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Abstract
Atomically thin metallenes are a new family of materials representing the ultimate limit of a thin
free-electron gas for novel applications. Although metallene research has gained traction, limited
attention has been paid to the properties of their ubiquitous edges. Here, we use density-functional
theory simulations to investigate various edges of Mg, Cu, Y, Au, and Pb metallenes with hexagonal
and buckled honeycomb lattices. Investigating relaxations, energies, stresses, and electronic
structures at the edge, we find that some properties have clear trends while others are sensitive to
both element and lattice type. Given that edge properties are fundamental to metallene stability
and interactions in lateral heterostructures, their detailed understanding will help guide the
development of metallene synthesis and applications.

1. Introduction

Metallenes are a family of two-dimensional (2D)
materials made of nonlayered bulk metals [1–6].
Their metallic bonding and nonlocalized electronic
structure make them unique among 2D materials
and attractive for catalytic, sensoric, biomedic, elec-
tronic, energy storage, and conversion applications
[5–8]. Compared to covalent van der Waals materi-
als with sample sizes in the microns [9, 10], metal-
lenes are more delicate, with sample sizes measured
in nanometers.

In such small scales, finite-size properties are of
central importance. Like most interesting phenom-
ena happen at the surfaces of 3D bulk, so much of the
same happens at the edges of 2D bulk. All atoms at
2D are surface atoms, and edge atoms are still lower-
coordinated and often more reactive. Edges are cent-
ral in synthesis [11], which may begin with metal
atom decoration at the edges of covalent 2Dmaterials
[12]. Edge stability governs chemical and mechanical
stability [13–15]. The low coordination at the edges
can dominate catalytic reactions [3]. Edges are also
indirectly responsible for the properties of the inter-
faces that stabilize metallene patches inside the pores
of covalent templates [11, 12, 16].

So far, metallene edges have been studied only
in cursory and passing. Using very narrow ribbons
without structural relaxations, edge energies of
hexagonal and square lattices have been investigated
across themetallic elements in the periodic table [17].
The stabilizing role of edges has been studied in the
context of metallene patches inside covalent pores
[16, 18]. Edges have also been investigated as part
of small planar gas-phase clusters [19, 20]. In these
studies, the focus has been on nanostructures and
finite-size quantum effects, not on edges themselves.
Consequently, the detailed properties of metallene
edges remain largely unknown.

Therefore, in this article, we use density-
functional theory (DFT) simulations to investigate
the edge relaxations, energies, stresses, and elec-
tronic structures of four different edges made of five
representative metallenes Mg, Cu, Y, Au, and Pb.
We find that the edge energies (0.05–0.5 eVÅ−1),
can be understood in terms of a non-linear bond-
cutting model. The edge stresses (0.04–1.18 eVÅ−1)
are all tensile and small compared to ones in 2D
covalent materials. Some properties behave sys-
tematically, others highly depend on element and
edge type. Understanding these properties will
help guide experiments to improve experimental
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designs for more stable and versatile metallene
samples.

2. Edge structures andmethods

We investigated four different edge types: straight
(str) and staggered (sta) edges of flat hexagonal lat-
tices and zigzag (zz) and armchair (ac) edges of
buckled honeycomb lattices (figure 1(a)). We chose
hexagonal and buckled honeycomb lattices for their
previously identified energetic and dynamic stability
among different lattices [21]. Moreover, for the five
metallenes, we chose Mg, Cu, Y, Au, and Pb because
they are representative of different groups with dis-
tinct electronic configurations, and previous studies
have assigned different energetic, elastic, and dynamic
stability properties to them [2, 16, 17, 21]. These 20
unique edges give sufficiently representative sampling
to provide comprehensive insight into the edge prop-
erties of atomically thin metallenes.

The edges were modeled using DFT imple-
mented in the QuantumATK program suite [22].
The Perdew-Burke-Ernzerhow exchange-correlation
functional [23]was used togetherwith a localmedium
basis, PseudoDojo pseudopotentials [24], and 1→
1→ 12 k-point sampling. The Cu(str) edge was cal-
culated with 1→ 1→ 18 k-point sampling for numer-
ical reasons. The edges were modeled as belonging
to nanoribbons of infinite length in the y-direction
(figure 1(b)). The non-periodic directions had a 20 Å
vacuum to avoid spurious interactions between the
ribbons. While the ribbon widths w and the atoms
in the cell N were finite, we focused on the edges at
the semi-infinite limit of large w. Therefore, the cell
lengths l= l0 were derived from the 2D bulk metal-
lene bond lengths. Under this setting, the ribbons
were relaxed using the LBFGS algorithm to forces
below 1 meVÅ−1 [25, 26].

The relaxed energy per unit length of such a rib-
bon can be expressed as

E/l= Nε2D/l+ 2ε+
1

2
Ywε2 + 2τε, (1)

where ε2D is 2D bulk cohesion energy, ε is the edge
energy, Y is the 2D Young’s modulus, τ is the edge
stress, and ε= (l− l0)/l0 is the axial strain. The edge
energy (ε> 0) is the per-unit-length cost of creating
an edge into 2D bulk. The edge stress tends to either
shrink (τ > 0, tensile) or lengthen (τ < 0, compress-
ive) the edge with respect to the bulk length l0. We
can unambiguously assign the energies and stresses
for our edges because all our ribbons have mirror (or
roto-translation) symmetry, with a total edge length
of 2l in the unit cell. For narrow ribbons, the edge
energies and stresses are strongly affected by finite-
size effects [27, 28]. However, our focus here is not on

nanoscale ribbons or their width-dependent proper-
ties but on the properties of the edges of semi-infinite
bulk.

Despite the simple expression (1), robust edge
energy and stress calculations need utmost care.
Strictly, the edge energy from (1) depends on w and
is well-defined only at the limit w→∞; yet calcu-
lations are conducted at finite w. Revised periodic
boundary conditions could describe edges with an
extended bulk [29, 30], and Green’s functions could
describe edges with a semi-infinite bulk [31–33], but
such techniques are rarely available. Here, to obtain ε
reliably, we calculated ribbons with several widths at
ε= 0, and fit ε2D and ε to the expression E(w)/l0 =
N(w)ε2D/l0 + 2ε (figure 2) for the widest half of the
calculated ribbons. In principle, ε2D should equal
2D bulk cohesion; in practice, the fit became more
robust by adopting ε2D as a fit parameter. (Taking ε2D
straight from a separate 2D bulk calculation would
bring small errors that make ε dependent on w at the
limit of large N. Still, the approach is merely a neces-
sary technical trick without real limitations [17, 34,
35]; the differences in the fitted and separately cal-
culated values of 2D bulk cohesion are measured in
millielectronvolts.)

As derivatives of edge energies, the edge stresses
are evenmore tricky to calculate. Theymust be calcu-
lated by straining the ribbon, which inevitably strains
the bulk of the ribbon and makes bulk energies dom-
inate when w increases. Even the smallest inaccur-
acy in cell length l0 makes the term 1

2Ywε
2 dom-

inant over the edge term 2τε, making the determ-
ination of τ impractical for a single ribbon width.
Therefore, we calculate ribbons with 32–50 differ-
ent widths w= 2.4 . . .312 Å and 11 different strains
ε=−0.015 . . .0.01 and fit E0, Y, and τ to minimize
the expression

)

i,j

(
E
(
wi,εj

)

l0
−
[
E0
l0

+
1

2
Ywi

(
εj − ε ′

)2
+ 2ε

(
εj − ε ′

)]
)2

,

(2)

where ε ′(≈ 0) is a tiny correction due to inevitable
numerical inaccuracy in l0; see table S1 electronic sup-
plemental information (ESI) for the range of ribbon
widths used in the fit. Using ribbons with different w
and ε simultaneously yields a fit for τ that is robust
and gives a faithful estimate for the stress of a semi-
infinite bulk edge. We assessed the reliability of each
fit by inspecting the strain curves for all widths separ-
ately and ensuring that the obtained parameters reli-
ably reproduce the data and have the correct physical
meaning.

Allowing for axial relaxation, the ribbon energy
is minimized at ε=−2τ/(Yw). Stability requirement
E> Nε2D then implies the necessary condition w>
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Figure 1. Studied systems and the simulation setting. (a) Four edge types of hexagonal straight (str), hexagonal staggered (sta),
buckled honeycomb armchair (ac), and buckled honeycomb zigzag (zz). Shown are also coordination numbers. (b) The edges are
modeled as a part of finite-width ribbons in a simulation cell periodic in the y-direction (dashed box).

Figure 2. Fitting the edge energy. The edge energy λ(w) = (E(w)−Nε2D)/l0 for the Au(str) edge (red line). The blue line shows
the energy λ of a converged, semi-infinite edge.

τ 2/Yε, which is easily met by the typical values of Y
and the expected values for ε and τ .

3. Results

3.1. Edge energies
The edge energies are around 0.05–0.5 eVÅ−1

(figure 3(a)). They are smaller for Pb and larger forCu
and Au, following the surface energies of these metals
[36]. As shown previously, edge energies are strongly
correlated with cohesion energy [2, 17], and they
depend on the Wigner-Seitz radius the same way as
do surface energies [17]. The edge energies of metal-
lenes are roughly half as small compared to those of
2D covalent materials like graphene (1–1.5 eVÅ−1)
and MoS2 (!1 eVÅ−1) [27, 37, 38].

Among the different edge types and due to
the larger density of undercoordinated edge atoms,
hexagonal edges have smaller edge energies than
buckled honeycomb edges. The straight edges are the
cheapest, the armchair edges are the most expensive.
The edge energy of Pb(sta) is 86% larger than Pb(str),
demonstrating an unexpectedly large dependence on
edge orientation. For other elements, the relative dif-
ference between straight and staggered edges is smal-
ler. For the buckled honeycomb lattices, the zigzag
edges are energetically more favorable than the arm-
chair edges. These results are consistent with similar
trends in other 2D covalent materials like graphene,
MoS2, and hexagonal boron nitride [27, 37, 39]. The
relative difference between zigzag and armchair edges
is the highest forMg (25%) and the lowest for Y (7%).
Similarly, the relative difference between hexagonal
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Figure 3. Edge energetics. (a) Energies for all edges and elements. (b) The comparison between calculated edge energies (λ) and
estimate based on coordination numbers (λC), equation (3).

and buckled honeycomb edges is the highest for Mg
(57%on average) and the lowest for Au (30%on aver-
age).

A simple non-linear bond-cutting model based
on coordination number C explains well the edge
energy trend among edge types and lattices [40, 41].
While a linear bond-cutting model (cohesion ∝ C)
fails to describe the edge energies just as it fails to
describe metals’ surface energies, a non-linear model
(cohesion ∝

√
C) is more reasonable (figure 3(b)).

This model approximates the edge energy as

εC = |ε2D| ·
√
C0 −

√
Cm√

C0
η, (3)

where C0 is the coordination number obtained from
2D bulk symmetry, Cm is the mean coordination
number of edge atoms (undercoordinated atoms at
the edge), and η is the density of those atoms per unit
length [40, 42]. Only ε2D is obtained from a separ-
ate DFT calculation; all other parameters are given
directly by the structure. A simple bond-counting
exercise yields εC = |ε2D,hex| · 0.183/a for straight,
εC = |ε2D,hex| · 0.212/a for staggered, εC = |ε2D,bhc| ·

0.300/a for zigzag, and εC = |ε2D,bhc| · 0.347/a for
armchair edges, where a is the lattice constant (cf
figure 1(a).

Apart from the outliers of Pb and Mg, the main
trend for the bond-cutting model is to slightly under-
estimate the DFT value for the edge energy. The out-
liers arise due to the choice of the nonlinear bond-
cutting model and not necessarily due to a par-
ticularly peculiar behavior of the elements. Further
refinement of the model, such as refining the expo-
nent (e.g. fitting it as suggested in [43]), could poten-
tially eliminate these outliers. However, such refine-
ments would unnecessarily complicate themodel and
reduce its transparency. The model of equation (3)
works best for straight edge, the simplest edge type.
The non-linear bond-cutting model is particularly
consistent in reproducing the relative differences
between straight and staggered edge energies.

3.2. Edge relaxations and stresses
The edge relaxation depends sensitively on both ele-
ment and edge type. Atoms move outward in straight
edges and inward in staggered edges, except for Mg.
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Figure 4. Relaxation of the metallene edges. (a) Closed loop geometry of the Au(ac) edge. (b) The geometry of the Mg(ac) edge.
(c) The magnitude of edge relaxation in terms of root-mean-square bond length variations at the edge (equation (4)).

Consequently, compared to an ideal triangular lat-
tice, bond angles increase on the straight edge and
decrease on the staggered edge. No hexagonal edge
has out-of-plane movement. In buckled honeycomb
lattices, the relaxation is more complex and element-
specific. For zigzag edges, the atoms relax outward
for Au and Cu and inward for other elements. The
different behavior can be attributed to Au and Cu’s
fully occupied d-bands far below the Fermi level. In
Au and Cu, no partially filled d-states are available
for directional rehybridization at undercoordinated
straight and zigzag edges (which are less underco-
ordinated for the outermost atoms, compared to sta
and ac). Consequently, dominated by broad s- and p-
type bands, the conduction electrons drive outward
relaxation that helps lower electron repulsion at the
edge. In contrast, inMg, Y, and Pb, the partially occu-
pied valence orbitals (d-electrons for Y, p-electrons
for Pb, and s- and p-electrons for Mg) may com-
pensate for lost coordination and strengthen orbital
overlap by inward relaxation.

For armchair edges, the atoms relax outward for
Pb and Cu and inward for other elements. The buck-
ling thickness reduces for both edges and all elements.
A fascinating exception is Au(ac), which spontan-
eously relaxes into a closed edge, forming a (giant)
single-wall goldene nanotube (figure 4(a)) [44–46].
A similar phenomenon is familiar from graphene
bilayer edges, where a loop forms between the two
layers to eliminate dangling bonds and increase edge
stability [47]. It is curious that a metallic element like
Au should behave similarly to a covalent material in
this respect.

To quantify the magnitude of the edge relaxation,
we used the equation

δR=

√ ∑

i∈edge

∑

j n.n.

(
Rij −R0

)2
/Nbonds, (4)

whereNbonds is number of nearest-neighbor bonds at
the edge, R0 is the 2D bulk bond length, Rij is the dis-
tance between edge atom i and its nearest neighbor
j. The most striking result is the prominent relaxa-
tion of the armchair edges for all elements. The zigzag
edges relax much less. Among hexagonal edges, the
staggered edges relaxmore than straight edges, except
forMg and Y. The relaxation at the Au andCu straight
edges is virtually nonexistent.

Like in MoS2 but unlike in graphene, the stresses
are tensile (τ > 0) for all edges, meaning a decreasing
energy for an edge shrinking along its length (figure 5)
[38]. Stresses are between 0.04–0.55 eVÅ−1, smaller
than in graphene [28] but following a similar trend
in the edge energies (which have the same units as
edge stresses). Again, an exception is Au(ac), which
has a sizable stress of 1.15 eVÅ−1. The stress arises
from forming the closed edge, which requires the
formation of new bonds parallel to the edge, causing
strained bond lengths and angles responsible for the
stress.

The stresses for Cu, Y, and Pb behave the same
way as edge energies, except for Mg where this trend
reverses completely. Au again is a special case where τ
follows the trend of ε for the buckled honeycomb lat-
tice but reverses for the hexagonal lattice. The edge
energies and stresses have a distinct connection to

5
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Figure 5. Edge stresses for the studied systems. All stresses are tensile.

edge reconstruction. As discussed in [36], the dif-
ference between surface tension and surface energy
drives surface reconstruction. Analogously, here the
difference between edge stress and edge energy can
drive edge reconstruction. The larger the difference
τ −ε, the greater the edge relaxation (figure 4(b)).
The driving force is by far the largest for Au(ac) edge,
the curious case of the closed edge. The difference
τ −ε is negative for edges where atoms relax inward.

3.3. Electronic structure
We also investigated the electronic structures at
metallene edges. For this purpose, we probed the vari-
ation of the local density of states (DOS) as a function
of distance from the edge. The probe was constructed
by calculating the average local density of states using
the expression

DOSF (i) =

´ +∞
−∞ g(ε)DOSi (ε) dε´ +∞

−∞ g(ε)dε
. (5)

Here ε is the single-particle energy, DOSi is the
density of states projected on atom i, and g(ε) =
exp[−(ε− εF)2/2σ2] is a Gaussian envelope func-
tion with σ= 0.2 eV and Fermi level εF [43]. Thus,
DOSF(i) represents an average density of states at
atom i near the Fermi-level.

The values of DOSF(i) at the edge differ signific-
antly from bulk values (figure 6; see ESI for detailed
plots of DOSi). While the differences arise due to
the lower coordination of edge atoms, they penet-
rate nanometers deep into the bulk, far beyond the
mere edge atoms. For Mg, Cu, and Au, DOSF(i) con-
verges towards the bulk within the length ∼3 nm
for all edges, although the DOSF(i) variation at the
edges depends on edge type. The similar conver-
gence of DOSF(i) across different edge types sug-
gests that, at a large scale, these element’s electronic

structures are relatively insensitive to the specifics
of edge geometry. This behavior can be attributed
to these elements’ filled or nearly filled s- and d-
orbitals, which promotes delocalized metallic bond-
ing. For Y, the convergence depends on the lattice in
question. The DOSF(i) variation in buckled honey-
comb edges is twice as large as in hexagonal edges.
Such edge dependence presumably arises from the
partially filled 4d-orbital, which makes Y sensitive
to changes in coordination and edge symmetry. For
Pb, the edge dependency is even more pronounced.
The staggered edge has the longest (∼5 nm) and zig-
zag the shortest (∼2 nm) convergence length. These
differences demonstrate the presence of edge-specific
states or dangling bonds and an involved connection
between p-orbitals and the edge geometry.

The mechanism that makes Mg, Cu, and Au dif-
ferent from Y and Pb in edge sensitivity rests on
orbital occupations of frontier orbitals and the result-
ant directional bonding of undercoordinated atoms
[41]. InMg, Cu, andAu, states near Fermi-level derive
from deep d- or (nearly) filled s-bands, which are
relatively insensitive to local changes in coordina-
tion. Therefore, edge-specificities in DOS are mild
and convergence lengths similar. In contrast, Y’s par-
tially filled 4d-orbitals and Pb’s partially occupied p-
orbitals are more sensitive to coordination and bond
angle changes. These sensitivities cause more pro-
nounced variations in the local DOS. For Y and Pb,
the directional nature of partially filled d- and p-
orbitals makes small changes in edge geometry to
split or shift these states [48], forming states akin to
‘dangling bonds’ that depend on edge type. The large
orbital reconfigurations available in partially filled
bands are sufficient to yield a greater edge type -
dependence for Y and Pb than for Mg, Cu, or Au.
Spin–orbit coupling would modify Pb’s electronic
structure even further, as reported for surfaces [49].
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Figure 6. Atom-projected densities of states for all elements and edge types.

The metallene edge states still need further investig-
ation for topological protection or other potentially
useful electronic properties.

4. Summary and conclusions

In summary, we have investigated the basic properties
of edges in atomically thin metallenes made of five
representative elements from different parts of the

periodic table. We focused on hexagonal and buckled
honeycomb lattices with two edge orientations and
four edge types for each metallene.

The edge energies for all metallenes followed the
same trend, which could be explained reasonably well
by a non-linear bond-cutting model, analogously to
surface energies of the same elements [36, 40, 41]. The
edge stresses in all metallenes were tensile, which sug-
gests the edges’ tendency to shrink the edges along
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their length. The tensile stress improves the mech-
anical stability of the edges compared to compress-
ive stress, which—conversely—tends to create out-
of-plane rippling in 2D materials [13, 14]. Still, the
slow convergence of the local density of states while
moving from the edge into the 2D bulk suggests that
edge stresses (and edge energies alike) may origin-
ate not only from the undercoordinated edge atoms
but from deeper within the bulk. Therefore, the pair-
wise atomic interactions and local stresses near the
edges should be investigated in more detail. The arm-
chair edge of Au revealed the most peculiar beha-
vior by relaxing into a closed loop, forming a partially
squashed Au nanotube; this behavior also deserves
further investigation.

To conclude, this work presents multifaceted new
knowledge about the edges of atomically thin metal-
lenes. This knowledge, which still requires further
completion, is crucial for our experimental attempts
to synthesize more stable and versatile lateral inter-
faces between metallenes and covalent templates.
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