
Renkaat ja kunnat 2026

Harjoitus 2: ratkaisuja

1. Olkoon f : pA, ˚q Ñ pC, fq homomorfismi. Osoita:
(a) Jos B Ă A on vakaa,niin fpBq Ă C on vakaa.
(b) Jos B Ă C on vakaa ja f´1pBq ei ole tyhjä joukko, niin f´1pBq Ă A on vakaa.

Ratkaisu. (a) Olkoot c1, c2 P fpBq. Tällöin on b1, b2 P B, joille fpb1q “ c1 ja fpb2q “ c2.
Koska B on vakaa, pätee b1 ˚ b2 P B. Siis fpb1q f fpb2q “ fpb1 ˚ b2q P fpBq, koska f on
homomorfismi.
(b) Olkoot a1, a2 P f´1pBq. Tällöin fpa1q, fpa2q P B. Koska f on homomorfismi ja B on
vakaa, pätee fpa1 ˚ a2q “ fpa1q f fpa2q P B. Siis a1 ˚ a2 P f´1pBq, jotenf´1pBq on vakaa.

2. Todista Lemma 1.21(1): Kompleksilukujen yhteen- ja kertolasku ovat assosiatiivisia ja
kommutatiivisia. Yhteenlaskun neutraalialkio on 0 “ p0, 0q ja kertolaskun neutraalialkio
on 1 “ p1, 0q. Kertolasku on distributiivinen yhteenlaskun suhteen

Ratkaisu. Kompleksilukujen yhteenlasku on sama kuin tason R2 vektoreiden komponen-
teittainen yhteenlasku. Sen assosiatiivisuus ja kommutatiivisuus nähdään helposti: Olkoot
px1, y1q, px2, y2q, px3, y3q P C. Tällöin määritelmän, reaalilukujen yhteenlaskun assosiatii-
visuuden ja määritelmän nojalla

`

px1, y1q ` px2, y2q
˘

` px3, y3q “ px1 ` x2, y1 ` y2q ` px3, y3q

“
`

px1 ` x2q ` x3, py1 ` y2q ` y3
˘

“
`

x1 ` px2 ` x3q, y1 ` py2 ` y3q
˘

“ px1, y1q ` px2 ` x3, y2 ` y3q

“ px1, y1q `
`

px2, y2q ` px3, y3q
˘

,

joten yhteen lasku on assosiatiivinen. Se on myös kommutatiivinen, sillä

px1, y1q ` px2, y2q “ px1 ` x2, y1 ` y2q “ px2 ` x1, y2 ` y1q “ px2, y2q ` px1, y1q .

Selvästi 0 “ p0, 0q P C on yhteenlaskun neutraalialkio ja px, yq ` p´x, ´yq “ 0 kaikille
px, yq P C.

Laskemalla
`

px1, y1qpx2, y2q
˘

px3, y3q “ px1x2 ´ y1y2, x1y2 ` y1x2qpx3, y3q

“ px1x2x3 ´ y1y2x3 ´ x1y2y3 ´ y1x2y3, x1x2y3 ´ y1y2y3 ` x1y2x3 ` y1x2x3q

ja

px1, y1q
`

px2, y2qpx3, y3q
˘

“ px1, y1qpx2x3 ´ y2y3, x2y3 ` y2x3q

“ px1x2x3 ´ x1y2y3 ´ y1x2y3 ´ y1y2x3, x1x2y3 ` x1y2y3 ` y1x2x3 ´ y1y2y3q

havaitsemme, että kertolasku on assosiatiivinen. Lisäksi

px1, y1qpx2, y2q “ px1x2 ´y1y2, x1y2 `y1x2q “ ppx2x1 ´y2y1, x2y1 `y2x1q “ px2, y2qpx1, y1q ,

joten kertolasku on kommutatiivinen ja

p1, 0qpx, yq “ p1 ¨ x ´ 0 ¨ y, 1 ¨ y ` 0 ¨ xq “ px, yq ,
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joten p1, 0q on kertolaskun neutraalialkio.
Osoitimme, että kertolasku on kommutatiivinen, joten distributiivisuus riittää tarkas-

taa toiselta puolelta:

px1, y1q
`

px2, y2q ` px3, y3q
˘

“ px1, y1qpx2 ` x3, y2 ` y3q

“
`

x1px2 ` x3q ´ y1py2 ` y3q, x1py2 ` y3q ` y1px2 ` x3q
˘

“
`

px1x2 ´ y1y2q ` px1x3 ´ y1y3q, px1y2 ` y1x2q ` px1y3 ` y1x3q
˘

“ px1x2 ´ y1y2, x1y2 ` y1x2q ` px1x3 ´ y1y3, x1y3 ` y1x3q

“ px1, y1qpx2, y2q ` px1, y1qpx3, y3q .

3. Todista Lemma 1.21(2): Olkoot z, w P C. Tällöin zw “ 0, jos ja vain jos z “ 0 tai
w “ 0.

Ratkaisu. Kertolaskun määritelmän nojalla p0, 0qpx, yq “ p0, 0q “ px, yqp0, 0q.
Olkoot z “ a ` ib, w “ c ` id P C. Tällöin zw “ pac ´ bdq ` ipad ` bcq “ 0, jos ja vain

jos
#

ac ´ bd “ 0
ad ` bc “ 0

. (1)

Kerrotaan ensimmäinen yhtälö luvulla c ja toinen luvulla d. Laskemalla näin saatavat
yhtälöt yhteen saadaan apc2 ` d2q “ 0. Jos c2 ` d2 “ 0, niin w “ c ` id “ 0. Muutoin
täytyy olla a “ 0. Tällöin yhtälöpari (1) on

#

bd “ 0
bc “ 0

. (2)

Siis b “ 0 tai c “ d “ 0. Jos b “ 0, niin z “ a` ib “ 0. Muuten yhtälöparin (2) molemmat
yhtälöt voidaan jakaa luvulla b ja saadaan c “ 0 “ d. Tällöin w “ c ` id “ 0.

4. Osoita, että kokonaislukujen kertolasku on yhteensopiva kongruenssin kanssa.

Ratkaisu. Olkoon q P N ´ t0, 1u. Olkoot a, a1, b, b1 P Z siten, että a ” a1 mod q ja b ” b1

mod q. Tällöin a1 “ a ` kq jollain k P Z ja b1 “ b ` nq jollain n P Z. Tällöin

a1b1
´ ab “ a1b1

´ a1b ` a1b ´ ab “ a1
pb1

´ bq ` pa1
´ aqb “ a1nq ` kqb “ pa1n ` kbqq ,

joten a1b1 ” ab mod q.

5. Muodosta yhteen- ja kertolaskun laskutaulut kongruenssiluokilla modulo 2 ja modulo
6.

Ratkaisu. Renkaan Z{2Z laskutaulut ovat

` 0 1
0 0 1
1 1 0

¨ 0 1
0 0 0
1 0 1
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ja renkaan Z{6Z laskutaulut ovat

` 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 4 0 1 2 3 4

¨ 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

6. Olkoon R rengas. Osoita, että

(1) xp´yq “ p´xqy “ ´pxyq kaikilla x, y P R,

(2) xpy ´ zq “ xy ´ xz ja py ´ zqx “ yx ´ zx kaikilla x, y, z P R.

Ratkaisu. (1) Olkoot x, y P R. Distributiivisuuden ja Proposition 3.10(1) nojalla

xy ` xp´yq “ xpy ´ yq “ x 0 “ 0 .

Koska yhteenlasku on kommutatiivinen, tästä seuraa xp´yq “ ´pxyq. Samalla tavalla
nähdään, että

xy ` p´xqy “ px ´ xqy “ 0 y “ 0 ,

joten p´xqy “ ´pxyq.
(2) Olkoot x, y, z P R. Distributiivisuuden ja kohdan (1) nojalla

xpy ´ zq “ xy ` xp´zq “ xy ´ xz

ja
py ´ zqx “ yx ` p´zqx “ yx ´ zx .

7. Todista Propositio 3.12(2).

Ratkaisu. Jos r P R on alkio, jolle pätee r 0 “ 1, niin Proposition 3.10(1) nojalla

0 “ r 0 “ 1 .

Tämä on mahdotonta Proposition 3.12(1) nojalla.

8. Olkoon pR, ‘, ¨q kahdella laskutoimituksella varustettu joukko siten, että ‘ ja ¨ ovat
assosiatiivisia ja

(1) pR, ‘q on ryhmä,

(2) kertolasku on distributiivinen yhteenlaskun suhteen ja

(3) kertolaskulla on neutraalialkio 1 “ 1R P R.

Osoita, että pR, ‘, ¨q on rengas.

Ratkaisu. Olkoot x, y P R. Tällöin distributiivisuuden ja assosiatiivisuuden nojalla1

p1 ‘ 1qpx ‘ yq “ p1 ‘ 1qx ‘ p1 ‘ 1qy “ p1x ‘ 1xq ‘ p1y ‘ 1yq “ x ‘
`

px ‘ yq ‘ y
˘

1Assosiatiivisuuden nojalla pa ` bq ` pc ` dq “ a ` pb ` pc ` dqq “ a ` ppb ` cq ` dq

3



ja toisaalta

p1 ‘ 1qpx ‘ yq “ 1px ‘ yq ‘ 1px ‘ yq “ x ‘
`

py ‘ xq ‘ y
˘

.

Yhtälöstä
x ‘

`

px ‘ yq ‘ y
˘

“ x ‘
`

py ‘ xq ‘ y
˘

saadaan käyttämällä kahdesti supistussääntöä x ‘ y “ y ‘ x. Siis yhteenlasku on kom-
mutatiivinen, joten R on rengas.
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