
cays gradually but penetrates the bulk far deeper than energy
and stress contributions (Fig. 5). Also, the general scatter
of the contributions is greater than that of previous edge
properties. (The scatter is not due to numerical inaccuracy
as noted above, it is a real edge property.) The penetration is
generally above 1 nm and depends on the material and edge.
The penetration is below 0.5 nm for Gr/zz and all edges of
hBN, but above ~1 nm for other materials. It is peculiar how
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FIG. 5. Spatial contributions to edge elastic moduli as a function
of bulk depth.

atoms nanometer deep behave bulklike in terms of energy and
stress, but not in terms of elastic properties.

Once more, an exception to the steady decay of Young’s
modulus is goldene with a staggered edge. The spatial contri-
butions fluctuate wildly across the ribbon, likely for the same
reason as with stress (Sec. III B). Thus, at least for Au/sta,
the edge elastic modulus is really not an edge property but a
property of the entire ribbon.

D. Electronic structure

Finally, for a wider perspective, we extend the discussion

to electronic structure properties. We investigated the effect

of edges on the electronic structure through projected and

averaged local density of states (LDOS). We define it for atom
ias

, J7o f(€)LDOS (e )ede

€. = 0 7 y

" [ f(e)LDOS;(¢)de

an

where € is the single-particle energy, f(¢) is the Fermi func-
tion, and LDOS!(¢) is the density of states at energy e
projected to atom i and angular momentum [ = 0, 1, 2. The
Fermi broadening was 0.05 eV. All materials had s and p
projections, and Au and Mo also d projections.

Overall, electronic structures converge to bulk values more
rapidly than mechanical edge properties (Fig. 6). Penetration
depths remain well below half a nanometer when quantified
through this averaged property. These depths also provide the
length scale within which the edge is expected to influence
chemical properties such as adsorption energies on top of the
2D material.

The rapid convergence is defied by two notable excep-
tions: Au/sta and hBN/zz. For Au/sta €!’s fluctuate somewhat
across the ribbon, just as edge stress and edge elastic modu-
lus contributions. These fluctuations further confirm that the
behavior of Au/sta mechanical edge properties discussed ear-
lier was not just due to noisy numerical differentiation. For
hBN/zz/B €!’s increase and for hBN/zz/N decrease when
moving away from the edge. This opposite behavior arises
from the asymmetric structure of the hBN ribbon. For all
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FIG. 6. The mean energies of the orbital-projected local densities of states as a function of bulk depth. The local densities are calculated

for structural units.

hBN/zz ribbons, one edge is hBN/zz/N (negatively charged
edge atom) and the other end is hBN/zz/B (positively charged
edge atom). Due to the extended range of Coulomb interac-
tion, infeasibly wide hBN/zz ribbons would be required to get
the electronic properties in the middle of the ribbon to plateau.
Still, the mechanical properties did not show this asymmetry
of hBN/zz edges. This feature is interesting because edge
stresses and elastic moduli for other materials still penetrate
the bulk less.

IV. SUMMARY AND CONCLUSIONS

In this article, we studied the mechanical edge properties,
edge energy, edge stress, and edge elastic modulus beyond
the system level by resolving their bulk penetration lengths.
The investigation of mechanical properties was augmented by
a spatial analysis of the electronic structure properties. We
studied nine edges of four 2D materials: graphene, goldene,
hexagonal boron nitride, and molybdenum disulfide. Edge
energy and edge stress contributions penetrated the bulk less
than half a nanometer, but edge elastic moduli more than twice
as deep. There was some variation between different edges.
One exception was goldene with a staggered edge, where
edge stress and edge elastic modulus contributions, as well as
electronic structure properties, fluctuated across the entire rib-
bon. The exceptional behavior presumably arose from charge
inhomogeneities due to quantum effects. Why these effects

are visible only in Au/sta and not in Au/str or other edges
remains an open question addressed in subsequent studies.

Our study has certain limitations. In addition to quantitative
uncertainties related to the DFTB method itself, the nine dif-
ferent edges are not generic and cannot represent edges with
passivating elements [49], edge roughness [50], or curved ge-
ometries [51]. For supported 2D materials, the edge properties
may also be affected by substrate-induced charge transfer, not
considered here [52].

As a takeaway message, in alignment with previous com-
putational and experimental results on other edge-related
properties [11], our study cautions against taking mechanical,
system-level edge properties literally. The system-level me-
chanical properties of edge stresses and edge elastic moduli
cannot be assumed to localize right at the edge; their edge pen-
etration length must be considered. Relaxing this assumption
implies that care must be taken when modeling mechanical
edge properties in continuum models. For example, typically
the mechanical behavior of nanoribbons or edges of 2D ma-
terials would be modeled by using ribbon width w, Young’s
modulus Y, Poisson ratio o, and bending modulus B, while
assigning edge stress T and edge elastic modulus Y, to be
located right at the edge [53,54]. Because the strains in edge
wrinkling and ribbon warping are inhomogeneous, assigning
properties at the edge might induce these deformations, while
assigning properties to be offset from the edge might not.
Using such unfounded, erroneous assumptions may result in
qualitatively wrong mechanical behavior.
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APPENDIX: LOCAL ENERGY EXPRESSION IN DFTB

Following Ref. [34], the total DFTB energy of Eq. (5) can
be expressed as

N

N
Eprrs =Z€i =Z Ai+%ZBij )
i=1

i=1 j#i

(AD)

where the local contributions e; can be expressed as the sum
of on-site and two-site interaction terms. The term
1 2
A = svilg; + EI"

1

(A2)

describes the on-site energy contributions, where y; = U; is
the on-site Hubbard parameter related to the Coulomb inter-
action, Ag; is the excess Mulliken charge, and E' " is the
promotion energy of atom i. The term

By =V + yAqiAg; + Y ESS

HEL,VE]

(A3)

represents the interaction energy between atoms i and j,
where V" is the repulsion and y;;Ag;Ag; the Coulomb en-
ergy between atoms i and j, and Ef§ is the band-structure
energy related to orbitals © on atom i and v on atom j.
The expression for e;, which arises naturally from the exact
DFTB energy expression, uniquely describes atom i’s contri-
bution to energy—in an electrostatic, repulsive, promotional,
and bonding sense.
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