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Lukijalle

Tämä teksti on talven ja kevään 2026 kurssien Algebra 1: Renkaat ja Kunnat ja
Algebra 1: Ryhmät oppimateriaali. Kurssit muodostavat johdatuksen abstraktiin al-
gebraan. Kursseilla tarkastelemme laskutoimituksia, joita on määritelty joidenkin joukko-
jen alkioille, ja laskutoimituksella varustettujen joukkojen välisiä homomorfismeja, jotka
ovat laskutoimitusten kanssa yhteensopivia kuvauksia. Teoriaa havainnollistetaan esimer-
keillä matematiikan eri aloilta (joukko-oppi, lineaarialgebra, analyysi, geometria, lukuteo-
ria). Konkreettisia esimerkkejä ovat muun muassa

• reaalilukujen kunta (R,+, ·), jonka laskutoimitukset ovat tavalliset yhteenlasku ja
kertolasku,

• R-vektoriavaruudet, joissa on määritelty vektorien yhteenlasku ja lisäksi vektorin ker-
tominen reaaliluvulla. Vektorin kertominen reaaliluvulla ei ole laskutoimitus vaan toi-
minta. Sivuamme tätä aihepiiriä molemmilla kursseilla, mutta emme perehdy tähän
aihepiiriin laajemmin.

• Ortogonaalisten n×n-matriisien ryhmä, jossa laskutoimitus on matriisien kertolasku.

Yksi algebran keskeinen ajatus on se, että erilaisissa matemaattisissa yhteyksissä tun-
nistetaan samankaltaisia rakenteita. Jos tunnistetaan jokin tunnettu algebrallinen rakenne
(ryhmä, rengas,. . . ), voidaan tarkasteltavaa tilannetta usein ymmärtää paremmin näille
algebrallisille rakenteille todistettujen yleisten tulosten avulla.

Teksti koostuu kolmesta osasta ja yhdestä lyhyestä liitteestä. Osa I käsittelee lasku-
toimituksia. Tätä osaa käsitellään molemmilla kursseilla. Osa II muodostaa kurssin Ren-
kaat ja kunnat rungon ja Osa III muodostaa kurssin Ryhmät rungon. Liitteeseen A on
koottu kursseilla tarvittavia lukuteorian alkeita. Liitteen sisältö on tuttua kurssin Luku-
teoria 1 suorittaneille. Lukuteorian kurssia ei oleteta esitietona, mutta kurssilla Lukuteoria
1 käsitellyistä jaollisuuden ja modulaariaritmetiikan perusteista on hyötyä kummallakin
algebran kurssilla.

Kurssin Renkaat ja kunnat aluksi luvuissa 1 ja 2 tutustutaan laskutoimituksen
käsitteeseen ja erilaisiin laskutoimituksiin sekä homomorfismeihin laskutoimituksella va-
rustettujen joukkojen välillä. Luvuissa 3 ja 4 tutustumme renkaisiin ja niiden erityis-
tapauksena kuntiin. Nämä ovat kahdella laskutoimituksella varustettuja joukkoja, jotka
yleistävät kokonaislukujen renkaan ja rationaali- ja reaalilukujen kunnat, joissa laskutoi-
mitukset ovat tavanomaiset yhteen- ja kertolasku. Luvussa 5 tarkastelemme jaollisuutta
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renkaissa. Luvussa 6 tutustumme polynomirenkaisiin, jotka ovat tärkeässä osassa. viimei-
sessä luvussa, jossa tutustumme ideaaleihin, tekijärenkaisiin ja polynomirenkaiden avulla
tehtäviin kuntalaajennuksiin. Sovelluksena tarkastelemme äärellisten kuntien konstruk-
tiota.

Kurssin Ryhmät aluksi tutustutaan lukujen 1 ja 2 avulla laskutoimituksen käsit-
teeseen ja erilaisiin laskutoimituksiin. Luvussa 8 tutustumme ryhmiin ja niiden välisiin
homomorfismeihin. Ryhmät ovat yhdellä laskutoimituksella varustettuja joukkoja, joil-
la on samoja ominaisuuksia kuin esimerkiksi joukon {1, 2, 3} permutaatioiden ryhmällä.
Luvussa 9.1 tarkastelemme aliryhmiä, jotka ovat ryhmän osajoukkoja, joihin ryhmän las-
kutoimitus määrää ryhmän rakenteen. Permutaatioryhmiä tarkastellaan lähemmin luvus-
sa 10, erityisesti perehdymme äärellisten joukkojen permutaatioryhmiin, joita kutsutaan
symmetrisiksi ryhmiksi. Luvussa 11 tutustutaan aliryhmien sivuluokkiin ja todistetaan
Lagrangen lause, joka kertoo äärellisen ryhmän aliryhmien mahdolliset koot. Luvussa 12
tutustumme normaaleihin aliryhmiin, määrittelemme laskutoimituksen normaalin aliryh-
män sivuluokkien joukossa ja päädymme tarkastelemaan tärkeää tekijäryhmän käsitettä.
Kurssin lopuksi tarkastellaan lyhyesti ryhmäteorian ja geometrian yhteyksiä.

Kurssit on suunniteltu niin, että kumpi tahansa on mahdollista suorittaa ensimmäi-
senä. Kurssien sisällöt liittyvät kuitenkin toisiinsa monin tavoin. Muutama tulos ja har-
joitustehtävä on merkitty tähdellä, esimerkiksi sen vuoksi, että niissä tarvitaan toisen
kurssin ainesta.
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Merkintöjä

Kurssilla käytetään seuraavia merkintöjä:
N = {0, 1, 2, . . . } on luonnolliset luvut.
#A ∈ N ∪ {∞} on joukon A alkioiden lukumäärä.
A−B = {a ∈ A : a /∈ B} on joukkojen A ja B erotus.
P(X) = {A : A ⊂ X} on joukon X potenssijoukko.
f |A : A → Y on kuvauksen f : X → Y rajoittuma osajoukkoon A ⊂ X, f |A(a) = f(a)
kaikilla a ∈ A.
Y X = {f : X → Y } on kaikkien kuvausten f : X → Y joukko.⋃
α∈A Uα = {u : ∃α ∈ A, jolle u ∈ Uα} on joukkojen Uα yhdiste.⋂
α∈A Uα = {u : u ∈ Uα kaikilla α ∈ A} on joukkojen Uα leikkaus.⊔
i∈I Ai on joukkojen Ai erillinen yhdiste.

A ⊊ B joukko A on joukon B aito osajoukko: A ⊂ B ja A ̸= B.
Mn(R) on R-kertoimisten matriisien rengas.
Jos C on matriisi, niin Clm on matriisin C kerroin, joka on rivillä l ja sarakkeessa m.
diag(a1, a2, . . . , an) on n×n-diagonaalimatriisi, jonka diagonaalialkiot ovat a1, a2, . . . , an.
In = diag(1, 1, . . . , 1).
R+ = ]0,∞[.
log : R+ → R on luonnollinen logaritmi.
TA on matriisin A transpoosi.(
n
k

)
= n!

k! (n−k)! on binomikerroin.
(x | y) = ∑n

k=1 xkyk on vektorien x, y ∈ Rn standardisisätulo.

Jokaisen luvun lopussa on kokoelma harjoitustehtäviä. Osaan tehtävistä on alaviitteessä
numeroitu vihje.

Uusien käsitteiden määritelmät on laatikoitu näin. Niitä ei ole numeroitu.

Tällaisessa laatikossa on jokin huomautus tai sopimus, joka on tärkeä huomata.
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Osa I

Laskutoimituksista
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Luku 1

Laskutoimitukset

Tässä luvussa määrittelemme useita keskeisiä käsitteitä, joita tarvitaan kursseilla Ren-
kaat ja kunnat ja Ryhmät. Tutustumme laskutoimituksiin ja homomorfismeihin, jotka
ovat laskutoimitusten kanssa hyvin käyttäytyviä kuvauksia laskutoimituksella varustet-
tujen joukkojen välillä.

1.1 Laskutoimitus
Olkoon A epätyhjä joukko. Kuvaus ∗ : A × A → A on joukon A laskutoimitus tai lasku-
toimitus joukossa A.
Pari (A, ∗) on laskutoimituksella varustettu joukko eli magma.

Joukon A laskutoimituksen ∗ tulosta merkitään yleensä a ∗ a′ = ∗(a, a′), kun a, a′ ∈ A.

Laskutoimitus on siis sääntö, joka liittää joukon A alkioiden a ja a′ muodostamaan jär-
jestettyyn pariin (a, a′) alkion a ∗ a′ ∈ A.
Esimerkki 1.1. (a) Luonnollisten lukujen N, kokonaislukujen Z, rationaalilukujen Q ja
reaalilukujen R yhteen- ja kertolasku ovat laskutoimituksia:

(m,n) +7→ m+ n (m,n) ·7→ m · n = mn .

Näiden laskutoimitusten ominaisuudet oletetaan tällä kurssilla tunnetuiksi.
(b) Lineaarialgebran kursseilta tuttu vektoriavaruuden Rn vektorien yhteenlasku on las-
kutoimitus:

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn) .

(c) Olkoon Mn(R) reaalisten n× n–matriisien joukko. Lineaarialgebran kursseilla määri-
tellään kaksi laskutoimitusta joukossa Mn(R). Matriisien yhteenlasku määritellään aset-
tamalla

(A+B)ij = (Aij +Bij)
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4 Laskutoimitukset

kaikilla 1 ≤ i, j ≤ n. Matriisien kertolasku määritellään asettamalla

(AB)ij =
n∑
k=1

AikBkj

kaikilla 1 ≤ i, j ≤ n. Erityisesti dimensiossa 2 saadaan laskutoimitukset(
a11 a12
a21 a22

)
+
(
b11 b12
b21 b22

)
=
(
a11 + b11 a12 + b12
a21 + b21 a22 + b22

)
ja (

a11 a12
a21 a22

)(
b11 b12
b21 b22

)
=
(
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

)
.

Seuraava määritelmä yleistää Esimerkin 1.1(b).

Olkoot (X1, ∗1), (X2, ∗2), . . . , (Xn, ∗n) laskutoimituksella varustettuja joukkoja. Tulo-
joukon X1 × X2 × · · · × Xn laskutoimitus ∗, joka määritellään asettamalla kaikille
(x1, x2, . . . , xn), (y1, y2, . . . , yn) ∈ X1 ×X2 × · · · ×Xn

(x1, x2, . . . , xn) ∗ (y1, y2, . . . , yn) = (x1 ∗1 y1, x2 ∗2 y2, . . . , xn ∗n yn) ,

on laskutoimitusten ∗1, ∗2, . . . , ∗n tulolaskutoimitus.

Usein laskutoimitukselle ei käytetä mitään erityistä merkkiä vaan laskutoimitusta merki-
tään kirjoittamalla laskutoimituksella varustetun joukon alkioista muodostettuja sanoja
kuten kokonais-, rationaali- ja reaalilukujen kertolaskussa on tapana: a · b = ab.

Edellä tarkastellut esimerkit liittyvät kaikki tavanomaiseen luvuilla laskemiseen. Las-
kutoimituksen käsite on kuitenkin laajempi, kuten seuraavista esimerkeistä näemme.

Joukon X osajoukot muodostavat potenssijoukon

P(X) = {A : A ⊂ X} .

Joukkojen leikkaus (A,B) 7→ A ∩ B ja yhdiste (A,B) 7→ A ∪ B ovat laskutoimituksia
potenssijoukossa P(X).

Laskutoimituksella varustetun äärellisen joukon (X, ∗) laskutaulu on joukon X alkioilla
indeksoitu taulukko, jossa paikalla (g, h), siis rivillä g ja sarakkeessa h on alkio gh.

Esimerkki 1.2. Joukon {0, 1} potenssijoukon P({0, 1}) =
{
∅, {0}, {1}, {0, 1}

}
lasku-

toimitusten ∩ ja ∪ laskutaulut ovat

∩ ∅ {0} {1} {0, 1}

∅ ∅ ∅ ∅ ∅
{0} ∅ {0} ∅ {0}
{1} ∅ ∅ {1} {1}

{0, 1} ∅ {0} {1} {0, 1}

ja

∪ ∅ {0} {1} {0, 1}

∅ ∅ {0} {1} {0, 1}
{0} {0} {0} {0, 1} {0, 1}
{1} {1} {0, 1} {1} {0, 1}

{0, 1} {0, 1} {0, 1} {0, 1} {0, 1}

.
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1.2. Indusoitu laskutoimitus 5

Esimerkki 1.3. (a) Yhden alkion muodostamassa joukossa1 {a} on täsmälleen yksi
laskutoimitus: Joukossa {a} × {a} on yksi alkio (a, a). Jos ∗ on laskutoimitus joukossa
{a}, niin laskun a ∗ a ainoa mahdollinen arvo on joukon {a} ainoa alkio a.
(b) Kahden alkion muodostamassa joukossa X = {a, b} on 42 = 16 eri laskutoimitusta:
Joukossa

X ×X =
{
(a, a), (a, b), (b, a), (b, b)

}
on neljä alkiota ja jokaisella alkiolla on kaksi mahdollista arvoa a tai b. Seuraavat lasku-
taulut näyttävät viisi eri laskutoimitusta:

∗1 a b

a a a

b a a

∗2 a b

a b b

b b b

∗3 a b

a a a

b b b

· a b

a a a

b a b

+ a b

a a b

b b a

.

1.2 Indusoitu laskutoimitus
Joissain tilanteissa laskutoimituksella varustetulla joukolla (A, ∗) on osajoukkoja B ⊂ A,
joihin ∗ määrää laskutoimituksen. Tutustumme tällaisiin tapauksiin esimerkiksi luvuissa
3.3 ja 9.1.

Olkoon (A, ∗) laskutoimituksella varustettu joukko. Jos B ⊂ A, B ̸= ∅, ja kaikille b, b′ ∈ B
pätee b ∗ b′ ∈ B, niin B on laskutoimituksella varustetun joukon (A, ∗) vakaa osajouk-
ko. Laskutoimitus ∗ määrää indusoidun laskutoimituksen ∗|B vakaassa joukossa B, kun
asetetaan

b ∗ |B b′ = b ∗ b′ .

Esimerkki 1.4. (a) Jos a, b ∈ Q− {0}, niin ab ̸= 0. Siis Q− {0} on laskutoimituksella
varustetun joukon (Q, ·) vakaa osajoukko ja rationaalilukujen kertolasku indusoi laskutoi-
mituksen joukkoon Q−{0}. Vastaavasti reaalilukujen kertolasku indusoi laskutoimituksen
joukkoon R− {0}. Näin saamme laskutoimituksella varustetut joukot

Q× = (Q− {0}, ·)

ja
R× = (R− {0}, ·) .

Rationaali- tai reaalilukujen yhteenlasku ei indusoi laskutoimitusta joukkoon Q− {0} tai
R− {0}, koska esimerkiksi −1, 1 ∈ Q− {0}, mutta −1 + 1 = 0 /∈ Q− {0}.
(b) Olkoon

P =
{(

a b
c d

)
∈ M2(R) : c = 0

}
=
{(

a b
0 d

)
∈ M2(R)

}
.

Tällöin kaikille A,B ∈ P pätee A + B ∈ P ja AB ∈ P , joten matriisien yhteenlasku ja
kertolasku indusoivat kaksi laskutoimitusta joukossa P ⊂ M2(R).

Yleensä indusoidulle laskutoimitukselle käytetään samaa merkintää kuin laskutoimituk-
selle, joka indusoi sen: ∗|B = ∗.

1Yhden alkion muodostamaa joukkoa voi kutsua yksiöksi.

12. tammikuuta 2026



6 Laskutoimitukset

1.3 Homomorfismi
Kahden laskutoimituksella varustetun joukon väliset kuvaukset, jotka sopivat laskutoimi-
tusten kanssa hyvin yhteen, ovat algebrassa keskeisessä osassa:

Olkoot (E, ∗) ja (E ′,⊛) laskutoimituksella varustettuja joukkoja.
Kuvaus h : (E, ∗) → (E ′,⊛) on homomorfismi, jos kaikille a, b ∈ E pätee

h(a ∗ b) = h(a) ⊛ h(b) .

Bijektiivinen homomorfismi on isomorfismi.
Isomorfismi laskutoimituksella varustetulta joukolta E itselleen on automorfismi.
Laskutoimituksella varustetut joukot (E, ∗) ja (E ′,⊛) ovat isomorfisia (keskenään), jos
on isomorfismi h : (E, ∗) → (E ′,⊛).

Esimerkki 1.5. (a) Olkoon n ≥ 2. Lineaarialgebrassa osoitettiin, että kaikille A,B ∈
Mn(R) pätee

det(AB) = detA detB .

Siis kuvaus det : Mn(R) → (R, ·) on homomorfismi.
(b) Yhteenlaskulla varustetut joukot (Mn(R),+) ja (Rn2

,+) ovat selvästi isomorfisia.
(c) Kuvaus h : (Z,+) → (M2(R), ·),

h(n) =
(

1 n
0 1

)
,

on homomorfismi:

h(n+m) =
(

1 n+m
0 1

)
=
(

1 n
0 1

)(
1 m
0 1

)
= h(n)h(m).

Isomorfiset laskutoimituksella varustetut joukot ovat algebrallisilta ominaisuuksiltaan
samanlaiset vaikka joukot ja laskutoimitukset voivat “ulkoisesti” olla hyvinkin erilaisia,
kuten Esimerkin 1.5 avulla huomaamme.
Esimerkki 1.6. Reaalilukujen kertolasku indusoi laskutoimituksen positiivisten reaali-
lukujen joukossa R+ = ]0,∞[. Eksponenttikuvaus exp: (R,+) → (R+, ·), exp(x) = ex, on
homomorfismi: Kaikille x, y ∈ R pätee

exp(x+ y) = ex+y = exey = exp(x) exp(y) .

Eksponenttifunktio on tunnetusti bijektio, joten se on isomorfismi.
Eksponenttifunktion käänteisfunktio log : (R+, ·) → (R,+) on myös isomorfismi: Kään-

teiskuvauksena se on bijektio ja kaikille x, y ∈ R+ pätee

log(xy) = log(x) + log(y).

Seuraavan tuloksen jälkimmäinen kohta yleistää Esimerkin 1.6 eksponenttifunktiota
ja logaritmia koskevan havainnon kaikille isomorfismeille.
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1.4. Assosiatiivisuus ja kommutatiivisuus 7

Propositio 1.7. (1) Homomorfismien yhdistetty kuvaus on homomorfismi.
(2) Isomorfismin käänteiskuvaus on isomorfismi.

Todistus. (1) Harjoitustehtävä.
(2) Olkoon ϕ : (A, ∗) → (B,⊛) isomorfismi. Olkoot b1, b2 ∈ B. Koska ϕ on bijektio, pätee

b1 ⊛ b2 = ϕ
(
ϕ−1(b1)

)
⊛ ϕ

(
ϕ−1(b2)

)
.

Koska ϕ on homomorfismi, saamme

ϕ
(
ϕ−1(b1)

)
⊛ ϕ

(
ϕ−1(b2)

)
= ϕ

(
ϕ−1(b1) ∗ ϕ−1(b2)

)
.

Yhdistämällä nämä kaksi yhtälöä saamme

b1 ⊛ b2 = ϕ
(
ϕ−1(b1) ∗ ϕ−1(b2)

)
,

mistä seuraa
ϕ−1(b1 ⊛ b2) = ϕ−1(b1) ∗ ϕ−1(b2) ,

koska ϕ on bijektio. Siis ϕ−1 on homomorfismi.

Tässä luvussa esitellyn sanaston lisäksi käytetään melko usein seuraavia nimityksiä:
Injektiivinen homomorfismi on monomorfismi.
Surjektiivinen homomorfismi on epimorfismi.
Näillä kursseilla käytämme näistä homomorfismityypeistä pääsääntöisesti nimityksiä in-
jektiivinen ja surjektiivinen homomorfismi.

1.4 Assosiatiivisuus ja kommutatiivisuus
Laskutoimitusten suorittamisen järjestyksen kanssa on syytä olla huolellinen. Sulut ker-
tovat, missä järjestyksessä operaatiot suoritetaan: Lausekkeessa a ∗ (b ∗ c) muodostetaan
ensin tulo (b ∗ c), joka kerrotaan vasemmalta alkiolla a kun taas lausekkeessa (a ∗ b) ∗ c
muodostetaan ensin tulo (a ∗ b), joka kerrotaan oikealta alkiolla c. Lausekkeet a ∗ (b ∗ c)
ja (a ∗ b) ∗ c eivät välttämättä anna samaa tulosta.

Joukon A laskutoimitus ∗ on

(1) assosiatiivinen eli liitännäinen, jos a ∗ (b ∗ c) = (a ∗ b) ∗ c kaikilla a, b, c ∈ A.

(2) kommutatiivinen eli vaihdannainen, jos a ∗ b = b ∗ a kaikilla a, b ∈ A.

Sulkujen määrää lausekkeissa voi vähentää, jos laskutoimitus ∗ on assosiatiivinen:
Koska sulkujen paikalla ei ole merkitystä lausekkeessa a∗ (b∗c) = (a∗b)∗c, joten voimme
käyttää merkintää

a ∗ b ∗ c = (a ∗ b) ∗ c = a ∗ (b ∗ c)

ilman vaaraa. Kaikki tavanomaiset laskutoimitukset eivät ole assosiatiivisia, kuten näem-
me Esimerkissä 1.8 ja Harjoitustehtävässä 1.20.
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8 Laskutoimitukset

Esimerkki 1.8. (a) Luonnollisten lukujen, kokonais-, rationaali- ja reaalilukujen yhteen-
ja kertolasku ovat kommutatiivisia ja assosiatiivisia

(1) m+ n = n+m ja mn = nm kaikilla m,n ja

(2) m+ (n+ l) = (m+ n) + l ja m(nl) = (mn)l kaikilla m,n, l.

(b) Kokonaislukujen vähennyslasku ei ole assosiatiivinen eikä kommutatiivinen:

1 − (1 − 1) = 1 ̸= −1 = (1 − 1) − 1

ja
1 − 0 = 1 ̸= −1 = 0 − 1.

(c) Lineaarialgebran kurssilla on osoitettu, että matriisien yhteen- ja kertolaskut ovat
assosiatiivisia laskutoimituksia joukossa Mn(R). Matriisien yhteenlasku on myös kommu-
tatiivinen mutta matriisien kertolasku joukossa Mn(R) ei ole kommutatiivinen, kun n ≥ 2.
Esimerkiksi (

1 1
0 1

)(
1 0
1 1

)
=
(

2 1
1 1

)
̸=
(

1 1
1 2

)
=
(

1 0
1 1

)(
1 1
0 1

)
.

(d) Olkoon X joukko. Joukon P(X) laskutoimitukset ∩ ja ∪ ovat assosiatiivisia:

A ∩ (B ∩ C) = (A ∩B) ∩ C

ja
A ∪ (B ∪ C) = (A ∪B) ∪ C

kaikilla A,B,C ∈ P(X), ja kommutatiivisia:

A ∩B = B ∩ A ja A ∪B = B ∪ A

kaikilla A,B ∈ P(X).

Merkintöjä + ja · käytetään yleisesti eri laskutoimituksille. Tulomerkintää kutsutaan usein
multiplikatiiviseksi merkinnäksi ja summamerkintää additiiviseksi merkinnäksi.

Merkintää + käytetään ainoastaan kommutatiiviselle laskutoimitukselle.

Seuraava tulos on hyödyllinen esimerkiksi luvussa 2 modulaariaritmetiikan ominai-
suuksien perustelussa.

Propositio 1.9. Olkoon h : (E, ∗) → (E ′,⊛) surjektiivinen homomorfismi.

(1) Jos ∗ on kommutatiivinen, niin ⊛ on kommutatiivinen

(2) Jos ∗ on assosiatiivinen, niin ⊛ on assosiatiivinen

Todistus. (1) Olkoot a′, b′ ∈ E ′. Tällöin on a, b ∈ E, joille h(a) = a′ ja h(b) = b′. Siis

a′ ⊛ b′ = h(a) ⊛ h(b) = h(a ∗ b) = h(b ∗ a) = h(b) ⊛ h(a) = b′ ⊛ a′,

joten ⊛ on kommutatiivinen.
(2) Harjoitustehtävä 1.11.
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1.5. Neutraalialkio 9

Olkoot A ja B epätyhjiä joukkoja. Kaikkien joukosta A joukkoon B määriteltyjen ku-
vausten joukko on BA.a

aTämän merkinnän idea on se, että esimerkiksi R2 = R{0,1} = {f : {1, 2} → R}. Samalla ajatuksella
voidaan potenssijoukolle käyttää merkintää 2X = P(X), koska potenssijoukon alkio A ∈ P(X) voidaan

samastaa karakteristisen funktion χA : A → {0, 1}, χA(x) =
{

1, jos x ∈ A

0 muuten
, kanssa.

Esimerkki 1.10. Olkoon X ̸= ∅. Jos f, g : X → X, niin f ◦ g : X → X. Siis kuvausten
yhdistäminen ◦ on laskutoimitus joukossa {f : X → X}.

Laskutoimitus ◦ on assosiatiivinen: Olkoot f, g, h ∈ XX . Yhdistetyn kuvauksen mää-
ritelmän mukaan (

f ◦ (g ◦ h)
)
(x) = f

(
(g ◦ h)(x)

)
= f

(
g(h(x))

)
kaikilla x ∈ X ja (

(f ◦ g) ◦ h
)
(x) = (f ◦ g)(h(x)) = f

(
g(h(x))

)
kaikilla x ∈ X. Siis f ◦ (g ◦ h) = (f ◦ g) ◦ h kaikilla f, g, h ∈ XX .

Laskutoimitus ◦ ei ole kommutatiivinen, jos joukossa X on ainakin kaksi alkiota.
Olkoon esimerkiksi X = {0, 1} ja olkoot 0, 1 ∈ XX vakiokuvaukset 0(x) = 0 ja 1(x) = 1
kaikilla x ∈ X. Tällöin 1 ◦ 0 = 1 ̸= 0 = 0 ◦ 1.

1.5 Neutraalialkio
Olkoon A ̸= ∅ ja olkoon ∗ joukon A laskutoimitus.
Alkio e ∈ A on laskutoimituksen ∗ vasen neutraalialkio, jos e ∗ g = g kaikilla g ∈ A.
Alkio e ∈ A on laskutoimituksen ∗ oikea neutraalialkio, jos g ∗ e = g kaikilla g ∈ A.
Jos e ∈ A on laskutoimituksen ∗ vasen ja oikea neutraalialkio, niin e on laskutoimituksen
∗ neutraalialkio.

Esimerkki 1.11. (a) Luku 0 ∈ N ⊂ Z ⊂ Q ⊂ R on laskutoimituksella varustettujen
joukkojen (N,+), (Z,+), (Q,+) ja (R,+) neutraalialkio. Luku 1 ∈ N ⊂ Z ⊂ Q ⊂ R on
laskutoimituksella varustettujen joukkojen (N, ·), (Z, ·), (Q, ·) ja (R, ·) neutraalialkio
(b) Olkoon X ̸= ∅. Määritellään joukon P(X) laskutoimitus − asettamalla

A−B = {a ∈ A : a /∈ B}

kaikille A,B ∈ P(X). Tällöin jokaisella A ∈ P(X) pätee A − ∅ = A, joten ∅ on
laskutoimituksen − oikea neutraalialkio. Kuitenkin ∅−A = ∅ kaikilla A ∈ P(X), joten ∅
ei ole laskutoimituksen − vasen neutraalialkio. Vasenta neutraalialkiota ei ole, sillä kaikille
A ∈ P(X) pätee A−X = ∅ ≠ X. Tällä laskutoimituksella ei siis ole neutraalialkiota.

Propositio 1.12. Olkoon (X, ∗) laskutoimituksella varustettu joukko. Jos e ∈ X on las-
kutoimituksen ∗ vasen neutraalialkio ja e′ ∈ Xon laskutoimituksen ∗ oikea neutraalialkio,
niin e = e′. Erityisesti e on laskutoimituksen ∗ neutraalialkio.

Todistus. Käyttämällä oletettuja ominaisuuksia saadaan e = e ∗ e′ = e′. Koska e siis
toteuttaa ehdot e ∗ g = g ja g ∗ e = g kaikilla g ∈ X, niin e on neutraalialkio.
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10 Laskutoimitukset

Propositiosta 1.12 seuraa erityisesti, että laskutoimituksella varustetun joukon neut-
raalialkio on yksikäsitteinen:

Seuraus 1.13. Olkoon (X, ∗) laskutoimituksella varustettu joukko. Jos e ∈ X on laskutoi-
mituksen ∗ neutraalialkio ja e′ ∈ Xon laskutoimituksen ∗ neutraalialkio, niin e = e′.

Jos laskutoimituksesta käytetään tulomerkintää, neutraalialkiolle käytetään usein mer-
kintää 1 ja summamerkintää käytettäessä merkintää 0.

Propositio 1.14. Olkoon h : (E, ∗) → (E ′,⊛) surjektiivinen homomorfismi. Jos lasku-
toimituksella varustetussa joukossa E on neutraalialkio e, niin h(e) on laskutoimituksella
varustetun joukon E ′ neutraalialkio.

Todistus. Olkoon g′ ∈ E ′. Tällöin g′ = h(g) jollain g ∈ E ja pätee

h(e) ⊛ g′ = h(e) ⊛ h(g) = h(e ∗ g) = h(g) = g′

ja
g′ ⊛ h(e) = h(g) ⊛ h(e) = h(g ∗ e) = h(g) = g′,

joten h(e) on neutraalialkio.

Esimerkki 1.15. Kuvaus h : (N,+) → (N, ·), h(n) = 0 kaikilla n ∈ N, on homomorfismi,
koska kaikille m,n ∈ N pätee

h(n+m) = 0 = 0 0 = h(m)h(n).

Kuitenkaan neutraalialkio 0 ∈ (N,+) ei kuvaudu neutraalialkioksi 1 ∈ (N, ·). Tämä esi-
merkki osoittaa, että neutraalialkio ei välttämättä kuvaudu neutraalialkiolle, jos homo-
morfismi ei ole surjektiivinen

1.6 Käänteisalkio
Olkoon A ̸= ∅ ja olkoon ∗ joukon A laskutoimitus, jonka neutraalialkio on e.
Alkio x̄ ∈ A on alkion x ∈ A vasen käänteisalkio, jos x̄ ∗ x = e.
Alkio x̄ ∈ A on alkion x ∈ A oikea käänteisalkio, jos x ∗ x̄ = e.
Jos x̄ on alkion x vasen ja oikea käänteisalkio, niin se on alkion x käänteisalkio.

Esimerkki 1.16. Useimmilla luonnollisilla luvuilla ei ole käänteisalkiota laskutoimituk-
sella varustetuissa joukoissa (N,+) ja (N, ·). Sen sijaan jokaisella kokonais-, rationaali-
ja reaaliluvulla x on vastaluku −x, joka on luvun x käänteisalkio laskutoimituksella va-
rustetuissa joukoissa (Z,+), (Q,+) ja (R,+).

Luvulla 0 ei ole käänteisalkiota laskutoimituksella varustetuissa joukoissa (N, ·), (Z, ·),
(Q, ·) ja (R, ·): 0x = x 0 = 0 ̸= 1 kaikilla luvuilla x. Kaikilla nollasta poikkeavilla
rationaali- ja reaaliluvuilla x sen sijaan on käänteisluku x−1 = 1/x, esimerkiksi ratio-
naaliluvulle a/b ̸= 0 pätee (a/b)−1 = b/a.
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Laskutoimituksella varustetun joukon (X, ∗) alkion x ∈ X käänteisalkiota merkitään
yleensä x−1.
Summamerkintää käytettäessä käytetään käänteisalkiolle merkintää −x. Käänteisalkiota
kutsutaan tällöin vasta-alkioksi tai vastaluvuksi.

Esimerkki 1.17. (a) Olkoon X ̸= ∅. Identtinen kuvaus id = idX on laskutoimituksella
varustetun joukon (XX , ◦) neutraalialkio:

id ◦f = f = f ◦ id

kaikilla f ∈ XX . Jos f ∈ XX on bijektio, sen käänteiskuvaus f−1 on kuvauksen f kään-
teisalkio: f ◦ f−1 = id = f−1 ◦ f . Muilla joukon XX alkioilla ei ole käänteisalkiota.
(b) Olkoot f, g ∈ NN kuvaukset, jotka määritellään asettamalla

f(n) =
0, kun n = 0
n− 1, kun n ̸= 0

ja g(n) = n+1 kaikilla n ∈ N. Kuvaukset f ja g eivät ole bijektioita, joten kummallakaan ei
ole käänteisalkiota. Kuitenkin pätee f ◦g = id, joten f on kuvauksen g vasen käänteisalkio
ja vastaavasti g on kuvauksen f oikea käänteisalkio.

Propositio 1.18. Olkoon X ̸= ∅ ja olkoon ∗ joukon X assosiatiivinen laskutoimitus. Jos
alkiolla g ∈ X on käänteisalkio, se on yksikäsitteinen.

Todistus. Harjoitustehtävä 1.15.

1.7 Kahdella laskutoimituksella varustetut joukot
Edellä olemme jo nähneet, että samassa joukossa voi määritellä useita eri laskutoimituksia.
Kokonais-, rationaali- ja reaalilukujen aritmetiikkaa2 yleistettäessä tarkastellaan kahta
samassa joukossa määriteltyä laskutoimitusta.

Olkoot ∗ ja ⊕ joukon A laskutoimituksia. Kolmikko (A, ∗,⊕) on kahdella laskutoimituk-
sella varustettu joukko.

Kahdella laskutoimituksella varustetun joukon (A, ∗,⊕) eri laskutoimituksilla on usein
eri neutraalialkiot ja alkion a käänteisalkioita käsiteltäessä on syytä tehdä selväksi tar-
koitetaanko alkiota b ∈ A, jolle a ∗ b = b ∗ a on laskutoimituksen ∗ neutraalialkio vai
alkiota c ∈ A, jolle a ⊕ b = b ⊕ a on laskutoimituksen ⊕ neutraalialkio. Esimerkiksi
renkaan (R,+, ·) yhteydessä on luontevaa käyttää nimityksiä käänteisalkio yhteenlaskun
suhteen ja käänteisalkio kertolaskun suhteen ja käyttää niille järjestelmällisesti luvussa 1.6
esiteltyjä merkintöjä −x ja x−1.

Kahdella laskutoimituksella varustettu joukko on niin yleinen käsite, että yhtenäi-
sen teorian esittämiseksi on hyvä edellyttää, että laskutoimitukset sopivat jollain tavalla
yhteen keskenään.

2Aritmetiikalla tarkoitetaan laskutoimituksilla + ja · ja niistä johdettavilla käsitteillä kuten neliöjuuri,
kuutiojuuri, eksponenttifunktio tehtäviä operaatioita.
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Olkoon (A, ∗ ,⊕) kahdella laskutoimituksella varustettu joukko. Laskutoimitus ∗ on dis-
tributiivinen laskutoimituksen ⊕ suhteen, jos

a ∗ (b⊕ c) = (a ∗ b) ⊕ (a ∗ c) ja
(b⊕ c) ∗ a = (b ∗ a) ⊕ (c ∗ a) (1.1)

kaikilla a, b, c ∈ A.

Distributiivisuuden määritteleviä yhtälöitä (1.1) sanotaan osittelulaeiksi.

Esimerkki 1.19. (a) Tunnetusti kaikille luonnollisille luvuille, kokonais-, rationaali- ja
reaaliluvuille a, b, c pätee

(a+ b)c = ac+ bc = ca+ cb = c(a+ b) ,

joten kertolasku on distributiivinen yhteenlaskun suhteen. Yhteenlasku ei ole distributii-
vinen kertolaskun suhteen. Esimerkiksi 1 · 1 + 1 = 2 ̸= 4 = (1 + 1)(1 + 1).
(b) Olkoon n ≥ 2. Lineaarialgebrassa on osoitettu, että kaikille matriiseille A,B,C ∈
Mn(R) pätee

(A+B)C = AB + AC

ja
C(A+B) = CA+ CB .

Siis matriisien kertolasku on yhteenlaskun suhteen distributiivinen.

Olkoot (A,⊕,⊗) ja (B,⊞,⊠) kahdella laskutoimituksella varustettuja joukkoja. Kuvaus
j : (A,⊕,⊗) → (B,⊞,⊠) on (kahdella laskutoimituksella varustettujen joukkojen) homo-
morfismi, jos j : (A,⊕) → (B,⊞) on homomorfismi ja j : (A,⊗) → (B,⊠) on homomor-
fismi.

Esimerkki 1.20. Kuvaus i : Q → R, i(x) = x, on injektiivinen kahdella laskutoimituk-
sella varustettujen joukkojen homomorfismi.

1.8 Kompleksiluvut

Kompleksiluvut C = (R2,+, ·) on kahdella laskutoimituksella varustettu joukko, jossa
kaikille (a, b), (c, d) ∈ R2 asetetaan

(a, b) + (c, d) = (a+ c, b+ d)

ja
(a, b)(c, d) = (ac− bd, ad+ bc).

Kompleksiluku i = (0, 1) on imaginaariyksikkö.
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Lemma 1.21. (1) Kompleksilukujen yhteen- ja kertolasku ovat assosiatiivisia ja kom-
mutatiivisia. Yhteenlaskun neutraalialkio on 0 = (0, 0) ja kertolaskun neutraalialkio on
1 = (1, 0). Kertolasku on distributiivinen yhteenlaskun suhteen
(2) Olkoot z, w ∈ C. Tällöin zw = 0, jos ja vain jos z = 0 tai w = 0.

Todistus. Harjoitustehtävät 1.21 ja 1.22.

Lemman 1.21(2) nojalla kertolasku indusoi laskutoimituksen joukkoon C − {0} ja
saamme laskutoimituksella varustetun joukon

C× = (C− {0}, ·) .

Lemma 1.22. Olkoon j : R → C, j(x) = (x, 0). Tällöin j on injektiivinen homomorfismi.

Todistus. Injektiivisyys on selvää. Kaikille a, c ∈ R pätee

j(a) + j(c) = (a, 0) + (c, 0) = (a+ c, 0) = j(a+ c)

ja
j(a)j(c) = (a, 0)(c, 0) = (ac, 0) = j(ac) ,

joten j on kahdella laskutoimituksella varustettujen joukkojen homomorfismi.

Lemman 1.22 nojalla voimme samastaa kompleksiluvun (a, 0) ja reaaliluvun a. Tällöin
kuvaus j on inkluusiokuvaus.

Jokainen kompleksiluku voidaan esittää yksikäsitteisesti summana

(a, b) = (a, 0) + (0, b) = a(1, 0) + b(0, 1) = a+ i b ,

missä a, b ∈ R. Näillä merkinnöillä kompleksilukujen laskutoimitukset ovat

(a+ i b) + (c+ i d) = (a+ c) + i(b+ d),
(a+ i b)(c+ i d) = (ac− bd) + i(ad+ bc).

Erityisesti kaikille reaaliluvuille a ∈ R ja kompleksiluvuille c+ id pätee

a(c+ i d) = (a+ i 0)(c+ i d) = ac+ i ad .

Esimerkki 1.23. (a) i2 = (0 · 0 − 1 · 1) + i(0 · 1 + 1 · 0) = −1.
(b) (1 + i)2 = (1 · 1 − 1 · 1) + i(1 · 1 + 1 · 1) = 2 i.

Olkoot a, b ∈ R. Kompleksiluvun z = a + i b reaaliosa on Re (z) = a, sen imaginaariosa
on Im(z) = b ja sen (kompleksi)konjugaatti eli liittoluku on z̄ = a− i b.
Kompleksiluvun z = a+ i b (algebrallinen) normi on

n(z) = zz̄ = Re (z)2 + Im(z)2 ≥ 0

ja sen moduli on
|z| =

√
n(z) = ∥(a, b)∥.
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14 Laskutoimitukset

Lemma 1.24. Osoita, että kaikilla z, w ∈ C pätee

(1) ¯̄z = z,

(2) z + w = z̄ + w̄,

(3) zw = z̄w̄ ja

(4) n(z̄) = n(z).

Todistus. Harjoitustehtävä 1.23.

Lemma 1.25. Jokaisella kompleksiluvulla z on vastaluku −z = −1·z ja jokaisella nollasta
poikkeavalla kompleksiluvulla z on käänteisluku

z−1 = z̄

n(z) .

Todistus. Olkoon z ∈ C. Tällöin distributiivisuuden, sen, että 1 + (−1) = 0 reaaliluvuilla
ja Lemman 1.21 nojalla

z + (−1)z = (1 − 1)z = 0 z = 0 .

Ensimmäinen väite seuraa tästä, koska yhteenlasku on kommutatiivinen.
Olkoon z ∈ C− {0}. Tällöin

z
z̄

n(z) = zz̄

zz̄
= 1 .

Toinen väite seuraa tästä, koska kertolasku on kommutatiivinen.

Jos x ∈ R ⊂ C, niin sen moduli on sama kuin sen itseisarvo reaalilukuna:

|x+ 0 i| =
√
x2 = |x|.

Propositio 1.26. (1) Kompleksikonjugointi ·̄ : C → C on kahdella laskutoimituksella
varustetun joukon C automorfismi.
(2) Kompleksikonjugointi ·̄ : C× → C× on automorfismi.
(3) Kuvaukset n, | · | : (C, ·) →

(
[0,∞[, ·

)
ja n, | · | : C× →

(
]0,∞[, ·

)
ovat surjektiivisia

homomorfismeja.

Todistus. (1) Seuraa Harjoitustehtävästä 1.23.
(2) Kompleksikonjugointi ·̄ : C → C on bijektio kohdan (1) nojalla ja 0̄ = 0, joten komplek-
sikonjugoinnin rajoittuma joukkoon C− {0} on bijektio. Siis väite seuraa kohdasta (1).
(3) Olkoot z, w ∈ C. Normin määritelmän, kompleksikonjugoinnin homomorfisuuden ja
kompleksilukujen kertolaskun kommutatiivisuuden ja assosiatiivisuuden nojalla saadaan

n(zw) = (zw)(zw) = (zw)(z̄w̄) = (zz̄)(ww̄) = n(z)n(w) ,

mistä väite seuraa. Vastaava väite modulille seuraa ottamalla neliöjuuri.
Normin ja modulin surjektiivisuus seuraa siitä, että reaaliluvun moduli kompleksilu-

kuna on sama kuin sen itseisarvo.
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1.9 Potenssit ja monikerrat
Tässä luvussa otamme käyttöön hyödyllisen määritelmän, joka tiivistää merkintöjä.

Olkoon (A, ·) assosiatiivisella laskutoimituksella varustettu joukko. Olkoon a1 = a, ja
kaikille n ∈ N, n ≥ 1 olkoon an+1 = ana. Jos laskutoimituksella varustetussa joukossa
(A, ·) on neutraalialkio e, olkoon a0 = e ja jos alkiolla a ∈ A on käänteisalkio a−1, olkoon
an = (a−1)−n jokaiselle n ∈ Z, n ≤ −1.
Näin määritelty alkio ak ∈ A on alkion a k:s potenssi, kun k ∈ Z.

Jos laskutoimitukselle käytetään yhteenlaskumerkkiä, puhutaan potenssien sijaan mo-
nikerroista. Seuraava määritelmä on itse asiassa sama kuin potenssin määritelmä, ero on
merkinnässä.

Olkoon (A,+) assosiatiivisella laskutoimituksella varustettu joukko. Olkoona 1 a = a ja
olkoon (n + 1)a = na + a kaikille n ∈ N. Jos laskutoimituksella varustetussa joukossa
(A,+) on neutraalialkio 0, olkoon 0 a = 0 ∈ A ja jos alkiolla a ∈ A on käänteisalkio −a
laskutoimituksen + suhteen, olkoon (−1) a = −a ja olkoon n a = (−n)(−a) jokaiseille
n ∈ Z, n ≤ −1.
Näin määritelty alkio k a ∈ A on alkion a k:s monikerta.

aHuomaa, että tässä 1 ∈ Z.

Tavanomaiset laskulait pätevät potensseille ja monikerroille:

Lemma 1.27. Olkoon (A, ·) assosiatiivisella laskutoimituksella varustettu joukko, jolla
on neutraalialkio. Tällöin

(1) anam = an+m kaikilla a ∈ A, n,m ∈ N.

(2) (an)m = anm kaikilla a ∈ A, n,m ∈ N.

Jos alkiolla a on käänteisalkio, niin kohtien (1) ja (2) väitteet pätevät kaikille kokonais-
luvuille m,n ∈ Z.
Olkoon (H,+) kommutatiivisella laskutoimituksella varustettu joukko, jolla on neutraa-
lialkio. Tällöin

(3) na+ma = (n+m)a kaikilla a ∈ H, n,m ∈ N.

(4) n(ma) = (nm)a kaikilla a ∈ H, n,m ∈ N.

Jos alkiolla a on käänteisalkio, niin kohtien (3) ja (4) väitteet pätevät kaikille kokonais-
luvuille m,n ∈ Z.

Todistus. (1) Väite on selvä, jos m = 0 tai n = 0. Osoitetaan väite induktiolla positiivisille
eksponenteille m ja n. Olkoon a ∈ A. Jos 1 ≤ n,m ja n+m = 2, niin n = m = 1. Tällöin
väite pätee, sillä se on toisen potenssin määritelmä. Oletetaan, että anam = an+m, kun
n + m ≤ N . Oletetaan, että n + m = N + 1 ja n ≥ 2. Tällöin potenssin määritelmän,
assosiatiivisuuden ja induktio-oletuksen nojalla

aman = am(an−1a) = (aman−1)a = am+n−1a = am+n ,
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joten väite seuraa induktioperiaatteesta. Tapaus n,m ≤ −1 käsitellään samaan tapaan.
Olkoon m ≥ 1 ja olkoon n ≤ −1. Tällöin

aman = am(a−1)−n = am−1aa−1(a−1)−n−1 .

Toistamalla tätä min(m,−n) kertaa päädytään yhtälöön aman = am+n, kuten haluttiin.
(2) Olkoon n ∈ Z. Olkoon m ≥ 1. Väite pätee määritelmän nojalla, jos m = 1. Olete-
taan, että (an)M = anM . Tällöin potenssin määritelmän, induktio-oletuksen ja kohdan (1)
nojalla

(an)M+1 = (an)Man = anMan = anM+n = an(M+1) ,

joten väite seuraa induktioperiaatteesta.
Tarkastellaan sitten tapauksia, joissa m ≤ −1. Kohdan (1) nojalla a−nan = a0 = 1. Siis

a−n = (an)−1. Oletetaan, että M ≤ −1 ja (an)M = anM . Tällöin potenssin määritelmän,
induktio-oletuksen, tapauksen m = −1

(an)M−1 = (an)M(an)−1 = (anM)a−n = anM−n = an(M−1) ,

joten väite seuraa induktioperiaatteesta.
Väitteet (3) ja (4) seuraavat kohdista (1) ja (2).

Harjoitustehtäviä
1.1. Olkoon

Γ = {A ∈ M2(R) : detA = 1}.

Osoita, että matriisien kertolasku indusoi laskutoimituksen joukossa Γ. Miten matriisien
yhteenlasku käyttäytyy?
1.2. Olkoon f : (A, ∗) → (C,⊛) homomorfismi. Osoita:
(a) Jos B ⊂ A on vakaa, niin f(B) ⊂ C on vakaa.
(b) Jos B ⊂ C on vakaa ja f−1(B) ei ole tyhjä joukko, niin f−1(B) ⊂ A on vakaa.
1.3. Osoita, että

A =
{(

a 0
0 1/a

)
: a ∈ R− {0}

}

on matriisien kertolaskulla varustetun joukon (M2(R), ·) vakaa osajoukko.
Osoita, että laskutoimituksella varustettu joukko (R−{0}, ·) on isomorfinen matriisien

kertolaskulla varustetun joukon (A, ·) kanssa.
1.4. Olkoot f : (A, ∗) → (B,⊛) ja g : (B,⊛) → (C, ·) laskutoimituksella varustettujen
joukkojen homomorfismeja. Osoita, että g ◦ f on homomorfismi.
1.5. Olkoon (A, ∗) laskutoimituksella varustettu joukko ja olkoon Hom(A,A) kaikkien
homomorfismien ϕ : (A, ∗) → (A, ∗) joukko. Osoita, että homomorfismien yhdistäminen
on laskutoimitus joukossa Hom(A,A).
1.6. Ovatko laskutoimituksella varustetut joukot (P({0, 1}),∩) ja (P({0, 1}),∪) iso-
morfisia?
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1.7. Olkoon X joukko, jossa on ainakin 2 alkiota. Onko joukon P(X) laskutoimitus −
assosiatiivinen?3

1.8. Olkoon ∗ kahden alkion joukon X = {a, b} laskutoimitus, jonka laskutaulu on

∗ a b
a b b
b a a

.

Onko laskutoimitus ∗ kommutatiivinen? Onko se assosiatiivinen?

1.9. Olkoon ∗ kolmen alkion joukon X = {a, b, c} laskutoimitus, jonka laskutaulu on

∗ a b c
a a b c
b b a a
c c a a

.

Onko laskutoimitus ∗ kommutatiivinen? Onko se assosiatiivinen? Onko jokaisella joukon
X alkiolla käänteisalkio?

1.10. Kivi-paperi-sakset –pelissä kaksi pelaajaa näyttää samanaikaisesti kädellään yh-
den symboleista kivi, paperi tai sakset. Kivi voittaa sakset, sakset voittaa paperin ja
paperi voittaa kiven. Jos molemmat pelaajat näyttävät saman symbolin, tämä symbo-
li katsotaan voittajaksi. Pelin sääntö määrää laskutoimituksen kolmen alkion joukolla,
jonka alkiot ovat kivi, paperi ja sakset: laskutoimituksen tulos on voittaja.

Muodosta kivi-paperi-sakset –pelin laskutaulu. Onko pelin laskutoimitus assosiatiivi-
nen?

1.11. Todista Propositio 1.9(2).

1.12. Olkoon ∗ rationaalilukujen laskutoimitus, joka määritellään asettamalla

a ∗ b = a+ b

2 .

Onko laskutoimitus ∗ assosiatiivinen? Onko laskutoimituksella ∗ neutraalialkio?

1.13. Olkoon ∗ positiivisten reaalilukujen joukon R+ laskutoimitus, joka määritellään
asettamalla

a ∗ b =
√
ab.

Onko laskutoimitus ∗ assosiatiivinen? Onko laskutoimituksella ∗ neutraalialkio?

1.14. Olkoon X joukko. Onko potenssijoukon P(X) laskutoimituksilla ∩ ja ∪ neutraa-
lialkiot? Onko jokaisella A ∈ P(X) käänteisalkiot laskutoimitusten ∩ ja ∪ suhteen?

1.15. Todista Propositio 1.18.

1.16. Keksi esimerkki laskutoimituksella varustetusta joukosta (A, ∗) ja alkiosta a ∈ A,
jolla on useita vasempia käänteisalkioita.

3Katso Esimerkki 1.11(b)
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1.17. Varustetaan luonnollisten lukujen joukko N = {0, 1, 2, . . . } laskutoimituksella ∨,
joka määritellään asettamalla

a ∨ b =
a, jos a ≥ b

b muuten.

(a) Onko laskutoimitus ∨ assosiatiivinen?
(b) Onko laskutoimituksella ∨ neutraalialkio?
(c) Millä alkioilla n ∈ (N,∨) on käänteisalkio?
1.18. Varustetaan reaalilukujen joukko R laskutoimituksella ∗, joka määritellään aset-
tamalla

a ∗ b =
√
a2 + b2

kaikille a, b ∈ R.
(a) Onko laskutoimitus ∗ assosiatiivinen?
(b) Onko laskutoimituksella ∗ neutraalialkio?
Olkoon ψ : (R, ∗) → (R,+) kuvaus, joka määritellään asettamalla ψ(a) = a2 kaikilla
a ∈ R.
(c) Onko kuvaus ψ : (R, ∗) → (R,+) homomorfismi?
1.19. Olkoon X joukko. Onko joukon P(X) laskutoimitus ∩ distributiivinen laskutoi-
mituksen ∪ suhteen? Onko laskutoimitus ∪ distributiivinen laskutoimituksen ∩ suhteen?

Avaruuden R3 vektoritulo eli ristitulo on laskutoimitus, joka määritellään asettamalla
kaikille a = (a1, a2, a3) ja b = (b1, b2, b3) ∈ R3

a× b =
(

det
(
a2 b2
a3 b3

)
,− det

(
a1 b1
a3 b3

)
, det

(
a1 b1
a2 b2

))
.

1.20. Osoita, että
(a) × on antikommutatiivinen: b× a = −a× b kaikille a, b ∈ R3.
(b) × on distributiivinen vektorien yhteenlaskun suhteen.
(c) × ei ole assosiatiivinen. 4

1.21. Todista Lemma 1.21(1).
1.22. Todista Lemma 1.21(2).
1.23. Todista Lemma 1.24.
1.24. Määritellään Harjoitustehtävässä 1.8 käsitellylle laskutoimitukselle ∗ joukon X
alkioiden positiiviset potenssit kuten luvussa1.9. Pätevätkö Lemman 1.27 laskusäännöt?

4Keksi sopiva esimerkki.
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Luku 2

Tekijälaskutoimitus ja
modulaariaritmetiikka

Tässä luvussa tutustumme ekvivalenssirelaatioon ja määrittelemme, mitä tarkoittaa, että
ekvivalenssirelaatio on laskutoimituksen kanssa yhteensopiva. Jos joukossa on määritelty
ekvivalenssirelaatio, sen avulla määritellään uusi joukko, jota kutsutaan tekijäjoukoksi.
Jos alkuperäisessä joukossa on lisäksi ekvivalenssirelaation kanssa yhteensopiva laskutoi-
mitus, saadaan tekijäjoukkoon määriteltyä laskutoimitus, jota sanotaan tekijälaskutoimi-
tukseksi. Tämä konstruktio on tärkeä erityisesti luvussa 7 kurssilla Renkaat ja kunnat
ja luvussa12 kurssilla Ryhmät. Tärkeänä esimerkkinä tutustumme kongruenssiin mod q
kokonaislukujen joukossa ja sen avulla saataviin yhteen- ja kertolaskun tekijälaskutoimi-
tuksiin kongruenssiluokkien joukossa.

2.1 Ekvivalenssirelaatio
Olkoon A epätyhjä joukko. Joukon A×A osajoukko on relaatio joukossa A. Jos R ⊂ A×A
on relaatio, merkitään aR b, jos ja vain jos (a, b) ∈ R.
Joukon A relaatio R on

(1) refleksiivinen, jos aR a kaikilla a ∈ A,

(2) symmetrinen, jos bR a kaikilla a, b ∈ A, joille aR b,

(3) transitiivinen, jos aR c aina kun aR b ja bR c,

Jos relaatio on refleksiivinen, symmetrinen ja transitiivinen, se on ekvivalenssirelaatio.
Jos R on ekvivalenssirelaatio joukossa A ja aR b, alkiot a ja b ovat ekvivalentteja.

Ekvivalenssirelaation merkkinä käytetään usein merkkiä ∼.
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20 Tekijälaskutoimitus ja modulaariaritmetiikka

Toinen tärkeä esimerkki relaatiosta on osittainen järjestys ≤, joka on refleksiivinen,
transitiivinen ja antisymmetrinen (jos a ≤ b ja b ≤ a, niin a = b) relaatio.

Olkoon ∼ ekvivalenssirelaatio joukossa A. Alkion a ∈ A ekvivalenssiluokka on

[a] = {b ∈ A : a ∼ b}.

Ekvivalenssirelaatiota ∼ vastaava joukon A tekijäjoukko on

A/∼ =
{
[a] : a ∈ A

}
.

Kuvaus π = π∼ : A → A/∼, π(a) = [a], on ekvivalenssirelaatiota ∼ vastaava tekijäkuvaus
eli luonnollinen kuvaus.
Alkio a ∈ A on ekvivalenssiluokkansa [a] edustaja.

Lemma 2.1. Olkoon ∼ ekvivalenssirelaatio joukossa A ja olkoot a, b ∈ A. Tällöin [a] = [b]
tai [a] ∩ [b] = ∅.

Todistus. Oletetaan, että [a] ∩ [b] ̸= ∅. Tällöin on x ∈ [a] ∩ [b] ja tälle alkiolle pätee a ∼ x
ja b ∼ x. Ekvivalenssirelaation symmetrisyyden nojalla x ∼ b, joten transitiivisuuden
nojalla a ∼ b. Siis b ∈ [a]. Olkoon y ∈ [b]. Tällöin b ∼ y, joten transitiivisuuden nojalla
a ∼ y. Siis [b] ⊂ [a]. Vastaavasti osoitetaan, että [a] ⊂ [b].

Olkoon I epätyhjä indeksijoukko. Olkoot Ai, i ∈ I, joukon A epätyhjiä osajoukkoja. Jos

A =
⋃
i∈I
Ai (2.1)

ja kaikille i ̸= j pätee Ai ∩ Aj = ∅, niin A on erillinen yhdiste joukoista Ai, i ∈ I.
Merkitsemme joukkojen Ai, i ∈ I, erillistä yhdistettä

A =
⊔
i∈I
Ai .

Jos A = ⊔
i∈I Ai, niin joukot Ai, i ∈ I muodostavat joukon A osituksen.

Propositio 2.2. Olkoon ∼ ekvivalenssirelaatio joukossa X. Ekvivalenssiluokat määräävät
joukon X osituksen:

X =
⊔

[a]∈X/∼
[a] .

Todistus. Jos x ∈ X, niin x ∈ [x], joten X = ⋃
[a]∈X/∼[a] . Yhdiste on erillinen Lemman

2.1 nojalla.

Joukon A osituksen A = ⊔
i∈I Ai määräämä relaatio R on relaatio, joka määritellään

asettamalla xR y, jos ja vain jos x, y ∈ Ai jollain i ∈ I.

Propositio 2.3. Joukon X ̸= ∅ osituksen määräämä relaatio on ekvivalenssirelaatio.
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Todistus. Olkoon R osituksen A = ⊔
i∈I Ai määräämä relaatio. Koska A = ⋃

i∈I Ai, niin
jokaiselle a ∈ A pätee a ∈ Ai jollakin i ∈ I. Siis aR a, joten R on refleksiivinen.

Olkoot a, b ∈ A siten, että aR b. Siis on i ∈ I, jolle a, b ∈ Ai. Tässä ehdossa alkioiden
a ja b järjestys on merkityksetön, joten bR a.

Olkoot a, b, c ∈ A siten, että aR b ja bR c. Siis on i, j ∈ I, joille a, b ∈ Ai ja b, c ∈
Aj. Koska joukot Ak, k ∈ I muodostavat joukon A osituksen, pätee joko Ai = Aj tai
Ai ∩ Aj = ∅. Oletuksen mukaan b ∈ Ai ∩ Aj, joten Ai = Aj ja siis a, c ∈ Ai, joten aR c.
Siis relaatio R on transitiivinen.

2.2 Kongruenssi

Olkoon m ∈ N, m ≥ 1. Kokonaisluvut a ∈ Z ja b ∈ Z ovat kongruentteja luvun m suhteen
tai kongruentteja modulo m, jos m | (b− a). Tällöin merkitään a ≡ b mod m.
Luku m on kongruenssin moduli.
Relaatio ≡ on kongruenssi mod m.

Jos a ≡ b mod q, niin a−b = kq jollain k ∈ Z, mikä voidaan kirjoittaa myös muodossa
a = b+ kq jollain k ∈ Z. Ottamalla käyttöön merkintä

r + qZ = {r + kq : k ∈ Z}

saadaan vielä yksi tapa: a ≡ b mod q, jos ja vain jos a ∈ b+ qZ.

−5 −4 −1−2−3−6 0 3 6541−7

0 + 5Z = 5 + 5Z = (2 + 5Z) + (3 + 5Z)

3 + 5Z = −2 + 5Z = · · ·

2 + 5Z = −3 + 5Z = · · ·

1 + 5Z = 6 + 5Z = (2 + 5Z)(3 + 5Z)

2

Kuva 2.1 — Kongruenssiluokat modulo 5.

Lemma 2.4. Olkoon q ∈ N, q ≥ 2. Kongruenssi mod q on ekvivalenssirelaatio.

Todistus. Tarkastamme, että ekvivalenssirelaation määrittelevät ehdot ovat voimassa
(1) a = a+ 0 q kaikilla a ∈ Z,
(2) jos b− a = kq jollain k ∈ Z, niin a− b = (−k)q,
(3) jos b−a = kq ja c−b = nq joillain k, n ∈ Z, niin c−a = (c−b)+(b−a) = (k+n)q.
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Olkoon q ∈ N− {0, 1}. Kongruenssin mod q ekvivalenssiluokat a+ qZ ovat kongruenssi-
luokkia (modulo q).
Luku a ∈ Z on kongruenssiluokan a+ qZ edustaja.
Kongruenssin modulo q tekijäjoukko on kongruenssiluokkien joukko

Z/qZ = {a+ qZ : a ∈ Z}.

Esimerkki 2.5. Kongruenssin modulo q tekijäkuvaus on π : Z → Z/qZ, π(a) = a+ qZ.

Propositio 2.6. Olkoon q ∈ N− {0, 1}. Tällöin #Z/qZ = q ja

Z/qZ = {0 + qZ, 1 + qZ, 2 + qZ, . . . , q − 1 + qZ}.

Todistus. Jakoyhtälöstä1 seuraa, että jokaiselle ekvivalenssiluokalle on yksikäsitteinen
edustaja joukossa {0, 1, . . . , q − 1}. Siis tekijäjoukossa Z/qZ on korkeintaan q alkiota.
Toisaalta, jos 0 ≤ a < b ≤ n − 1, niin 1 ≤ b − a ≤ n − 1, joten a + qZ ̸= b + qZ. Siis
tekijäjoukossa Z/qZ on ainakin q alkiota.

2.3 Tekijälaskutoimitus
Algebran yhteydessä tarkastelemme laskutoimituksilla varustettujen joukkojen ekviva-
lenssirelaatioita, jotka ovat yhteensopivia laskutoimitusten kanssa. Näin saadaan määri-
teltyä alkuperäisiin laskutoimituksiin liittyviä laskutoimituksia tekijäjoukoissa.

Joukon A laskutoimitus ∗ ja ekvivalenssirelaatio ∼ ovat yhteensopivat, jos a ∗ b ∼ a′ ∗ b′

kaikille a, b, a′, b′ ∈ A, joille a ∼ a′ ja b ∼ b′.

Lemma 2.7. Olkoon (A, ∗) laskutoimituksella varustettu joukko ja olkoon ∼ joukon A ekvi-
valenssirelaatio, joka on yhteensopiva laskutoimituksen ∗ kanssa. Lauseke

[a] ∗ [b] = [a ∗ b]

määrää laskutoimituksen tekijäjoukossa A/ ∼.

Todistus. Jos [a] = [a′] ja [b] = [b′], niin a ∼ a′ ja b ∼ b′. Yhteensopivuuden nojalla
a ∗ b ∼ a′ ∗ b′, joten [a ∗ b] = [a′ ∗ b′]. Siis laskutoimitus on hyvin määritelty.

Jos joukon A ekvivalenssirelaatio ∼ ja laskutoimitus ∗ ovat yhteensopivat, niin Lemman
2.7 antama tekijäjoukon A/∼ laskutoimitus ∗ on joukon A laskutoimituksen ∗ määräämä
tekijälaskutoimitus.

Seuraavat havainnot seuraavat suoraviivaisesti määritelmistä:
1Propositio A.1
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Propositio 2.8. Olkoon ∼ laskutoimituksella varustetun joukon (E, ∗) laskutoimituksen
∗ kanssa yhteensopiva ekvivalenssirelaatio. Tällöin:
(1) Luonnollinen kuvaus π : E → E/ ∼ on surjektiivinen homomorfismi.
(2) Jos e ∈ E on laskutoimituksen ∗ neutraalialkio, niin [e] ∈ E/∼ on tekijälaskutoimi-
tuksen neutraalialkio.
(3) Jos laskutoimitus ∗ on assosiatiivinen, sen tekijälaskutoimitus on assosiatiivinen.
(4) Jos ∗ on kommutatiivinen, sen tekijälaskutoimitus on kommutatiivinen.

Todistus. Todistetaan väite (1): Kaikille a, b ∈ E pätee

π(a) ∗ π(b) = [a] ∗ [b] = [a ∗ b] = π(a ∗ b),

joten luonnollinen kuvaus on homomorfismi. Kuvauksen surjektiivisuus on selvää, koska
jokaisella ekvivalenssiluokalla on edustaja joukossa E.

Väite (2) seuraa Propositiosta 1.14 ja väitteet (3) ja (4) Propositiosta 1.9, koska luon-
nollinen kuvaus on väitteen (1) mukaan surjektiivinen homomorfismi.

2.4 Kongruenssiluokkien laskutoimitukset
Tässä luvussa sovellamme tekijälaskutoimituksen konstruktiota kongruenssiluokkien las-
kutoimitusten määrittelyyn ja Propositiota 2.8 niiden perusominaisuuksien osoittamiseen.

Lemma 2.9. Kokonaislukujen yhteenlasku ja kertolasku ovat yhteensopivia kongruenssin
kanssa.

Todistus. Osoitamme väitteen yhteenlaskulle. Kertolaskulle väite osoitetaan samaan ta-
paan Harjoitustehtävässä 2.1. Jos a ≡ a′ mod q ja b ≡ b′ mod q, niin on m,n ∈ Z, joille
a′ = a+mq ja b′ = b+ nq. Tällöin

a′ + b′ − (a+ b) = (a′ − a) + (b′ − b) = (m+ n)q,

joten a′ + b′ ≡ a+ b mod q.

Propositio 2.10. (1) Kokonaislukujen yhteenlasku ja kertolasku määräävät assosiatiiviset
ja kommutatiiviset laskutoimitukset q alkion joukossa Z/qZ.
(2) Kongruenssiluokka 0+qZ on kongruenssiluokkien yhteenlaskun neutraalialkio ja 1+qZ
on kongruenssiluokkien kertolaskun neutraalialkio.
(3) Jokaisella a+ qZ ∈ Z/qZ pätee a+ qZ+ (−a+ qZ) = 0 + qZ.

Todistus. Proposition 2.8 nojalla molemmat tekijälaskutoimitukset ovat assosiatiivisia ja
kommutatiivisia. Neutraalialkiot saadaan myös Propositiosta 2.8.

Käytämme molemmille kongruenssiluokkien laskutoimituksille samoja merkintöjä kuin
vastaaville kokonaislukujen laskutoimituksille: kaikille a+ qZ, b+ qZ ∈ Z/qZ

(a+ qZ) + (b+ qZ) = (a+ b) + qZ

ja
(a+ qZ)(b+ qZ) = ab+ qZ .
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Esimerkki 2.11. Yhteen- ja kertolaskun laskutaulut kongruenssiluokilla modulo 4

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

ja modulo 5
+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

.

Näissä laskutauluissa merkitään luvulla 0 ≤ a ≤ q − 1 ekvivalenssiluokkaa a + qZ, kun
q ∈ {4, 5}. Huomaamme, että jokaisella nollasta poikkeavalla alkiolla on käänteisalkio
laskutoimituksella varustetussa joukossa (Z/5Z, ·) mutta alkiolla 2 + 4Z ∈ (Z/4Z, ·) ei ole
käänteisalkiota. Tarkastelemme tämän havainnon syitä luvussa 5.3.

Lemma 2.12. Kongruenssiluokkien kertolasku on distributiivinen yhteenlaskun suhteen.

Todistus. Olkoot a, b, c ∈ Z ja olkoon q ∈ N− {0, 1}. Tällöin kokonaislukujen osittelulain
nojalla pätee

(a+ qZ)
(
(b+ qZ) + (c+ qZ)

)
= (a+ qZ)

(
(b+ c) + qZ)

)
= a(b+ c) + qZ

= (ab+ ac) + qZ = (ab+ qZ) + (ac+ qZ) .

Harjoitustehtäviä
2.1. Osoita, että kokonaislukujen kertolasku on yhteensopiva kongruenssin kanssa.
2.2. Määritellään relaatio ∼ joukossa N× N asettamalla (m,n) ∼ (p, q), jos ja vain jos
m+ q = n+ p. Osoita, että ∼ on ekvivalenssirelaatio.2

2.3. Määritellään laskutoimitus ∗ joukossa N× N asettamalla

(m,n) ∗ (p, q) = (mp+ nq,mq + np) .

Osoita, että ∗ on yhteensopiva tehtävän 2.2 ekvivalenssirelaation kanssa. Todistuksessa
voi käyttää vain luonnollisia lukuja!3

2.4. Muodosta yhteen- ja kertolaskun laskutaulut kongruenssiluokilla modulo 2 ja mo-
dulo 6.

2Tehtävä liittyy kokonaislukujen määrittelemiseen luonnollisten lukujen muodollisina erotuksina.
3Tarkasteltava laskutoimitus antaa kokonaislukujen kertolaskun, kun kokonaislukuja ajatellaan kah-

den luonnollisen luvun erotuksina. Vihje: Osoita, että ehdosta (m, n) ∼ (m′, n′) seuraa (m, n) ∗ (p, q) ∼
(m′, n′) ∗ (p, q) ja päättele väite käyttämällä ekvivalenssirelaatioiden ja tarkasteltavan laskutoimituksen
ominaisuuksia.
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2.5. Muodosta yhteen- ja kertolaskun laskutaulut kongruenssiluokilla modulo 3 ja mo-
dulo 9.
2.6. Määritellään relaatio ∼ reaalilukujen joukossa R asettamalla x ∼ y, jos ja vain jos
x = qy jollain q ∈ Q×. Osoita, että ∼ on ekvivalenssirelaatio. Osoita, että tekijäjoukko
R/∼ on ylinumeroituva.

Olkoon f : X → A kuvaus. Olkoon x ∼
f
y, jos ja vain jos f(x) = f(y) alkioille x, y ∈ X.

2.7. Osoita, että ∼
f

on ekvivalenssirelaatio. Osoita, että lauseke

F ([x]) = f(x)

määrittelee bijektion F : X/∼
f

→ f(X).

2.8. Olkoon ϕ : (X, ∗) → (A,⊛) homomorfismi. Osoita, että laskutoimitus ∗ ja ekviva-
lenssirelaatio ∼

ϕ
ovat yhteensopivat. Osoita, että ϕ(X) on laskutoimituksella varustetun

joukon (A,⊛) vakaa osajoukko ja että homomorfismin ϕ määräämä kuvaus4 Φ: X/∼
ϕ

→
ϕ(X) on isomorfismi.

4Katso Harjoitustehtävä 2.7.
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Luku 3

Renkaat

Renkaat ovat kahdella assosiatiivisella laskutoimituksella varustettuja joukkoja, joissa
ainakin toinen laskutoimitus on kommutatiivinen. Lisäksi vaaditaan, että yksi laskutoi-
mituksista on distributiivinen toisen suhteen. Vaadimme siis näiltä kahdella laskutoimi-
tuksella varustetuilta joukoilta joitakin ominaisuuksia, joita kokonaisluvuilla on, mutta
kertolaskua vastaava laskutoimitus ei välttämättä ole kommutatiivinen. Tässä luvussa
aloitamme tutustumisen renkaiden perusominaisuuksiin ja eri tapoihin luokitella renkai-
ta ominaisuuksiensa perusteella. Tutkimme myös useita esimerkkejä renkaista.

3.1 Ryhmä
Ryhmät ovat pääosassa kurssilla Ryhmät. Tälläkin kurssilla ryhmän käsite on hyödylli-
nen käsite renkaiden ja vektoriavaruuksien määritelmissä ja renkaiden teoriassa muuten-
kin. Tutustumme siksi ryhmän määritelmään ja joihinkin perusominaisuuksiin jo nyt.

Laskutoimituksella varustettu joukko (G, ∗) on ryhmä, jos

• laskutoimitus ∗ on assosiatiivinen,

• laskutoimituksella ∗ on neutraalialkio ja

• jokaisella g ∈ (G, ∗) on käänteisalkio.

Lemma 3.1. Olkoon (G, ∗) ryhmä. Jokaisella g ∈ G on täsmälleen yksi käänteisalkio.

Todistus. Alkiolla g ∈ G on ainakin yksi käänteisalkio ryhmän määritelmän nojalla.
Proposition 1.18 nojalla sillä on korkeintaan yksi käänteisalkio, koska ∗ on assosiatiivinen
laskutoimitus.

Esimerkki 3.2. Laskutoimituksella varustetut joukot (R,+), (Q,+), R× ja Q× ovat
ryhmiä.
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Supistussäännöt ovat voimassa laskutoimituksella varustetussa joukossa (A, ∗), jos kaikilla
a, b, c ∈ A pätee

(1) Jos a ∗ b = a ∗ c, niin b = c.

(2) Jos a ∗ b = c ∗ b, niin a = c.

Propositio 3.3. Supistussäännöt pätevät ryhmässä.

Todistus. Olkoon G ryhmä ja olkoot a, b, c ∈ G siten, että ab = ac. Siis

b = a−1(ab) = a−1(ac) = c ,

joten sääntö (1) pätee. Sääntö 2 todistetaan samaan tapaan.

Lemman 3.1 toinen todistus. Riittää osoittaa käänteisalkion yksikäsitteisyys. Olkoon g ∈
G. Jos e on ryhmän G neutraalialkio ja ag = e = bg, niin supistussäännön nojalla a = b.
Siis alkiolla g on vain yksikäänteisalkio.

Esimerkki 3.4. (a) Supistussääntö ei päde esimerkiksi laskutoimituksella varustetuissa
joukoissa (N, ·) ja (R, ·), koska 0 a = 0 kaikille a ∈ N ⊂ R.
(b) Supistussääntö pätee laskutoimituksella varustetussa joukossa (N− {0}, ·), joka ei ole
ryhmä.

Propositio 3.5. Olkoot G ja G′ ryhmiä ja olkoon ϕ : G → G′ homomorfismi. Tällöin

(1) Jos e ∈ G ja e′ ∈ G′ ovat ryhmien neutraalialkiot, niin ϕ(e) = e′.

(2) ϕ(g−1) = ϕ(g)−1 kaikille g ∈ G.

Todistus. (1) Olkoon ϕ : G → G′ homomorfismi. Tällöin

e′ϕ(e) = ϕ(e) = ϕ(ee) = ϕ(e)ϕ(e) ,

mistä väite seuraa supistussäännöllä.
(2) Olkoon g ∈ G. Tällöin

ϕ(g−1)ϕ(g) = ϕ(g−1g) = ϕ(e) = e′

ja
ϕ(g)ϕ(g−1) = ϕ(gg−1) = ϕ(e) = e′ ,

joten ϕ(g−1) = ϕ(g)−1.
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3.2 Rengas

Kahdella laskutoimituksella varustettu joukko (R,+, ·) on (ykkösellinen) rengas, jos las-
kutoimitukset + ja · ovat assosiatiivisia ja

(1) (R,+) on kommutatiivinen ryhmä,

(2) kertolasku on distributiivinen yhteenlaskun suhteen ja

(3) kertolaskulla on neutraalialkio 1 = 1R ∈ R.

Ryhmä (R,+) on renkaan (R,+, ·) additiivinen ryhmä.
Rengas on kommutatiivinen rengas, jos sen kertolasku on kommutatiivinen.

Laskutoimituksen + neutraalialkiolle käytetään merkintää 0 = 0R.
Käytämme tavanomaista merkintää x− y = x+ (−y).

Esimerkki 3.6. Lukujen 1.7, 1.8 ja 2.4 nojalla kahdella laskutoimituksella varustetut
joukot (Z,+, ·), (Q,+, ·), (R,+, ·), (C,+, ·) ja (Z/qZ,+, ·), kun q ∈ N − {0, 1}, ovat
kommutatiivisia renkaita.

Kun viittaamme renkaaseen Z, Q, R, C, Z/qZ tarkoitamme rengasta, jonka laskutoimi-
tukset ovat kuten Esimerkissä 3.6.

Olkoon q ∈ N− {0, 1}. Rengas Z/qZ on jäännösluokkarengas mod q.

Renkaiden R ja S tulorengas on joukko R×S varustettuna yhteenlaskulla ja kertolaskulla,
jotka määritellään

(r1, s1) + (r2, s2) = (r1 + r2, s1 + s2)
ja

(r1, s1) · (r2, s2) = (r1r2, s1s2)
kaikille (r1, s1), (r2, s2) ∈ R × S.

Propositio 3.7. Tulorengas on rengas.

Esimerkki 3.8. Olkoon R rengas, jossa on vähintään 2 alkiota. Kaikkien R-kertoimisten
n×n-matriisien joukko Mn(R) varustettuna matriisien yhteen- ja kertolaskulla on rengas.
Kun R = R, kaikki renkaan ominaisuudet on osoitettu lineaarialgebrassa, katso Esimerkit
1.1(c) ja 1.19(b). Kun n ≥ 2, niin Mn(R) ei ole kommutatiivinen rengas, koska matriisien
kertolasku ei ole kommutatiivinen:(

0 1
0 0

)(
0 0
1 0

)
=
(

1 0
0 0

)
̸=
(

0 0
0 1

)
=
(

0 0
1 0

)(
0 1
0 0

)
.

Esimerkki 3.9. (a) Olkoon X ̸= ∅ ja olkoon R rengas. Olkoot f, g ∈ RX . Asetamme

(f + g)(x) = f(x) + g(x) ja (fg)(x) = f(x)g(x)
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kaikilla x ∈ X. Kahdella laskutoimituksella varustettu joukko (RX ,+, ·) on rengas, jota
kutsutaan funktiorenkaaksi.

Laskutoimitusten assosiatiivisuus, yhteenlaskun kommutatiivisuus ja kertolaskun di-
stributiivisuus yhteenlaskun suhteen seuraa siitä, että funktioiden arvot ovat renkaassa
R ja funktioiden laskutoimitukset on määritelty pisteittäin. Yhteenlaskun neutraalial-
kio on vakiofunktio 0 : X → R ja kertolaskun neutraalialkio on 1: X → R. Funktion
f ∈ RX käänteisalkio yhteenlaskun suhteen on funktio −f , joka määritellään asettamalla
(−f)(x) = −f(x) kaikilla x ∈ R.

Rengas RX on kommutatiivinen, jos R on kommutatiivinen. Esimerkiksi siis RR on
kommutatiivinen rengas.
(b) Olkoot L1, L2 : Rn → Rn lineaarikuvauksia. Lineaarialgebran kurssilla on osoitettu,
että L1 + L2 ja L1 ◦ L2 ovat myös lineaarikuvauksia avaruudelta Rn itselleen. Vektoria-
varuuden Rn endomorfismirengas on

End(Rn) = {L : Rn → Rn : L on lineaarikuvaus}

varustettuna yhteenlaskulla

(L1 + L2)(x) = L1(x) + L2(x)

kaikilla x ∈ Rn ja kertolaskulla
L1L2 = L1 ◦ L2 .

Molemmat laskutoimitukset ovat assosiatiivisia1 ja yhteenlasku on kommutatiivinen.
Lineaarikuvaus 0 ∈ End(Rn) on selvästi yhteenlaskun neutraalialkio. Määritellään

jokaiselle L ∈ End(Rn) lineaarikuvaus −L ∈ End(Rn) asettamalla (−L)(x) = −L(x)
kaikilla x ∈ Rn. Tällöin selvästi L + (−L) = 0 kaikilla L ∈ End(Rn), joten (End(Rn),+)
on kommutatiivinen ryhmä.

Jos L,L′, L′′ ∈ End(Rn), niin kaikilla a ∈ Rn pätee

(L+ L′)L′′(a) = LL′′(a) + L′L′′(a) = (LL′′ + L′L′′)(a),

ja
L′′(L+ L′)(a) = L′′(L(a) + L′(a)) = L′′L(a) + L′′L′(a) = (L′′L+ L′′L′)(a).

Siis kertolasku on yhteenlaskun suhteen distributiivinen.
Lisäksi identtinen kuvaus id : Rn → Rn on lineaarikuvaus ja se on selvästi kertolaskun

neutraalialkio. Siis End(Rn) on rengas.
(c) Yhden alkion joukossa {a} on vain yksi laskutoimitus ∗. Kahdella laskutoimituksella
varustettu joukko ({a}, ∗, ∗) on nollarengas, jossa 0 = 1 = a.

Propositio 3.10. Olkoon R rengas. Tällöin

(1) 0R · x = 0R = x · 0R kaikilla x ∈ R,

(2) x(−y) = (−x)y = −(xy) ja (−x)(−y) = xy kaikilla x, y ∈ R,

(3) x(y − z) = xy − xz ja (y − z)x = yx− zx kaikilla x, y, z ∈ R.
1Katso Esimerkki 1.10.
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Todistus. (1) Distributiivisuuden nojalla

0R x+ x = (0R + 1R)x = 1R x = x = 0R + x

kaikilla x ∈ R. Renkaan R additiivisen ryhmän supistussäännöstä seuraa, että 0R x = 0R
kaikilla x ∈ R. Toinen yhtälö todistetaan samalla tavalla.

Loput väitteet todistetaan harjoitustehtävässä 3.3.

Esimerkki 3.11. Renkaassa R pätee −1R x = −x kaikilla x ∈ R.
Edellä osoitettujen laskusääntöjen avulla on helppo osoittaa seuraavat perusominai-

suudet

Propositio 3.12. Olkoon R rengas. Jos #R ≥ 2, niin

(1) 0 ̸= 1 ja

(2) yhteenlaskun neutraalialkiolla 0 ei ole käänteisalkiota kertolaskun suhteen.

Todistus. (1) Jos 1 = 0, niin kaikille x ∈ R pätee Proposition 3.10 nojalla

x = 1x = 0x = 0.

(2) Harjoitustehtävä 3.5.

Lemma 3.13. Kommutatiivisessa renkaassa K pätee binomikaava:2

(a+ b)n =
n∑
k=0

(
n

k

)
an−kbk

kaikille a, b ∈ K ja kaikille n ∈ N.

Todistus. Harjoitustehtävä 3.6.

3.3 Alirengas

Olkoon R rengas ja olkoon S ⊂ R vakaa yhteenlaskun ja kertolaskun suhteen. Jos S
varustettuna indusoiduilla laskutoimituksilla on rengas ja jos 1S = 1R, niin S on renkaan
R alirengas.

Esimerkki 3.14. (a) Kokonaislukujen rengas Z on renkaan Q alirengas, Q on renkaan
R alirengas ja R on renkaan C alirengas.
(b) Joukko

S =
{(

a 0
0 0

)
∈ M2(R)

}
on renkaan M2(R) vakaa osajoukko ja se on rengas indusoiduilla laskutoimituksilla. Sen

kertolaskun neutraalialkio on
(

1 0
0 0

)
, joten S ei ole renkaan M2(R) alirengas.

2Katso monikerran ja potenssin määritelmä luvusta 1.9.

12. tammikuuta 2026



34 Renkaat

Esimerkki 3.14 osoittaa, että oletus 1S = 1R on oleellinen alirenkaan määritelmäs-
sä. Sen sijaan alirenkaan yhteenlaskun neutraalialkio on automaattisesti sama kuin koko
renkaan yhteenlaskun neutraalialkio.

Lemma 3.15. Olkoon S renkaan R alirengas. Tällöin 0S = 0R.

Todistus. Neutraalialkioiden määritelmän nojalla pätee 0S + 0S = 0S = 0S + 0R. Supis-
tussäännön nojalla siis 0S = 0R.

Propositio 3.16 (Alirengastesti). Olkoon R rengas ja olkoon S ⊂ R. Tällöin S on
renkaan R alirengas, jos ja vain jos

(1) Kaikille x, y ∈ S x+ y ∈ S ja xy ∈ S ja

(2) −1R ∈ S.

Todistus. Harjoitustehtävä 3.7.

Esimerkki 3.17. Proposition 3.16 avulla on helppo tarkastaa, että

C =

(

x y
−y x

)
: x, y ∈ R


on renkaan M2(R) alirengas.
Esimerkki 3.18. Analyysin kursseilla osoitetaan, että indusoiduilla laskutoimituksilla
varustetut joukot

C0(R) = {f : R → R : f on jatkuva}, ja
Ck(R) = {f : R → R : f on k kertaa jatkuvasti derivoituva}, k ∈ (N− {0}) ∪ {∞}.

ovat funktiorenkaan RR alirenkaita

3.4 Rengashomomorfismit

Olkoot R ja R′ renkaita. Kuvaus ϕ : R → R′ on rengashomomorfismi, jos se on kahdella
laskutoimituksella varustettujen joukkojen homomorfismi, jolle pätee ϕ(1R) = 1R′ .
Bijektiivinen rengashomomorfismi on rengasisomorfismi.
Jos on isomorfismi ϕ : R → R′, niin renkaat R ja R′ ovat isomorfisia, R ∼= R′.

Lemma 3.19. Olkoon ϕ : R → R′ rengashomomorfismi. Tällöin

ϕ(0R) = 0R′ ja ϕ(−1R) = −1R′ .

Todistus. Kuvaus ϕ : (R,+) → (R′,+) on ryhmähomomorfismi, joten ensimmäinen väite
seuraa Proposition 3.5 kohdasta (1), koska 0R on additiivisen ryhmän (R,+) neutraa-
lialkio. Toinen väite seuraa Proposition 3.5 kohdasta (2), koska rengashomomorfismin
määritelmän nojalla ϕ(1R) = 1R′ .
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Proposition 3.12 nojalla rengashomomorfismille ϕ : R → R′ pätee ϕ(1) = 0 vain, jos
R′ = {0}. Lisäksi yhden alkion renkaalta ei ole rengashomomorfismia renkaaseen, jossa
on vähintään kaksi alkiota.
Esimerkki 3.20. Luonnollinen kuvaus k 7→ k + qZ renkaasta (Z,+, ·) jäännösluokka-
renkaaseen (Z/qZ,+, ·) on surjektiivinen rengashomomorfismi Propositioiden 2.8 ja 2.10
nojalla.
Esimerkki 3.21. Olkoon X epätyhjä joukko ja olkoon R rengas. Olkoon a ∈ X. Eva-
luaatiokuvaus pisteessä a Ea : RX → R, Ea(f) = f(a), on rengashomomorfismi:

Ea(f + g) = (f + g)(a) = f(a) + g(a) = Ea(f) + Ea(g),
Ea(fg) = (fg)(a) = f(a)g(a) = Ea(f)Ea(g)

ja
Ea(1) = 1(a) = 1.

Esimerkki 3.22. Olkoon K = {v1, v2, . . . , vn} vektoriavaruuden Rn kanta ja olkoon
(Lvi)K ∈ Rn vektorin Lvi koordinaattivektori sarakevektorina kannassa K. Lineaarial-
gebrassa on osoitettu, että kuvaus Mat: End(Rn) → Mn(R), joka liittää lineaarikuvauk-
seen L sen matriisin tässä kannassa, on rengasisomorfismi. Jos L,L′ ∈ End(Rn), niin
(L+ L′)(v) = Lv + L′v, joten

Mat(L+ L′) = Mat(L) + Mat(L′),

eli Mat on ryhmähomomorfismi additiivisten ryhmien välillä. Lisäksi kaikille lineaariku-
vauksille L,L′ ∈ End(Rn) pätee

Mat(L′L) = Mat(L′) Mat(L)

ja identtisen kuvauksen matriisi on In = 1Mn(R).

Propositio 3.23. (1) Jos f : R → S ja g : S → T ovat rengashomomorfismeja, niin g ◦f
on rengashomomorfismi.
(2) Rengashomomorfismi f : R → S on rengasisomorfismi, jos ja vain jos on rengasho-
momorfismi f̄ : S → R, jolle f̄ ◦ f = idR ja f ◦ f̄ = idS.

Todistus. Harjoitustehtävät 1.4 ja 3.11.

Rengashomomorfismin ψ : R → R′ ydin on

kerψ = ψ−1(0) = {x ∈ R : ψ(x) = 0}.

Esimerkki 3.24. Luonnollisen rengashomomorfismin Z → Z/qZ, a 7→ a+ qZ, ydin on
qZ kaikilla q ≥ 2.

Propositio 3.25. Rengashomomorfismi on injektio, jos ja vain jos sen ydin on {0}.

Todistus. Olkoon ψ : R → S rengashomomorfismi. Koska ψ(0) = 0, niin 0 ∈ kerψ. Jos
kerψ ̸= {0}, on x ∈ R − {0}, jolle ψ(x) = 0 = ψ(0). Siis ψ ei ole injektio. Jos taas ψ ei
ole injektio, on x, y ∈ R, x ̸= y, joille ψ(x− y) = ψ(x) −ψ(y) = 0. Koska x− y ̸= 0, pätee
kerψ ̸= {0}.
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Olkoon Y joukko ja olkoon ∅ ≠ X ⊂ Y . Kuvaus i : X → Y , i(x) = x, on inkluusiokuvaus.a

aInkluusiokuvausta kutsutaan myös kanoniseksi injektioksi.

Esimerkki 3.26. Olkoon S renkaan R alirengas. Alirenkaan määritelmän mukaan ali-
renkaan inkluusiokuvaus on rengashomomorfismi. Sen ydin on {0}.

Rengashomomorfismin ϕ : R → S ydin ei yleensä ole renkaan R alirengas, koska se ei
välttämättä sisällä kertolaskun neutraalialkiota 1R. Palaamme tähän aiheeseen luvussa 7.

Seuraava tulos yleistää Esimerkin 3.26 havainnon.

Propositio 3.27. Olkoon ϕ : R → R′ rengashomomorfismi.
(1) Jos S on renkaan R alirengas, niin ϕ(S) on renkaan R′ alirengas.
(2) Jos S ′ on renkaan R′ alirengas, niin ϕ−1(S ′) on renkaan R alirengas.

Todistus. (1) Sovelletaan alirengastestiä.3 Olkoot ϕ(a), ϕ(b) ∈ ϕ(S). Tällöin

ϕ(a) + ϕ(b) = ϕ(a+ b) ∈ ϕ(S)

ja
ϕ(a)ϕ(b) = ϕ(ab) ∈ ϕ(S) ,

koska ϕ : (R,+) → (R′,+) ja ϕ : (R, ·) → (R′, ·) ovat homomorfismeja. Koska −1R ∈ S,
niin Lemman 3.19 nojalla

−1R′ = −ϕ(1R) = ϕ(−1R) ∈ ϕ(S).

Siis ϕ(S) on alirengas.
(2) Harjoitustehtävä 3.12.

Seuraus 3.28. Olkoon ϕ : R → R′ rengashomomorfismi. Tällöin ϕ(R) on renkaan R′

alirengas ja ϕ−1(R′) on renkaan R alirengas.

3.5 Renkaan karakteristika
Kokonaislukujen renkaan Z rakenne on yksinkertainen: sen kaikki alkiot ovat alkion 1
monikertoja.4Tästä seuraa erityisominaisuus renkaassa Z määritellyille rengashomomor-
fismeille.

Propositio 3.29. Olkoon R rengas. On täsmälleen yksi rengashomomorfismi ϕ : Z → R.

Todistus. Kuvaus ϕ : Z → R,

ϕ(n) = n1R = 1R + 1R + · · · + 1R ,

on rengashomomorfismi, sillä

ϕ(m+ n) = (m+ n)1R = m1R + n1R = ϕ(m) + ϕ(n)
3Propositio 3.16
4Katso monikerran määritelmä luvusta 1.9.
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ja
ϕ(mn) = mn1R = m1Rn1R = ϕ(m)ϕ(n)

kaikille m,n ∈ Z. Siis haluttuja kuvauksia on ainakin yksi.
Jos ψ : Z → R on rengashomomorfismi, niin ψ(1) = 1R. Siis ψ(m) = mψ(1R) kaikille

m ∈ Z, joten ψ = ϕ.

Esimerkki 3.30. Olkoon ψ : Z → R rengashomomorfismi ψ(k) = k 1R. Homomorfismin
ψ kuva ψ(Z) = {k 1R : k ∈ Z} on renkaan R alirengas Proposition 3.27 nojalla.

Olkoon R rengas. Jos homomorfismi Z → R, k 7→ k 1R, on injektio, niin renkaan R
karakteristika χ(R) on 0. Muuten renkaan R karakteristika on

χ(R) = min{k ∈ N− {0} : k 1R = 0}.

Esimerkki 3.31. (a) Renkaiden Z, Q, R karakteristika on 0, koska ne sisältävät kaikki
alirenkaana isomorfisen kopion kokonaislukurenkaasta Z.
(b) Jäännösluokkarenkaan Z/qZ karakteristika on q.
(c) Jos χ(R) = 0, niin R on ääretön. Polynomirenkaiden5 avulla huomaamme, että on
äärettömiä renkaita, joiden karakteristika on äärellinen.

Lemma 3.32. Jos renkaan R karakteristika on q, niin qx = 0R kaikille x ∈ R.

Todistus. Harjoitustehtävä 3.15

Harjoitustehtäviä
3.1. Todista Propositio 3.7.
3.2. Määritellään joukossa Z3 yhteenlasku komponenteittain ja kertolasku asettamalla

(a, b, c)(x, y, z) = (ax, bx+ cy, cz)

kaikilla (a, b, c), (x, y, z) ∈ Z3. Osoita, että Z3 varustettuna näillä laskutoimituksilla on
rengas. Onko se kommutatiivinen?
3.3. Olkoon R rengas. Osoita, että
(a) x(−y) = (−x)y = −(xy) kaikilla x, y ∈ R ja
(b) x(y − z) = xy − xz ja (y − z)x = yx− zx kaikilla x, y, z ∈ R.
3.4. Olkoon (R,⊕, ·) kahdella assosiatiivisella laskutoimituksella varustettu joukko si-
ten, että

(1) (R,⊕) on ryhmä,

(2) kertolasku on distributiivinen yhteenlaskun suhteen ja

(3) kertolaskulla on neutraalialkio 1 = 1R ∈ R.
5Katso luku 6.
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Osoita, että (R,⊕, ·) on rengas.6

3.5. Todista Propositio 3.12(2).
3.6. Todista Lemma 3.13.
3.7. Todista Propositio 3.16.
3.8. Osoita, että

Y =
{(

a b
0 c

)
∈ M2(Z/2Z)

}

on rengas, joka ei ole kommutatiivinen. Montako alkiota renkaassa Y on? Millä renkaan
Y alkioilla on käänteisalkio kertolaskun suhteen?
3.9. Osoita, että Esimerkin 3.17 rengas C on isomorfinen kompleksilukujen renkaan C
kanssa. Mikä renkaan C kuvaus vastaa kompleksikonjugointia?
3.10. Ovatko funktiorenkaat R[0,1] ja R[0,2] isomorfisia?
3.11. Todista Propositio 3.23(2).
3.12. Todista Propositio 3.27(2).
3.13. Olkoot m,n ∈ N− {0, 1}. Osoita, että kuvaus Φ: Z → (Z/mZ) × (Z/nZ),

Φ(k) = (k +mZ, k + nZ) ,

on rengashomomorfismi.
3.14. Olkoot m ≥ 2 ja n ≥ 2 luonnollisia lukuja, joiden suurin yhteinen tekijä on 1.
Osoita, että renkaat Z/mnZ ja (Z/mZ) × (Z/nZ) ovat isomorfisia.
3.15. Todista Lemma 3.32.
3.16. Osoita, että renkaalla Z ei ole muita alirenkaita kuin Z.
3.17. Olkoon q ∈ N − {0, 1}. Osoita, että ei ole rengashomomorfismia jäännösluokka-
renkaalta Z/qZ renkaaseen Z.
3.18. Sievennä lauseke (a + b)p kommutatiivisessa renkaassa, jonka karakteristika on
alkuluku p. Miksi oletamme, että p on alkuluku?
3.19. Olkoon K kommutatiivinen rengas, jonka karakteristika on alkuluku p. Olkoon
ϕ : K → K kuvaus ϕ(a) = ap. Osoita, että ϕ on rengashomomorfismi.

Renkaan R alkio x on idempotentti, jos x2 = x.
Jos renkaan B kaikki alkiot ovat idempotentteja, niin B on Boolen rengas.

3.20. Olkoon B Boolen rengas. Osoita, että

(1) B on kommutatiivinen ja

(2) 2x = 0 kaikille x ∈ B.
6Tehtävässä ei oleteta, että ⊕ on kommutatiivinen. Tarkastele lauseketta (1 ⊕ 1)(x ⊕ y).
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Olkoon X joukko. Joukkojen A,B ∈ P(X) symmetrinen erotus on

A△B = (A−B) ∪ (B − A) .

3.21. Osoita, että (P(X),△) on ryhmä.
3.22. Osoita, että (P(X),△,∩) on Boolen rengas.
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Luku 4

Kunnat

Tässä luvussa tarkastelemme renkaita, joiden kaikilla nollasta poikkeavilla alkioilla on
käänteisalkio kertolaskun suhteen. Tällaisia renkaita kutsutaan jakorenkaiksi. Erityisesti
tarkastelemme kommutatiivisia jakorenkaita eli kuntia, mutta tutustumme lyhyesti myös
Hamiltonin kvaternioihin, jotka muodostavat jakorenkaan, joka ei ole kunta.

4.1 Yksiköt
Jos R on rengas ja alkiolla u ∈ R on käänteisalkio kertolaskun suhteen, niin u on renkaan
R yksikkö.

Propositio 4.1. Renkaan yksiköiden joukko varustettuna kertolaskulla on ryhmä.

Todistus. Renkaan R kertolasku on assosiatiivinen laskutoimitus, jonka neutraalialkio on
1. Yksiköiden joukko on vakaa kertolaskun suhteen: Jos u ja v ovat yksiköitä, niin uv on
yksikkö, koska

(uv)(v−1u−1) = 1 = (v−1u−1)(uv).

Kertolasku on siis assosiatiivinen laskutoimitus yksiköiden joukossa. Laskutoimituksella
on neutraalialkio, koska 1 on yksikkö. Määritelmän mukaan jokaisella yksiköllä u on
käänteisalkio u−1 renkaassa R. Myös u−1 on yksikkö, koska (u−1)−1 = u.

Renkaan R yksiköiden ryhmä (tai multiplikatiivinen ryhmä) on

R× = {u ∈ R : u on yksikkö}

varustettuna renkaan R kertolaskun indusoimalla laskutoimituksella.

Esimerkki 4.2. (a) Jos renkaassa on ainakin kaksi alkiota, niin Proposition 3.12 mu-
kaan 0 ̸= 1 ja 0 ei ole yksikkö.
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(b) Renkaissa Q ja R ja C kaikki nollasta poikkeavat alkiot ovat yksiköitä, joten aiem-
min esitellyt multiplikatiiviset ryhmät Q×, R× ja C× sopivat yhteen yksiköiden ryhmän
määritelmän kanssa.
(c) Kokonaislukujen renkaan yksiköiden ryhmä on Z× = {−1, 1}.
(d) Funktiorenkaan RX alkio f on yksikkö, jos ja vain jos f(X) ⊂ R×.

4.2 Jakorenkaat ja kunnat

Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat
alkiot ovat yksiköitä, niin K on jakorengas.
Kommutatiivinen jakorengas on kunta.
Jakorengas, joka ei ole kunta on vino kunta.
Jos K ja K ′ ovat kuntia, niin rengashomomorfismi ϕ : K → K ′ on kuntahomomorfismi.

Esimerkki 4.3. (a) Renkaassa Z on äärettömän monta alkiota mutta sen ainoat yksiköt
ovat ±1. Siis Z ei ole jakorengas eikä siis kunta.
(b) Q, R ja C ovat kuntia ja inkluusiokuvaukset Q i

↪→ R
j
↪→ C ovat kuntahomomorfismeja.

(c) Olkoon R rengas, jossa on vähintään kaksi alkiota. Matriisirengas Mn(R) ei ole jako-
rengas, kun n ≥ 2, koska esimerkiksi matriisilla A, jonka ainoa nollasta poikkeava kerroin
on A11 ei ole käänteismatriisia.

Jos k on kunnan K alirengas ja k on kunta, niin k on kunnan K alikunta. Tällöin kunta
K on kunnan k kuntalaajennus.

Esimerkki 4.4. Rationaalilukujen kunta Q on kunnan R alikunta. Kunnat Q ja R ovat
kunnan C alikuntia.
Esimerkki 4.5. Olkoon F = {0, 1, α, β} joukko, jossa on määritelty kaksi laskutoimi-
tusta + ja ·, joiden laskutaulut ovat

+ 0 1 α β

0 0 1 α β
1 1 0 β α
α α β 0 1
β β α 1 0

ja

· 0 1 α β

0 0 0 0 0
1 0 1 α β
α 0 α β 1
β 0 β 1 α

.

Laskutaulusta on helppo tarkastaa, että F on kunta. Sen osajoukko {0, 1} on vakaa yh-
teenlaskun ja kertolaskun suhteen ja −1 = 1, joten Proposition 3.16 nojalla {0, 1} on
kunnan F alikunta.

Kunnan K osajoukko K ′ voidaan osoittaa kunnaksi näyttämällä ensin alirengastestin1

avulla, että K ′ on renkaan K alirengas ja sitten osoittamalla, että nollasta poikkeavilla
alkioilla on käänteisalkio kertolaskun suhteen. Seuraava tulos antaa menetelmän, jossa ei
käytetä alirengastestiä.

1Propositio 3.16.
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Propositio 4.6 (Alikuntatesti). Olkoon K kunta. Osajoukko K ′ ⊂ K on alikunta, jos ja
vain jos

(1) #K ′ ≥ 2,

(2) a− b ∈ K ′ kaikilla a, b ∈ K ′ ja

(3) ab−1 ∈ K ′ kaikilla a, b ∈ K ′, b ̸= 0.

Todistus. Oletetaan ensin, että K ′ on alikunta. Tällöin se on erityisesti kunta, joten
#K ′ ≥ 2. Koska (K ′,+) on ryhmä, saadaan a − b ∈ K ′ kaikilla a, b ∈ K ′. Vastaa-
vasti (K ′)× on ryhmä Proposition 4.1 nojalla, joten ab−1 ∈ K ′ kaikilla a, b ∈ K, b ̸= 0.

Oletetaan sitten, että osajoukolla K ′ on ominaisuudet (1)–(3). Oletuksen (2) nojalla
kaikille a ∈ K ′ pätee 0K = a − a ∈ K ′, joten −a = 0K − a ∈ K ′ ja kaikille a, b ∈ K ′

pätee a + b = a − (−b) ∈ K ′. Vastaavalla tavalla saadaan oletuksesta (3), että kaikille
b ∈ K ′ − {0K} pätee 1K = bb−1 ∈ K ′, joten b−1 = 1b−1 ∈ K ′. Siis ominaisuuden (3)
nojalla ab = a(b−1)−1 ∈ L′ kaikilla a ∈ K ′ ja b ∈ K ′ − {0K}. Edellä näimme, että
0K , 1K ∈ K ′, joten ominaisuuden (2) nojalla −1′

K . Alirengastestin 3.16 nojalla siis K ′ on
renkaan K alirengas.

AlirengasK ′ on kommutatiivinen koskaK on kommutatiivinen. Lisäksi edellä näimme,
että b−1 ∈ K ′ kaikilla b ̸= 0K . Siis K ′ on kunta.

Kuntaominaisuudet säilyvät homomorfismeissa:

Propositio 4.7. Olkoon K kunta ja olkoon R rengas, jossa on ainakin kaksi alkiota. Ol-
koon ϕ : K → R rengashomomorfismi. Tällöin ϕ on injektio ja ϕ(K) on kunta. Erityisesti
kuntahomomorfismi on injektio.

Todistus. Seurauksen 3.28 mukaan ϕ(K) on rengas, joka on Proposition 1.9 mukaan kom-
mutatiivinen. Koska ϕ on rengashomomorfismi ja renkaassa R on vähintään kaksi alkiota,
pätee Proposition 3.12 mukaan

ϕ(0K) = 0R ̸= 1R = ϕ(1K) .

Siis renkaassa ϕ(K) on vähintään kaksi alkiota. Yksikön kuva on yksikkö: Jos u ∈ K×,
niin

ϕ(u)ϕ(u−1) = ϕ(uu−1) = ϕ(1K) = 1R .

Siis renkaan ϕ(K) nollasta poikkeavat alkiot ovat yksiköitä, joten ϕ(K) on kunta.
Olkoon a ∈ kerϕ. Jos a ̸= 0, niin

1R = ϕ(1K) = ϕ(aa−1) = 0R ϕ(a−1) = 0R ,

mikä on mahdotonta. Siis ϕ on injektio Proposition 3.25 nojalla.

4.3 Toisen asteen lukukunnat
Jokaisella positiivisella reaaliluvulla x > 0 on positiivinen neliöjuuri

√
x > 0, jolle pätee

(
√
x)2 = x. Negatiivisella reaaliluvulla ei ole reaalista neliöjuurta. Sen sijaan, jos x < 0,

niin (i
√

−x)2 = x. Kompleksilukuna ajateltuna luvulla x < 0 on siis neliöjuuri i
√

|x|, jolle
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käytämme merkintää
√
x. Seuraavassa esimerkissä tutustumme kuntiin ja renkaisiin, jotka

saadaan rationaalilukujen kunnasta ja kokonaislukujen renkaasta, kun niitä laajennetaan
jonkin kokonaisluvun neliöjuuren avulla.
Esimerkki 4.8. Olkoon d ∈ Z− {0} kokonaisluku, joka ei ole neliö. Olkoot

Q(
√
d) = {a+ b

√
d : a, b ∈ Q} ⊂ R,

kun d ∈ N ja
Q(

√
d) = {a+ b

√
d : a, b ∈ Q} ⊂ C,

kun d /∈ N. Harjoitustehtävässä 4.7 osoitetaan, että Q(
√
d) on rationaalilukujen kunnan

laajennus. Jos d ∈ N− {0}, niin Q(
√
d) on kunnan R alikunta. Jos d < 0, niin Q(

√
d) on

kompleksilukujen kunnan alikunta. Samaan tapaan on helppo tarkastaa, että

Z[
√
d] = {a+ b

√
d ∈ C : a, b ∈ Z}

on kunnan Q(
√
d) alirengas.

Olkoon d kokonaisluku, joka ei ole jaollinen minkään kokonaisluvun a > 1 neliöllä. Kunta
Q(

√
d) on kunnan Q toisen asteen kuntalaajennus eli toisen asteen lukukunta.

Kunta Q(i)on Gaussin rationaalilukujen kunta.
Kokonaisalueen Z[i] alkiot ovat Gaussin kokonaislukuja.

4.4 Hamiltonin kvaterniot
Hamiltonin kvaterniot on joukko

H =
{(

a b

−b̄ ā

)
: a, b ∈ C

}
⊂ M2(C)

varustettuna renkaasta M2(C) indusoiduilla laskutoimituksilla.

Propositio 4.9. Hamiltonin kvaterniot on vino kunta.

Todistus. Harjoitustehtävässä 4.13 osoitetaan, että H on renkaan M2(C) alirengas. Lisäksi

det
(

a b

−b̄ ā

)
= |a|2 + |b|2,

joten jokainen A ∈ H− {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat
alkiot ovat yksiköitä, koska

1
|a|2 + |b|2

(
ā −b
b̄ a

)
∈ H

ja pätee
1

|a|2 + |b|2

(
ā −b
b̄ a

)(
a b

−b̄ ā

)
= I2.

Siis H on jakorengas.
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Jakorengas H ei ole kommutatiivinen sillä esimerkiksi(
i 0
0 −i

)(
0 1

−1 0

)
=
(

0 i
i 0

)
= −

(
0 1

−1 0

)(
i 0
0 −i

)
.

Siis H on vino kunta.

Kvaternioita käsitellessä on tapana käyttää esimerkiksi merkintöjä

1 =
(

1 0
0 1

)
, i =

(
i 0
0 −i

)
, j =

(
0 1

−1 0

)
, k =

(
0 i
i 0

)
.

Tällöin
i2 = j2 = k2 = −1 (4.1)

ja
ij = k = −ji, ki = j = −ik, jk = i = −kj. (4.2)

Matriisit 1, i, j ja k virittävät avaruuden H neliulotteisena reaalisena vektoriavaruutena,
joten Hamiltonin kvaterniot voidaan esittää reaalisina lineaarikombinaatioina

x = x01 + x1i + x2j + x3k ,

x0, x1, x2, x3 ∈ R, joilla voi laskea kuten kompleksiluvuilla huomioiden laskusäännöt (4.1)
ja (4.2). Hamiltonin kvaternioiden alirengas {x01 : x0 ∈ R} on isomorfinen kunnan
R kanssa ja usein käytetäänkin esimerkiksi merkintää

x = x0 + x1i + x2j + x3k .

Hamiltonin kvaternioiden alirengas {x01 + x1i : x0 ∈ R} on isomorfinen kunnan C
kanssa. Jos ajattelemme kvaternioita kompleksikertoimisten matriisien avulla, näemme,
että injektiivinen kuvaus ϕ : C → H, ϕ(z) = diag(z, z̄) = Re z 1 + Im z i, on rengashomo-
morfismi.

4.5 Lineaarialgebraa
Lineaarialgebran kursseilla käsitelty reaalisten vektoriavaruuksien ja lineaarikuvausten
teoria yleistyy K-kertoimiseen tilanteeseen. Tässä luvussa tutustumme muutamaan mää-
ritelmään yleisessä tilanteessa ja näemme ensimmäiset sovellukset kuntien teoriaan. Line-
aarialgebran perustulosten todistukset ovat samat kuin lineaarialgebran kursseilla, joten
ohitamme niiden yksityiskohdat. Yleiseen kuntakertoimiseen lineaarialgebraan voi pereh-
tyä monien lineaarialgebran ja algebran kirjojen avulla, esimerkiksi [Art], [DF], [War].

Olkoon K kunta ja olkoon (V,+) kommutatiivinen ryhmä. Vakiolla kertominen on kuvaus
K × V → V , (λ, v) 7→ λv, joka toteuttaa ehdot

(1) λ(v + w) = λv + λw kaikille λ ∈ K ja v, w ∈ V ,

(2) (λ+ µ)v = λv + µv kaikille λ, µ ∈ K ja v ∈ V ,

(3) µ(λv) = (µλ)v kaikille λ, µ ∈ K ja v ∈ V ja

(4) 1 v = v kaikille v ∈ V .

Ryhmä V varustettuna tällä rakenteella on K-vektoriavaruus.
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Propositio 4.10. Olkoon K kunnan L alikunta. Tällöin L on K-vektoriavaruus.

Todistus. Koska L on kunta, (L,+) on kommutatiivinen ryhmä. Määritellään vakiolla
kertominen K × L → L asettamalla (λ, v) 7→ λv kunnan L kertolaskuna. Tämä toi-
mii, koska K on kunnan L alikunta. Ehdot (1)–(3) seuraavat kunnan L laskutoimitusten
distributiivisuudesta ja assosiatiivisuudesta ja (4) seuraa siitä, että 1K = 1L.

Esimerkki 4.11. Kompleksilukujen kunnalla C on alikunta j(R), joka on isomorfinen
reaalilukujen kunnan kanssa. Proposition 4.10 mukaan C on R-vektoriavaruus, kun mää-
ritellään vakiolla kertominen asettamalla xz = j(x)z kaikilla x ∈ R ja z ∈ C. Yleensä
tallaisessa tilanteessa unohdetaan kuntahomomorfismi j ja ajatellaan, että R ⊂ C.

Lineaarisen riippuvuuden ja kannan määritelmät yleistävät vektoriavaruudessa Rn li-
neaarialgebran kursseilla tavatut määritelmät.

Olkoon K kunta ja olkoon V K-vektoriavaruus. Joukko A ⊂ V on lineaarisesti riippuma-
ton, jos kaikille äärellisille joukoille {v1, v2, . . . , vN} ainoat kertoimet a1, a2, . . . , aN ∈ K,
joille pätee

N∑
k=1

akvk = 0, ovat a1 = a2 = · · · = aN = 0.

Vektorit v1, v2, . . . , vN ∈ V muodostavat K-vektoriavaruuden V kannan, jos jokaiselle
x ∈ V on yksikäsitteiset x1, x2, . . . , xN ∈ K, joille pätee

x =
N∑
i=1

xivi .

Lemma 4.12. Olkoot v1, v2, . . . , vN ∈ V ja w1, w2, . . . , wM ∈ V K-vektoriavaruuden V
kantoja. Tällöin M = N .

Todistus. Todistetaan kuten lineaarialgebran kurssilla.

Olkoon V K-vektoriavaruus, jolla on kanta, jossa on d alkiota. Tällöin avaruus V on
d-ulotteinen ja sen dimensio on d.

Lemma 4.13. Olkoon K kunta, jossa on N alkiota. Jos V on d-ulotteinen K-vektoriavaruus,
niin avaruudessa V on Nd alkiota.

Todistus. Harjoitustehtävä 4.15.

Esimerkki 4.14. Esimerkin 4.5 kunta F on 2-ulotteinen Z/2Z-vektoriavaruus. Joukko
{1, α} on sen kanta: Lemman 4.13 nojalla kannassa on oltava 2 alkiota. Alkioille 1 ja α
pätee 1 ̸= 0, α ̸= 0, α + 1 = β ̸= 0 kunnan F yhteenlaskutaulun mukaan.
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Harjoitustehtäviä
4.1. Olkoon B Boolen rengas.2 Määritä B×.

Hyperboliset luvut on joukko

S =
{(

a b
b a

)
: a, b ∈ R

}
⊂ M2(R)

varustettuna matriisirenkaasta M2(R) indusoiduilla laskutoimituksilla.

4.2. Osoita, että S on renkaan M2(R) alirengas. Onko S kunta?
4.3. Osoita, että ei ole kuntahomomorfismia ϕ : R → Q.
4.4. Olkoon K kunta ja olkoon K ′ ⊂ K vakaa osajoukko, joka on kunta indusoiduilla
laskutoimituksilla. Osoita, että 0K′ = 0K ja 1K′ = 1K .
4.5. Osoita, että ei ole kuntahomomorfismia ϕ : C → R.3

4.6. Osoita, että Q(i) on kompleksilukujen kunnan alikunta.
4.7. Olkoon d ∈ Z.Osoita, että Q(

√
d) on reaalilukujen kunnan alikunta, jos d > 0 ja

kompleksilukujen kunnan alikunta, jos d < 0.
4.8. Määritä Gaussin kokonaislukujen yksiköiden ryhmä.4

4.9. Olkoon d ∈ Z d ∈ Z − {0} kokonaisluku, joka ei ole neliö. Osoita, että Z[
√
d] on

reaalilukujen renkaan alirengas.
4.10. Osoita, että Z[

√
2]× on ääretön.5

4.11. Olkoon d ≡ 1 mod 4 kokonaisluku, joka ei ole jaollinen minkään kokonaisluvun
a > 1 neliöllä. Osoita, että

Z
[1 +

√
d

2

]
=
{
a+ b

1 +
√
d

2 ∈ C : a, b ∈ Z
}

on kompleksilukujen kunnan alirengas.

Kommutatiivisen renkaan Z
[

1+
√

3
2

]
alkiot ovat Eisensteinin kokonaislukuja.

4.12. Määritä Eisensteinin kokonaislukujen yksiköiden ryhmä.
4.13. Osoita, että Hamiltonin kvaterniot muodostavat renkaan.
4.14. Osoita, että yhtälöllä x2 = −1 on äärettömän monta ratkaisua Hamiltonin kva-
ternioiden vinossa kunnassa.6

4.15. Todista Lemma 4.13.

2Katso Harjoitustehtävä 3.20.
3Minne imaginaariyksikkö kuvautuisi?
4Käytä kompleksilukujen normin tai modulin ominaisuuksia.
5Etsi sopiva yksikkö ja käytä Propositiota 4.1
6Tarkastele kvaternioita, jotka ovat muotoa ai + bj + ck, a2 + b2 + c2 = 1.
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Luku 5

Jaollisuus

Tässä luvussa käsittelemme jaollisuutta kommutatiivisissa renkaissa. Tämä teoria yleistää
kokonaislukujen jaollisuustuloksia yleisempään tilanteeseen.

5.1 Jaollisuudesta
Jaollisuus määritellään kommutatiivisessa renkaassa samalla tavalla kuin se määritellään
lukuteorian kursseilla kokonaislukujen renkaassa.

Jos K on kommutatiivinen rengas ja a, b, c ∈ K siten, että ab = c, niin a ja b ovat alkion
c tekijöitä. Tällöin alkiot a ja b jakavat alkion c, mistä käytetään merkintää a | c ja
vastaavasti b | c. Jos a ei ole alkion b tekijä, käytetään merkintää a ∤ b.

Propositio 5.1. Olkoon K kommutatiivinen rengas. Tällöin
(1) a | a kaikille a ∈ K.
(2) Jos a | b ja b | c, niin a | c.
(3) Jos a | b ja a | c, niin a | b+ c.

Todistus. Harjoitustehtävä 5.1.

Olkoon K kommutatiivinen rengas, jossa on vähintään 2 alkiota. Jos a, b ∈ K, a, b ̸= 0 ja
ab = 0, niin a ja b ovat nollanjakajia.
Kommutatiivinen rengas K, jossa ei ole nollanjakajia, on kokonaisalue.

Esimerkki 5.2. (a) Kokonaislukujen rengas Z on kokonaisalue.
(b) Jos q = cd joillain c, d ∈ N− {0, 1}, niin c+ qZ ̸= 0 ∈ Z/qZ, d+ qZ ̸= 0 ∈ Z/qZ ja

(c+ qZ)(d+ qZ) = cd+ qZ = q + qZ = 0 + qZ = 0 ∈ Z/qZ ,

joten Z/qZ ei ole kokonaisalue. Tämä esimerkki osoittaa, että kokonaisalueen kuva ren-
gashomomorfismissa ei välttämättä ole kokonaisalue.
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Propositio 5.3. Yksikkö ei ole nollanjakaja.

Todistus. Olkoon a yksikkö ja oletetaan, että ab = 0. Silloin b = a−1 0 = 0. Vastaavasti
nähdään, että b = 0, jos ba = 0.

Seuraus 5.4. Jakorenkaassa ei ole nollanjakajia. Erityisesti kunta on kokonaisalue.

Renkaassa R pätee kertolaskun supistussääntö, jos b = c aina, kun jollekin a ∈ R − {0}
pätee ab = ac tai ba = ca.

Renkaan kertolaskun supistussääntö poikkeaa hieman Luvussa 3.1 tarkastellusta lasku-
toimituksen supistussäännöstä, koska 0 a = 0 kaikille a ∈ R.

Propositio 5.5. Kommutatiivinen rengas K on kokonaisalue, jos ja vain jos kertolaskun
supistussääntö pätee renkaassa K.

Todistus. Harjoitustehtävä 5.2

Propositio 5.6. Kokonaisalueen karakteristika on 0 tai alkuluku.

Todistus. Olkoon R rengas, jonka karakteristika on χ(R) = ab, missä a, b /∈ {0, 1}. Pro-
position 3.29 nojalla on täsmälleen yksi rengashomomorfismi ϕ : Z → R . Karakteristikan
määritelmän mukaan ϕ(ab) = 0. Nyt ϕ(a), ϕ(b) ̸= 0, koska 1 < a, b < ab = χ(R). Lisäksi
ϕ(a)ϕ(b) = ϕ(ab) = 0, joten R ei ole kokonaisalue.

Lause 5.7. Äärellinen kokonaisalue on kunta.

Todistus. Olkoon E kokonaisalue ja olkoon a ∈ E − {0}. Kuvaus ℓa : E → E, ℓa(x) = ax
on injektio Proposition 5.5 nojalla. Kun oletamme lisäksi, että E on äärellinen, niin
kuvaus ℓa on myös surjektio. Tällöin on ā ∈ E, jolle aā = ℓa(ā) = 1. Koska E on
kommutatiivinen, ā = a−1.

Seuraava äärellisiä renkaita koskeva tulos on vaikeampi todistaa, mutta se on hyvä
tietää.

Lause 5.8 (Wedderburnin lause). Äärellinen jakorengas on kunta.

Todistus. Katso esimerkiksi [Kna, Theorem 2.48] tai [War, Theorem 39.9].

5.2 Jaottomat alkiot ja alkualkiot

Kokonaisalueen E alkio p ∈ E − (E× ∪ {0}) on jaoton, jos a tai b on yksikkö aina, kun
p = ab.

Lukuteoriassa renkaan Z positiivisia jaottomia alkioita sanotaan alkuluvuiksi.

Seuraava tulos on hyödyllinen tutkittaessa jaollisuutta ja jaottomuutta luvussa 4.3
tarkastelluissa renkaissa.
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Lemma 5.9. Olkoon d < 0 kokonaisluku.
(1) Jos a | b renkaassa Z[

√
d], niin ā | b̄ renkaassa Z[

√
d] ja n(a) | n(b) renkaassa Z.

(2) Jos a ∈ Z[
√
d] ja n(a) = 1, niin a ∈ Z[

√
d]×.

Todistus. (1) Jos b = ac, niin Proposition 1.26(1) nojalla b̄ = ac = āc̄, joten ā | b̄.
Jos c = c1 + ic2

√
d ∈ Z[

√
d], niin n(c) = c c̄ = c2

1 − dc2
2 ∈ N. Proposition 1.26(3) nojalla

n(b) = n(ac) = n(a)n(c), joten n(a) | n(b).
(2) Jos a ∈ Z[

√
d], niin ā ∈ Z[

√
d] ja oletuksen mukaan 1 = n(a) = aā, joten a on

yksikkö.

Esimerkki 5.10. Kokonaislukurenkaan Z alkuluvut eivät välttämättä ole jaottomia
kaikissa renkaissa Z[

√
d], joiden alirengas Z on. Esimerkiksi, jos d ∈ Z on alkuluku, niin

se on jaoton kokonaislukujen renkaassa. Kuitenkin
√
d ∈ Z[

√
d] ja d = (

√
d)2, joten d ei

ole jaoton renkaassa Z[
√
d].

Osoitetaan, että 2 ∈ Z[
√

−5] on jaoton. Huomataan ensin, että n(2) = 22 = 4. Jos
a, b ∈ Z[

√
−5] ja ab = 2, niin Lemman 5.9(1) nojalla n(a) | n(2) = 4 ja n(b) | n(2) = 4

renkaassa Z. Siis n(a) ∈ {1, 2, 4}. Renkaan Z[
√

−5] alkioiden normeille pätee

n
(
m+ n

√
−5
)

= m2 + 5n2 ∈ N . (5.1)

Siis renkaassa Z[
√

−5] ei ole alkiota, jonka normi on 2, joten a tai b on yksikkö Lemman
5.9(2) nojalla, joten 2 ∈ Z[

√
−5] on jaoton.

Samalla tavalla osoitetaan, että myös alkiot 3 ja 1 ± i
√

5 ovat jaottomia renkaassa
Z[

√
−5]: Lasku osoittaa, että n(3) = 32 = 9 ja n(1 ± i

√
5) = (1 + i

√
5)(1 − i

√
5) = 6.

Yhtälön (5.1) nojalla renkaassa Z[
√

−5] ei ole alkioita, joiden normi olisi 2 tai 3.

Kokonaisalueen K alkio p ∈ K − (K× ∪ {0}) on alkualkio (tai alkuluku), jos kaikille
a, b ∈ K pätee p | a tai p | b, jos p | ab.a

aEsimerkiksi kokonaislukuja käsiteltäessä merkintä p varataan usein alkualkioille tai alkuluvuille.
Tämä johtuu siitä, että alkuluku on englanniksi prime, saksaksi Primzahl, ranskaksi nombre premier.

Propositio 5.11. Kokonaisalueen alkualkiot ovat jaottomia.

Todistus. Olkoon K kokonaisalue ja olkoon p ∈ K alkualkio. Oletetaan, että p = ab.
Riittää tarkastella tapaus p | a. Tällöin a = pc jollakin c ∈ K, joten p = pcb. Proposition
5.5 nojalla kertolaskun supistussääntö on voimassa kokonaisalueessa K, joten 1 = cb. Siis
b on yksikkö, joten p on jaoton.

Propositio 5.12 (Eukleideen lemma). Kokonaislukujen renkaan jaottomat alkiot ovat
alkualkioita.

Todistus. Katso Propositio A.6.

Kokonaislukujen renkaassa jaottomat alkiot ja alkualkiot ovat samoja Eukleideen lem-
man ja Proposition 5.11 nojalla. Näillä määritelmillä luvut ±2, ±3, ±5, ±7, ±11, ±13,
±17, ±19, ±23, ±29 ja niin edelleen ovat renkaan Z alkualkioita ja jaottomia alkioita.

Kokonaislukuja yleisemmissä kokonaisalueissa jaottomat alkiot eivät kaikissa tapauk-
sissa välttämättä ole alkualkioita.
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Esimerkki 5.13. (a) Renkaan Z[
√

−5] jaottomat alkiot1 2, 3 ja 1 ± i
√

5 eivät ole al-
kualkioita. Yhtälöstä

2 · 3 = 6 = (1 + i
√

5)(1 −
√

5)

näemme esimerkiksi, että 2 | (1+i
√

5)(1−
√

5), mutta toisaalta 2 ∤ (1+i
√

5) ja 2 ∤ (1−i
√

5),
koska n(2) = 4 ∤ 6 = n(1 ± i

√
5).

(b) Renkaassa Z[
√

10] voidaan osoittaa, että alkiot 2, 3, 4+
√

10 ja 4−
√

10 ovat jaottomia
mutta eivät alkualkioita, koska

2 · 3 = 6 = (4 +
√

10)(4 −
√

10)

mutta 2 tai 3 ei ole lukujen (4 ±
√

10) tekijä ja vastaavasti (4 ±
√

10) ei ole lukujen 2 tai
3 tekijä.

5.3 Renkaan Z/qZ yksiköt
Sovellamme nyt liitteessä A kerrattavia kokonaislukujen jaollisuustuloksia jäännösluok-
karenkaan Z/qZ yksiköiden ryhmän ominaisuuksien tarkasteluun.

Propositio 5.14. Olkoon q ≥ 2. Tällöin a + qZ ∈ Z/qZ on yksikkö, jos ja vain jos
syt(a, q) = 1. Jos p on alkuluku ja a ̸≡ 0 mod p, niin a+ pZ ∈ (Z/pZ)×.

Todistus. Jäännösluokka a+ qZ ∈ Z/qZ on yksikkö, jos ja vain jos on b ∈ Z, jolle pätee

1 + qZ = (a+ qZ)(b+ qZ) = ab+ qZ .

Tämä on yhtäpitävää ehdon ab ≡ 1 mod q kanssa, joka taas pätee, jos ja vain jos on
c ∈ Z, jolle ab = 1 + cq. Tämä Bézout’n yhtälön2 nojalla yhtäpitävää sen kanssa, että
syt(a, q) = 1.

Seuraus 5.15. Jos p on alkuluku, niin Z/pZ on kunta.

Lukuteoreettinen todistus. Seuraa Proposition 5.14 jälkimmäisestä väitteestä.

Algebrallinen todistus. Olkoon p alkuluku ja olkoot a, b ∈ Z siten, että

ab+ pZ = (a+ pZ)(b+ pZ) = 0 .

Alkuluvun määritelmän nojalla p | a tai p | b, joten a + pZ = 0 tai b + pZ = 0. Siis
Z/pZ on kokonaisalue, joten Lauseen 5.7 nojalla se on kunta.

Propositio 5.16. Olkoon q ≥ 2. Alkio a + qZ ∈ (Z/qZ) − {0} on nollanjakaja, jos ja
vain jos syt(a, q) > 1. Jos q ei ole alkuluku, niin renkaassa Z/qZ on nollanjakajia.

Todistus. Propositioiden 5.14 ja 5.3 nojalla a + qZ ei ole nollanjakaja, jos syt(a, q) = 1.
Jos syt(a, q) = d > 1, niin a = bd ja q = cd joillain b, c ∈ N− {0}. Tällöin

(a+ qZ)(c+ qZ) = ac+ qZ = bdc+ qZ = bq + qZ = 0 + qZ .
1Katso Esimerkki 5.10 .
2Propositio A.3
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Seuraus 5.17. Renkaan Z/qZ nollasta poikkeava alkio on joko nollanjakaja tai yksikkö.

Todistus. Seuraa Propositioista 5.16 ja 5.14.

Esimerkki 5.18. (a) Seurausta 5.17 vastaava tulos ei päde renkaille yleisesti, sillä ko-
konaislukujen renkaassa Z ei ole nollanjakajia ja siinä on ainoastaan kaksi yksikköä ±1.
(b) Jäännösluokkarengas Z/11Z on kunta Seurauksen 5.15 nojalla. Alkiot ±1 + 11Z ovat
omia käänteisalkioitaan kaikissa renkaissa. Kokeilemalla havaitsemme, että

(2 + 11Z)(6 + 11Z) = 12 + 11Z = 1 + 11Z ,
(3 + 11Z)(4 + 11Z) = 12 + 11Z = 1 + 11Z ,
(5 + 11Z)(9 + 11Z) = 45 + 11Z = 1 + 11Z ,
(7 + 11Z)(8 + 11Z) = 56 + 11Z = 1 + 11Z ,

joten
(2 + 11Z)−1 = (6 + 11Z) ,
(3 + 11Z)−1 = (4 + 11Z) ,
(5 + 11Z)−1 = (9 + 11Z) ,
(7 + 11Z)−1 = (8 + 11Z) .

(c) Proposition 5.14 nojalla Z/12Z ei ole kunta. Renkaan Z/12Z yksiköt ovat 1 + 12Z,
5 + 12Z, 7 + 12Z ja 11 + 12Z = −1 + 12Z ja huomaamme, että

(5 + 12Z)2 = 25 + 12Z = 1 + 12Z ja
(7 + 12Z)2 = 49 + 12Z = 1 + 12Z .

Seurauksen 5.17 nojalla renkaan muut nollasta poikkeavat alkiot ovat nollanjakajia. Ko-
keilemalla havaitsemme, että

(2 + 12Z)(6 + 12Z) = 12 + 12Z = 0 + 12Z ,
(3 + 12Z)(4 + 12Z) = 12 + 12Z = 0 + 12Z ,
(8 + 12Z)(3 + 12Z) = (2 + 12Z)(4 + 12Z)(3 + 12Z) = 0 + 12Z ,
(9 + 12Z)(4 + 12Z) = (3 + 12Z)(3 + 12Z)(4 + 12Z) = 0 + 12Z ja

(10 + 12Z)(6 + 12Z) = (5 + 12Z)(2 + 12Z)(6 + 12Z) = 0 + 12Z .
Jäännösluokkarenkaiden yksiköiden ryhmän rakennetta tarkastellaan kurssin Ryhmät

luvussa 8.4. .

Lause 5.19. Seuraavat väitteet ovat yhtäpitäviä:

(1) Z/qZ on kokonaisalue.

(2) Z/qZ on kunta.

(3) q on alkuluku.

Lukuteoreettinen todistus. Seuraa Propositioista 5.14 ja 5.16.

Algebrallinen todistus. Kohtien (1) ja (2) yhtäpitävyys seuraa Lauseesta 5.7. Kohdat (1)
ja (3) ovat yhtäpitäviä Seurauksen 5.15 ja Esimerkin 5.2(b) nojalla.
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Harjoitustehtäviä
5.1. Olkoon K kommutatiivinen rengas. Osoita, että
(1) a | a kaikille a ∈ K.
(2) Jos a | b ja b | c, niin a | c.
(3) Jos a | b ja a | c, niin a | b+ c.
5.2. Todista Propositio 5.5.
5.3. (1) Olkoon K kommutatiivinen rengas. Olkoon u ∈ K× ja olkoon a ∈ K. Osoita,
että a ∈ K×, jos a | u.
(2) Olkoon K kokonaisalue. Jos a | b ja b | a, niin a = ub jollain u ∈ K×.
5.4. Olkoon K kommutatiivinen rengas. Olkoot a, b ∈ K siten, että ab on nollan jakaja.
Osoita, että a on nollan jakaja tai b on nollan jakaja.
5.5. Olkoon D äärellinen rengas, jossa ei ole nollanjakajia. Osoita, että
(1) jokaisella d ∈ D − {0} on vasen ja oikea käänteisalkio kertolaskun suhteen, ja
(2) D on jakorengas.3

5.6. Osoita, että Z[i] on kokonaisalue. Osoita, että 1 + i on jaoton renkaassa Z[i].
5.7. Olkoon p alkuluku ja olkoon

K =
{
r

s
: r, s ∈ Z, s ̸≡ 0 mod p

}
⊂ Q .

(1) Osoita, että K on rationaalilukujen renkaan alirengas.
(2) Osoita, että a

b
∈ K on yksikkö, jos ja vain jos a ei ole jaollinen alkuluvulla p.

(3) Missä kohtaa käytimme oletusta, että p on alkuluku?
5.8. Olkoot q1, q2, . . . , qN ∈ Z siten, että syt(qi, qj) = 1 kaikilla i ̸= j. Olkoon k ∈ Z

siten, että qi | k kaikilla 1 ≤ i ≤ N . Osoita, että
N∏
i=1

qi | k.

5.9. Määritä renkaan Z/10Z yksiköt ja nollanjakajat.
5.10. Määritä renkaan Z/14Z yksiköt ja nollanjakajat.
5.11. Osoita, että kokonaisalueen K ainoat idempotentit4 alkiot ovat 0 ja 1.

3Katso määritelmät luvusta 1.6. Lauseen 5.7 todistus antaa idean kohdan (1) todistukseen, kohdassa
(2) pitää vielä näyttää, että vasen ja oikea käänteisalkio ovatkin sama alkio.

4Katso Harjoitustehtävä 3.20.
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Luku 6

Polynomirenkaat

Tässä luvussa tutustumme polynomeihin, joiden kertoimet ovat kommutatiivisessa ren-
kaassa ja määrittelemme niille laskutoimitukset, jotka ovat samat kuin tutussa reaali-
kertoimisessa tapauksessa. Näin saamme määriteltyä yhden muuttujan polynomirenkaat,
joita käytetään kurssin viimeisessä luvussa kuntalaajennusten ja erityisesti äärellisten
kuntien konstruktiossa.

6.1 Polynomit ja polynomifunktiot

Tässä luvussa ja myöhemmin polynomeja käsiteltäessä X on muodollinen symboli, jota
usein kutsutaan muuttujaksi.

Olkoon K kommutatiivinen rengas. Olkoon n ∈ N ja olkoot an, an−1, . . . , a1, a0 ∈ K.
Lauseke

P (X) =
n∑
k=0

akX
k = anX

n + an−1X
n−1 + · · · + a1X + a0

on yhden muuttujan K-kertoiminen polynomi. Luku a0 on polynomin P (X) vakiotermi.
Jos m > n ja an+1 = an+2 = · · · = am = 0, niin

n∑
k=0

akX
k =

m∑
k=0

akX
k .

Käytämme K-kertoimisten polynomien joukolle merkintää

K[X] =


n∑
k=0

akX
k : n ∈ N, ak ∈ K kaikilla 0 ≤ k ≤ n

 .
Kommutatiivinen rengas K on polynomin P (X) ∈ K[X] kerroinrengas.
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On hyvä huomata, että edellä määrittelimme polynomit algebrallisina lausekkeina,
erityisesti polynomit eivät ole funktioita. Algebrassa tulee pitää erillään polynomin ja
polynomifunktion käsitteet ja siksi on hyvä käyttää polynomille ja polynomifunktiolle
selkeästi erilaisia merkintätapoja.

Olkoon K kommutatiivinen rengas. Polynomin P (X) =
n∑
k=0

akX
k ∈ K[X] määräämä

polynomifunktio on P : K → K,

x 7→
n∑
k=0

akx
k = P (x) .

Polynomien joukko voi renkaasta riippuen olla paljon suurempi joukko kuin vastaava
polynomifunktioiden joukko: Jos K on kommutatiivinen rengas, jossa on ainakin kak-
si alkiota, niin polynomirengas K[X] on ääretön. Kuitenkin, jos K on äärellinen, niin
funktioita joukolta K joukkoon K on ainoastaan äärellinen määrä.

Kun tarkastelemme (Z/qZ)-kertoimisia polynomeja, merkitsemme kerrointa a + qZ yk-
sinkertaisuuden vuoksi edustajalla a.

Esimerkki 6.1. Kuvausten joukossa {f : Z/2Z → Z/2Z} on neljä alkiota. Toisaalta
joukko Z/2Z[X] on ääretön, koska se sisältää esimerkiksi polynomit Pk(X) = Xk kaikilla
k ∈ N. Polynomifunktioille Pk : Z/2Z → Z/2Z pätee Pk(0) = 0 ja Pk(1) = 1 kaikilla
k ≥ 1, joten polynomit Pk(X) määräävät saman polynomifunktion kaikilla k ≥ 1.

6.2 Polynomirengas
Tässä luvussa määrittelemme K-kertoimisten polynomien joukossa kaksi laskutoimitusta
ja tarkastelemme näin saatavan renkaan perusominaisuuksia.

Olkoon K kommutatiivinen rengas. Polynomiena

P (X) =
n∑
k=0

akX
k ∈ K[X] ja Q(X) =

n∑
k=0

bkX
k ∈ K[X]

summa on
P (X) +Q(X) =

n∑
k=0

(ak + bk)Xk ∈ K[X] (6.1)

ja niiden tulo on

P (X)Q(X) =
2n∑
k=0

( ∑
i+j=k

aibj
)
Xk ∈ K[X]. (6.2)

aYhteenlaskun määritelmä on helpoin kirjoittaa, kun molempien polynomien summilla on sama ylä-
raja n. Voimme rajoittua tähän tapaukseen lisäämällä tarvittaessa toiseen polynomiin termejä, joiden
kerroin on 0.

Propositio 6.2. Olkoon K kommutatiivinen rengas. Joukko K[X] varustettuna polyno-
mien yhteen- ja kertolaskulla on kommutatiivinen rengas.
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Todistus. Selvästi polynomit 0K[X] = 0KX0 ja 1K[X] = 1KX0 ovat yhteenlaskun ja kerto-
laskun neutraalialkiot. Muut renkaan määrittelevät ominaisuudet seuraavat suoraviivai-
sesti siitä, että K on kommutatiivinen rengas, Harjoitustehtävä 6.1.

Olkoon K kommutatiivinen rengas. Rengas K[X] on K-kertoiminen polynomirengas.

Lemma 6.3. Olkoon K kommutatiivinen rengas. Kuvaus i : K → K[X], joka kuvaa
renkaan K alkion a polynomiksi a = aX0 ∈ K[X], on injektiivinen rengashomomorfismi.

Todistus. Kuvaus i kuvaa ainoastaan alkion 0 ∈ K nollapolynomiksi, joten Proposition
3.25 nojalla i on injektio, kunhan se osoitetaan homomorfismiksi. Olkoot siis a, b ∈ K.
Tällöin polynomien laskutoimituksen määritelmän nojalla

i(a) + i(b) = aX0 + bX0 = (a+ b)X0 = i(a+ b)

ja
i(a) i(b) = aX0 bX0 = abX0 = i(ab) .

Lisäksi i(1) = 1 ·X0, joten i on homomorfismi.

Olkoon K kommutatiivinen rengas. Olkoon Fun: K[X] → KK ,

Fun(P (X)) = P

kuvaus, joka liittää polynomiin P (X) sitä vastaavan polynomifunktion P .

Propositio 6.4. Olkoon K kommutatiivinen rengas. Kuvaus Fun: K[X] → KK on ren-
gashomomorfismi.

Todistus. Harjoitustehtävä 6.7.

Propositio 6.5. Polynomirenkaan karakteristika on sama kuin sen kerroinrenkaan ka-
rakteristika.

Todistus. Lemman 6.3 mukaan polynomirenkaalla K[X] on kerroinrenkaan K kanssa
isomorfinen alirengas S = {aX0 : a ∈ K}. Renkaan K[X] kertolaskun neutraalialkio on
renkaassa S, joten renkailla K[X] ja S on sama karakteristika.

6.3 Polynomin vaihtoehtoinen määritelmä
Polynomeille P (X), Q(X) ∈ K[X] pätee P (X) = Q(X) täsmälleen silloin, kun niiden
kerroinjonot ovat samat. Vähemmän havainnollinen mutta edellä esitettyä täsmällisem-
pi ja sen kanssa yhtäpitävä tapa määritellä polynomit on korvata polynomin lauseke∑n
k=0 akX

k sen kertoimien muodostamalla jonolla (a0, a1, . . . , an, 0, 0, . . . ) ja määritellä
yhteenlasku komponenteittain kuten jonoille on tapana ja kertolasku kaavan (6.2) mu-
kaisesti. Tällöin jono (0, 1, 0, 0, 0, . . . ) on symbolin X vastine. Seuraavassa määritelmässä
jono (a0, a1, . . . , an, 0, 0, . . . ) ajatellaan funktiona ω : N → K siten, että ω(k) = ak kaikilla
k ∈ N.

12. tammikuuta 2026



58 Polynomirenkaat

Olkoon K kommutatiivinen rengas, jossa on vähintään kaksi alkiota. Kuvaus ω : N → K,
jolle on Nω ∈ N siten, että ω(k) = 0 kaikille k ≥ Nω, on K-kertoiminen polynomi.
Joukko

K[X] = {ω : N → K} = KN

varustettuna laskutoimituksilla

(ω + ω′)(k) = ω(k) + ω′(k)

ja
(ωω′)(k) =

∑
i,j∈N:i+j=k

ω(i)ω′(j)

on K-kertoiminen polynomirengas.

6.4 Aste
Tässä luvussa tutustumme polynomin asteen perusominaisuuksiin. Aste on käyttökelpoi-
nen itseisarvon korvike polynomien jakoyhtälössä, jota käsittelemme luvussa 6.5.

Symbolilla −∞ on seuraavat ominaisuudet:

◦ −∞ < a kaikilla kokonaisluvuilla a,

◦ −∞ + −∞ = −∞ ja

◦ −∞ + a = −∞ kaikilla kokonaisluvuilla a.

Symbolille −∞ ei ole määritelty muita ominaisuuksia, käytämme sitä ainoastaan nolla-
polynomin asteen merkkinä.

Olkoot an, an−1, . . . , a1, a0 ∈ K ja olkoon an ̸= 0. Polynomin

P (X) =
n∑
k=0

akX
k = anX

n + an−1X
n−1 + · · · + a1X + a0

aste on deg(P (X)) = n ja an on polynomin P (X) korkeimman asteen kerroin.
Nollapolynomin 0 aste on −∞.

Esimerkki 6.6. (a) Olkoot P (X), Q(X) ∈ Z[X],

P (X) = 2X2 + 2, Q(X) = 1 + 2X .

Tällöin
P (X)Q(X) = 4X3 + 2X2 + 4X + 2.

Nyt deg(P (X)) = 2, deg(Q(X)) = 1 ja deg(P (X)Q(X)) = 3.
(b) Jos polynomit P (X), Q(X) ∈ (Z/4Z)[X] määritellään samoilla lausekkeilla kuin koh-
dassa (a), niin

P (X)Q(X) = 2X2 + 2.
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Siis P (X)Q(X) = P (X) = P (X) · 1 mutta Q(X) ̸= 1, joten kertolaskun supistussääntö
ei päde polynomirenkaassa (Z/4Z)[X].

Lisäksi pätee deg(P (X)) = 2 ja deg(Q(X)) = 1 mutta

deg(P (X)Q(X)) = 2 < 3 = 2 + 1

ja
−∞ = deg 0 = deg((2X)(2X)) < 2 deg(2X) = 2.

Lemma 6.7. Olkoon K kommutatiivinen rengas, K ̸= {0}. Tällöin

deg(P (X)Q(X)) ≤ degP (X) + degQ(X)

kaikille P (X), Q(X) ∈ K[X].

Todistus. Olkoot P (X) =
n∑
k=0

akX
k ja Q(X) =

m∑
k=0

bkX
k ja oletetaan, että an ̸= 0, bm ̸= 0.

Tulopolynomin P (X)Q(X) korkeimman asteen termi on anbmXn+m, jos anbm ̸= 0, muuten
aste on alempi.

Seuraava tulos osoittaa, että kokonaisalueominaisuus periytyy kerroinrenkaasta poly-
nomirenkaaseen.

Propositio 6.8. Jos Kon kokonaisalue ja P (X), Q(X) ∈ K[X], niin

deg(P (X)Q(X)) = deg(P (X)) + deg(Q(X)). (6.3)

Lisäksi K[X] on kokonaisalue.

Todistus. Oletetaan, että P (X), Q(X) ∈ K[X] − {0}. Lemman 6.7 merkinnöillä polyno-
min P (X)Q(X) korkeimman asteen termi on anbmX

m+n, missä anbm ̸= 0, sillä K on
kokonaisalue. Siis yhtälö (6.3) pätee näille polynomeille.

Oletetaan sitten, että P (X) = 0. Tällöin kaikille Q(X) pätee 0 ·Q(X) = 0, joten

deg(0 ·Q(X)) = deg 0 = −∞ = −∞ + degQ(X) = deg 0 + degQ(X) . (6.4)

Siis yhtälö (6.3) pätee kaikille polynomeille.
Erityisesti näimme, että kahden nollasta poikkeavan polynomin tulo ei ole nollapoly-

nomi, koska degP (X)Q(X) ∈ N.

Yhtälöstä (6.4) näemme, että polynomin 0 ∈ K[X] aste ei voi olla reaaliluku.

Seuraus 6.9. Jos K ∈ {Z,Q,R,C} tai K = Z/pZ jollain alkuluvulla p, niin

deg(P (X)Q(X)) = degP (X) + degQ(X)

kaikille P (X), Q(X) ∈ K[X].

Propositio 6.10. Jos K on kunta, niin P (X) ∈ K[X]×, jos ja vain jos degP (X) = 0.

Todistus. Jos Q(X) ∈ K[X] − {0}, niin

deg(P (X)Q(X)) = degP (X) + degQ(X) ≥ degP (X) ,

joten P (X) ei ole yksikkö, jos degP (X) ≥ 1. Jos taas degP (X) = 0, niin P (X) = aX0

jollain a ∈ K× ja pätee aX0 a−1X0 = 1X0, joten aX0 on yksikkö.
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Polynomirengas ei ole koskaan kunta. Jos K on kokonaisalue, niin Proposition 6.8
mukaan ainoat polynomit, joilla on käänteisalkio kertolaskun suhteen, ovat vakiopolyno-
mit u, missä u ∈ K×. Sen sijaan, jos kerroinrengas ei ole kokonaisalue, niin esimerkiksi
vakiopolynomeilla a = aX0, missä a on nollanjakaja renkaassa K, ei ole käänteisalkiota
Propositioiden 5.3 ja 6.2 nojalla.

Propositiosta 6.8 seuraa, että ensimmäisen asteen polynomit ovat jaottomia kunta-
kertoimisessa polynomirenkaassa, koska kaikki nollasta poikkeavat polynomit, joiden aste
on pienempi kuin 1 ovat vakiopolynomeita, siis yksiköitä. Korkeamman asteen polynomin
osoittaminen jaottomaksi ei ole välttämättä kovin helppoa.

6.5 Polynomien jakoyhtälö
Yleistämme nyt kokonaislukujen jakoyhtälön1 polynomirenkaille.

Lause 6.11 (Polynomien jakoyhtälö). Olkoon K kommutatiivinen rengas, jossa on vä-
hintään kaksi alkiota. Olkoot A(X), B(X) ∈ K[X] siten, että B(X) ̸= 0 ja polynomin
B(X) korkeimman asteen termin kerroin on yksikkö. Tällöin on yksikäsitteiset polynomit
Q(X), J(X) ∈ K[X], joille pätee

A(X) = Q(X)B(X) + J(X)

ja deg J(X) < degB(X).

Todistus. Osoitetaan ensin, että on polynomit Q(X) ja J(X), jotka toteuttavat väitteen
yhtälön. Jos B(X) jakaa polynomin A(X), ei ole mitään todistettavaa. Muuten olkoon

S =
{
A(X) −D(X)B(X) : D(X) ∈ K[X]

}
.

Koska B(X) ei jaa polynomia A(X), niin 0 /∈ S, joten joukko

degS = {degP (X) : P (X) ∈ S}

on luonnollisten lukujen joukon epätyhjä osajoukko ja sillä on siis minimi m ≥ 0.
Olkoon Q(X) ∈ K[X] polynomi, jolle pätee deg(A(X) −Q(X)B(X)) = m. Olkoon

J(X) = A(X) −Q(X)B(X) = amX
m + · · · + a0.

Nyt polynomit Q(X) ja J(X) siis toteuttavat väitteen yhtälön.
Osoitetaan sitten, että m < d = degB(X). Olkoon bd polynomin B(X) korkeimman

asteen kerroin, joka on oletuksen mukaan yksikkö. Jos olisi m ≥ d, niin

J(X) − amb
−1
d Xm−dB(X) = A(X) − (Q(X) + amb

−1
d Xm−d)B(X) ∈ S

ja deg
(
J(X) − amb

−1
d Xm−dB(X)

)
< m, mutta tämä on mahdotonta, koska polynomin

J(X) aste on minimaalinen.
Osoitetaan lopuksi polynomien Q(X) ja J(X) yksikäsitteisyys. Jos Q̃(X) ja J̃(X)

ovat polynomeja, joille pätee

A(X) = Q̃(X)B(X) + J̃(X)
1Propositio A.1
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ja deg J̃(X) < d, niin

(Q(X) − Q̃(X))B(X) = J̃(X) − J(X).

Jos Q̃(X) ̸= Q(X), niin yhtälön vasemman puolen polynomin aste on vähintään d, koska
polynomin B(X) korkeimman asteen termi on oletuksen mukaan yksikkö.2 Kuitenkin,
koska deg J(X) < d ja deg J̃(X) < d, niin

deg(J̃(X) − J(X)) < d.

Siis Q̃(X) = Q(X) ja J̃(X) = J(X).

Seuraus 6.12 (Kuntakertoimisten polynomien jakoyhtälö). Olkoon K kunta. Olkoot A(X),
B(X) ∈ K[X] siten, että B(X) ̸= 0. Tällöin on yksikäsitteiset Q(X), J(X) ∈ K[X], joille

A(X) = Q(X)B(X) + J(X)

ja deg J(X) < degB(X).

Esimerkki 6.13. Jakoyhtälö voidaan toteuttaa algoritmisesti jakokulman avulla.
Olkoot A(X) = 2X3+X2−X−1 ∈ Z[X] ja B(X) = X2−2 ∈ Z[X]. Tällöin jakokulma

antaa
2X +1

X2 − 2 2X3 +X2 −X −1
∓2X3 ±4X

X2 +3X −1
X2 ±2

3X +1

Proposition 6.8 nojalla lasku pysähtyy tähän, koska deg(3X + 1) < deg(X2 − 2). Saimme
siis yhtälön

2X3 +X2 −X − 1 = (2X + 1)(X2 − 2) + 3X + 1 .
Esimerkki 6.14. Olkoot A(X) = 2X3 +X2 −X−1 ∈ Z[X] ja B(X) = 2X+1 ∈ Z[X].
Jakoyhtälö ei toimi tässä tapauksessa, koska polynomin B(X) korkeimman asteen kerroin
ei ole yksikkö. Jakokulmassa päädytään ongelmalliseen tilanteeseen

2X3 +X2 −X − 1 = X2(2X + 1) −X − 1,

josta ei voi jatkaa.
Jos A(X) = 2X3 + X2 − X − 1 ∈ (Z/3Z)[X] ja B(X) = 2X + 1 ∈ (Z/3Z)[X], niin

jakoyhtälö toimii, koska Z/3Z on kunta. Nyt

2X3 +X2 −X − 1 = (X2 + 1)(2X + 1) + 1 .

Jakoyhtälö toimii myös, jos A(X) = 2X3 +X2 −X−1 ∈ Q[X] ja B(X) = 2X+1 ∈ Q[X].
Tällöin

2X3 +X2 −X − 1 = (X2 − 1
2)(2X + 1) − 1

2 .
2Katso Lemma 5.3 ja Proposition 6.8 todistus.
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6.6 Polynomien juuret ja jaollisuus

Olkoon K kommutatiivinen rengas ja olkoon P (X) ∈ K[X]. Alkio c ∈ K on polynomin
P (X) juuri, jos P (c) = 0.

Kun tarkastelemme (Z/qZ)-kertoimisia polynomeja, laskemme polynomifunktioiden ar-
voja usein edustajien avulla ja tarkastelemme arvoja mod q.

Esimerkki 6.15. (a) Esimerkin 6.6(a) polynomeilla P (X), Q(X) ∈ Z[X] ei ole juu-
ria. Sen sijaan samalla lausekkeella määritellyllä rationaalilukukertoimisella polynomilla
Q(X) = 1 + 2X ∈ Q[X] on juuri, sillä Q(−1

2) = 0. Yleisemmin, jos K on kunta ja
P (X) = aX + b ∈ K[X] on ensimmäisen asteen polynomi, niin polynomilla P (X) on
juuri, sillä P (− b

a
) = 0.

(b) Esimerkin 6.6(b) polynomin P (X) = 2X2 + 2 ∈ (Z/4Z)[X] juuret ovat 1 + 4Z ja
3 + 4Z:

P (0) = 2 · 02 + 2 = 2 ≡ 2 mod 4,
P (1) = 2 · 12 + 2 = 4 ≡ 0 mod 4,
P (2) = 2 · 22 + 2 = 10 ≡ 2 mod 4,
P (3) = 2 · 32 + 2 = 20 ≡ 0 mod 4.

Polynomilla Q(X) = 1 + 2X ∈ (Z/4Z)[X] ei ole juuria, koska

Q(0) ≡ Q(2) ≡ 1 ̸≡ 0 mod 4

ja
Q(1) ≡ Q(3) ≡ 3 ̸≡ 0 mod 4 .

(c) Polynomin X2 +X = X(X + 1) ∈ (Z/2Z)[X] juuret ovat 0, 1 ∈ Z/2Z.
Jakoyhtälö antaa seuraavan perustuloksen:

Propositio 6.16. Olkoon K kommutatiivinen rengas, jossa on vähintään kaksi alkiota.
Olkoon P (X) ∈ K[X] ja olkoon c ∈ K. Tällöin c on polynomin P (X) juuri, jos ja vain
jos (X − c) | P (X).

Todistus. Oletetaan, että P (c) = 0. Koska polynomin X − c korkeimman asteen termin
kerroin on 1 ∈ K×, voimme soveltaa jakoyhtälöä.3 Jakoyhtälön mukaan on K-kertoimiset
polynomit Q(X) ja J(X), joille deg J(X) < 1 ja

P (X) = Q(X)(X − c) + J(X) . (6.5)

Koska deg J < 1, J(X) on vakiopolynomi J(X) = b jollakin b ∈ K. Erityisesti

0 = P (c) = Q(c)(c− c) + J(c) = b,

joten b = 0. Siis J(X) = 0 ja yhtälön (6.5) nojalla (X − c)|P (X).
Toisaalta, jos P (X) = (X − c)Q(X) jollain polynomilla Q(X) ∈ K[X], niin

P (c) = (c− c)Q(c) = 0.
3Lause 6.11
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Seuraus 6.17. Olkoon K kunta. Toisen tai kolmannen asteen polynomi P (X) ∈ K[X]
on jaoton, jos ja vain jos sillä ei ole juurta kunnassa K.

Todistus. Harjoitustehtävä 6.12

Esimerkki 6.18. (a) Polynomi P (X) = X2 + 1 ∈ C[X] ei ole jaoton koska

X2 + 1 = (X + i)(X − i) .

Tämän polynomin juuret ovat ±i ∈ C. Sen sijaan Proposition 6.16 nojalla samalla lausek-
keella määritellyt polynomit P (X) ∈ R[X], P (X) ∈ Q[X] ja P (X) ∈ Z[X] ovat jaottomia,
koska niillä ei ole juuria.
(b) Renkaassa (Z/2Z)[X] on neljä toisen asteen polynomia: X2, X2 + 1, X2 + X ja
X2 +X+1. Proposition 6.17 mukaan polynomi X2 +X+1 ∈ (Z/2Z)[X] on jaoton, koska
sillä ei ole yhtään juurta kahden alkion kunnassa Z/2Z, katso Harjoitustehtävä 6.5. Sen
sijaan mikään muu toisen asteen polynomi ei ole jaoton tässä renkaassa, koska X2 = XX,
X2 +X = X(X + 1) ja X2 + 1 = (X + 1)2.
(c) Seuraus 6.17 soveltuu vain toisen ja kolmannen asteen polynomien tarkasteluun. Nel-
jännen asteen polynomi X4 +X2 + 1 = (X2 +X + 1)2 ∈ (Z/2Z)[X] ei ole jaoton, koska
se on toisen asteen polynomin neliö. Sillä ei ole yhtään juurta.

6.7 Juurien lukumäärä
Olkoon c polynomin P (X) ∈ K[X] juuri. Jos P (X) = (X−c)kQ(X) jollain Q(X) ∈ K[X]
ja c ei ole polynomin Q(X) juuri, niin c on polynomin P (X) k-kertainen juuri.

Kun lasketaan polynomin P (X) juuria, k-kertainen juuri lasketaan k juureksi.

Esimerkki 6.19. PolynomillaX2(X−1) ∈ C[X] on kertaluku huomioiden kolme juurta,
koska 0 on kaksinkertainen juuri.

Lause 6.20. Olkoon K kokonaisalue ja olkoon n ≥ 0. Jos P (X) ∈ K[X] − {0} ja
degP (X) = n, niin polynomilla P (X) on korkeintaan n juurta.

Todistus. Jos polynomin aste on 0, niin se on nollasta poikkeava vakiopolynomi. Tällaisella
polynomilla ei ole juuria, joten väite pätee, kun n = 0. Oletetaan, että kaikilla n−1 asteen
polynomeilla on korkeintaan n − 1 juurta. Olkoon P (X) polynomi, jonka aste on n. Jos
polynomilla P (X) on juuri c ∈ K, niin Proposition 6.16 nojalla P (X) = (X − c)Q(X)
jollain Q(X) ∈ K[X]. Koska K on kokonaisalue, P (a) = 0, jos ja vain jos a = c tai Q(a) =
0. Proposition 6.8 mukaan deg(Q(X)) = n− 1 ja sillä on siis induktio-oletuksen mukaan
korkeintaan n− 1 juurta. Siis polynomilla P (X) on kertaluku huomioiden korkeintaan n
juurta.

Seuraus 6.21. Olkoon K kokonaisalue. Olkoot c1, c2, . . . , ck polynomin P (X) ∈ K[X]
juuria. Tällöin on m1,m2, . . . ,mk ∈ N− {0} ja Q(X) ∈ K[X], joille pätee

P (X) = (X − c1)m1(X − c2)m2 · · · (X − ck)mkQ(X)

ja degQ(X) = degP (X) − (m1 +m2 + · · · +mk).
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Esimerkki 6.22. Lauseen 6.20 väite ei päde kaikille kommutatiivisille renkaille. Toisen
asteen polynomilla X2 ∈ (Z/16Z)[X] on neljä juurta: 02 ≡ 42 ≡ 82 ≡ 122 ≡ 0 mod 16.
Tämä on mahdollista, koska kerroinrengas Z/16Z ei ole kokonaisalue.

Polynomin X2 ∈ (Z/16Z)[X] voi esittää kolmella eri tavalla kahden ensimmäisen
asteen polynomin tulona:

X2 = X X = (X + 4)(X + 12) = (X + 8)2 .

Tästä näemme, että 0 + 16Z ja 0 + 8Z ovat kaksinkertaisia juuria, joten toisen asteen
polynomilla Q(X) on kertaluku huomioiden 6 juurta.

Propositio 6.23. Olkoon K ääretön kokonaisalue. Tällöin jokaista kokonaisalueen K
polynomifunktiota vastaa yksikäsitteinen polynomi renkaassa K[X].

Todistus. Proposition 6.4 nojalla kuvaus Fun: K[X] → KK on rengashomomorfismi.
Proposition 3.25 nojalla riittää osoittaa, että tämän homomorfismin ydin on {0}. Jos
Fun(P (X)) on nollafunktio, niin polynomilla P (X) on äärettömän monta juurta. Lauseen
6.20 nojalla ainoa tällainen polynomi on 0 ∈ K[X].

Seuraus 6.24. Jos K ∈ {Z,Q,R,C}, niin Fun: K[X] → KK on injektio.

6.8 Algebrallisesti suljetut kunnat

Kunta K on algebrallisesti suljettu, jos jokaisella vakiosta poikkeavalla polynomilla
P (X) ∈ K[X] on juuri.

Esimerkki 6.25. (a) Reaalilukujen kunta R ei ole algebrallisesti suljettu: Esimerkiksi
toisen asteen polynomilla X2 + 1 ∈ R[X] ei ole juurta.
(b) Rationaalilukujen kunta Q ei ole algebrallisesti suljettu: Esimerkiksi toisen asteen
polynomilla X2 + 1 ∈ Q[X] ei ole juurta.
(c) Kahden alkion kunta Z/2Z ei ole algebrallisesti suljettu: Esimerkiksi toisen asteen
polynomilla X2 +X + 1 ∈ (Z/2Z)[X] ei ole juurta.
(d) Toisen asteen polynomillaX2+1 ∈ C[X] on juuret ±i ja polynomillaX2+X+1 ∈ C[X]
on juuret −1±i

√
3

2 .

Lause 6.26 (Algebran peruslause). Kompleksilukujen kunta on algebrallisesti suljettu.

Todistus. Todistetaan kompleksianalyysin kursseilla. Katso myös [LP, Lause 6.23].

Lause 6.27. Olkoon K algebrallisesti suljettu kunta. Jokainen vakiosta poikkeava polyno-
mi P (X) ∈ K[X] on ensimmäisen asteen polynomien tulo. Jokaisella nollasta poikkeavalla
polynomilla P (X) ∈ K[X] on juurten kertaluku huomioiden degP (X) juurta. Polynomi
P (X) ∈ K[X] on jaoton, jos ja vain jos degP (X) = 1.

Todistus. Todistetaan kuten Lause 6.20, Harjoitustehtävä 6.17.

Seuraus 6.28. Jokainen vakiosta poikkeava polynomi P (X) ∈ C[X] on ensimmäisen
asteen polynomien tulo. Nollasta poikkeavalla polynomilla P (X) ∈ C[X] on juurien ker-
taluku huomioiden degP (X) juurta.
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Harjoitustehtäviä
6.1. Todista Propositio 6.2.
6.2. Olkoot P (X), Q(X) ∈ (Z/5Z)[X],

P (X) = 3 + 2X + 4X2 + 2X3

ja
Q(X) = 4 + 4X + 4X2 + 4X3 + 4X4.

Määritä polynomi P (X)Q(X).
6.3. Laske (1 − 2X)8 renkaassa (Z/16Z)[X].4

6.4. Laske (1 + 4X)(X3 + 2X + 3) polynomirenkaissa Z[X], (Z/5Z)[X] ja (Z/7Z)[X].
6.5. Määritä polynomien X2 + X + 1 ∈ (Z/2Z)[X], X2 + X + 1 ∈ (Z/3Z)[X] ja X3 +
2X + 1 ∈ (Z/3Z)[X] juuret.
6.6. Osoita, että 1 + 2Z on polynomin P (X) ∈ (Z/2Z)[X] juuri, jos ja vain jos polyno-
milla P (X) on parillinen määrä nollasta poikkeavia kertoimia.
6.7. Todista Propositio 6.4.
6.8. Jaa polynomi (kuten Luvussa 6.5 tehdään)

P (X) = X3 + 2X2 + 3X + 2

polynomilla
Q(X) = 2X2 + 3X + 1

(1) polynomirenkaassa Q[X] ja
(2) polynomirenkaassa (Z/7Z)[X].
6.9. Jaa polynomi

P (X) = X3 + 2X2 +X + 2 ∈ (Z/3Z)[X]

polynomilla
Q(X) = X2 + 2 ∈ (Z/3Z)[X] .

6.10. Olkoon K kokonaisalue. Olkoot P (X), Q(X) ∈ K[X]. Osoita: Jos P (X) | Q(X)
ja Q(X) | P (X), niin on u ∈ K×, jolle P (X) = uQ(X).
6.11. Olkoot ak ∈ R kaikilla k ∈ {0, 1, 2, . . . , n} ja olkoon

P (X) =
n∑
k=0

akX
k ∈ C[X] .

Olkoon z0 ∈ C polynomin P (X) juuri. Osoita, että z0 on polynomin P (X) juuri.
6.12. Todista Seuraus 6.17.
6.13. Päteekö Seurauksen 6.17 väite, jos oletamme vain, että K on kokonaisalue?

4Käytä binomikaavaa.
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6.14. Mitkä polynomit aX2 + bX + c ∈ R[X] ovat jaottomia?
6.15. (a) Onko polynomi X2 − 2 ∈ (Z/5Z)[X] jaoton?
(b) Onko polynomi X2 + 1 ∈ (Z/5Z)[X] jaoton?
6.16. Esitä polynomi X5 + 1 ∈ (Z/2Z)[X] jaottomien polynomien tulona.
6.17. Todista Lause 6.27.
6.18. Olkoon

P (X) = anX
n + an−1X

n−1 + · · · + a1X + a0 ∈ Z[X] ⊂ Q[X] .

(a) Olkoon q ∈ Z on polynomin P (X) ∈ Z[X] juuri. Osoita, että q | a0.
(b) Olkoon r

s
∈ Q polynomin P (X) ∈ Q[X] juuri supistetussa muodossa.5 Osoita, että

r | a0 ja s | an.
6.19. Esitä polynomi X4 + 2X3 − 10X2 − 11X − 12 ∈ Q[X] jaottomien polynomien
tulona.
6.20. Esitä polynomi 5X5+7X4−23X3−5X2−28X−12 ∈ Q[X] jaottomien polynomien
tulona.

5Siis syt(r, s) = 1.
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Luku 7

Ideaalit ja kuntalaajennukset

Tässä luvussa tutustumme renkaiden ideaaleihin ja niiden avulla muodostettuihin tekijä-
renkaisiin. Kurssin huipentumana sovellamme polynomirenkaiden ideaaleja kuntalaajen-
nusten ja erityisesti äärellisten kuntien konstruktioon.

7.1 Ideaalit
Olkoon G ryhmä. Olkoon B ⊂ G, B ̸= ∅, vakaa osajoukko. Jos indusoidulla laskutoimi-
tuksella varustettu joukko B on ryhmä, niin se on ryhmän G aliryhmä.

Lemma 7.1. Olkoon G ryhmä. Jokaisen aliryhmän H ≤ G neutraalialkio on ryhmän G
neutraalialkio.

Todistus. Olkoon e ∈ G neutraalialkio. Jos joillekin a, b ∈ H ≤ G pätee ab = b = eb ja
ba = b = be , niin ryhmän G supistussäännön1 nojalla a = e.

Luvussa 3.4 huomasimme, että rengashomomorfismin ydin ei yleensä ole määrittely-
renkaansa alirengas. Ytimellä on kuitenkin seuraavat tärkeät ominaisuudet:

Propositio 7.2. Olkoon ϕ : R → R′ rengashomomorfismi. Ydin kerϕ on additiivisen
ryhmän (R,+) aliryhmä. Kaikille x ∈ R ja kaikille a ∈ kerϕ pätee ax, xa ∈ kerϕ.

Todistus. Jos x, y ∈ kerϕ, niin

ϕ(x+ y) = ϕ(x) + ϕ(y) = 0 + 0 = 0 ,

joten x + y ∈ kerϕ. Siis ydin on yhteenlaskun suhteen vakaa ja renkaan R additiivisen
ryhmän (R,+) laskutoimitus + indusoi assosiatiivisen laskutoimituksen joukkoon kerϕ.
Lemman 3.19 nojalla 0 ∈ kerϕ. Proposition 3.5 kohdan (2) nojalla jokaisella x ∈ kerϕ
pätee ϕ(−x) = −ϕ(x) = 0. Siis −x ∈ kerϕ, joten kerϕ on ryhmä.

1Katso luku 3.1.
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Toinen väite seuraa helposti huomaamalla, että kaikille x ∈ R ja kaikille a ∈ kerϕ
pätee

ϕ(xa) = ϕ(x)ϕ(a) = ϕ(x)0 = 0

ja
ϕ(ax) = ϕ(a)ϕ(x) = 0ϕ(x) = 0 .

Renkaan R epätyhjä osajoukko I ⊂ R on ideaali, jos

(1) (I ,+) on additiivisen ryhmän (R,+) aliryhmä ja

(2) xa, ax ∈ I kaikilla x ∈ R ja a ∈ I .

Jos rengas R on kommutatiivinen, riittää tarkastaa ideaalin määritelmän ehto (1) ja
kumpi tahansa ehdon (2) tuloista.

Lemma 7.3. Jos I ⊂ R on renkaan R ideaali, niin 0R ∈ I .

Todistus. Määritelmän mukaan I on additiivisen ryhmän (R,+) aliryhmä ja Lemman
7.1 nojalla 0R ∈ I .

Seuraus 7.4. Rengashomomorfismin ϕ : R → R′ ydin on renkaan R ideaali.

Propositio 7.5 (Ideaalitesti). Olkoon R rengas. Osajoukko A ⊂ R, A ̸= ∅, on ideaali,
jos ja vain jos

(1) a− b ∈ A kaikilla a, b ∈ A ja

(2) ra, ar ∈ A kaikilla a ∈ A ja kaikilla r ∈ R.

Todistus. Harjoitustehtävä 7.1.

Esimerkki 7.6. (a) Jokaisella renkaalla R on ainakin ideaalit R ja {0}.
(b) Ideaalitestillä on helppo tarkastaa, että kokonaislukujen renkaan Z parillisten lukujen
osajoukko 2Z = {2k : k ∈ Z} on ideaali, koska 2k − 2ℓ = 2(k − ℓ) ∈ 2Z kaikilla k, ℓ ∈ Z
ja kaikille a, k ∈ Z pätee a(2k) = 2(ak) ∈ 2Z.

Lemma 7.7. Jos renkaan R ideaali I sisältää yksikön, niin I = R.

Todistus. Olkoon u ∈ I yksikkö. Tällöin 1 = uu−1 ∈ I . Koska I on ideaali, niin kaikilla
x ∈ R pätee x = x 1 ∈ I . Siis I = R.

Propositio 7.8. Jos renkaan R ideaali I on alirengas, niin I = R.

Todistus. Jos I on renkaan R alirengas, niin 1 = 1R ∈ I . Väite seuraa Lemmasta
7.7.

Propositio 7.9. Olkoon I jakorenkaan R ideaali. Tällöin I = R tai I = {0}. Erityi-
sesti kunnan K ainoat ideaalit ovat {0} ja K.

Todistus. Väite seuraa Lemmasta 7.7.
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Ideaalien avulla saamme toisen todistuksen Proposition 4.7 injektiivisyysväitteelle:

Seuraus 7.10. Olkoon K kunta ja olkoon R rengas, jossa on ainakin kaksi alkiota. Olkoon
ϕ : K → R rengashomomorfismi. Tällöin ϕ on injektio. Erityisesti kuntahomomorfismi on
injektio.

Todistus. Olkoon ϕ : R → K rengashomomorfismi. Tällöin kerϕ on kunnan K ideaali.
Proposition 3.12 nojalla 0R ̸= 1R. Siis kerϕ ̸= K, koska ϕ(1K) = 1R ̸= 0R. Proposition
7.9 nojalla kerϕ = {0K}, joten ϕ on injektio Proposition 3.25 nojalla.

Propositio 7.11. Olkoon ϕ : R → S rengashomomorfismi. Tällöin
(1) Jos I ⊂ R on ideaali, niin ϕ(I ) on renkaan ϕ(R) ideaali.
(2) Jos I ⊂ S on ideaali, niin ϕ−1(I ) on renkaan R ideaali.

Todistus. (1) Harjoitustehtävä 7.3.
(2) Lemman 7.3 nojalla 0S ∈ I . Lemman 3.19 nojalla ϕ(0R) = 0S, joten ϕ−1(I ) ̸= ∅.
Olkoot a, b ∈ ϕ−1(I ) ja r ∈ R. Tällöin ϕ(a− b) = ϕ(a) − ϕ(b) ∈ I , koska I on ideaali.
Siis a− b ∈ ϕ−1(I ). Lisäksi ϕ(ra) = ϕ(r)ϕ(a) ∈ I , koska ϕ(a) ∈ I ja I on renkaan S
ideaali. Siis ra ∈ ϕ−1(I ). Vastaavasti osoitetaan, että ar ∈ ϕ−1(I ). Ideaalitestin2 nojalla
ϕ−1(I ) on ideaali.

7.2 Pääideaalit
Lemma 7.12. Olkoon K kommutatiivinen rengas ja olkoon a ∈ K. Joukko

aK = Ka = {ka : k ∈ K}

on ideaali.

Todistus. Joukko Ka ei ole tyhjä, sillä a = 1 · a ∈ Ka. Jos x, y ∈ Ka, niin x = k1a ja
y = k2a joillain k1, k2 ∈ K. Tällöin x− y = (k1 −k2)a ∈ Ka. Lisäksi kaikille k ∈ K pätee
kx = (kk1)a ∈ Ka. Proposition 7.5 nojalla Ka on ideaali.

Olkoon K kommutatiivinen rengas ja olkoon x ∈ K. Ideaali (x) = xK on alkion x
virittämä pääideaali.
Kokonaisalue, jonka kaikki ideaalit ovat pääideaaleja on pääideaalialue.

Lemma 7.13. Jos K on kommutatiivinen rengas ja u ∈ K×, niin (ua) = (a) kaikille
a ∈ K.

Todistus. Harjoitustehtävä 7.8.

Esimerkki 7.14. Esimerkin 7.9 nojalla kaikki kunnat ovat pääideaalialueita.

Propositio 7.15. Kokonaislukujen rengas Z on pääideaalialue.
2Propositio 7.5
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Todistus. Olkoon I ̸= {0} renkaan Z ideaali. Koska jokaiselle b ∈ I pätee −b ∈ I ,
joukko {b ∈ I : b > 0} ei ole tyhjä. Olkoon

a = min{b ∈ I : b > 0} .

Osoitetaan, että I = aZ. Ideaalin määritelmän nojalla kaikki alkion a monikerrat ovat
joukossa I , joten aZ ⊂ I .

Olkoon b ∈ I . Jakoyhtälön nojalla on k ∈ Z ja 0 ≤ r < a siten, että b = ka + r.
Ideaalin määritelmän nojalla r ∈ I . Jos r ̸= 0, niin 0 < r < a, mikä on ristiriita luvun
a määritelmän kanssa. Siis b ∈ aZ, joten I ⊂ aZ.

Seuraavan tärkeän tuloksen todistus muistuttaa Proposition 7.15 todistusta.

Lause 7.16. Olkoon K kunta. Tällöin polynomirengas K[X] on pääideaalialue.

Todistus. Olkoon I ̸= {0} ideaali kokonaisalueessa K[X]. Olkoon B(X) ∈ I −{0} alkio,
jolle pätee deg(B(X)) ≤ deg(C(X)) kaikille C(X) ∈ I − {0}. Ideaalin määritelmän
nojalla (B(X)) ⊂ I .

Osoitetaan, että I ⊂
(
B(X)

)
. Olkoon A(X) ∈ I . Kuntakertoimisten polynomien

jakoyhtälön3 mukaan on Q(X), R(X) ∈ K[X], joille pätee A(X) = Q(X)B(X)+R(X) ja
deg(R(X)) < deg(B(X)). Erityisesti R(X) = A(X)−Q(X)B(X) ∈ I . Koska deg(B(X))
on minimaalinen nollasta poikkeaville ideaalin I alkioille, pätee siis R(X) = 0, joten
A(X) ∈

(
B(X)

)
.

Seurauksen 7.16 väite ei päde ilman oletusta, että kerroinrengas on kunta. Esimerkiksi
kokonaislukukertoimisten polynomien renkaan ideaalirakenne on monimutkaisempi:
Esimerkki 7.17. Polynomirenkaan Z[X] ideaali I = (2, X), joka koostuu niistä ko-
konaislukukertoimisista polynomeista, joiden vakiotermi on parillinen ei ole pääideaali:
Jos I = (P (X)) jollekin P (X) ∈ Z[X], niin P (X) jakaa polynomin 2 ∈ I . Propo-
sition 6.8 nojalla degP (X) ≤ deg 2 = 0, koska kerroinrengas Z on kokonaisalue. Siis
P (X) ∈ {±1,±2} ⊂ Z[X]. Koska X ∈ I ja ±2 ∤ X, täytyy olla P (X) = ±1, jo-
ten I = (P (X)) = Z[X], mikä on ristiriita. Erityisesti siis polynomirengas Z[X] ei ole
pääideaalialue.

7.3 Tekijärenkaat

Olkoon R rengas. Ideaalin I ⊂ R määräämä ekvivalenssirelaatio ∼ määritellään aset-
tamalla x ∼ y, jos ja vain jos x− y ∈ I .a

Ekvivalenssirelaation ∼ ekvivalenssiluokkia kutsutaan jäännösluokiksi mod I tai sivu-
luokiksi. Alkion x ∈ R jäännösluokalle käytetäään additiivista merkintää

x+ I = {y ∈ R : x− y ∈ I } .
aHarjoituksissa tarkastamme, että ∼ on todellakin ekvivalenssirelaatio. Ekvivalenssirelaation määri-

telmä on luvussa 2.1.

3Seuraus 6.12
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Ideaalin määräämä ekvivalenssirelaatio on kokonaislukurenkaan Z kongruenssin yleis-
tys. Jos I on renkaan Z ideaali, niin Proposition 7.15 nojalla I = qZ jollain q ∈ Z. Jos
q ≥ 1, niin x− y ∈ qZ, jos ja vain jos x ≡ y mod q.

Propositio 7.18. Olkoon R rengas ja olkoon I ⊂ R ideaali. Renkaan R yhteenlasku ja
kertolasku ovat yhteensopivia ideaalin I määräämän ekvivalenssirelaation kanssa.

Todistus. Tarkastellaan kertolaskua: Olkoot a, a′, b, b′ ∈ R, a ∼ a′ ja b ∼ b′. Nyt a−a′ ∈ I
ja b− b′ ∈ I , joten

ab− a′b′ = ab− ab′ + ab′ − a′b′ = a(b− b′) + (a− a′)b′ ∈ I ,

koska I on ideaali. Siis ab ∼ a′b′.
Yhteenlaskun yhteensopivuus todistetaan Harjoitustehtävässä 7.11.

Proposition 7.18 ja Lemman 2.7 nojalla renkaan R molemmat laskutoimitukset mää-
rittelevät tekijälaskutoimituksen tekijäjoukossa R/I .

Jäännösluokkien laskutoimitukset ovat

(x+ I ) + (y + I ) = (x+ y) + I

ja
(x+ I )(y + I ) = xy + I

kaikille x, y ∈ R. Erityisesti 0R + I = I on yhteenlaskun neutraalialkio ja 1R + I on
kertolaskun neutraalialkio.

Seuraava tulos yleistää Esimerkkien 3.6 ja 3.20 tulokset kokonaislukurenkaan tilan-
teesta yleiseen tapaukseen:

Propositio 7.19. Olkoon R rengas ja olkoon I sen ideaali. Tällöin tekijäjoukko R/I
on rengas ja tekijäkuvaus π : R → R/I on rengashomomorfismi.

Todistus. Todistetaan samalla tavalla kuin vastaavat väitteet jäännösluokkarenkaille lu-
vuissa 2.3 ja 2.4. Harjoitustehtävä 7.12.

Seuraus 7.20. Jokainen ideaali on jonkin rengashomomorfismin ydin.

Todistus. Olkoon R rengas ja olkoon I sen ideaali. Proposition 7.19 nojalla tekijäku-
vaus π : R → R/I on homomorfismi. Sen ydin π−1(0) on tekijärenkaan määrittelevän
ekvivalenssirelaation määritelmän mukaan I .

Propositio 7.21. Tekijärengas on kommutatiivinen, jos alkuperäinen rengas on kommu-
tatiivinen.

Todistus. Tekijäkuvaus on surjektiivinen homomorfismi, joten väite seuraa Propositiosta
1.9 tai Propositiosta 2.8.

Lause 7.22 (Renkaiden isomorfismilause). Olkoon ψ : R → S rengashomomorfismi. Täl-
löin tekijärengas R/ kerψ on isomorfinen renkaan ψ(R) kanssa.
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R

π

��

ψ

$$

R/ kerψ Ψ
∼=

// ψ(R)

Todistus. Määritellään kuvaus Ψ : R/ kerψ → ψ(R) asettamalla

Ψ(x+ kerψ) = ψ(x)

kaikille x + kerψ ∈ R/ kerψ. Tarkastetaan, että kuvaus Ψ on hyvin määritelty, mikä
tarkoittaa, että sen arvo ei riipu kuvattavan ekvivalenssiluokan edustajan valinnasta. Jos
x+ kerϕ = y+ kerϕ, niin x ∼ y, mikä määritelmän mukaan tarkoittaa x− y ∈ kerψ. Siis
ψ(x) − ψ(y) = ψ(x− y) = 0, joten

Ψ(x+ kerψ) = ψ(x) = ψ(y) = Ψ(y + kerψ) .

Osoitetaan, että Ψ on rengashomomorfismi: Olkoot x, y ∈ R. Tällöin

Ψ(x+ kerψ) + Ψ(y + kerψ) = ψ(x) + ψ(y) = ψ(x+ y) = Ψ(x+ y + kerϕ)
= Ψ(x+ kerψ + y + kerψ) ,

Ψ(x+ kerψ)Ψ(y + kerψ) = ψ(x)ψ(y) = ψ(xy) = Ψ(xy + kerϕ)
= Ψ((x+ kerψ)(y + kerψ))

ja Ψ(1 + kerψ) = ψ(1) = 1, koska ψ on rengashomomorfismi.
Kuvaus Ψ on määritelmänsä nojalla surjektio. Osoitetaan se vielä injektioksi, jolloin

väite tulee todistetuksi. Olkoon x+ kerψ ∈ ker Ψ. Tällöin ψ(x) = 0, joten x ∈ kerψ. Siis
x+ kerψ = 0 + kerψ = 0 ∈ R/ kerψ. Siis Ψ on injektio.

Esimerkki 7.23. (a) Koska R on aina renkaan R ideaali ja R/R ∼= {0}, niin tekijärengas
R/I voi olla kommutatiivinen vaikka R ei olisikaan. Toinen ääriesimerkki tekijärenkaasta
on R/{0} ∼= R.
(b) Olkoon Ω ̸= ∅ ja olkoon R rengas. Esimerkissä 3.21 tarkasteltu evaluaatiohomomor-
fismi Ec : RΩ → R on surjektio kaikille c ∈ Ω, koska Ec(a) = a kaikille a ∈ R. Renkai-
den isomorfismilauseen nojalla RΩ/ kerEc on rengasisomorfinen renkaan R kanssa kaikille
c ∈ Ω.
(c) Reaaliluvut konstruoidaan kurssilla Lukualueet4 rationaalilukujen Cauchyn jonojen
renkaan nollaan suppenevien jonojen ideaalia vastaavana tekijärenkaana.

Seuraus 7.24. Kunnalla, jonka karakteristika on p, on alikunta, joka on isomorfinen
kunnan Z/pZ kanssa.

4Katso [LP, luku 5].
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Todistus. Olkoon K kunta, jonka karakteristika on p. Olkoon ϕ : Z → K rengashomomor-
fismi. Proposition 3.27 nojalla ϕ(Z) on kunnan K alirengas. Karakteristikan määritelmän
nojalla kerϕ = pZ, joten isomorfismilauseen nojalla ϕ(Z) on isomorfinen kunnan Z/pZ
kanssa.

Lause 7.25. Olkoon K äärellinen kunta. Tällöin on alkuluku p ja positiivinen luonnolli-
nen luku q ∈ N− {0} siten, että #K = pq.

Todistus. Kunnan K karakteristika on Proposition 5.6 nojalla p jollain alkuluvulla p.5
Olkoon ϕ : Z → K rengashomomorfismi. Seurauksen 7.24 nojalla kunnalla K on alikunta
k, jossa on p alkiota. Proposition 4.10 nojalla K on k-vektoriavaruus, joten väite seuraa
Lemmasta 4.13.

7.4 Polynomirenkaiden tekijärenkaita
Tässä luvussa tarkastelemme kuntakertoimisten polynomirenkaiden tekijärenkaita, joita
käytämme luvussa 7.6 kuntalaajennusten muodostamisessa.

Lause 7.26. Olkoon K kunta ja olkoon P (X) ∈ K[X] polynomi, jonka aste on d ≥ 1.
Jos kunnassa K on q alkiota, niin renkaassa K[X]/(P (X)) on qd alkiota.

Todistus. Polynomien jakoyhtälön6 nojalla jokaisella tekijärenkaan K[X]/(P (X)) alkiolla
Q(X)+(P (X)) ∈ K[X]/(P (X)) on edustajaQ(X), jolle pätee degQ(X) < degP (X) = d:

Q(X) = T (X)P (X) +Q(X)

yksikäsitteiselle T (X) ∈ K[X]. Tällaisia polynomeja on qd kappaletta ja mitkään kaksi
eivät ole ekvivalentteja.

Esimerkki 7.27. Olkoon P (X) = X2 +X+1 ∈ (Z/2Z)[X]. Lauseen 7.26 todistuksesta
seuraa, että renkaan (Z/2Z)[X]/(P (X)) alkiot ovat

0 = (P (X)) , 1 = 1 + (P (X)) ,
α = X + (P (X)) ja α + 1 = X + 1 + (P (X)) .

Tekijärenkaan yhteen- ja kertolaskun laskutaulut ovat

+ 0 1 α α+ 1
0 0 1 α α+ 1
1 1 0 α + 1 α
α α α+ 1 0 1

α + 1 α + 1 α 1 0

ja

· 0 1 α α + 1
0 0 0 0 0
1 0 1 α α + 1
α 0 α α + 1 1

α + 1 0 α + 1 1 α

.

Laskutauluja vertaamalla näemme, että tekijärengas (Z/2Z)[X]/(P (X)) on isomorfinen
Esimerkissä 4.5 tarkastellun kunnan F kanssa, siellähän β = α + 1.

5Jos renkaan R karakteristika on 0, niin R on ääretön.
6Seuraus 6.12
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7.5 Maksimaaliset ideaalit
Olkoon R rengas. Renkaan R ideaali I on aito ideaali, jos I ̸= R.
Renkaan R aito ideaali M on maksimaalinen ideaali, jos se ei ole minkään aidon ideaalin
aito osajoukko.

Proposition 7.9 mukaan kunnan nollaideaali on maksimaalinen ideaali.

Propositio 7.28. Kokonaislukurenkaan Z ideaali qZ, q ≥ 2, on maksimaalinen, jos ja
vain jos q on alkuluku.

Todistus. Jos q ei ole alkuluku, niin q = ab joillakin a, b ∈ N − {0, 1}. Tällöin q ∈ aZ ja
a /∈ qZ, joten ideaali qZ sisältyy aidosti aitoon ideaaliin aZ eikä qZ siis ole maksimaalinen.

Olkoon q alkuluku ja olkoon rZ ideaali, joka sisältää aidosti ideaalin qZ. Siis r ̸= ±q.
Erityisesti q ∈ rZ. Koska q on alkuluku, sen tekijät ovat ±1 ja ±q, joten r = ±1. Siis
rZ = Z.

Lauseen 5.19 mukaan tekijärengas Z/qZ on kunta täsmälleen silloin, kun q on alku-
luku. Proposition 7.28 mukaan tämä on yhtäpitävää sen kanssa, että qZ on kokonaislu-
kurenkaan maksimaalinen ideaali. Seuraava tulos yleistää tämän havainnon.

Lause 7.29. Olkoon M kommutatiivisen renkaan K maksimaalinen ideaali. Tällöin te-
kijärengas K/M on kunta.

Todistus. Proposition 7.21 nojalla tekijärengas K/M on kommutatiivinen. Koska M on
renkaan K aito osajoukko, niin tekijärenkaassa K/M on ainakin kaksi alkiota. Olkoon
a+ M ∈ K/M − {0 + M }. Harjoitustehtävän 7.29 nojalla

N = {ak +m : k ∈ K,m ∈ M } = aK + M

on renkaan K ideaali. Ideaali N sisältää aidosti ideaalin M , koska a ∈ N − M . Koska
M on maksimaalinen, pätee N = K. Erityisesti 1 ∈ N , joten on k ∈ K ja m ∈ M
siten, että ak +m = 1. Mutta tästä saadaan

(a+ M )(k + M ) = ak + M = 1 −m+ M = 1 ∈ K/M ,

joten a+ M on yksikkö.

Seuraava tulos antaa keinon maksimaalisten ideaalien tunnistamiseen pääideaalialueis-
sa.

Lause 7.30. Olkoon K pääideaalialue ja olkoon a ∈ K − {0}. Tällöin pääideaali (a) on
maksimaalinen ideaali, jos ja vain jos a on jaoton.

Todistus. Olkoon a jaoton ja olkoon N ideaali, joka sisältää pääideaalin (a). Koska K
on pääideaalialue, niin N = (b) jollain b ∈ K. Pätee siis a = qb jollain q ∈ K. Koska a
on jaoton, täytyy olla q ∈ K× tai b ∈ K×. Jos q on yksikkö, niin Lemman 7.13 nojalla
N = (b) = (qb) = (a). Jos taas b on yksikkö, niin Lemman 7.7 nojalla N = (b) = K.
Siis (a) on maksimaalinen.

Toinen suunta osoitetaan Harjoitustehtävässä 7.24.

Proposition 7.28 toinen todistus. Proposition 7.15 nojalla Z on pääideaalialue. Renkaan
Z jaottomat alkiot ovat ±p alkuluvuille p ∈ N. Väite seuraa Lauseesta 7.30.
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7.6 Kuntalaajennukset polynomirenkaiden avulla
Seuraus 7.31. Olkoon K kunta ja olkoon P (X) ∈ K[X] jaoton. Tällöin (P (X)) on
maksimaalinen ideaali.

Todistus. Polynomirengas K[X] on pääideaalialue Lauseen 7.16 nojalla, joten väite seuraa
Lauseesta 7.30.

Seuraus 7.32. Olkoon K kunta ja olkoon P (X) ∈ K[X] jaoton polynomi. Tällöin teki-
järengas K[X]/(P (X)) on kunta.

Todistus. Väite seuraa Lauseesta 7.29 ja Seurauksesta 7.31.

Esimerkki 7.33. Esimerkissä 6.18 osoitimme, että polynomi P (X) = X2 + X + 1 on
jaoton toisen asteen polynomi polynomirenkaassa (Z/2Z)[X]. Seurauksen 7.32 ja Lauseen
7.26 nojalla F4 = (Z/2Z)[X]/(P (X)) on neljän alkion kunta. Totesimme saman laskutau-
luja tarkastelemalla Esimerkissä 7.27.

Esimerkin 7.27 lisäksi olemme tavanneet äärelliset kunnat Fp = Z/pZ, missä p on
alkuluku. Erityisesti näiden kuntien alkioiden lukumäärä on alkuluku. Esimerkin 7.27
tulos yleistyy kaikille alkulukupotensseille pq.

Lause 7.34. Jokaiselle luonnolliselle luvulle q ≥ 1 ja alkuluvulle p on äärellinen kun-
ta, jossa on pq alkiota. Toisaalta jokaisessa äärellisessä kunnassa on pq alkiota joillain
tällaisilla p ja q.

Todistuksesta. Lauseen 7.25 mukaan äärellisessä kunnassa on pq alkiota jollain alkulu-
vulla p ja jollain luonnollisella luvulla q ≥ 1. Seurauksen 7.32 nojalla riittää osoittaa, että
renkaassa (Z/pZ)[X] on jaoton polynomi, jonka aste on q. Tällä kurssilla emme todis-
ta tällaisen polynomin olemassaoloa yleisessä tapauksessa, Harjoitustehtävissä tehdään
muutamia muita erikoistapauksia, katso myös Esimerkki 7.35.

Koko lauseen todistus on esimerkiksi kirjan [IR] luvussa 7.2.

Esimerkki 7.35. Polynomi X2 + 1 on jaoton polynomirenkaassa (Z/pZ)[X] kaikilla
alkuluvuilla p ≡ 3 mod 4. Todistamme tämän kurssilla Ryhmät ryhmäteorian Lagran-
gen lauseen avulla Lemmana 11.20. Kunnassa (Z/pZ)[X]/(X2 + 1) on p2 alkiota näillä
alkuluvuilla p. Toisaalta X2 +1 ei ole jaoton, jos p ≡ 1 mod 4. Emme todista tätä väitettä
mutta se on helppo tarkastaa esimerkiksi alkulukujen 5, 13 ja 17 tapauksissa. Aihetta
käsitellään yksityiskohtaisesti esimerkiksi lähteessä [IR, Luku 5] ja kurssin Lukuteoria 2
materiaalissa [Par, Propositio 7.7] .

Seuraava tulos osoittaa, että kuntakertoimisesta polynomirenkaasta K[X] saadaan
jaottoman polynomin avulla muodostettua kerroinkunnan K kuntalaajennus k. Konstruk-
tiossa käytetyllä polynomilla P (X) ∈ K[X] ei ole juuria Proposition 6.16 nojalla. Kun
polynomin P (X) kertoimet ajatellaan uuden kunnan alkioiksi samastamalla K vakiopo-
lynomien antaman alikunnan kanssa,7 havaitaan, että polynomilla P (X) ∈ k[X] on juuri.

Lause 7.36. Olkoon K kunta ja olkoon P (X) ∈ K[X] jaoton polynomi. Tällöin kunnal-
la k = K[X]/(P (X)) on alikunta, joka on isomorfinen kunnan K kanssa. Polynomilla
P (Y ) ∈ k[Y ] on juuri.

7Katso Lemma 6.3.
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Todistus. Olkoon i : K → K[X] homomorfismi a i7→ aX0 ja olkoon Φ: K[X] → k luon-
nollinen homomorfismi Q(X) Φ7→ Q(X) + (P (X)). Kuvaus Φ ◦ i on kuntahomomorfismi,
joten ensimmäinen väite seuraa Propositiosta 4.7.

Olkoon
P (X) =

n∑
k=0

bkX
k ∈ K[X] .

Osoitetaan, että polynomilla

P (Y ) =
n∑
k=0

(
bk + (P (X)

)
Y k ∈ k[Y ]

on juuri. Olkoon
α = Φ(X) = X + (P (X)) ∈ k .

Tällöin pätee

P (α) = P
(
X + (P (X))

)
=

n∑
k=0

(
bk + (P (X)

)(
X + (P (X))

)k
=

n∑
k=0

(
bk + (P (X)

)(
Xk + (P (X))

)
= P (X) + (P (X)) = 0 ,

joten α on polynomin P (Y ) ∈ k[Y ] juuri.

Esimerkki 7.37. Polynomi X2 + 1 ∈ R[X] on jaoton, koska sillä ei ole juurta. Tekijä-
rengas k = R[X]/(X2 +1) on Seurauksen 7.32 nojalla kunta ja polynomilla X2 +1 ∈ k[X]
on juuri Lauseen 7.36 nojalla.

Reaalikertoimisten polynomien rengas R[X] on kompleksikertoimisten polynomien
renkaan C[X] alirengas ja Seurauksen 6.24 nojalla reaalikertoimiset polynomit voidaan
samastaa kompleksitasossa määriteltyjen reaalikertoimisten polynomifunktioiden renkaan
kanssa.

Olkoon Ei : CC → C evaluaatiokuvaus8 ja olkoon Ẽi = Ei ◦ Fun: C[X] → C,
Ẽi(P (X)) = P (i) .

Proposition 6.16 nojalla ker Ẽi = (X − i). Rajoittumakuvaus Ẽi|R[X] : R[X] → C on
surjektiivinen rengashomomorfismi, koska Ei(bX + a) = a+ ib kaikilla a, b ∈ R.

Harjoitustehtävän 6.11 mukaan −i on jokaisen sellaisen polynomin P (X) ∈ C[X]
juuri, jonka kertoimet ovat reaalisia ja jonka yksi juuri on i. Siis jokainen homomorfismin
Ei|R[X] ytimeen kuuluva polynomi on jaollinen polynomilla X2 +1 = (X− i)(X+ i), joten
kerEi|R[X] = (X2 + 1). Renkaiden isomorfismilauseen9 mukaan kunta R[X]/(X2 + 1) on
isomorfinen kompleksilukujen kunnan C kanssa.
Esimerkki 7.38. Polynomirenkaan C[X] maksimaaliset ideaalit ovat Seurauksen 7.31
mukaan jaottomien polynomien virittämät pääideaalit. Algebran peruslauseen nojalla C
on algebrallisesti suljettu. Siis P (X) ∈ C[X] on jaoton, jos ja vain jos degP (X) = 1. Jos
degP (X) = 1, niin P (X) = aX + b joillakin a ∈ C× ja b ∈ C. Lemman 7.13 mukaan
polynomirenkaan C[X] maksimaaliset ideaalit ovat pääideaalit (X − c) = kerEc, c ∈ C.
Evaluaatiokuvaus Ec : C[X] → C on surjektiivinen rengashomomorfismi, joten renkaiden
isomorfismilauseen nojalla tekijärengas C[X]/(X − c) on isomorfinen kompleksilukujen
kunnan C kanssa.

8Katso Esimerkki 3.21.
9Lause 7.22
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Harjoitustehtäviä
7.1. Todista Propositio 7.5.
7.2. Olkoon R rengas ja olkoon I renkaan R epätyhjä osajoukko. Osoita, että I on
ideaali, jos ja vain jos xa+ x′a′, ax+ a′x′ ∈ I kaikilla x, x′ ∈ R ja a, a′ ∈ I .
7.3. Todista Propositio 7.11(1).
7.4. Anna esimerkki, joka osoittaa, että Proposition 7.11(1) tilanteessa ψ(I ) ei välttä-
mättä ole renkaan S ideaali.
7.5. Olkoot Ii, i ∈ I, renkaan R ideaaleja. Osoita, että ⋂i∈I Ii on renkaan R ideaali.
7.6. Olkoon K kommutatiivinen rengas. Olkoot a1, a2, . . . an ∈ K. Osoita, että

Ka1 +Ka2 + · · · +Kan = {x1a1 + x2a2 + · · · + xnan : x1, x2, . . . , xn ∈ K}

on renkaan K ideaali.
7.7. Osoita, että kommutatiivisen renkaan Z[i

√
5] ideaali 2Z[i

√
5] + (1 + i

√
5)Z[i

√
5] ei

ole pääideaali.10

7.8. Todista Lemma 7.13.
7.9. Todista Bézout’n yhtälö11 Proposition 7.15 avulla.12

7.10. Olkoon R rengas ja olkoon I ⊂ R ideaali. Asetetaan x ∼ y, jos ja vain jos
x− y ∈ I . Osoita, että ∼ on ekvivalenssirelaatio.
7.11. Olkoon R rengas ja olkoon I ⊂ R ideaali. Osoita, että renkaan R yhteenlasku
on yhteensopiva ideaalin I määräämän ekvivalenssirelaation kanssa.
7.12. Todista Propositio 7.19.
7.13. Osoita, että I = {0, 2 + 6Z, 4 + 6Z} on renkaan Z/6Z ideaali. Osoita, että
tekijärengas (Z/6Z)/I on rengasisomorfinen renkaan Z/2Z kanssa.
7.14. Määritä tekijärenkaan R = (Z/2Z)[X]/(X2 + 1) laskutaulut. Mitkä renkaan R
alkiot ovat yksiköitä? Onko rengas R kunta?
7.15. Olkoon P (X) = X3+2X+1 ∈ (Z/5Z)[X]. Onko P (X) jaoton polynomi? Onko te-
kijärengas (Z/5Z)[X]/(P (X)) kunta? Montako alkiota tekijärenkaassa (Z/5Z)[X]/(P (X))
on?
7.16. Olkoon K kommutatiivinen rengas ja olkoon Olkoon P (X) = X3 + 1 ∈ K[X].
Osoita, että X + (P (X)) ∈ K[X]/(P (X)) on yksikkö.
7.17. Osoita, että polynomi X3 + X2 + X + 2 ∈ (Z/3Z)[X] on jaoton. Osoita tämän
avulla, että on kunta, jossa on 27 alkiota.
7.18. Olkoon P (X) = X4 + 2X3 + 4X2 + 4X + 3 ∈ (Z/7Z)[X]. Esitä P (X) jaottomien
polynomien tulona. Anna esimerkki kunnasta, jossa on 343 alkiota.

Tehtävissä 7.19–7.21 ei riitä todeta, että tallainen kunta on Lauseen 7.34 nojalla.
10Lemma 5.9(1) auttaa.
11Propositio A.3
12Tarkastele ideaalia aZ+ bZ.

12. tammikuuta 2026



78 Ideaalit ja kuntalaajennukset

7.19. Osoita, että on kunta, jossa on 9 alkiota.
7.20. Osoita, että on kunta, jossa on 16 alkiota. 13

7.21. Osoita, että on kunta, jossa on 125 alkiota.
7.22. Olkoon P (X) = X4 − 4X2 + 4 ∈ (Z/5Z)[X]. Esitä P (X) jaottomien polynomien
tulona. Anna esimerkki nollanjakajasta tekijärenkaassa (Z/5Z)[X]/(P (X)). Määritä al-
kion X + (P (X)) ∈ (Z/5Z)[X]/(P (X)) käänteisalkio kertolaskun suhteen.
7.23. Olkoon P (X) = X3 + 3X + 1 ∈ (Z/7Z)[X].
(a) Esitä P (X) jaottomien polynomien tulona.
(b) Osoita, että X2 + 3 + (P (X)) ∈ (Z/7Z)[X]/(P (X)) on yksikkö.
7.24. Olkoon K kokonaisalue ja olkoon a ∈ K − {0} alkio, joka ei ole jaoton. Osoita,
että (a) ei ole maksimaalinen ideaali.

Kommutatiivisen renkaan K ideaali P ̸= K on alkuideaali, jos sillä on seuraava ominai-
suus: Jos a, b ∈ K ja ab ∈ P, niin a ∈ P tai b ∈ P.

7.25. Mitkä kokonaislukujen renkaan ideaalit ovat alkuideaaleja?
7.26. Olkoon K kommutatiivinen rengas ja olkoon I ̸= K sen ideaali. Osoita, että
tekijärengas K/I on kokonaisalue, jos ja vain jos I on alkuideaali.
7.27. Osoita, että kommutatiivisen renkaan jokainen maksimaalinen ideaali on alkuide-
aali.
7.28. Osoita, esimerkillä, että että kommutatiivisen renkaan alkuideaali ei välttämättä
ole maksimaalinen.

Olkoot L ja M kommutatiivisen renkaan K ideaaleja. Ideaalien L ja M tulo on

LM = {x1y1 + x2y2 + · · · + xnyn : xi ∈ L, yi ∈ M,n ∈ N},

ja niiden summa on
L+M = {x+ y : x ∈ L, y ∈ M}.

7.29. Olkoot L ja M kommutatiivisen renkaan K ideaaleja. Osoita, että LM ja L+M
ovat renkaan K ideaaleja.
7.30. Määritä renkaan Z ideaalien 4Z ja 19Z summa ja tulo. Anna vastaukset muodossa
mZ sopivalla m ∈ N.

Olkoon K kommutatiivinen rengas. Alkion k ∈ K annihilaattori on

A(k) = {a ∈ K : ak = 0}.

7.31. Olkoon K kommutatiivinen rengas ja olkoon k ∈ K. Osoita, että A(k) on ideaali.

13Muista Seuraus 6.17 ja Harjoitustehtävä 6.16.
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Luku 8

Ryhmät

Tässä luvussa tarkastelemme laskutoimituksella varustettuja joukkoja, joiden laskutoi-
mitukselta oletamme muutamia yksinkertaisia ominaisuuksia. Näin määriteltävä ryhmän
käsite on tärkeä esimerkiksi geometriassa ja lukuteoriassa. Ryhmiä käsitellään lyhyesti
myös kurssilla Renkaat ja kunnat luvussa 3.1 koska kommutatiivisen ryhmän käsite
esiintyy renkaan määritelmässä.

8.1 Ryhmä

Laskutoimituksella varustettu joukkoa (G, ∗) on ryhmä, jos

• laskutoimitus ∗ on assosiatiivinen,

• laskutoimituksella ∗ on neutraalialkio,

• jokaisella g ∈ (G, ∗) on käänteisalkio.

Ryhmän G alkioiden lukumäärä #G on ryhmän G kertaluku.
aMuista määritelmä luvusta 1.1.

Ryhmä on keskeinen algebran rakenne, joka esiintyy monilla matematiikan aloilla esi-
merkiksi lineaarialgebrassa, geometriassa ja lukuteoriassa. Tällä kurssilla käsittelemme
esimerkkejä eri aloilta yleisen teorian tarkastelun lisäksi.
Esimerkki 8.1. Esimerkkien 1.8 ja 1.16 nojalla laskutoimituksella varustetut joukot
(Z,+), (Q, ,+) (R,+), (C,+), kongruenssiluokkien additiivinen ryhmä (Z/qZ,+) kaikilla
q ∈ N− {0, 1}1 ja multiplikatiiviset ryhmät

Z× = ({−1, 1}, ·) , Q× = (Q− {0}, ·) , R× = (R− {0}, ·) ja C× = (C− {0}, ·)

ovat ryhmiä.
1Katso luvut 2.1 ja 2.4.
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Kurssilla Renkaat ja kunnat käsitellään näiden esimerkkien yleistyksiä, renkaan R
additiivista ryhmää (R,+) ja yksiköiden ryhmää eli multiplikatiivista ryhmää R×, jonka
laskutoimitus on renkaan R kertolasku.

Ryhmän laskutoimitus jätetään usein mainitsematta ja puhutaan vain ryhmästä G. Täl-
löin laskutoimitus on kuitenkin kiinnitetty ja usein konkreettisessa tilanteessa se on en-
nalta tiedossa.

Esimerkki 8.2. Ryhmän Z laskutoimitus on yhteenlasku, ryhmän Z/qZ laskutoimitus
on kongruenssiluokkien yhteenlasku, ryhmän (Z/qZ)× laskutoimitus on kongruenssiluok-
kien kertolasku ja ryhmän C× laskutoimitus on kertolasku.

Puhuttaessa abstraktisti ryhmästä G merkitään laskutoimitusta usein kuten kertolaskua
ja neutraalialkiolle käytetään merkintää e tai joskus myös merkintää 1. Tällöin ryhmää
G kutsutaan multiplikatiiviseksi ryhmäksi.

Jos tarkastellaan useampia ryhmiä samalla kertaa voidaan niiden neutraalialkioille
käyttää ryhmille käytettävien merkintöjen kanssa yhteensopivaa merkintää esimerkiksi
niin, että esimerkiksi ryhmän G′ neutraalialkiota merkitään e′.

Propositio 8.3. Olkoon G ryhmä, jonka neutraalialkio on e. Tällöin

(1) Neutraalialkio e on yksikäsitteinen.

(2) Jokaisen alkion käänteisalkio on yksikäsitteinen.

(3) Jos āa = e, niin ā on alkion a käänteisalkio.

(4) (ab)−1 = b−1a−1 kaikilla a, b ∈ G.

Todistus. (1) Propositio 1.12.
(2) Katso Propositio 1.18 ja Harjoitustehtävä 1.15.
(3) Alkiolla a on käänteisalkio a−1. Oletuksesta seuraa ā = ā(aa−1) = (āa)a−1 = a−1.
(4) Koska pätee

(b−1a−1)(ab) = b−1(a−1a)b = b−1b = e,

niin väite seuraa kohdasta (3).

Propositio 8.3(3) helpottaa käänteisalkion etsimistä ryhmässä: riittää tarkastaa, että
alkio on vasen tai oikea käänteisalkio.

Supistussäännöt ovat voimassa laskutoimituksella varustetussa joukossa (A, ∗), jos kaikilla
a, b, c ∈ A pätee

(1) Jos a ∗ b = a ∗ c, niin b = c.

(2) Jos a ∗ b = c ∗ b, niin a = c.

Propositio 8.4. Supistussäännöt pätevät ryhmässä.
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Todistus. Olkoon G ryhmä ja olkoot a, b, c ∈ G siten, että ab = ac. Siis

b = a−1(ab) = a−1(ac) = c ,

joten sääntö (1) pätee. Sääntö 2 todistetaan samaan tapaan.

Propositio 8.5. Olkoon A assosiatiivisella laskutoimituksella varustettu joukko, jossa on
neutraalialkio. Tällöin A on ryhmä, jos ja vain jos yhtälöillä ax = b ja ya = b on ratkaisu
joukossa A kaikilla a, b ∈ A.

Todistus. Harjoitustehtävä 8.4.

Lemma 8.6. Äärellisen ryhmän laskutaulussa2 jokaisella rivillä ja jokaisessa sarakkeessa
esiintyvät kaikki ryhmän alkiot.

Todistus. Harjoitustehtävä 8.5.

Esimerkki 8.7. Neljän alkion ryhmän Z/4Z, laskutaulu on

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

.

Laskutaulussa käytetään kongruenssiluokan k + 4Z merkintänä edustajaa k ∈ Z.

Ryhmä G on kommutatiivinen ryhmä eli Abelin ryhmä, jos sen laskutoimitus on kommu-
tatiivinen.

Jos kommutatiivisen ryhmän G laskutoimituksen merkki on +, niin ryhmää (G,+) kut-
sutaan additiiviseksi ryhmäksi.

Merkintää + käytetään ainoastaan kommutatiiviselle laskutoimitukselle.

Esimerkki 8.8. Ryhmät Z, Q, R, C ja Z/qZ ovat kommutatiivisia.
Esimerkki 8.9. Olkoon X ̸= ∅. Esimerkissä 1.10 havaitsimme, että joukon XX lasku-
toimitus ◦ on assosiatiivinen ja että se ei ole kommutatiivinen, jos joukossa X on ainakin
kaksi alkiota.

Osajoukko {f : X → X : f on bijektio} ⊂ XX on vakaa, koska tunnetusti kahden
bijektion yhdistetty kuvaus on bijektio. Siis laskutoimitus ◦ määrää laskutoimituksen
bijektioiden muodostamassa osajoukossa. Edellä tekemämme havainnot osoittavat, että
joukon X bijektiot itselleen muodostavat ryhmän.

Olkoon X epätyhjä joukko. Laskutoimituksella varustettu joukko

Perm(X) = ({f : X → X : f on bijektio}, ◦)

on joukon X permutaatioryhmä.
Ryhmän Perm(X) alkiot ovat joukon X permutaatioita.

2Katso luku 1.1. Ryhmän laskutaulua kutsutaan usein kertotauluksi, jos laskutoimitus ei ole +.
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8.2 Ryhmien suora tulo
Luvussa 1.1 tutustuimme laskutoimistusten tulolaskutoimitukseen. Määrittelemme nyt
ryhmien suoran tulon mahdollisesti äärettömän monelle ryhmälle.

Olkoon A ̸= ∅ indeksijoukko ja olkoot Gα ryhmiä kaikilla α ∈ A. Ryhmien Gα, α ∈ A,
suora tulo ∏α∈AGα on joukko∏

α∈A
Gα =

{
(gα)α∈A : gα ∈ Gα kaikilla α ∈ A

}

varustettuna tulolaskutoimituksella : Jos g = (gα)α∈A ja h = (hα)α∈A, niin g = ((gh)α)α∈A,
missä

(gh)α = gαhα

kaikilla α ∈ A kaikilla g, h ∈ ∏
α∈AGα.

Propositio 8.10. Olkoon A ̸= ∅ indeksijoukko ja olkoot Gα ryhmiä kaikilla α ∈ A.
Tällöin ∏

α∈AGα on ryhmä. Jos kaikki ryhmät Gα, α ∈ A, ovat kommutatiivisia, niin∏
α∈AGα on kommutatiivinen ryhmä.

Todistus. Olkoot g = (gα)α∈A, h = (hα)α∈A, k = (kα)α∈A ∈ ∏
α∈AGα. Ryhmän Gβ lasku-

toimituksen assosiatiivisuuden nojalla

(g(hk))β = gβ(hβkβ) = (gβhβ)kβ = ((gh)k)β

kaikille β ∈ A. Siis tulojoukon laskutoimitus on assosiatiivinen. Jos eα ∈ Gα on neutraa-
lialkio, niin (eα)α∈A on neutraalialkio laskutoimituksella varustetussa joukossa ∏α∈AGα

Alkion (gα)α∈A käänteisalkio on (g−1
α )α∈A.

Oletetaan, että kaikki ryhmät Gα, α ∈ A ovat kommutatiivisia. Ryhmän Gβ laskutoi-
mituksen kommutatiivisuuden nojalla

(gh)β = gβhβ = (hβgβ) = (hg)β

kaikille β ∈ A. Siis tulojoukon laskutoimitus on kommutatiivinen.

Äärellisen monen ryhmän suora tulo on helpompi hahmottaa kuin yleinen määritelmä.
Esimerkki 8.11. Jos G1 ja G2 ovat ryhmiä, niin∏

α∈{1,2}
Gα = G1 ×G2

ja laskutoimitus on
(g1, g2)(h1, h2) = (g1h1, g2h2)

kaikille (g1, g2), (h1, h2) ∈ G1 ×G2.

Seuraus 8.12. Olkoot G1 ja G2 ryhmiä. Niiden tulo G1 ×G2 on ryhmä. Jos e1 ja e2 ovat
ryhmien G1 ja G2 neutraalialkiot, niin (e1, e2) on ryhmän G1 ×G2 neutraalialkio. Alkion
(g1, g2) ∈ G1 ×G2 käänteisalkio on (g−1

1 , g−1
2 ).
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Esimerkki 8.13. (a) Kommutatiivisen ryhmän (R,+) n-kertainen tulo

(Rn,+) = (R,+)n

on kommutatiivinen ryhmä. Samoin (Zn,+) on kommutatiivinen ryhmä.
(b) Jos q, r ∈ N− {0, 1}, niin Z/qZ× Z/rZ on äärellinen kommutatiivinen ryhmä. Ylei-
semmin, jos n ∈ N−{0} ja qi ∈ N−{0, 1} kaikille 1 ≤ i ≤ n, niin ∏n

i=1 Z/qiZ on äärellinen
kommutatiivinen ryhmä.
Esimerkki 8.14. Neljästä alkiosta koostuvan Kleinin neliryhmän

K4 = (Z/2Z) × (Z/2Z)

laskutaulu on
+ (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) (0, 0) (0, 1) (1, 0) (1, 1)
(0, 1) (0, 1) (0, 0) (1, 1) (1, 0)
(1, 0) (1, 0) (1, 1) (0, 0) (0, 1)
(1, 1) (1, 1) (1, 0) (0, 1) (0, 0)

. (8.1)

Laskutaulussa käytetään kongruenssiluokan k + 2Z merkintänä edustajaa k ∈ Z. Erityi-
sesti huomaamme, että jokaiselle g ∈ K4 pätee g + g = (0, 0).

8.3 Ryhmähomomorfismit
Laskutoimituksella varustettujen joukkojen homomorfismien perusasioita käsiteltiin lu-
vussa 1.3. Tässä luvussa aloitamme ryhmien välisten homomorfismien tarkastelun.

Jos G ja G′ ovat ryhmiä, niin homomorfismi ϕ : G → G′ on ryhmähomomorfismi.
Bijektiivinen ryhmähomomorfismi on ryhmäisomorfismi.
Isomorfismi α : G → G on ryhmän G ryhmäautomorfismi.
Jos on isomorfismi ϕ : G → G′, niin ryhmät G ja G′ ovat isomorfisia, G ∼= G′.

Esimerkki 8.15. (a) Eksponenttikuvaus exp: (R,+) → (R+, ·), exp(x) = ex, on ryh-
mäisomorfismi Esimerkin 1.6 nojalla.
(b) Proposition 1.26(1) nojalla kompleksikonjugointi ·̄ : (C,+) → (C,+) on kompleksi-
lukujen additiivisen ryhmän automorfismi. Saman tuloksen kohdan (2) nojalla komplek-
sikonjugoinnin rajoittuma ·̄ : C× → C× on kompleksilukujen multiplikatiivisen ryhmän
automorfismi. Kohdan (3) nojalla kompleksilukujen normi n : C× → R+ =

(
]0,∞[, ·

)
on

surjektiivinen ryhmähomomorfismi.

Propositio 8.16. (1) Ryhmähomomorfismien yhdistetty kuvaus on ryhmähomomorfismi.
(2) Isomorfismin käänteiskuvaus isomorfismi.
(3) Jos G ∼= G′ ja G′ ∼= G′′, niin G ∼= G′′.

Todistus. Seuraa Propositiosta 1.7.

Propositio 8.17. Ryhmähomomorfismi ϕ : G → G′ kuvaa ryhmän G neutraalialkion
ryhmän G′ neutraalialkioksi ja jokaiselle g ∈ G pätee ϕ(g−1) = ϕ(g)−1.
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Todistus. Olkoon ϕ : G → G′ homomorfismi. Tällöin

e′ϕ(e) = ϕ(e) = ϕ(ee) = ϕ(e)ϕ(e) ,

mistä ensimmäinen väite seuraa supistussäännöllä.
Olkoon g ∈ G. Tällöin

ϕ(g−1)ϕ(g) = ϕ(g−1g) = ϕ(e) = e′ ,

joten Proposition 8.3(3) nojalla ϕ(g−1) = ϕ(g)−1.

Jos ryhmät G1 ja G2 ovat isomorfisia, niin ryhmäteorian kannalta voidaan ajatella,
että pohjimmiltaan on kyse samasta abstraktista ryhmästä.

Jatkossa merkintä K4 tarkoittaa ryhmää, joka on isomorfinen ryhmän (Z/2Z) × (Z/2Z)
kanssa. Kutsumme tällaista ryhmää Kleinin neliryhmäksi.

Esimerkki 8.18. Neljän alkion kommutatiiviset ryhmät Z/4Z ja K4 eivät ole isomorfi-
sia. Kaikille (a+ 2Z, b+ 2Z) ∈ Z/2Z× Z/2Z pätee

(a+ 2Z, b+ 2Z) + (a+ 2Z, b+ 2Z) = (2a+ 2Z, 2b+ 2Z) = (0 + 2Z, 0 + 2Z).

Jos ϕ : Z/2Z× Z/2Z → Z/4Z on homomorfismi ja (a+ 2Z, b+ 2Z) ∈ Z/2Z× Z/2Z, niin
Proposition 8.17, edellisen huomion ja homomorfismin määritelmän nojalla

0 + 4Z = ϕ(0 + 2Z, 0 + 2Z) = ϕ((a+ 2Z, b+ 2Z) + (a+ 2Z, b+ 2Z))
= ϕ(a+ 2Z, b+ 2Z) + ϕ(a+ 2Z, b+ 2Z) .

Jos ϕ olisi surjektio, niin kaikille c+ 4Z ∈ Z/4Z pätisi siis (c+ 4Z) + (c+ 4Z) = 0 + 4Z,
mutta tämä ei päde, jos c = ±1.

Homomorfismit sopivat hyvin yhteen ryhmien tulon kanssa:

Propositio 8.19. Jos G1 ∼= H1 ja G2 ∼= H2, niin G1 ×G2 ∼= H1 ×H2.

Todistus. Olkoot ϕ1 : G1 → H1 ja ϕ2 : G2 → H2 isomorfismeja. Määritellään isomorfismien
ϕ1 ja ϕ2 tulo Φ: G1 ×G2 → H1 ×H2 asettamalla

Φ(g1, g2) =
(
ϕ1(g1), ϕ2(g2)

)
kaikille (g1, g2) ∈ G1 ×G2.

On helppo tarkastaa, että Φ on bijektio ja sen käänteiskuvauksen lauseke on

Φ−1(h1, h2) =
(
ϕ−1

1 (h1), ϕ−1
2 (h2)

)
.

Riittää siis osoittaa, että Φ on homomorfismi. Olkoot (g1, g2), (g′
1, g

′
2) ∈ G1 ×G2. Tällöin

Φ((g1, g2)(g′
1, g

′
2)) = Φ(g1g

′
1, g2g

′
2) =

(
ϕ1(g1g

′
1), ϕ2(g2g

′
2)
)

=
(
ϕ1(g1)ϕ1(g′

1), ϕ2(g2)ϕ2(g′
2)
)

= Φ(g1, g2) Φ(g′
1, g

′
2) .
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8.4 Jäännösluokkien multiplikatiiviset ryhmät
Tässä luvussa tutustumme tärkeään kommutatiivisten ryhmien luokkaan.3 Tässä luvussa
tarvittavat lukuteorian määritelmät ja tulokset on esitetty liitteessä A.

Propositio 8.20. Olkoon q ≥ 2. Tällöin alkiolla a+ qZ ∈ Z/qZ on käänteisalkio, jos ja
vain jos syt(a, q) = 1. Jos p on alkuluku ja a ̸≡ 0 mod p, niin alkiolla a + pZ ∈ (Z/pZ)
on käänteisalkio.

Todistus. Jäännösluokalla a+ qZ ∈ Z/qZ on käänteisalkio, jos ja vain jos on b ∈ Z, jolle

1 + qZ = (a+ qZ)(b+ qZ) = ab+ qZ .

Tämä pätee, jos ja vain jos on c ∈ Z, jolle ab = 1+cq. Tämä on Bézout’n yhtälön4 nojalla
yhtäpitävää sen kanssa, että syt(a, q) = 1.

Propositio 8.21. Joukko {a+qZ : syt(a, q) = 1} on laskutoimituksella varustetun joukon
(Z/qZ, ·) vakaa osajoukko.

Todistus. Olkoot a, b ∈ Z siten, että syt(a, q) = syt(b, q) = 1. Proposition 8.20 nojalla on
a, b ∈ Z siten, että syt(a, q) = syt(b, q) = 1 ja

(a+ qZ)(a+ qZ) = 1 + qZ = (b+ qZ)(b+ qZ) .

Tällöin
(a+ qZ)(b+ qZ)(b+ qZ)(a+ qZ) = 1 + qZ ,

joten Proposition 8.20 nojalla joukko {a+ qZ : syt(a, q) = 1} on vakaa.

Seuraus 8.22.
(
{a+ qZ : syt(a, q) = 1}, ·

)
on ryhmä.

Todistus. Seuraa Propositioista 2.10 ja 8.21.

Olkoon q ∈ N− {0, 1}. Laskutoimituksella varustettu joukko

(Z/qZ)× = ({a+ qZ : syt(a, q) = 1}, ·)

on jäännösluokkien mod q multiplikatiivinen ryhmä.

Esimerkki 8.23. (Z/8Z)× = ({1 + 8Z, 3 + 8Z, 5 + 8Z, 7 + 8Z}, ·). Ryhmän (Z/8Z)×

laskutaulu on
· 1 3 5 7
1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

, (8.2)

kun merkitsemme kongruenssiluokkaa k + 8Z edustajallaan k ∈ {1, 3, 5, 7}.
3Nyt määriteltävä ryhmä on renkaan Z/qZ yksiköiden ryhmä. Katso luku 5.3.
4Propositio A.3
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Esimerkki 8.24. Vertailemalla laskutauluja (8.1) ja (8.2) huomaamme, että kuvaus

1 + 8Z 7→ (0 + 2Z, 0 + 2Z) ,
3 + 8Z 7→ (1 + 2Z, 0 + 2Z) ,
5 + 8Z 7→ (0 + 2Z, 1 + 2Z),
7 + 8Z 7→ (1 + 2Z, 1 + 2Z)

on ryhmäisomorfismi ryhmien (Z/8Z)× ja K4 = (Z/2Z) × (Z/2Z) välillä.

8.5 Lineaarialgebrasta
Reaalinen5 vektoriavaruus (eli R-vektoriavaruus) muodostuu kommutatiivisesta ryhmäs-
tä (V,+), jossa on määritelty alkioiden yhteenlaskun kanssa yhteensopiva kertominen
reaaliluvulla. Reaaliluvulla kertominen tarkoittaa kuvausta R × V → V , (λ, v) 7→ λv.
Laskutoimitukselta ja reaaliluvulla kertomiselta oletetaan

(1) λ(v + w) = λv + λw kaikille λ ∈ R ja v, w ∈ V ,

(2) (λ+ µ)v = λv + µv kaikille λ, µ ∈ R ja v ∈ V ,

(3) µ(λv) = (µλ)v kaikille λ, µ ∈ R ja v ∈ V ja

(4) 1 v = v kaikille v ∈ V .

Jos V ja W ovat R-vektoriavaruuksia, niin kuvaus L : V → W on (R-)lineaarikuvaus,
jos se on homomorfismi kommutatiivisesta ryhmästä (V,+) kommutatiiviseen ryhmään
(W,+), joka on lisäksi yhteensopiva reaaliluvulla kertomisen kanssa: Kaikille λ ∈ R ja
v ∈ V pätee L(λv) = λL(v).

Sen todistaminen, että kaikki homomorfismit reaalilukujen additiiviselta ryhmältä it-
selleen eivät ole R-lineaarikuvauksia, on monimutkaisempaa. G. Hamel [Ham] todisti tä-
män tuloksen valinta-aksiooman avulla vuonna 1905.

Harjoitustehtäviä

Olkoon X joukko. Joukkojen A,B ∈ P(X) symmetrinen erotus on

A△B = (A−B) ∪ (B − A) .

8.1. Olkoon X ̸= ∅. Osoita, että (P(X),△) on ryhmä.
8.2. Olkoon X = {1, 2, 3}. Muodosta ryhmän (P(X),∆) laskutaulu.
8.3. Olkoon (G, ∗) ryhmä. Määritellään uusi laskutoimitus ⊛ joukossa G asettamalla

a⊛ b = b ∗ a

kaikille a, b ∈ G. Osoita, että (G,⊛) on ryhmä.
5Tämä esimerkki pätee yleisessä kuntakertoimisessa vektoriavaruudessa, katso luku 4.5.
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8.4. Todista Propositio 8.5.
8.5. Todista Lemma 8.6.
8.6. Olkoon G ryhmä ja olkoon e ∈ G neutraalialkio. Oletetaan, että jokaiselle g ∈ G
pätee g2 = e. Osoita, että G on kommutatiivinen ryhmä.
8.7. Olkoon F = {f1, f2, . . . , fn} äärellinen kommutatiivinen ryhmä. Olkoon e = f1 ryh-
män F neutraalialkio. Olkoon a = f1f2 · · · fn kaikkien ryhmän F alkioiden tulo. Osoita,
että a2 = e. Keksi esimerkki, jossa a = e ja toinen esimerkki, jossa a ̸= e.6

8.8. Varustetaan joukko A = {a, b, c, d, e} laskutoimituksella ∗, jonka laskutaulu on

∗ e a b c d

e e a b c d
a a c e d b
b b d c a e
c c e d b a
d d b a e c

Pätevätkö supistussäännöt laskutoimituksella varustetussa joukossa (A, ∗)? Onko (A, ∗)
ryhmä?
8.9. Monellako eri tavalla voit täydentää taulukon

∗ e a b

e e a b
a a
b b

niin, että tuloksena on ryhmän laskutaulu? Mitä voit päätellä tästä havainnosta?
8.10. Olkoon G ryhmä ja olkoon (A, ∗) laskutoimituksella varustettu joukko. Olkoon
ϕ : G → (A, ∗) homomorfismi. Osoita, että ϕ(G) on laskutoimituksella varustetun joukon
(A, ∗) vakaa osajoukko, joka on ryhmä indusoidulla laskutoimituksella.7

8.11. Määritellään reaalilukujen joukossa R laskutoimitus ∗ asettamalla

x ∗ y = 3
√
x3 + y3 .

Osoita, että (R, ∗) on ryhmä, joka on isomorfinen ryhmän (R,+) kanssa.
8.12. Olkoon G kommutatiivinen ryhmä. Osoita, että kuvaus ψ : G×G → G,

ψ
(
(g, h)

)
= gh−1

on homomorfismi.
8.13. Olkoon G ryhmä ja olkoon a ∈ G. Olkoon ϕa : G → G,

ϕa(g) = aga−1 .

Osoita, että ϕa on ryhmän G automorfismi.
6Tässä tehtävässä käytetään multiplikatiivista merkintää mutta esimerkissä laskutoimitus voi olla

myös +. Tällöin tarkastellaan siis kommutatiivisen ryhmän kaikkien alkioiden summaa.
7Luvuissa 1.4 ja 1.5 on hyödyllisiä tuloksia.
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8.14. Minkä kurssilla käsitellyn ryhmän kanssa ryhmä (Z/12Z)× on isomorfinen?
8.15. Olkoon n ∈ N − {0} ja olkoon Rn niiden laskutoimitusten ∗ joukko, joille las-
kutoimituksella varustettu joukko ({1, 2, . . . , n}, ∗) on ryhmä. Määritellään joukossa Rn

relaatio ∼ asettamalla ∗ ∼ ◦, jos ja vain jos ryhmät ({1, 2, . . . , n}, ∗) ja ({1, 2, . . . , n}, ◦)
ovat isomorfisia. Osoita, että relaatio ∼ on ekvivalenssirelaatio.8

*8.16. Olkoon p > 3 alkuluku. Osoita, että 1 + pZ ja −1 + pZ ovat ainoat ryhmän
(Z/pZ)× alkiot, jotka ovat omat käänteisalkionsa.9 Osoita, että

(2 + pZ)(3 + pZ) · · · (p− 2 + pZ) = 1 + pZ .

*8.17. Osoita, että
(p− 1)! ≡ −1 mod p ,

jos p on alkuluku.
8.18. Osoita, että

(q − 1)! ≡ 0 mod q

jos q ≥ 6 ei ole alkuluku.
*8.19. Olkoon p pariton alkuluku ja olkoon k = p−1

2 . Osoita, että

(p− 1)! ≡ (−1)k(k!)2 mod p .

Osoita, että polynomi X2 + 1 ∈ (Z/pZ)[X] ei ole jaoton, jos p ≡ 1 mod 4.10

8Katso ekvivalenssirelaation määritelmä luvusta 2.1.
9Tämä tehtävä liittyy kurssin Renkaat ja kunnat sisältöön eikä tehtävää ole mielekästä ratkaista

pelkästään kurssin Ryhmät tiedoilla. Katso Lause 6.20.
10Tämä tehtävä liittyy kurssin Renkaat ja kunnat sisältöön eikä tehtävää voi ratkaista pelkästään

kurssin Ryhmät tiedoilla. Katso luku 6.6.
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Luku 9

Aliryhmät

Tässä luvussa tarkastelemme jonkin ryhmän G osajoukkoja, jotka ovat itsekin ryhmiä
ryhmän G laskutoimituksella. Näemme esimerkkejä siitä, miten nämä aliryhmät esiintyvät
luonnollisella tavalla muun muassa homomorfismien ytiminä ja tarkastelemme ryhmän
osajoukkojen virittämiä aliryhmiä.

9.1 Aliryhmät

Olkoon G ryhmä. Olkoon B ⊂ G, B ̸= ∅, vakaa osajoukko.a Jos indusoidulla laskutoimi-
tuksella varustettu joukko B on ryhmä, niin se on ryhmän G aliryhmä. Jos H ⊂ G on
ryhmän G aliryhmä, käytämme merkintää H ≤ G.
Jos aliryhmä H on ryhmän G aito osajoukko, se on ryhmän G aito aliryhmä. Tällöin
käytämme merkintää H < G.

aKatso luku 1.2.

Merkinnät H ≤ G ja H ′ < G sisältävät tietojen H,H ′ ⊂ G ja H ′ ̸= G lisäksi siis sen, että
H ja H ′ ovat ryhmiä, joiden laskutoimitus on ryhmän G laskutoimituksen indusoima.

Propositio 9.1. Jos G1 < G2 ja G2 < G3, niin G1 < G3.

Todistus. Oletuksen nojalla G1 ̸= ∅. Jos g, h ∈ G1, niin gh ∈ G1, koska G1 < G2. Siis
G1 on vakaa ryhmässä G3. Ryhmän G2 laskutoimitus indusoi joukkoon G1 saman lasku-
toimituksen kuin ryhmän G3 laskutoimitus. Koska G1 on ryhmä tällä laskutoimituksella,
niin se on ryhmän G3 aliryhmä.

Esimerkki 9.2. (a) Olkoon a ∈ Z. Tällöin aZ = {ak : k ∈ Z} on kokonaislukujen
ryhmän Z aliryhmä.
(b) Positiivisten reaalilukujen multiplikatiivinen ryhmä R+ =

(
]0,∞[, ·

)
on ryhmän R×

aito aliryhmä.
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Lemma 9.3. Olkoon G ryhmä. Jokaisen aliryhmän H ≤ G neutraalialkio on ryhmän G
neutraalialkio.

Todistus. Jos joillekin a, b ∈ H ≤ G pätee ab = b, niin ryhmän G supistussäännön nojalla
a on ryhmän G neutraalialkio.

Kaikki ryhmän vakaat osajoukot eivät ole ryhmiä, esimerkiksi ryhmän Z vakaa osa-
joukko N ei ole ryhmä. Seuraava tulos antaa keinon tarkastaa, onko jokin ryhmän osa-
joukko aliryhmä:

Propositio 9.4 (Aliryhmätesti). Ryhmän G osajoukko H ̸= ∅ on aliryhmä, jos

(1) kaikilla x, y ∈ H pätee xy−1 ∈ H, tai

(2) kaikilla x, y ∈ H pätee xy ∈ H ja y−1 ∈ H.

Todistus. Olkoon e ∈ G neutraalialkio. Tarkastellaan ehtoa (1): Olkoon h ∈ H. Oletuksen
mukaan hh−1 ∈ H, joten e ∈ H. Samoin y−1 = ey−1 ∈ H kaikilla y ∈ H. Kaikki
on siis kunnossa, jos H on vakaa osajoukko. Edellisen nojalla kaikille x, y ∈ H pätee
xy = x(y−1)−1 ∈ H, joten H on vakaa.
Ehdosta (2) seuraa ehto (1), joten väite seuraa kohdasta (1).

Propositio 9.5. Olkoon G ryhmä, olkoon I ̸= ∅ jokin indeksijoukko ja olkoot Hi ≤ G
kaikilla i ∈ I. Tällöin ⋂

i∈I
Hi ≤ G.

Todistus. Harjoitustehtävä 9.9.1

Seuraus 9.6. Olkoon G ryhmä, olkoot H1, H2 ≤ G. Tällöin H1 ∩H2 ≤ G.

Esimerkki 9.7. (a) Jokaisella ryhmällä on aliryhmiä: ryhmä itse ja neutraalialkion
muodostama yhden alkion ryhmä.
(b) ({0},+) < (Z,+) < (Q,+) < (R,+) < (C,+).
(c) {1} < {−1, 1} < Q× < R× < C×.
(d) Olkoot G ja G′ ryhmiä ja olkoot e ∈ G ja e′ ∈ G′ niiden neutraalialkiot. Aliryhmätes-
tillä on helppo tarkastaa, että G×{e′} < G×G′ ja {e}×G′ < G×G′: Jos g, h ∈ G×{e′},
niin g = (g0, e

′) ja h = (h0, e
′) joillain g0, h0 ∈ G.

Esimerkki 9.8. Määritelmän mukaan reaalisen vektoriavaruuden V aliavaruus on osa-
joukko H ⊂ V , joka on vakaa vektoriavaruuden V yhteenlaskun ja reaaliluvulla kerto-
misen suhteen ja on näillä operaatioilla varustettuna reaalinen vektoriavaruus. Erityisesti
(H,+) on additiivisen ryhmän (V,+) aliryhmä.

Kaikki additiivisen ryhmän (V,+) aliryhmät eivät ole R-vektoriavaruuden V vekto-
rialiavaruuksia. Esimerkiksi R-vektoriavaruudella R on vain kaksi aliavaruutta {0} ja R
mutta reaalilukujen additiivisella ryhmällä on paljon enemmän aliryhmiä: Esimerkiksi
joukot

αZ = {α k : k ∈ Z} ⊂ R
1Katso yleisen leikkauksen määritelmä sivulta vii.
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ja
αQ = {α q : q ∈ Q} ⊂ R

ovat ryhmän (R,+) vakaita osajoukkoja kaikilla α ∈ R ja on helppo tarkastaa, että

(αZ,+) < (αQ,+) < (R,+)

kaikilla α ∈ R− {0}.

9.2 Aliryhmäkaavio
Monissa tapauksissa ryhmän rakennetta voi havainnollistaa aliryhmäkaaviolla.

Aliryhmäkaaviossa tarkasteltavan ryhmän aliryhmät asetellaan päällekäisille tasoille. Ali-
ryhmä H yhdistetään janalla ylemmällä tasolla olevan aliryhmän K kanssa, jos H < K
eikä ole aliryhmää L, jolle pätee H < L < K.

Äärellisen ryhmän aliryhmäkaaviossa esiintyvät aliryhmät voidaan esimerkiksi jaotella
niiden kertaluvun mukaan siten, että kertaluvultaan suuremmat ryhmät ovat ylemmillä
tasoilla.
Esimerkki 9.9 (Kleinin neliryhmän aliryhmäkaavio). Jokaisella ryhmällä on yksi yh-
den alkion aliryhmä, joka koostuu neutraalialkiosta, siis {0} = {(0 + 2Z, 0 + 2Z)} <
K4. Merkintöjen yksinkertaistamiseksi merkitsemme seuraavassa ryhmän Z/2Z alkiota
a + 2Z edustajalla a ∈ {0, 1}. Lemman 9.3 nojalla (0, 0) ∈ H, joten ryhmällä K4 on kol-
me kahden alkion osajoukkoa, jotka voivat olla aliryhmiä: {(0, 0), (0, 1)} = {0} × Z/2Z,
{(0, 0), (1, 0)} = Z/2Z × {0} ja {(0, 0), (1, 1)}. Esimerkin 8.14 ja aliryhmätestin nojalla
nämä ovat kaikki aliryhmiä. Itse asiassa {0} × Z/2Z < K4 ja ZZ/2Z × {0} < K4 myös
Esimerkin 9.7 nojalla.

Olkoon H ≤ (Z/2Z)2 = K4 siten, että #H ≥ 3. Jos (1, 0), (0, 1) ∈ H, niin

(1 + 2Z, 1 + 2Z) = (1 + 2Z, 0 + 2Z) + (0 + 2Z, 1 + 2Z) ∈ H ,

joten H = K4. Vastaavasti nähdään, että ehdoista (1, 0), (1, 1) ∈ H ja (0, 1), (1, 1) ∈ H
seuraa H = K4. Siis ryhmällä K4 ei ole kolmen alkion aliryhmiä, joten Kleinin 4-ryhmän
K4 = Z/2Z× Z/2Z aliryhmäkaavio on

K4

{0} × Z/2Z {(0, 0), (1, 1)} Z/2Z× {0}

{(0, 0)}

Tarkastelemme aliryhmäkaavion muodostamista uudelleen luvussa 11.3, jossa todis-
tettava Lagrangen lause2 sulkee joitain äärellisen ryhmän aliryhmän kertalukuja pois. La-
grangen lauseen nojalla Esimerkissä 9.9 tarkastellulla Kleinin neliryhmällä ei ole kolmen
alkion aliryhmiä. Koska tämä tulos ei vielä ole käytettävissä, tarkastelimme nyt kaikki
mahdollisuudet erikseen.

2Lause 11.10
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9.3 Lineaariset ryhmät
Matematiikan eri aloilla joukkoihin voidaan liittää erilaisia lisärakenteita kuten vektoria-
varuusrakenne, sisätulo, laskutoimitus tai etäisyysfunktio. Tällaisten joukkojen permu-
taatioryhmien3 osajoukot, jotka säilyttävät valitun rakenteen tai ovat sen kanssa yhteen-
sopivia, ovat usein ryhmiä.
Esimerkki 9.10. Lineaarialgebrassa osoitetaan, että lineaarikuvausten yhdistetty ku-
vaus on lineaarikuvaus ja että lineaarisen bijektion käänteiskuvaus on lineaarikuvaus.
Aliryhmätestin nojalla {L ∈ Perm(Rn) : L on lineaarikuvaus} < Perm(Rn).

Vektoriavaruuden Rn yleinen lineaarinen ryhmä on

GL(Rn) = {L ∈ Perm(Rn) : L on lineaarikuvaus} .

Propositio 9.11. Olkoon K ∈ {Q,R,C}4 ja olkoon n ∈ N−{0}. Matriisien kertolaskulla
varustettu joukko GLn(K) = {A ∈ Mn(K) : detA ̸= 0} on ryhmä.

Todistus. Esimerkin 1.5(1) nojalla GLn(K) on matriisien kertolaskulla varustetun jou-
kon Mn(K) vakaa osajoukko. Siis matriisien kertolasku indusoi tähän joukkoon laskutoi-
mituksen, joka on lineaarialgebran tietojen nojalla assosiatiivinen.5 Identtinen matriisi
In ∈ GLn(K) on tämän laskutoimituksen neutraalialkio.

Jos K ∈ {Q,R,C},6 niin jokaisella matriisilla A ∈ Mn(K), jonka determinantti ei
ole 0, on käänteismatriisi A−1 ∈ Mn(K), jonka determinantti on 1/ detA ̸= 0. Kään-
teismatriisi A−1 on alkion A käänteisalkio matriisien kertolaskulla varustetussa joukossa
{A ∈ Mn(K) : detA ̸= 0}, joka on siis ryhmä.

Olkoon K kunta. Matriisien kertolaskulla varustettu joukko

GLn(K) = {A ∈ Mn(K) : detA ̸= 0}

on K-kertoiminen yleinen lineaarinen ryhmä.

Esimerkki 9.12. Ryhmät SLn(R) ja GLn(R) eivät ole kommutatiivisia, katso Esimerkki
1.8.

Propositio 9.13. GL(Rn) ∼= GLn(R).

Todistus. Olkoon Mat: GL(Rn) → GLn(R) kuvaus, joka liittää lineaariseen bijektioon
L ∈ GL(Rn) sen matriisin standardikannan e1, e2, . . . , en suhteen:

Mat(L)ij = (ei | Lej)

kaikille 1 ≤ i, j ≤ n. Lineaarialgebran kurssilla osoitetaan, että kaikille L1, L2 ∈ GL(Rn)
pätee

Mat(L1L2) = Mat(L1) Mat(L2) .
3Permutaatioryhmät määriteltiin luvun 8.1 lopussa.
4Riittää, että K on kokonaisalue, katso lisää luvuissa 4 ja 5.
5Katso Esimerkki 1.5.
6Riittää, että K on kunta, katso luku 4.
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Lisäksi on helppo tarkastaa, että jokainen matriisi A ∈ GLn(R) määrää lineaarikuvauksen
LA ∈ GL(Rn) asettamalla LA(x) = Ax kaikille x ∈ Rn ja että Mat(LA) = A kaikille
A ∈ GLn(R).

Olkoon G ryhmä ja olkoon X ̸= ∅. Ryhmän G toiminta joukolla X on homomorfismi
ρ : G → Perm(X).
Jos toiminta on injektio, se on uskollinen toiminta.

Esimerkki 9.14. Isomorfismi Mat−1 on ryhmän GLn(R) uskollinen toiminta joukolla
Rn.

Olkoon ρ : G → Perm(X) ryhmän G toiminta joukolla X. Usein homomorfismi ρ jätetään
merkitsemättä ja kuvausta ρ(g) : X → X merkitään alkiolla g ∈ G. Merkintä g(x) tar-
koittaa tällaisessa yhteydessä samaa kuin merkintä(ρ(g))(x). Usein toiminnalle käytetään
merkintää g · x = (ρ(g))(x).

Jatkossa samastamme matriisin ja sen standardikannassa määräämän lineaarikuvauk-
sen. Matriisin A määräämää lineaarikuvausta kutsutaan usein lineaarikuvaukseksi A.

Matriisien kertolaskulla varustettu joukko {A ∈ Mn(Z) : detA ̸= 0} on yleisen line-
aarisen ryhmän GLn(Q) vakaa osajoukko mutta se ei ole aliryhmä: Diagonaalimatriisin
D = diag(2, 2, . . . , 2) determinantti on 2n ̸= 0, joten matriisilla D on rationaalisessa
yleisessä lineaarisessa ryhmässä käänteismatriisi

D−1 = diag(1/2, 1/2, . . . , 1/2) ∈ GL2(Q) .

Matriisien kertolasku on assosiatiivinen, joten käänteismatriisi on yksikäsitteinen Proposi-
tion 1.18 nojalla. Siis matriisilla D ei ole käänteismatriisia laskutoimituksella varustetussa
joukossa {A ∈ Mn(Z) : detA ̸= 0}.

Propositio 9.15. Jokaisella n ∈ N− {0} pätee

SLn(Z) = {A ∈ Mn(Z) : detA = 1} < GLn(Q) .

Todistus. Harjoitustehtävä 9.10.

Olkoon K kokonaisalue. Matriisien kertolaskulla varustettu joukko

SLn(K) = {A ∈ Mn(K) : detA = 1}

on K-kertoiminen erityinen lineaarinen ryhmä.

Esimerkki 9.16. Kaikilla n ≥ 2 pätee esimerkiksi

{In} < {−In, In} < GLn(Q) < GLn(R) < GLn(C) .

Kun n on parillinen,7 niin pätee

{In} < {−In, In} < SLn(Z) < SLn(Q) < SLn(R) < GLn(R) < GLn(C) .
7Huomaa, että det(−I3) = −1.
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Yleisten ja erityisten lineaaristen ryhmien suhteita voi myös havainnollistaa aliryhmäkaa-
violla.

GLn(C)

SLn(C) GLn(R)

SLn(R)

SLn(Z)

9.4 Homomorfismit ja aliryhmät
Seuraava tulos osoittaa, että homomorfismit sopivat aliryhmien kanssa hyvin yhteen.

Propositio 9.17. Olkoon ϕ : G → G′ ryhmähomomorfismi. Tällöin
(1) ϕ(H) ≤ G′ kaikilla H ≤ G.
(2) ϕ−1(H ′) ≤ G kaikilla H ′ ≤ G′.

Todistus. (1) Koska H on ryhmä, se sisältää ainakin yhden alkion, joten ϕ(H) ei ole tyhjä
joukko. Olkoot ϕ(g), ϕ(h) ∈ ϕ(H). Proposition 8.17 nojalla

ϕ(g)(ϕ(h))−1 = ϕ(g)ϕ(h−1) = ϕ(gh−1) ∈ ϕ(H),

koska gh−1 ∈ H. Siis ϕ(H) ≤ G′ Proposition 9.4(1) nojalla.
(2) Harjoitustehtävä 9.13.

Olkoot G ja G′ ryhmiä ja olkoon e′ ryhmän G′ neutraalialkio. Ryhmähomomorfismin
ϕ : G → G′ ydin on

kerϕ = ϕ−1(e′)
ja sen kuva on

Imϕ = ϕ(G) .

Seuraus 9.18. Jos ϕ : G → G′ on ryhmähomomorfismi, niin Imϕ ≤ G′ ja kerϕ ≤ G.

Esimerkki 9.19. (a) Tekijähomomorfismin πq : (Z,+) → (Z/qZ,+), πq(k) = k + qZ,
ydin on qZ.
(b) Determinantti määrää ryhmähomomorfismin det : GLn(R) → R×, jonka ydin on
SLn(R). Samoin ryhmähomomorfismin det : GLn(C) → C× ydin on SLn(C).

Tarkastelemme ryhmähomomorfismin ydintä ja kuvaa lähemmin luvussa 12. Seuraava
ytimen ominaisuus on hyvä todeta jo tässä vaiheessa:

Propositio 9.20. Ryhmähomomorfismi on injektio, jos ja vain jos sen ydin on neutraa-
lialkion muodostama ryhmä.
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Todistus. Olkoon ϕ : G → G′ ryhmähomomorfismi. Proposition 8.17 nojalla ryhmän G
neutraalialkio e kuvautuu ryhmän G′ neutraalialkioksi e′, joten jos ϕ on injektio, sen ydin
on {e}.

Oletetaan, että kerϕ = {e}. Olkoot x, y ∈ G siten, että ϕ(x) = ϕ(y). Tällöin

ϕ(xy−1) = ϕ(x)(ϕ(y))−1 = e′ .

Oletuksen nojalla xy−1 = e, joten x = y.

Proposition 9.20 mukaan ryhmähomomorfismin injektiivisyyden toteamiseksi riittää
tarkastella neutraalialkion alkukuvaa.

9.5 Osajoukon virittämä aliryhmä

Olkoon G ryhmä ja olkoon B ⊂ G, B ̸= ∅. Joukon B virittämä aliryhmä ⟨B⟩ on

⟨B⟩ =
⋂

{H ≤ G : B ⊂ H} ≤ G .

Joukko B on aliryhmän ⟨B⟩ virittäjäjoukko ja joukon B alkiot ovat ryhmän ⟨B⟩ virittäjiä.
Jos ⟨B⟩ = G, niin joukko B virittää ryhmän G.

Proposition 9.5 nojalla osajoukon B ⊂ G virittämä aliryhmä on ryhmän G aliryhmä.
Se on pienin joukon B sisältävä aliryhmä. Erityisesti, jos H ≤ G, niin ⟨H⟩ = H. Seuraava
tulos kertoo, miten aliryhmä ⟨B⟩ voidaan esittää konkreettisesti virittäjiensä avulla:

Propositio 9.21. Olkoon G ryhmä ja olkoon e ∈ G neutraalialkio. Olkoon B ⊂ G, B ̸= ∅.
Olkoon B−1 = {b−1 : b ∈ B}. Joukon B virittämä aliryhmä on{

b±1
1 b±1

2 · · · b±1
k : b1, b2, . . . , bk ∈ B, k ∈ N− {0}

}
=
{
a1a2 · · · ak : a1, a2, . . . , ak ∈ B ∪B−1, k ∈ N− {0}

}
. (9.1)

Todistus. Lausekkeen (9.1) antama osajoukko B̃ on ryhmän G aliryhmä Propositioiden
8.3(4) ja 9.4 nojalla. Se sisältää joukon B, joten ⟨B⟩ ≤ B̃.

Proposition 9.5 nojalla ⟨B⟩ on ryhmän G aliryhmä, joten erityisesti se on vakaa os-
ajoukko. Koska B ⊂ ⟨B⟩, niin jokaisen alkion b ∈ B käänteisalkio b−1 kuuluu ryhmään
⟨B⟩. Vakaudesta seuraa, että ⟨B⟩ sisältää kaikki muotoa b±1

1 b±1
2 · · · · · b±1

k olevat alkiot.
Siis B̃ ≤ ⟨B⟩.

Proposition 9.21 nojalla ryhmän G osajoukon B virittämä aliryhmä koostuu kaikista
niistä ryhmän G alkioista, jotka voidaan esittää sanoina joukon B alkioista ja niiden
käänteisalkioista.
Esimerkki 9.22. (a) Z = ⟨1⟩ = ⟨−1⟩ ja kaikilla q ∈ Z − {−1, 1} pätee ⟨q⟩ < Z.
Toisaalta Z = ⟨2, 3⟩ = ⟨6, 10, 15⟩, koska 1 = 3 − 2 = 6 + 10 − 15, mutta aliryhmät
⟨2⟩, ⟨3⟩, ⟨6, 10⟩ = ⟨2⟩, ⟨6, 15⟩ = ⟨3⟩ ja ⟨10, 15⟩ = ⟨5⟩ ovat ryhmän (Z,+) aitoja aliryhmiä.
(b) Kokeilemalla kaikki tapaukset on helppo nähdä, että jokainen nollasta poikkeava alkio
virittää ryhmän Z/5Z:

Z/5Z = ⟨1 + 5Z⟩ = ⟨2 + 5Z⟩ = ⟨3 + 5Z⟩ = ⟨4 + 5Z⟩ .
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Toisaalta Z/4Z = ⟨1 + 4Z⟩ = ⟨3 + 4Z⟩ mutta ⟨2 + 4Z⟩ = {0 + 4Z, 2 + 4Z} < Z/4Z.
(c) Jos G on ryhmä, B ⊂ G ja b ∈ B, niin ryhmän G neutraalialkio e voidaan esittää
äärettömän monen sanan avulla e = bb−1 = b−1b = bbb−1b−1 = · · · . Tästä seuraa, että jo-
kainen aliryhmän ⟨B⟩ alkio voidaan esittää äärettömän monella eri tavalla sanana joukon
B ∪B−1 alkioista.

Seuraava tulos osoittaa, että ryhmässä G määritelty ryhmähomomorfismi määräytyy
yksikäsitteisesti, jos sen arvot tunnetaan virittäjäjoukossa.

Propositio 9.23. Olkoon G = ⟨S⟩ ryhmä. Olkoot ϕ, ψ : G → H ryhmähomomorfismeja,
joille pätee ϕ|S = ψ|S. Tällöin ϕ = ψ.

Todistus. Harjoitustehtävä 9.15.

9.6 Syklinen ryhmä
Tässä luvussa tarkastelemme yhden alkion virittämiä ryhmiä.

Ryhmä Z on syklinen ryhmä, jos on a ∈ Z siten, että Z = ⟨a⟩.

Esimerkki 9.24. (a) Olkoon G multiplikatiivinen ryhmä ja olkoon H additiivinen ryh-
mä. Aliryhmät

⟨a⟩ = {an : n ∈ Z} ≤ G

ja
⟨b⟩ = {n b : n ∈ Z} ≤ H

ovat alkioiden a ∈ G ja b ∈ H virittämät sykliset aliryhmät.8

(b) Edellä käsitellyistä esimerkeistä muun muassa ryhmät Z = ⟨1⟩ ja Z/qZ = ⟨1 + qZ⟩,
q ≥ 2, ovat syklisiä.
(c) Ryhmän (R2,+) alkiot (0, 1) ja (1, 0) virittävät aliryhmän

⟨(0, 1), (1, 0)⟩ = (Z2,+) < (R2,+).

(Z2,+) ei ole syklinen ryhmä: Jos a, b ∈ Z− {0}, niin (−a, b) /∈ ⟨(a, b)⟩. Lisäksi alkioiden
(a, 0) ja (0, a) virittämät sykliset ryhmät sisältyvät ryhmän (Z2,+) aitoihin aliryhmiin
Z× {0} ja {0} ×Z, joten myöskään tätä muotoa olevat alkiot eivät voi yksinään virittää
ryhmää (Z2,+).
(d) Kleinin neliryhmä K4 ei ole syklinen, koska jokaisen neutraalialkiosta poikkeavan
alkion virittämä syklinen ryhmä on isomorfinen ryhmän Z/2Z kanssa.

Ryhmän G alkion g kertaluku ord g on sen virittämän syklisen aliryhmän kertaluku,

ord g = #⟨g⟩ .

8Katso potenssin ja monikerran määritelmät luvusta 1.9.
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Lemma 9.25. Olkoon G ryhmä, jonka neutraalialkio on e. Jos jollain k ∈ N− {0} pätee
gk = e, niin

ord g = min{k ≥ 1 : gk = e}.

Lisäksi
⟨g⟩ = {e, g, g2, . . . , gord g−1} .

Todistus. Harjoitustehtävä 9.20.

Esimerkki 9.26. (a) Ryhmän K4 kertaluku on 4 ja sen jokaisen neutraalialkiosta poik-
keavan alkion kertaluku on 2.
(b) Ryhmän Z/4Z kertaluku on 4 ja sen alkioiden 1 + 4Z ja 3 + 4Z kertaluku on 4. Tämä
on helppo tarkastaa vaikka alkiolle 3 + 4Z:

2(3 + 4Z) = (3 + 4Z) + (3 + 4Z) = 6 + 4Z = 2 + 4Z,

3(3 + 4Z) = (2 + 4Z) + (3 + 4Z) = 5 + 4Z = 1 + 4Z

ja
4(3 + 4Z) = (1 + 4Z) + (3 + 4Z) = (4 + 4Z) = 0 .

Kokonaislukujen additiivisella ryhmällä on sykliset aliryhmät

nZ = ⟨n⟩ = {kn : k ∈ Z},

n ∈ N. Itse asiassa ryhmällä (Z,+) ei ole mitään muita aliryhmiä:

Propositio 9.27. Kokonaislukujen ryhmän Z kaikki aliryhmät ovat syklisiä.

Todistus. Huomataan ensin, että {0} = 0Z ja Z = 1Z. Olkoon H < Z, H ̸= {0} jokin
aliryhmä. Tällöin H ∩ (N − {0}) ei ole tyhjä ja tässä joukossa on pienin positiivinen
kokonaisluku q ∈ H. Erityisesti qZ < H.

Osoitamme, että H = qZ. Jos on m ∈ H − qZ, niin kokonaislukujen jakoyhtälön9

nojalla m = aq + b joillakin a, b ∈ Z siten, että 1 ≤ b < q. Nyt b ∈ H, joten q ei olekaan
pienin positiivinen kokonaisluku ryhmässä H, mikä on ristiriita. Siis H = qZ.

Lause 9.28. (1) Syklinen ryhmä, jossa on vähintään kaksi alkiota, on isomorfinen joko
ryhmän Z tai jonkin ryhmän Z/qZ, q ≥ 2 kanssa.
(2) Syklisen ryhmän kuva ryhmähomomorfismissa on syklinen.
(3) Jokainen syklisen ryhmän aliryhmä on syklinen.

Todistus. (1) Olkoon C = ⟨g⟩ syklinen ryhmä ja olkoon ϕ : Z → C, ϕ(n) = gn. Lemman
1.27 nojalla ϕ on homomorfismi ja ryhmän C määritelmän nojalla se on surjektio. Jos ϕ
on injektio, se on isomorfismi.

Jos ϕ ei ole injektio, niin Propositioiden 9.17, 9.20 ja 9.27 nojalla kerϕ = qZ jollain
q ≥ 2. Olkoon ψ : (Z/qZ,+) → C,

ψ(k + qZ) = ϕ(k) = gk .

9Propositio A.1
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Kuvaus ψ on hyvin määritelty: jos k ≡ k′ mod q, niin k − k′ ∈ qZ = kerϕ, joten

gk
′ = ϕ(k′) = ϕ(k′)ϕ(k − k′) = ϕ(k) = gk ,

koska ϕ on homomorfismi. Kuvaus ψ on homomorfismi:

ψ(n+ qZ)ψ(m+ qZ) = gngm = gn+m = ψ((n+m) + qZ)
= ψ((n+ qZ) + (m+ qZ)).

Homomorfismi ψ on surjektio, koska ϕ on surjektio. Proposition 9.20 nojalla injektiivi-
syyden todistamiseen riittää osoittaa, että kerψ = {0}. Oletetaan, että ψ(k+qZ) = e ∈ G.
Tällöin ϕ(k) = e, joten k ∈ qZ ja k+qZ = qZ = 0. Siis C on isomorfinen äärellisen sykslien
ryhmän (Z/qZ,+) kanssa.
(2) Harjoitustehtävä 9.25.
(3) Väite todistettiin sykliselle ryhmälle Z Propositiossa 9.27. Olkoon C = ⟨g⟩ syklinen
ryhmä ja olkoon H < C. Olkoon ϕ : Z → C (surjektiivinen) homomorfismi ϕ(n) = gn

kuten kohdan (1) todistuksessa. Proposition 9.17 nojalla ϕ−1(H) ≤ Z, joten Proposition
9.27 nojalla ϕ−1(H) = NZ jollain N ∈ Z. Erityisesti ϕ−1(H) on syklinen ryhmä. Koska
H = ϕ(ϕ−1(H)), väite seuraa kohdasta (2).

Esimerkki 9.29. Syklisen ryhmän Z/12Z kaikki aliryhmät ovat syklisiä. Sen aliryh-
mäkaavio on

Z/12Z

⟨2 + 12Z⟩

⟨3 + 12Z⟩

⟨4 + 12Z⟩

⟨6 + 12Z⟩

{0}

.

Tämä on helppo tarkastaa, sillä ⟨1 + 12Z⟩ = ⟨5 + 12Z⟩ = ⟨7 + 12Z⟩ = ⟨11 + 12Z⟩,
⟨2 + 12Z⟩ = ⟨10 + 12Z⟩, ⟨3 + 12Z⟩ = ⟨9 + 12Z⟩

Esimerkki 9.30. Ryhmät Q ja R eivät ole syklisiä. Reaaliluvuille tämä on selvää, koska
syklinen ryhmä on Lauseen 9.28 seurauksena aina numeroituva. Rationaalilukujen tapaus
käsitellään harjoitustehtävässä 9.22.

Koska Lauseen 9.28 mukaan kaikki keskenään yhtä mahtavat sykliset ryhmät ovat iso-
morfisia keskenään, voimme puhua abstraktista n alkion syklisestä ryhmästä Cn ja ääret-
tömästä syklisestä ryhmästä C∞. a

aToisinaan syklisille ryhmille käytetään merkintöjä Zn ja Z∞.
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9.7 Ryhmien sisäinen suora tulo
Tässä luvussa tarkastelemme tilannetta, jossa voidaan osoittaa, että jokin ryhmä on iso-
morfinen kahden aliryhmänsä suoran tulon kanssa.10 Tämä tieto helpottaa tarkasteltavan
ryhmän rakenteen hahmottamisessa. Sovellamme tätä menetelmää Esimerkissä 9.34 ja
tunnistamme, että (Z/8Z)× ∼= K4.

Olkoon G ryhmä ja olkoot S, T ≤ G. Olkoon

ST = {st : s ∈ S, t ∈ T} .

Proposition 9.21 nojalla
S ∪ T ⊂ ST ⊂ ⟨S ∪ T ⟩ .

Jos ST on ryhmä, niin se sisältää joukon S ∪ T ja sisältyy joukon S ∪ T virittämään
aliryhmään, joten tällöin ST = ⟨S ∪ T ⟩.

Lemma 9.31. Jos G on kommutatiivinen ryhmä ja S, T ≤ G, niin ST = ⟨S ∪ T ⟩.

Todistus. Harjoitustehtävä 9.32.

Myöhemmin todistettava Propositio 12.22 yleistää Lemman 9.31 ryhmille, jotka eivät
ole välttämättä kommutatiivisia ja antaa yleisemmän ehdon sille, että ST = ⟨S ∪ T ⟩.
Seuraava esimerkki osoittaa, että ST ei välttämättä ole ryhmä.
Esimerkki 9.32. Olkoot

U =
〈(

1 1
0 1

)〉
, L =

〈(
1 0
1 1

)〉
≤ SL2(R) .

Tällöin
UL =

{(
1 m
0 1

)(
1 0
n 1

)
=
(

1 +mn m
n 1

)
: m,n ∈ Z

}
.

Jos m,n ̸= 0, niin (
1 +mn m

n 1

)−1

=
(

1 −m
−n 1 +mn

)
ei ole joukossa UL, joten UL ei ole ryhmän SL2(R) aliryhmä. Vastaavalla tavalla nähdään,
että LU ei ole ryhmä.

Olkoon G ryhmä, jonka neutraalialkio on e, ja olkoot H, J ≤ G aliryhmiä. Jos HJ = G,
H ∩ J = {e} ja hj = jh kaikille h ∈ H ja j ∈ J , niin G on aliryhmien H ja J sisäinen
suora tulo.

Sisäisen suoran tulon määritelmässä edellytetään, että aliryhmien H ja J alkioille
pätee hj = jh kaikille h ∈ H ja j ∈ J . Tämä ehto on usein kätevä ilmaista sanallisesti,
seuraava määritelmä antaa sanastoa:

Olkoon (A, ∗) laskutoimituksella varustettu joukko. Jos g, h ∈ A ja g ∗ h = h ∗ g, niin g
ja h kommutoivat.

10Suoraa tuloa käsiteltiin luvussa 8.2.
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Propositio 9.33. Olkoon G aliryhmien H ja J sisäinen suora tulo. Tällöin G ∼= H × J .

Todistus. Harjoitustehtävä 9.33.

Esimerkki 9.34. Esimerkissä 8.23 tarkasteltu ryhmä G = (Z/8Z)× on aliryhmiensä
H = ⟨3 + 8Z⟩ ja J = ⟨5 + 8Z⟩ sisäinen suora tulo:

(3 + 8Z)2 = (5 + 8Z)2 = 1 + 8Z ja (3 + 8Z)(5 + 8Z) = 7 + 8Z ,

joten
HJ = ⟨3 + 8Z⟩⟨5 + 8Z⟩ = (Z/8Z)× = G .

Lisäksi ⟨3 + 8Z⟩ ∩ ⟨5 + 8Z⟩ = {1 + 8Z} ja sisäisen suoran tulon kommutoimisehto pätee,
koska (Z/8Z)× on kommutatiivinen.

Proposition 9.33 nojalla (Z/8Z)× on siis isomorfinen suoran tulon ⟨3 + 8Z⟩ × ⟨5 + 8Z⟩
kanssa. Huomaa, että aliryhmät ⟨3 + 8Z⟩ ja ⟨5 + 8Z⟩ ovat kahden alkion syklisiä ryhmiä
Lemman 9.25 nojalla. Siis Proposition 8.19 nojalla (Z/8Z)× on Kleinin neliryhmä.

9.8 Lukuteorian ryhmiä
Seuraava pieni havainto antaa ryhmäteoreettisen näkökulman Bézoutin yhtälöön11 ja suu-
rimpaan yhteiseen tekijään. Kahden kokonaisluvun suurin yhteinen tekijä määritellään
liitteessä A.

Propositio 9.35. Olkoot m,n ∈ Z− {0}. Jos ⟨m,n⟩ = ⟨d⟩, niin d = ± syt(m,n).

Todistus. Luku d on lukujen m ja n yhteinen tekijä, koska m,n ∈ ⟨d⟩. Olkoon e ̸= 0
lukujen m ja n yhteinen tekijä. Koska d ∈ ⟨m,n⟩, on luvut r, s,m1, n1 ∈ Z siten, että

d = rm+ sn = r(m1e) + s(n1e) = (rm1 + sn2)e ,

joten e jakaa luvun d. Siis d on lukujen m ja n suurin yhteinen tekijä.

Seuraus 9.36. Nollasta poikkeavilla kokonaisluvuilla on suurin yhteinen tekijä.

Todistus. Olkoot m,n ∈ Z− {0}. Proposition 9.27 mukaan kaikki kokonaislukujen addi-
tiivisen ryhmän aliryhmät ovat syklisiä, joten on d ∈ N siten, että ⟨d⟩ = ⟨m,n⟩. Väite
seuraa siis Propositiosta 9.35.

Olkoot a, b ∈ Z. Lukujen a ja b pienin yhteinen jaettava on

pyj(a, b) = min{c ∈ N− {0} : a ja b ovat luvun c tekijöitä} .

Seuraava helppo Lemma kuvailee pienimmän yhteisen tekijän ryhmäteoreettisesti.

Lemma 9.37. Olkoot a, b ∈ Z. Tällöin

aZ ∩ bZ = pyj(a, b)Z .
11Propositio A.3
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Todistus. Harjoitustehtävä 9.34.

Seuraava tulos yleistää Esimerkissä 9.22(b) tehdyn havainnon.

Propositio 9.38. Olkoon q ≥ 2. Tällöin Z/qZ = ⟨a+ qZ⟩, jos ja vain jos syt(a, q) = 1.

Todistus. Jos syt(a, q) = s ≥ 2, niin q = ks ja a = ℓs joillain k, ℓ ∈ N. Siis

ka = kℓs = ℓq ∈ qZ ,

joten ryhmässä ⟨a+ qZ⟩ on korkeintaan k < q alkiota. Siis ⟨a+ qZ⟩ < Z/qZ.
Oletetaan sitten, että syt(a, q) = 1. Kaikki ryhmän Z/qZ alkiot ovat alkion 1+qZ mo-

nikertoja, joten a+ qZ on virittäjä, jos 1 + qZ ∈ ⟨a+ qZ⟩. Bézout’n yhtälön12 nojalla on
x, y ∈ Z siten, että ax+ qy = 1 mutta tämähän tarkoittaa, että

x(a+ qZ) = 1 − yq + qZ = 1 + qZ .

Jos p on alkuluku, niin Propositiosta 9.38 seuraa, että Z/pZ = ⟨k + pZ⟩ jokaisella
k ̸≡ 0 mod p.

Harjoitustehtäviä
9.1. Osoita, että

S1 = {z ∈ C : |z| = 1} = {cos(t) + i sin(t) : t ∈ R}

on ryhmän C× aliryhmä.13

9.2. Anna esimerkki surjektiivisesta homomorfismista f : (R,+) → (S1, ·).14

9.3. Olkoon q ∈ N− {0}. Osoita, että joukko

Jq = {w ∈ C : wq = 1}

varustettuna kompleksilukujen kertolaskulla on ryhmän C× aliryhmä.

Ryhmä
Q8 = {±1,±i,±j,±k} ≤ H×

on kvaternioryhmä Q8.a

aRyhmä H× on Hamiltonin kvaternioiden multiplikatiivinen ryhmä, katso luku 4.4.

9.4. Osoita, että Q8 ≤ H×.

Kolmeulotteinen Heisenbergin ryhmä on joukko

H3 =


1 x z

0 1 y
0 0 1

 : x, y, z ∈ R


varustettuna matriisien kertolaskulla.

12Propositio A.3
13Opiskele tarvittaessa kompleksiluvuista luvusta 1.8, jonka tuloksia voi käyttää.
14Joukon S1 jälkimmäinen esitysmuoto Harjoitustehtävässä 9.1 saattaa auttaa.
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9.5. Osoita, että H3 on ryhmä.
9.6. Osoita, että ryhmä H3 ei ole isomorfinen ryhmän (R3,+) kanssa.15

Ryhmän G keskus on

Z(G) = {z ∈ G : zg = gz kaikilla g ∈ G}.

9.7. Olkoon G ryhmä. Osoita, että Z(G) ≤ G.
9.8. Olkoon X joukko ja olkoon x0 ∈ X. Olkoon

F = {f ∈ Perm(X) : f(x0) = x0}

Osoita, että F ≤ Perm(X).
9.9. Todista Propositio 9.5.
9.10. Todista Propositio 9.15.16

9.11. Olkoon T : SL2(Z) → SL2(Z), T (B) = TB, kuvaus, joka liittää matriisiin B sen
transpoosin. Olkoon inv : SL2(Z) → SL2(Z) kuvaus inv(B) = B−1. Mitkä kuvauksista T ,
inv, T ◦ inv ja inv ◦T ovat homomorfismeja?17

9.12. Olkoon
B =

{(
a b
0 1

a

)
: a, b ∈ C, a ̸= 0

}
.

Olkoon ϕ : B → C×,

ϕ
((

a b
0 1

a

))
= a2 .

Osoita, että B ≤ SL2(C) ja että kuvaus ϕ on homomorfismi. Määritä homomorfismin ϕ
ydin ja kuvajoukko.
9.13. Todista Propositio 9.17(2).

Olkoon n ≥ 2. Kertaluvun 4n disyklinen ryhmä on

Dicn =
〈(

e
π
n
i 0

0 e
π
n
i

)
= 1 cos π

n
+ i sin π

n
, j
〉
< H× .

9.14. Osoita, että # Dicn = 4n. Osoita, että Dic2 = Q8 .
9.15. Todista Propositio 9.23.18

9.16. Olkoon G ryhmä ja olkoon H < G. Osoita, että ⟨G−H⟩ = G.
9.17. Osoita, että ryhmät Z/6Z ja Z/2Z× Z/3Z ovat isomorfisia. 19

15Propositio 1.9
16Kertaa lineaarialgebraa! Cramerin sääntö/kofaktorimatriisi.
17Kertaa lineaarialgebraa!
18Propositio 9.21 auttaa.
19Osoita, että Z/2Z× Z/3Z on syklinen ryhmä.
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9.18. Osoita, että (Z/6Z)× ja (Z/10Z)× ovat syklisiä ryhmiä.
9.19. Osoita, että ryhmät (Z/9Z)× ja (Z/6Z,+) ovat isomorfisia.
9.20. Todista Lemma 9.25.
9.21. Määritä luvun ω = 1+i

√
3

2 ∈ C× kertaluku. Mitkä kompleksiluvut muodostavat
aliryhmän ⟨ω⟩?
9.22. Osoita, että rationaalilukujen additiivinen ryhmä ei ole syklinen.20

9.23. Olkoon S ⊂ (Q,+) äärellinen joukko. Osoita, että joukon S virittämä aliryhmä
on syklinen ja että se on ryhmän (Q,+) aito aliryhmä.
9.24. Osoita, että rationaalilukujen multiplikatiivinen ryhmä Q× ei ole syklinen. 21

9.25. Todista Lause 9.28(2).
9.26. Määritä ⟨30, 42, 70, 105⟩ ≤ (Z,+).
9.27. Olkoon G ryhmä ja olkoon H ⊂ G äärellinen vakaa osajoukko, jossa on ainakin
yksi alkio.22 Osoita, että H ≤ G.
9.28. Olkoon G äärellinen ryhmä, jonka kertaluku on parillinen. Osoita, että ryhmässä
G on alkio, jonka kertaluku on 2.23

Kommutatiivisen ryhmän G torsioaliryhmä on

TorG = {g ∈ G : ord g < ∞} .

9.29. Osoita, että TorG on kommutatiivisen ryhmän G aliryhmä.
9.30. Määritä Tor(Z× (Z/5Z)).
9.31. Määritä matriisien A,B,C ∈ SL2(Z) kertaluvut, kun

A =
(

1 1
0 1

)
, B =

(
0 −1
1 0

)
ja C =

(
0 −1
1 1

)
.

Osoita, että joukko
{F ∈ SL2(Z) : ordF < ∞}

ei ole ryhmän SL2(Z) aliryhmä.
9.32. Todista Lemma 9.31.24

9.33. Todista Propositio 9.33.
9.34. Todista Lemma 9.37.

20Jos se olisi syklinen, niin . . . .
21Aritmetiikan peruslause (Lause A.7) auttaa.
22Miten sykliset ryhmät liittyvät tähän?
23Tarkastele joukkoa P = {g ∈ G : g−1 ̸= g}.
24Miksi riittää osoittaa, että ST on ryhmä?
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Luku 10

Symmetriset ryhmät

Tässä luvussa tarkastelemme äärellisten joukkojen permutaatioryhmiä, joita kutsutaan
symmetrisiksi ryhmiksi. Symmetriset ryhmät antavat meille esimerkkejä äärellisistä ryh-
mistä, jotka eivät ole kommutatiivisia. Niillä on paljon sovelluksia esimerkiksi geometrias-
sa ja kombinatoriikassa.

10.1 Symmetrinen ryhmä Sn

Harjoitustehtävän 10.1 nojalla kaikkien n alkion joukkojen permutaatioryhmät1 ovat iso-
morfisia keskenään.

Äärellisen, n alkiosta koostuvan joukon permutaatioryhmä on symmetrinen ryhmä Sn.

Jokaisen n alkiosta koostuvan joukon permutaatioryhmää sanotaan Harjoitustehtävän
10.1 nojalla ryhmäksi Sn vastaavalla tavalla kuin voidaan puhua abstrakteista syklisistä
ryhmistä Cn ja C∞. Kun todistetaan väitteitä symmetriselle ryhmälle Sn, voidaan todis-
tuksessa tarkastella esimerkiksi joukon {1, 2, . . . , n} permutaatioita.

Symmetriset ryhmät ovat tärkeitä matematiikan eri aloilla, esimerkiksi Galois’n teo-
riassa, joka käsittelee muun muassa polynomien algebrallista ratkeavuutta. Symmetriset
ryhmät tulevat vastaan geometriassa tarkasteltaessa esimerkiksi säännöllisten monikul-
mioiden ja monitahokkaiden symmetriaryhmiä. Tästä saamme hieman esimakua luvussa
13.3.

Propositio 10.1. (1) Symmetrisen ryhmän Sn kertaluku on n! .
(2) Jos n ≥ 3, niin Sn ei ole kommutatiivinen.

Todistus. (1) Harjoitustehtävä.
(2) Tarkastellaan ensin tapaus n = 3, jonka avulla päättelemme yleisen tapauksen. Olkoon
σ ∈ S3, σ(1) = 2, σ(2) = 1, σ(3) = 3 ja olkoon τ ∈ S3, τ(1) = 1, τ(2) = 3, τ(3) = 2.
Tällöin τ ◦ σ(1) = τ(2) = 3 ja σ ◦ τ(1) = σ(1) = 2, joten σ ◦ τ ̸= τ ◦ σ.

1Katso määritelmä Esimerkin 8.9 jälkeen.
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Edellä määritellyt permutaatiot on helppo laajentaa n alkion permutaatioiksi mää-
rittelemällä kaikille n ≥ 4 permutaatiot σ̄, τ̄ ∈ Sn, joille σ̄|{1,2,3} = σ, τ̄ |{1,2,3} = τ , ja
σ̄(k) = k = τ̄(k) kaikille 4 ≤ k ≤ n. Näille permutaatioille pätee σ̄ ◦ τ̄ ̸= τ̄ ◦ σ̄ kuten
tapauksessa n = 3.

Myöhemmin Harjoitustehtävässä 11.11 osoitetaan, että ryhmät, joissa on korkeintaan
5 alkiota, ovat kommutatiivisia. Siis S3 on pienin ryhmä, joka ei ole kommutatiivinen.

Permutaatioilla operointia voi havainnollistaa monilla eri tavoilla. Proposition 10.1
todistuksessa käyttämämme tapa antaa permutaatio luettelemalla kaikkien alkioiden ku-
vautuminen ei ole kovin kätevää. Seuraavat kaaviot havainnollistavat Proposition 10.1
todistuksessa esiintyvien permutaatioiden σ ja τ yhdistettyjä kuvauksia τ ◦ σ ja σ ◦ τ :
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Yksinkertaistamista varten otamme käyttöön tiiviimmän merkintätavan:

Olkoon {a1, a2, . . . , am} ⊂ {1, 2, . . . , n} m alkion osajoukko, m ≥ 2.
Sykli (a1a2 · · · am) ∈ Sn kuvaa alkion ai alkioksi ai+1 kaikilla i ∈ {1, 2, . . . ,m− 1}, alkion
am alkioksi a1 ja on identtinen kuvaus osajoukon {a1, a2, . . . , am} komplementissa.
Syklin (a1a2 · · · am) pituus on m.
Jos syklin pituus on m, se on m-sykli.
Jos syklin pituus on 2, niin se on vaihto eli transpositio ja 2-sykli (i i+ 1) on alkeisvaihto
eli alkeistranspositio.
Syklien σ = (a1a2 · · · am) ja τ = (b1b2 · · · bk), yhdistetty kuvaus on niiden tulo. Syklien
yhdistettyä kuvausta merkitään

σ ◦ τ = (a1a2 · · · am)(b1b2 · · · bk).

Syklit (a1a2 · · · am) ja (b1b2 · · · bk) ovat erilliset, jos

{a1, a2, . . . , am} ∩ {b1, b2, . . . , bk} = ∅.

Esimerkki 10.2. (a) Sama n-sykli on mahdollista kirjoittaa n eri tavalla, kun valitaan,
mikä syklissä esiintyvistä alkioista merkitään syklimerkinnän ensimmäiselle paikalle. Esi-
merkiksi (1234) = (2341) = (3412) = (4123).
(b) Syklien tulon laskeminen on hyvin mekaanista. Lasku aloitetaan oikeassa reunassa
olevasta syklistä ja selvitetään, miten siinä esiintyvät alkiot kuvautuvat tulossa esiintyvillä
sykleillä oikealta vasemmalle. Lopputuloksena saadaan syklien tulo esitettynä erillisten
syklien tulona, joka on yksinkertaisin tapa esittää permutaatio.

Esimerkiksi permutaatio τ = (372)(1234)(1348) kuvaa 1 7→ 3 7→ 4 7→ 4, koska (372)
pitää alkion 4 paikallaan. Seuraavaksi lasketaan 4 7→ 8, 8 7→ 1 7→ 2 7→ 3 ja 3 7→ 4 7→ 1.
Koska päädyttiin takaisin alkioon 1 saadaan sykli (1483) osaksi permutaation τ lauseketta.
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Seuraavaksi lasketaan 2 7→ 3 7→ 7 ja 7 7→ 2 ja saadaan toiseksi osaksi vaihto (27). Kaikki
permutaation τ määrittelyssä esiintyvät luvut on käsitelty, joten τ = (1483)(27). Alkion
8 kuvautumista tarkasteltaessa on jätetty huomioimatta syklit (372) ja (1234), koska 8 ei
esiinny näiden syklien lausekkeissa. Tällöinhän nämä syklit pitävät alkion 8 paikallaan.
Vastaavasti alkion 2 kuvautumista tarkastellessa on jätetty huomioimatta ensimmäisen
syklin (1348) vaikutus, koska tämä sykli pitää alkion 2 paikallaan.
Esimerkki 10.3. (a) Kaikki Proposition 10.1 todistuksessa esintyvät kuvaukset ovat
syklejä: σ = (12), τ = (23), τ ◦ σ = (23)(12) = (132) ja σ ◦ τ = (12)(23) = (123). Loput
permutaatioryhmän S3 alkiot ovat vaihto (13) ja identtinen kuvaus.
(b) Kaikki syklin identtisestä kuvauksesta poikkeavat potenssit eivät välttämättä ole
syklejä. Esimerkiksi (1234)2 = (1234)(1234) = (13)(24).
(c) (akak−1 · · · a1)(a1a2 · · · ak) = id kaikille a1, . . . , ak ∈ {1, 2, . . . , n}, joten

(a1a2 · · · ak)−1 = (akak−1 · · · a1) .

Lemma 10.4. Erilliset syklit kommutoivat.

Todistus. Jos σ ja σ′ ovat erillisiä, ne ovat kahden toisiaan leikkaamattoman osajoukon
permutaatioita, joten väite pätee selvästi.

Jos f : X → X on kuvaus ja x ∈ X, niin pisteen x rata (kuvauksella f) on

O(x) = Of (x) =
⋃
n∈N

{fn(x)}.

Lemma 10.5. (1) Jokaisen m-syklin kertaluku on m.
(2) Jos σ1, σ2, . . . , σk ovat erillisiä permutaatioita ja σ = σ1σ2 · · ·σk, niin ordσ on lukujen
ordσ1, ordσ2, . . . , ordσk pienin yhteinen jaettava.

Todistus. (1) Olkoon σ = (a1a2 · · · am). Pisteen a1 rata

O(a1) = {a1, σ(a1) = a2, σ
2(a1) = a3, . . . , σ

m−1(a1) = am, σ(am) = a1, . . . }
= {a1, σ(a1) = a2, σ

2(a1) = a3, . . . , σ
m−1(a1) = am}

koostuu m pisteestä ja sama pätee kaikille muillekin pisteille a2, . . . , am. Siis kuvaukset
σk, k ∈ {2, 3, . . . ,m− 1}, eivät ole identtisiä kuvauksia ja σm = id. Väite seuraa tästä.
(2) σm = id, jos ja vain jos ordσj | m kaikilla 1 ≤ j ≤ k. Väite seuraa Lemmasta 9.25.

10.2 Symmetrisen ryhmän rakenteesta
Tarkastelemme seuraavaksi symmetrisen ryhmän Sn rakennetta.

Propositio 10.6. Jokainen sykli on vaihtojen tulo.

Todistus. Induktiolla on helppo osoittaa, että

(a1a2 · · · am) = (a1am)(a1am−1) . . . (a1a2).

12. tammikuuta 2026



110 Symmetriset ryhmät

Todistuksen idea sisältyy seuraavaan kaavioon:
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Yksityiskohdat harjoitustehtävässä 10.7.

Propositio 10.7. Jokainen vaihto on alkeisvaihtojen pariton tulo.

Todistus. Koska
(km) = (1k)(1m)(1k)

kaikilla k,m ∈ {2, 3, . . . , n}, k ̸= m, riittää osoittaa, että (1k) on alkeisvaihtojen pariton
tulo kaikilla k ∈ {2, 3, . . . , n}. Vaihto (12) on alkeellinen. Oletetaan, että (1 k − 1) on
alkeisvaihtojen pariton tulo. Väite seuraa, koska

(1k) = (1 k − 1)(k − 1 k)(1 k − 1) .

Propositio 10.8. Jokainen permutaatio τ ∈ Sn − {id} voidaan esittää erillisten syklien
tulona.

Todistus. Jos permutaatio τ kiinnittää pisteet a1, a2, . . . , ak ∈ {1, 2, . . . , n}, riittää todis-
taa väite permutaation τ rajoittumalle joukkoon {1, 2, . . . , n} − {a1, a2, . . . , ak}. Riittää
siis tarkastella permutaatioita, jotka eivät kiinnitä yhtään pistettä.

Selvästi väite pätee, kun n = 2. Oletetaan, että se pätee kaikilla Sk, kun k ≤ n − 1.
Olkoon τ ∈ Sn. Jos τ on sykli ei ole mitään todistettavaa, joten voimme olettaa, että τ ei
ole sykli. Pisteen 1 rata on

O(1) = {1, τ(1), τ 2(1), . . . , τ k(1), . . . }.

Koska {1, . . . , n} on äärellinen joukko, niin täytyy olla τ q(1) = τ r(1) joillain luonnollisilla
luvuilla q < r. Valitaan luvut q ja r niin, että ne ovat pienimmät mahdolliset. Koska τ
on bijektio, täytyy olla q = 0, τ r(1) = 1: Jos nimittäin q > 1, niin

τ(τ r−1(1)) = τ r(1) = τ q(1) = τ(τ q−1(1)) ,

joten bijektiivisyyden nojalla τ r−1(1) = τ q−1(1), mikä on ristiriidassa lukujen q ja r mi-
nimaalisuuden kanssa. Tästä nähdään, että

τ |O(1) = (1 τ(1) τ 2(1) · · · τ r−1(1)).

Induktio-oletuksen nojalla permutaation τ rajoittuma osajoukkoon {1, 2, . . . , n} − O(1)
on erillisten syklien tulo, joten väite on todistettu.

Lause 10.9. (Alkeis)vaihdot virittävät symmetrisen ryhmän Sn.

Todistus. Seuraa Propositioista 10.6, 10.7 ja 10.8.
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10.3 Cayleyn lause
Osoitamme seuraavaksi, että kaikki ryhmät voi halutessa ajatella permutaatioryhmien
aliryhminä.

Olkoon G ryhmä ja olkoon g ∈ G. Kuvaus ℓg : G → G, ℓg(x) = gx kaikilla x ∈ G, on
vasen siirto alkiolla g ∈ G.

Lemma 10.10. Vasen siirto on bijektio.

Todistus. Olkoon g ∈ G. Kuvaus ℓg : G → G on surjektio, koska ℓg(g−1z) = z kaikilla
z ∈ G ja supistussäännön nojalla se on injektio: Jos ℓg(x) = ℓg(y), niin gx = gy, joten
supistussäännön nojalla x = y.

Propositio 10.11. Ryhmä G on isomorfinen ryhmän Perm(G) jonkin aliryhmän kanssa.

Todistus. Lemman 10.10 nojalla voidaan määritellä kuvaus ρ : G → Perm(G), ρ(g) = ℓg.
Kaikille x ∈ G pätee

ρ(gh)(x) = ℓgh(x) = (gh)x = g(hx) = ℓg ◦ ℓh(x) = ρ(g) ◦ ρ(h)(x).

Siis ρ(gh) = ρ(g) ◦ ρ(h), joten kuvaus ρ on homomorfismi.
Olkoot sitten g, h ∈ G siten, että ρ(g) = ρ(h). Tällöin

g = ℓg(e) = ℓh(e) = h ,

joten ρ on injektio ja täten ρ : G → ρ(G) < Perm(G) on isomorfismi.

Lause 10.12 (Cayleyn lause). Olkoon G äärellinen ryhmä, jonka kertaluku on n. Sym-
metrisellä ryhmällä Sn on aliryhmä, joka on isomorfinen ryhmän G kanssa.

Todistus. Ryhmät Sn ja Perm(G) ovat isomorfisia, joten voimme käsitellä ryhmää Perm(G)
ja väite seuraa Propositiosta 10.11

Esimerkki 10.13. Olkoon G ryhmä. Propositiossa 10.10 määrittelimme ryhmän G us-
kollisen toiminnan2 joukolla G asettamalla ρ(g) = ℓg.

10.4 Permutaation merkki
Tässä luvussa osoitamme, että symmetrisen ryhmän alkiota, joka voidaan esittää tulona
parillisesta määrästä vaihtoja, ei voi esittää tulona parittomasta määrästä vaihtoja.

Permutaatio σ ∈ Sn on parillinen, jos se on tulo parillisesta määrästä vaihtoja ja pariton,
jos se on tulo parittomasta määrästä vaihtoja. Permutaation σ merkki on

ε(σ) =
−1, jos σ on pariton

1, jos σ on parillinen.

2Katso toiminnan määritelmä sivulta 95.
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Proposition 10.7 nojalla permutaatio on tulo parillisesta määrästä vaihtoja, jos ja vain
jos se on tulo parillisesta määrästä alkeisvaihtoja. Jos σ on r vaihdon tulo, niin

ε(σ) = (−1)r . (10.1)

Osoitetaan, että permutaation merkki on hyvin määritelty kuvaus. Apuna käytetään
antisymmetrisiä kuvauksia:

Olkoon X epätyhjä joukko ja olkoon (V,+) additiivinen ryhmä. Kuvaus f : Xn → V on
antisymmetrinen, jos kaikille alkeisvaihdoille τ ∈ Sn pätee

f(xτ(1), xτ(2), . . . , xτ(n)) = −f(x).

On hyvä tuntea ainakin yksi esimerkki antisymmetrisestä funktiosta, joka ei ole nol-
lafunktio. Seuraava tulos antaa tällaisen.

Lemma 10.14. Kuvaus f : Zn → Z,

f(x) =
∏

1≤i<j≤n
(xi − xj) ,

on antisymmetrinen. Lisäksi f ei ole nollakuvaus.

Todistus. Olkoon 1 ≤ i0 < n ja olkoon τ = (i0 i0 + 1). Tällöin

f(xτ(1), xτ(2), . . . , xτ(n)) = (xi0+1 − xi0)
∏

1≤i<j≤n
{i,j}≠{i0,i0+1}

(xi − xj) = −f(x) ,

sillä

(1) jos {i, j} ∩ {i0, i0 + 1} = ∅, niin permutaatio τ ei vaikuta termiin xi − xj,

(2) jos i < i0, niin molemmat termit xi−xi0 ja xi−xi0+1 esiintyvät tulossa ja permutaatio
vaihtaa ne keskenään ja

(3) jos j > i0 + 1, niin molemmat termit xi0 − xj ja xi0+1 − xj esiintyvät tulossa ja
permutaatio vaihtaa ne keskenään.

Lisäksi, kun muuttujan x komponentit ovat eri kokonaislukuja, f(x) ̸= 0.

Propositio 10.15. Olkoon f : Xn → V antisymmetrinen kuvaus. Tällöin

f(xσ(1), xσ(2), . . . , xσ(n)) = (−1)rf(x),

jos σ on r alkeisvaihdon tulo.

Todistus. Väite pätee selvästi, kun r = 1. Oletetaan, että se pätee, kun σ on r − 1
alkeisvaihdon tulo. Olkoon σ = τ ◦ω permutaatio, joka on r alkeisvaihdon tulo siten, että
ω on r − 1 alkeisvaihdon tulo ja τ on alkeisvaihto. Nyt soveltamalla antisymmetrisyyden
määritelmää alkeisvaihdolla τ ja pisteellä (xσ(1), xσ(2), . . . , xσ(n)) saadaan

f(xσ(1), xσ(2), . . . , xσ(n)) = f(xτ(ω(1), xτ(ω(2)), . . . , xτ(ω(n)))
= −f(xω(1), xω(2), . . . , xω(n))
= −(−1)r−1f(x) = (−1)rf(x) .
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Proposition 10.7 avulla saadaan välittömästi

Seuraus 10.16. Jos f on antisymmetrinen, niin kaikille vaihdoille τ ∈ Sn pätee

f(xτ(1), xτ(2), . . . , xτ(n)) = −f(x) .

Propositio 10.17. Permutaation merkki on hyvin määritelty.

Todistus. Oletetaan, että permutaatio σ voidaan esittää r vaihdon tulona ja toisaalta s
vaihdon tulona ja osoitetaan, että tällöin r ≡ s mod 2. Kuvaus f : Zn → Z,

f(x) =
∏

1≤i<j≤n
(xi − xj) .

on Lemman 10.14 nojalla antisymmetrinen funktio. Proposition 10.15 nojalla

(−1)rf(x) = f(xσ(1), xσ(2), . . . , xσ(n)) = (−1)sf(x),

kaikilla x ∈ Zn. Koska f ei ole nollafunktio, on x ∈ Zn, jolle f(x) ̸= 0 ja saadaan
(−1)r = (−1)s. Siis r ≡ s mod 2.

Lause 10.18. Merkki ε : Sn → {−1, 1} on ainoa homomorfismi permutaatioryhmästä Sn
multiplikatiiviseen ryhmään {−1, 1}, joka saa vaihdoilla arvon −1.

Todistus. Olkoot σ1, σ2 ∈ Sn. Oletetaan, että σ1 on r vaihdon tulo ja että σ2 on s vaihdon
tulo. Tällöin σ1σ2 on r + s vaihdon tulo, joten yhtälön (10.1) nojalla

ε(σ1σ2) = (−1)r+s = (−1)r(−1)s = ε(σ1)ε(σ2) .

Siis ε on homomorfismi.
Määritelmän mukaan ε(τ) = −1 kaikille vaihdoille τ ∈ Sn, joten merkki toteuttaa ha-

lutun ehdon. Toisaalta Lauseen 10.9 nojalla alkeisvaihdot virittävät ryhmän Sn, joten Pro-
position 9.23 nojalla homomorfismi f : Sn → {−1, 1} määräytyy, jos sen arvot tunnetaan
tässä virittäjäjoukossa. Siis ε on ainoa homomorfismi, jolla on haluttu ominaisuus.

Esimerkki 10.19. Permutaatiot ja niiden merkit esiintyvät lineaarialgebrassa determi-
nanttien yhteydessä: Neliömatriisin A = (aij)ni=1 determinantti on3

detA =
∑
σ∈Sn

ε(σ)aσ(1)1aσ(2)2 · · · aσ(n)n .

Jos neliömatriisien vektoriavaruus Mn(R) samastetaan avaruudeksi (Rn)n esittämällä mat-
riisi A ∈ Mn(R) sarakkeidensa tai riviensä avulla muodossa

A =
(
v1 · · · vn

)
=


w1
...
wn

 ,
niin determinantti on antisymmetrinen kuvaus det : (Rn)n → R:

det(vσ(1) vσ(2) · · · vσ(n)) = det


wσ(1)
wσ(2)

...
wσ(n)

 = ε(σ) detA.

3Katso esimerkiksi [Art, luku 1.6].
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10.5 Alternoiva ryhmä An

Parilliset permutaatiot muodostavat ryhmän Sn aliryhmän:

Olkoon n ≥ 3. Merkkihomomorfismin ε : Sn → {−1, 1} ydin on alternoiva ryhmä An.

Alternoiva ryhmä koostuu parillisista permutaatioista. Se on symmetrisen ryhmän aito
aliryhmä, koska (12) ∈ Sn − An kaikille n ≥ 2.

Propositio 10.20. Olkoon n ≥ 2. Alternoivan ryhmän An kertaluku on n!/2.

Todistus. Olkoon τ ∈ Sn alkeisvaihto. Vasen siirto ℓτ on bijektio joukkojen An ja Sn−An
välillä. Siis #Sn = n! = 2 #An.

Esimerkki 10.21. (a) (12 · · ·n) ∈ An, jos ja vain jos n on pariton: (123) = (13)(12) on
parillinen permutaatio, (1234) = (14)(123) on parillisen permutaation ja vaihdon tulona
pariton permutaatio, (12345) = (15)(1234) on parittoman permutaation ja vaihdon tulona
parillinen permutaatio ja niin edelleen.
(b) Ryhmä A3 = ⟨(123)⟩ < S3 on syklinen ryhmä A3 ∼= C3 joten se on kommutatiivinen.
Sen sijaan ryhmä An ei ole kommutatiivinen, jos n ≥ 4, koska esimerkiksi

(123)(234) = (12)(34) ̸= (13)(24) = (234)(123) .

(c) Permutaatiot (12)(34) ja (123) = (13)(12) ovat parillisia, joten ⟨(12)(34), (123)⟩ ≤ A4.
Itse asiassa A4 = ⟨(12)(34), (123)⟩ < S4. Tämän voi tarkastaa laskemalla

(12)(34)(123) = (243) ,
(123)(12)(34) = (134) ,

(12)(34)(123)(12)(34) = (142)

ja

(123)(241) = (13)(24) ,
(13)(24)(12)(34) = (14)(23) .

Koska ryhmä ⟨(12)(34), (123)⟩ sisältää lisäksi identtisen kuvauksen ja edellä lueteltujen
neljän 3-syklin neliöt, saadaan kaikki ryhmän A4 yhteensä 12 alkiota. Palaamme tähän
esimerkkiin Esimerkissä 11.12.

Propositio 10.22. Olkoon n ≥ 3. Alternoiva ryhmä An on 3-syklien virittämä.

Todistus. Jokainen ryhmän An alkio on tulo parillisesta määrästä vaihtoja. Kahden vaih-
don tuloille pätee (xy)(xz) = (xzy) ja (xy)(zt) = (xtz)(xyz), jos x, y, z, t ∈ {1, 2, . . . , n} ja
#{x, y, z, t} = 4. Siis parillisen monen vaihdon tulo voidaan kirjoittaa 3-syklien tulo-
na.
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Harjoitustehtäviä
10.1. Olkoot X ja Y epätyhjiä joukkoja ja olkoon f : X → Y bijektio. Osoita, että
permutaatioryhmät Perm(X) ja Perm(Y ) ovat isomorfisia.
10.2. Osoita, että permutaatioryhmän Sn kertaluku on n!.
10.3. Kirjoita permutaatiot (123)(24) ja (1234)(235) ja kaavioita
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vastaavat permutaatiot erillisten syklien tuloina.
10.4. Olkoon σ : {1, 2, . . . , 7} → {1, 2, . . . , 7} permutaatio, jolle pätee

σ(1) = 3, σ(2) = 5, σ(3) = 7, σ(4) = 1, σ(5) = 6, σ(6) = 2, σ(7) = 4 .

Kirjoita permutaatio σ erillisten syklien tulona.
10.5. Olkoot α = (13457) ja β = (2645). Määritä permutaatio α−1 β−1 erillisten syklien
tulona. Määritä permutaation α−1 β−1 kertaluku.
10.6. Määritä permutaatio τ = (13428)(2648735) erillisten syklien tulona ja määritä
sen kertaluku.
10.7. Täydennä Proposition 10.6 todistus induktiotodistukseksi.
10.8. Osoita, että S3 = ⟨(12), (23)⟩
10.9. Olkoon n ≥ 3 ja olkoot αn = (123 · · ·n) ja β = (123). Määritä permutaatiot

αn(12x)α−1
n ja β−1αn(12x)α−1

n β

jokaiselle 3 ≤ x < n.
10.10. Määritä permutaatiot

• (1y2)(12x)(12y) kaikille x, y ≥ 3, x ̸= y ja

• (1xt)(1yz)(1tx) kaikille x, y, t, z > 1, kun #{x, y, t, z} = 4.

10.11. Osoita, että jokaiselle parittomalle n ≥ 5 pätee An = ⟨(123), (123 · · ·n)⟩. 4

10.12. Osoita, että S3 ∼= SL2(Z/2Z).5

10.13. Olkoon n ≥ 3. Olkoot a, b, c, d, e, f ∈ {1, 2, . . . , n} siten, että a ̸= b ̸= c ̸= a ja
d ̸= e ̸= f ̸= d. Osoita, että on σ ∈ An, jolle pätee {σ(a), σ(b), σ(c)} = {d, e, f}.6

4Käytä tehtävien 10.9 ja 10.10 tuloksia ja Propositiota 10.22.
5Tarkastele ryhmän SL2(Z/2Z) lineaarista toimintaa vektoriavaruudessa (Z/2Z)2.
6Tätä teknistä tulosta käytetään Harjoitustehtävässä 12.4.
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10.14. Olkoon σ ∈ A5 − {id}. Osoita, että σ on 3-sykli, 5-sykli tai kahden erillisen
vaihdon tulo.
10.15. Olkoot a, b, c, d, e ∈ {1, 2, 3, 4, 5} siten, että {a, b, c, d, e} = {1, 2, 3, 4, 5}. Määritä
seuraavat permutaatiot erillisten syklien tuloina:

(1) (ab)(cd)(abc)(cd)(ab),

(2) (acb)(abcde)(abc),

(3) (abcde)(abdec)−1,

(4) (aeb)(ab)(cd)(abe) ja

(5) (ab)(cd)(ae)(cd).

Olkoon k ∈ N− {0}. Olkoot 2 ≤ n1 ≤ n2 ≤ · · · ≤ nk ja olkoot σ1, σ2, . . . , σk ∈ Sn erillisiä
syklejä siten, että σj on nj-sykli jokaisella 1 ≤ j ≤ k. Permutaation σ = σ1σ2 · · ·σk sykli-
tyyppi on (n1, n2, . . . , nk).

10.16. Osoita, että permutaatioilla σ, τ ∈ Sn on sama syklityyppi, jos ja vain jos on
ω ∈ Sn siten, että σ = ωτω−1.
10.17. Olkoon σ : {1, 2, . . . , 8} → {1, 2, . . . , 8} permutaatio, jolle pätee

σ(1) = 3, σ(2) = 6, σ(3) = 7, σ(4) = 8, σ(5) = 2, σ(6) = 5, σ(7) = 4, σ(8) = 1 .

Kirjoita permutaatio σ erillisten syklien tulona. Määritä permutaation σ kertaluku.
10.18. Määritä permutaatio τ = (13579)(34259876)−1 erillisten syklien tulona. Määritä
permutaation τ kertaluku. Onko τ parillinen vai pariton permutaatio?
10.19. Määritä permutaatio τ = (148352)(35127) erillisten syklien tulona. Määritä per-
mutaation τ kertaluku. Onko τ parillinen vai pariton permutaatio?
10.20. Symmetrisellä ryhmällä S4 on neljä Kleinin 4-ryhmän K4 kanssa isomorfista
aliryhmää. Mitkä ne ovat?7

7Yksi löytyy Proposition 10.11 todistuksessa käytetyllä homomorfismilla ρ, kun G = K4. Toiset kolme
voi löytää esimerkiksi Lemman 10.4 ja Proposition 9.33 avulla.
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Luku 11

Lagrangen lause

Tässä luvussa tarkastelemme ryhmän ja sen aliryhmien suhdetta. Otamme käyttöön lu-
vussa 2.1 esitellyt osituksen ja ekvivalenssirelaation käsitteet. Aliryhmä H < G määrää
ryhmän G osituksen keskenään yhtä mahtavilla joukoilla. Tämä ositus antaa aliryhmän
indeksin käsitteen, joka osoittautuu hyödylliseksi.

11.1 Sivuluokat
Olkoon G ryhmä ja olkoon H ≤ G. Alkion g ∈ G vasen sivuluokka (aliryhmän H suhteen)
on

gH = {gh : h ∈ H}

ja sen oikea sivuluokka (aliryhmän H suhteen) on

Hg = {hg : h ∈ H} .

Aliryhmän H vasempien sivuluokkien joukko ryhmässä G on

G/H = {gH : g ∈ G}

ja oikeiden sivuluokkien joukko ona

H\G = {Hg : g ∈ G} .
aMerkintää ei pidä sekoittaa joukkojen erotukseen.

Jos kommutatiivisen ryhmän G laskutoimitusta merkitään additiivisesti, niin aliryhmän
H ≤ G sivuluokkia merkitään x+H (tai H + x).

Esimerkki 11.1. Aliryhmän qZ < Z sivuluokkien joukko on kongruenssiluokkien jouk-
ko (modulo q). Tämä on selitys sille, miksi kongruenssiluokkien joukolle käytetään mer-
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118 Lagrangen lause

kintää Z/qZ. Aliryhmän qZ < Z sivuluokille pätee

n+ qZ = {n+ kq : k ∈ Z} = {kq + n : k ∈ Z} = qZ+ n.

Edellä tehty havainto vasemmista ja oikeista sivuluokista yleistyy kaikille kommuta-
tiivisille ryhmille:

Lemma 11.2. Olkoon G kommutatiivinen ryhmä. Tällöin jokaiselle x ∈ G ja jokaiselle
H ≤ G pätee xH = Hx.

Esimerkki 11.3. Olkoon H = ⟨(12)⟩ < S3. Aliryhmän H vasemmat sivuluokat ovat

H = (12)H = {id, (12)},
(123)H = (13)H = {(123), (13)} ja
(132)H = (23)H = {(132), (23)}

Sen oikeat sivuluokat ovat

H = H(12) = {id, (12)},
H(123) = H(23) = {(123), (23)} ja
H(132) = H(13) = {(132), (13)}.

Harjoitustehtävissä 9.4 ja 11.10 tarkasteltava kvaternioryhmä Q8 on esimerkki ryh-
mästä, joka ei ole kommutatiivinen, vaikka sen kaikkien aliryhmien vasemmat ja oikeat
sivuluokat ovat samoja joukkoja.

Propositio 11.4. Olkoon G ryhmä ja olkoon H ≤ G. Tällöin
(1) xH = yH, jos ja vain jos y−1x ∈ H. Erityisesti xH = H, jos ja vain jos x ∈ H.
(2) Hx = Hy, jos ja vain jos xy−1 ∈ H. Erityisesti Hx = H, jos ja vain jos x ∈ H.

Todistus. Harjoitustehtävä 11.2.

Propositio 11.5. Olkoon G ryhmä ja olkoon H ≤ G. Tällöin joukot H, gH ja Hg ovat
yhtä mahtavia1 kaikilla g ∈ G.

Todistus. Lemman 10.10 nojalla vasen siirto ℓx : G → G on bijektio. Vasemman sivuluo-
kan määritelmän nojalla ℓx(H) = xH. Vastaavasti oikea siirto rx : G → G, joka määritel-
lään asettamalla rx(h) = hx kaikille x ∈ G, antaa bijektion joukkojen H ja Hx välille.

11.2 Sivuluokkien määräämä ositus
Kongruenssiluokat modulo q muodostavat kokonaislukujen ryhmän (Z,+) osituksen ja
Esimerkissä 11.3 aliryhmän H = ⟨(12)⟩ vasemmat ja oikeat sivuluokat määräävät kaksi
ryhmän G = S3 ositusta joukoilla, joissa jokaisessa on 2 alkiota. Seuraava tulos yleistää
tämän havainnon.

1Joukot A ja B ovat yhtä mahtavia, jos on bijektio f : A → B.
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Propositio 11.6. Olkoon G ryhmä ja olkoon H sen aito aliryhmä. Tällöin
(1) Vasemmat sivuluokat muodostavat ryhmän G osituksen. Erityisesti, jos x, y ∈ G, niin
xH = yH, jos ja vain jos x ∈ yH.
(2) Oikeat sivuluokat muodostavat ryhmän G osituksen. Erityisesti, jos x, y ∈ G, niin
Hx = Hy, jos ja vain jos x ∈ Hy.

Todistus. (1) Vasempien sivuluokkien yhdiste on koko G sillä x ∈ xH kaikille x ∈ G.
Jos xH ∩ yH ̸= ∅, niin on h, h′ ∈ H, joille xh = yh′. Mutta tällöin, jos g ∈ xH, niin
g = xh′′ jollain h′′ ∈ H, joten g = xh′′ = yh′h−1h′′ ∈ yH. Vastaava päättely antaa
inkluusion toiseen suuntaan. Siis vasemmat sivuluokat muodostavat osituksen.

Väite (2) todistetaan samaan tapaan.

Olkoon H ≤ G. Aliryhmän H määräämät relaatiot ∼
v

ja ∼
o

määritellään asettamalla

• x ∼
v
y, jos ja vain jos x−1y ∈ H ja

• x ∼
o
y, jos ja vain jos yx−1 ∈ H.

Propositio 11.7. Olkoon H ≤ G. Aliryhmän H määräämät relaatiot ovat ekvivalenssi-
relaatioita joukossa G.

Todistus. Proposition 11.4 nojalla relaatio ∼
v

on aliryhmän vasempien sivuluokkien mää-
räämä relaatio, joka on Propositioiden 11.6 ja 2.3 nojalla ekvivalenssirelaatio. Vastaavasti
relaatio ∼

o
on oikeiden sivuluokkien määräämä ekvivalenssirelaatio.

11.3 Aliryhmän indeksi ja Lagrangen lause
Sivuluokkien joukon koko osoittautuu käyttökelpoiseksi ryhmän ja sen aliryhmän suhdetta
kuvaavaksi käsitteeksi.

Propositio 11.8. Olkoon G ryhmä ja olkoon H ≤ G. Joukot G/H ja H\G ovat yhtä
mahtavia.

Todistus. Harjoitustehtävä 11.3

Aliryhmän H < G indeksi ona

[G : H] = #(G/H) = #(H\G).
aProposition 11.8 nojalla aliryhmän H indeksi voidaan määritellä kumman tahansa sivuluokkien

joukon avulla.

Esimerkki 11.9. (a) [Z : qZ] = q.
(b) Aliryhmän C2 × {e} indeksi ryhmässä C2 × C2 on

[C2 × C2 : C2 × {e}] = 2.

(c) [R2 : R× {0}] = ∞, sillä sivuluokat ovat (0, a) + R× {0} = R× {a}, a ∈ R.
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Lause 11.10 (Lagrangen lause). Olkoon G äärellinen ryhmä ja olkoon H < G. Tällöin

[G : H] = #G
#H .

Todistus. Proposition 11.5 nojalla jokaisessa sivuluokassa on #H alkiota. Proposition
11.6 nojalla sivuluokat osittavat ryhmän G. Siis

#G = #(G/H)#H = #(H\G)#H ,

mistä väite seuraa.

Lagrangen lauseen mukaan äärellisen ryhmän G aliryhmien indeksit ja kertaluvut ovat
ryhmän kertaluvun tekijöitä. Esimerkissä 9.29 näimme, että ryhmällä Z/12Z on kaikkien
mahdollisten indeksien 1, 2, 3, 6 ja 12 aliryhmät.
Esimerkki 11.11. Ryhmän S3 kertaluku on 6, joten sen aliryhmien mahdolliset kertalu-
vut (ja indeksit) ovat 1, 2, 3 ja 6. Kolmen alkion permutaatioiden ryhmän aliryhmärakenne
on yksinkertainen ja sitä voi havainnollistaa aliryhmäkaaviolla, jossa I = {id}.

S3

⟨(123)⟩

⟨(12)⟩ ⟨(13)⟩ ⟨(23)⟩

I

Siis symmetrisellä ryhmällä S3 on jokaista Lagrangen lauseen sallimaa kokoa olevia ali-
ryhmiä.
Esimerkki 11.12. Alternoivan ryhmän A4 kertaluku on 12. Siis sen aidossa aliryhmässä
voi Lagrangen lauseen mukaan olla korkeintaan 6 alkiota. Esimerkissä 10.21(c) osoitimme,
että A4 = ⟨(12)(34), (123)⟩. Voimme päätellä saman tuloksen myös näin: Koska aliryhmä
⟨(12)(34), (123)⟩ sisältää 3-syklit (123), (243) ja (134) ja niiden kaikki potenssit, niin
siinä on ainakin 8 > 6 = 12

2 alkiota. Lagrangen lauseen nojalla aliryhmä on koko A4.
Esimerkissä 12.21 osoitetaan, että ryhmällä A4 ei ole kuuden alkion aliryhmää vaikka

Lagrangen lauseen mukaan 6 on mahdollinen aliryhmän kertaluku.

Seuraus 11.13. Jos G on äärellinen ryhmä ja g ∈ G, niin ord g | #G.

Todistus. Alkio g ∈ G virittää oletuksen nojalla aliryhmän ⟨g⟩, jonka kertaluku on ord g.
Lagrangen lauseen nojalla ord g = #⟨g⟩ | #G.

Seuraus 11.14. Jos ryhmän G kertaluku on alkuluku, niin G on syklinen.

Todistus. Olkoon g ∈ G alkio, joka ei ole neutraalialkio. Tällöin ord g > 1 ja ord g on
kertaluvun #G, joten ord g = #G. Siis ⟨g⟩ = G.

Propositio 11.15. Olkoon G äärellinen ryhmä. Tällöin g#G = e jokaiselle g ∈ G.
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Todistus. Seurauksen 11.13 mukaan #G = k ord g jollain k ∈ N, joten potenssisääntöjen
ja Lemman 9.25 nojalla

g#G = gk ord g = (gord g)k = ek = e.

Seuraus 11.16. Olkoon G äärellinen ryhmä ja olkoon ϕ : G → G′ ryhmähomomorfismi.
Tällöin

#ϕ(G) = [G : kerϕ]
ja

#G = # kerϕ #ϕ(G) .

Todistus. Proposition 11.4 nojalla x kerϕ = y kerϕ, jos ja vain jos y−1x ∈ kerϕ. Tämä
pätee, jos ja vain jos ϕ(x) = ϕ(y). Siis kuvaus x kerϕ 7→ ϕ(x) on bijektio joukosta G/ kerϕ
joukkoon ϕ(G). Siis #ϕ(G) = [G : kerϕ] ja toinen väite seuraa Lagrangen lauseesta.

Propositio 11.17. Olkoon G ryhmä. Olkoot K < H < G siten, että [G : H] < ∞ ja
[H : K] < ∞. Tällöin

[G : K] = [G : H][H : K].

Todistus. Harjoitustehtävät 11.8 ja 11.9.

11.4 Lagrangen lauseen sovelluksia lukuteoriaan
Tässä luvussa sovellamme Lagrangen lausetta lukuteoriaan.

Lause 11.18 (Fermat’n pieni lause). Olkoon p alkuluku. Kaikille a ∈ Z pätee ap ≡ a
mod p.

Todistus. Proposition 8.20 nojalla ryhmässä (Z/pZ)× on p− 1 alkiota. Proposition 11.15
nojalla (a+ pZ)p−1 = 1 + pZ, joten

ap + pZ = (a+ pZ)p = a+ pZ .

Siis ap − a ∈ pZ kaikille a /∈ pZ. Jos a ∈ pZ, niin p | a, joten p | ap − a. Siis ap − a ∈ pZ
kaikille a ∈ Z.

Lemma 11.19. Jos p on alkuluku, p ≡ 3 mod 4, niin −1 + pZ ei ole minkään alkion
neliö ryhmässä (Z/pZ)×.2

Todistus. Jos −1+pZ = (a+pZ)2, niin ord(a+pZ) = 4, koska (a+pZ)4 = 1. Seurauksen
11.13 nojalla #(Z/pZ)× ≡ 0 mod 4 mutta oletuksen nojalla #(Z/pZ)× ≡ 2 mod 4.

*Propositio 11.20.3 Olkoon p pariton alkuluku. Tällöin X2 + 1 ∈ (Z/pZ)[X] on jaoton
polynomi, jos ja vain jos p ≡ 3 mod 4.

Todistus. Proposition 6.16 nojalla X2 + 1 ∈ (Z/pZ)[X] on jaoton, jos ja vain jos sillä
ei ole juurta. Lemman 11.19 sillä ei ole juurta, jos p ≡ 3 mod 4. Harjoitustehtävän 8.19
polynomilla X2 + 1 ∈ (Z/pZ)[X] on juuri, jos p ≡ 1 mod 4.

2Lukuteorian kielellä ilmaistuna: −1 ei ole neliönjäännös mod p, kun p ≡ 3 mod 4.
3Tämä tulos liittyy kurssin Renkaat ja kunnat sisältöön. Katso luku 6.6.
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Harjoitustehtäviä
11.1. Osoita, että R+ < C× ja määritä aliryhmän R+ sivuluokat ryhmässä C×. Piirrä
kuva, joka havainnollistaa sivuluokkien määräämää ositusta.
11.2. Todista Propositio 11.4.
11.3. Olkoon G ryhmä ja olkoon H < G. Osoita, että tekijäjoukkojen välinen kuvaus
b : G/H → H\G, b(aH) = Ha−1 on bijektio.
11.4. Olkoon G ryhmä ja olkoon H < G. Olkoon ρ : G → Perm(G/H),

ρ(x)(gH) = (xg)H

kaikilla gH ∈ G/H. Osoita, että ρ on homomorfismi ja että ker ρ ≤ H.
11.5. Olkoot c, d ∈ Z siten, että c jakaa luvun d. Laske indeksi [cZ : dZ].
11.6. Määritä kaikki ryhmien (Z/6Z,+) ja (Z/7Z,+) aliryhmät.
11.7. Piirrä ryhmän Z/2Z× Z/6Z aliryhmäkaavio.
11.8. Olkoon G äärellinen ryhmä. Olkoot K < H < G. Osoita Lagrangen lauseen avulla,
että indekseille pätee:

[G : K] = [G : H][H : K] .
11.9. Todista Propositio 11.17.4

11.10. Piirrä ryhmän Q8 aliryhmäkaavio.5

11.11. Olkoon G ryhmä, jossa on korkeintaan 5 alkiota. Osoita, että G on kommutatii-
vinen.6

11.12. Määritä aliryhmä ⟨(123), (124)⟩ ≤ A4.
11.13. Osoita, että S4 = ⟨(12), (1234)⟩.7

*11.14. Olkoon p alkuluku. Osoita, että kunta Z/pZ ei ole algebrallisesti suljettu8

4Tässä ei oleteta, että G on äärellinen, joten Lagrangen lausetta ei voi käyttää.
5Katso Harjoitustehtävä 9.4.
6Kertaluku 4 teettää eniten työtä.
7Käytä Lagrangen lausetta.
8Katso luku 6.8. Montako juurta polynomilla Xp − X + 1 ∈ (Z/pZ)[X] on?

12. tammikuuta 2026



Luku 12

Normaalit aliryhmät ja tekijäryhmät

Tässä luvussa tarkastelemme aliryhmiä, joiden suhteen muodostettujen sivuluokkien jou-
kossa on luonnollinen tekijäryhmän rakenne.

12.1 Normaalit aliryhmät

Ryhmän G aliryhmä H on normaali aliryhmä, jos gH = Hg kaikille g ∈ G. Jos H on
ryhmän G normaali aliryhmä, merkitään H ⊴ G. Aitoa normaalia aliryhmää merkitään
H ◁ G.

Lemma 12.1. Olkoon K ◁ G ja K ≤ H ≤ G. Tällöin K ⊴ H.

Esimerkki 12.2. (a) Ryhmä itse ja neutraalialkion muodostama aliryhmä ovat nor-
maaleja aliryhmiä.
(b) Jos G on kommutatiivinen ryhmä, niin Lemman 11.2 mukaan sen kaikki aliryhmät
ovat normaaleja. Erityisesti qZ ◁ (Z,+) ja R× {0} ◁ (R2,+).
(c) Esimerkissä 11.3 havaitsimme, että symmetrisen ryhmän S3 aliryhmä H = ⟨(12)⟩ < S3
ei ole normaali, koska esimerkiksi (13)H ̸= H(13).

Joissain tilanteissa normaalius on helppo tarkastaa:

Propositio 12.3. Jos [G : H] = 2, niin H ◁ G.

Todistus. Vasemmat sivuluokat ovat H ja G−H, samoin oikeat sivuluokat.

Esimerkki 12.4. (a) Olkoon n ≥ 3. Lagrangen lauseen nojalla [Sn : An] = 2, joten
Proposition 12.3 nojalla An ◁ Sn kaikilla n ≥ 3. Erityisesti C3 ∼= ⟨(123)⟩ = A3 ◁ S3.
(b) Esimerkin 12.2(c) nojalla Proposition 12.3 väite ei päde indeksille 3 sellaisenaan.
Harjoitustehtävässä 12.19 todistetaan yleistys, joka vaatii lisäehdon.

Usein on kätevä käyttää seuraavaa normaalin aliryhmän karakterisointia:
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Propositio 12.5. Ryhmän G aliryhmä H on normaali, jos ja vain jos ghg−1 ∈ H kaikilla
h ∈ H ja kaikilla g ∈ G

Todistus. Jos H on normaali, niin gH = Hg kaikille g ∈ G. Siis jokaiselle g ∈ G ja h ∈ H
pätee gh = h′g jollain h′ ∈ H, joten ghg−1 = h′ ∈ H.

Jos taas kaikille g ∈ G ja h ∈ H pätee ghg−1 ∈ H, niin jokaiselle g ∈ G ja h ∈ H
on h′ ∈ H, jolle ghg−1 = h′. Siis gh = h′g ∈ Hg, joten gH ⊂ Hg kaikille g ∈ G. Samoin
saadaan hg−1 ∈ g−1H, joten Hg−1 ⊂ g−1H kaikille g ∈ G. Koska jokainen ryhmän G
alkio on jonkin alkion käänteisalkio, väite on todistettu.

Esimerkki 12.6. Jos α ∈ An < Sn on parillinen permutaatio ja β ∈ Sn on permutaa-
tio, niin βαβ−1 on parillinen permutaatio. Siis Propositio 12.5 antaa toisen todistuksen
sille, että An ◁ Sn.

Sovellamme Propositiota 12.5, kun osoitamme, että normaalit aliryhmät sopivat hyvin
yhteen homomorfismien kanssa.

Propositio 12.7. Olkoon ϕ : G → G′ ryhmähomomorfismi.
(1) Olkoon H ⊴ G. Tällöin ϕ(H) ⊴ ϕ(G) = Imϕ.
(2) Olkoon H ′ ⊴ G′. Tällöin ϕ−1(H ′) ⊴ G.

Todistus. (1) Proposition 9.17 nojalla ϕ(H) ≤ ϕ(G). Olkoot a′ ∈ ϕ(H) ja g′ ∈ ϕ(G).
Tällöin on a ∈ H ja g ∈ G, joille a′ = ϕ(a) ja g′ = ϕ(g). Nyt

g′a′(g′)−1 = ϕ(g)ϕ(a)ϕ(g)−1 = ϕ(gag−1) ∈ ϕ(H),

koska gag−1 ∈ H. Väite seuraa Proposition 12.5 nojalla.
(2) Harjoitustehtävä 12.1.

Propositiosta 12.7 saadaan tärkeänä erikoistapauksena

Seuraus 12.8. Ryhmähomomorfismin ydin on normaali aliryhmä.

Esimerkki 12.9. (a) An = ker ε ◁ Sn.
(b) SLn(R) = ker det

∣∣∣
GLn(R)

◁ GLn(R).

(c) SO(n) = ker det
∣∣∣
O(n)

◁ O(n)

Proposition 12.7 kohdassa (1) on syytä pitää mielessä, että ϕ(H) ei välttämättä ole
ryhmän G′ normaali aliryhmä: Jos H < G on aliryhmä, joka ei ole normaali ja jos
ϕ : H → G on inkluusiokuvaus, ei tietenkään ϕ(H) = H ole ryhmän G normaali aliryhmä.

12.2 Tekijäryhmät
Propositioiden 11.6 ja 2.3 mukaan ryhmän G normaalin aliryhmän H vasemmat sivuluo-
kat määräävät ekvivalenssirelaation, jonka ekvivalenssiluokat ovat vasemmat sivuluokat
ja vastaavasti oikeat sivuluokat määräävät ekvivalenssirelaation, jonka ekvivalenssiluo-
kat ovat oikeat sivuluokat. Koska normaalin aliryhmän H vasemmat ja oikeat sivuluo-
kat määräävät saman osituksen ryhmälle G, ne määräävät saman ekvivalenssirelaation
∼=∼

v
=∼

o
.

Seuraava tulos on jatkon kannalta oleellinen:
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Lause 12.10. Olkoon G ryhmä ja olkoon H ⊴ G. Tällöin sivuluokkien määräämä ekvi-
valenssirelaatio on yhteensopiva ryhmän G laskutoimituksen kanssa.

Todistus. Olkoot x, x′, y, y′ ∈ G siten, että x ∼ x′ ja y ∼ y′. Tällöin siis x′ ∈ xH ja
y′ ∈ yH, joten on h1, h2 ∈ H, joille x′ = xh1, y′ = yh2. Koska H on normaali, on h3 ∈ H,
jolle h1y = yh3. Siis

x′y′ = xh1yh2 = xyh3h2 ∈ xyH ,

joten xy ∼ x′y′ ja laskutoimitus on yhteensopiva sivuluokkien määräämän ekvivalenssire-
laation kanssa.

Jos G on multiplikatiivinen ryhmä ja N ⊴ G, niin tekijälaskutoimitus on

(aH)(bH) = abH

kaikille a, b ∈ G. Additiivisen ryhmän (A,+) alkion x sivuluokalle käytetään merkintää
x+H ja tekijälaskutoimitus on siis tällä merkintätavalla

(x+H) + (y +H) = (x+ y) +H

kaikille x, y ∈ A.

Seuraus 12.11. Jos H ⊴ G, niin tekijäjoukko G/H varustettuna tekijälaskutoimituksella
on ryhmä. Tekijäryhmän G/H neutraalialkio on H.

Todistus. Tekijälaskutoimituksen assosiatiivisuus osoitettiin Propositiossa 2.8. Koska luon-
nollinen homomorfismi on surjektiivinen, niin Proposition 2.8 nojalla se kuvaa ryhmän G
neutraalialkion tekijälaskutoimituksen neutraalialkioksi, joka siis on H ∈ G/H. Tekijä-
laskutoimituksen määritelmän mukaan kaikille gH ∈ G/H pätee (gH)(g−1H) = H, joten
laskutoimituksella varustetun joukon G/H jokaisella alkiolla on käänteisalkio.

Ryhmä G/H on normaalin aliryhmän H määräämä ryhmän G tekijäryhmä.

Esimerkki 12.12. Ryhmä Z/qZ on kongruenssia mod q vastaava kokonaislukujen ryh-
män tekijäryhmä.

Propositio 12.13. Olkoon G ryhmä ja olkoon H ≤ G. Jos ryhmän G laskutoimitus on
yhteensopiva ekvivalenssirelaation ∼

v
tai ∼

o
kanssa, niin H on normaali.

Todistus. Oletetaan, että laskutoimitus on yhteensopiva ekvivalenssirelaation ∼
v

kanssa.
Kuten Seurauksen 12.11 todistuksessa,G/H varustettuna tekijälaskutoimituksella on ryh-
mä, jonka neutraalialkio on H. Luonnollinen homomorfismi π : G → G/H on ryhmäho-
momorfismi ja sen ydin on H ≤ G. Proposition 12.7 nojalla H on normaali.

Toinen tapaus todistetaan samaan tapaan.

Sykliset ryhmät käyttäytyvät hyvin tekijäryhmienkin suhteen

Propositio 12.14. Jokainen syklisen ryhmän tekijäryhmä on syklinen.

Todistus. Olkoon G = ⟨v⟩ syklinen ryhmä ja olkoon H ⊴ G. Tällöin

G/H = {gH : g ∈ G} = {vkH : k ∈ Z} = {(vH)k : k ∈ Z} = ⟨vH⟩ .
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Esimerkki 12.15. Harjoitustehtävässä 12.2 osoitetaan, että keskus1 Z(G) on ryhmän
G normaali aliryhmä. Jos G on kommutatiivinen, niin Z(G) = G, joten tekijäryhmä
G/Z(G) kuvaa ryhmän G epäkommutatiivisuutta.

Propositio 12.16. Olkoon G ryhmä. Aliryhmä H ≤ G on normaali aliryhmä, jos ja vain
jos se on jonkin ryhmässä G määritellyn ryhmähomomorfismin ydin.

Todistus. Harjoitustehtävä 12.6.

12.3 Ryhmien ensimmäinen isomorfismilause
Todistamme seuraavaksi tärkeimmän tekijäryhmiä koskevan tuloksen. Todistus on Lauseen
9.28(1) todistuksen yleistys ja itse asiassa sama kuin renkaiden isomorfismilauseen2 to-
distus.

Lause 12.17 (Ryhmien (ensimmäinen) isomorfismilause). Jos ϕ : G → G′ on ryhmäho-
momorfismi, niin Imϕ ∼= G/ kerϕ.

G

π

��

ϕ

##

G/ kerϕ ψ

∼=
// G′

Todistus. Jos x kerϕ = y kerϕ, niin Proposition 11.6 nojalla jollain h ∈ kerϕ pätee y = xh.
Siis

ϕ(y) = ϕ(xh) = ϕ(x)ϕ(h) = ϕ(x)e′ = ϕ(x).

Tähän havaintoon perustuen määritellään kuvaus ψ : G/ kerϕ → Imϕ,

ψ(x kerϕ) = ϕ(x),

joka on homomorfismi: Olkoot x, y ∈ G. Tällöin

ψ(x kerϕ)ψ(y kerϕ) = ϕ(x)ϕ(y) = ϕ(xy) = ψ(xy kerϕ) = ψ(x kerϕ y kerϕ).

Kuvaus ψ on selvästi surjektio. Osoitetaan se vielä injektioksi. Jos x kerϕ ∈ kerψ, niin
ϕ(x) = ψ(xH) = e′, joten x ∈ kerϕ. Proposition 11.4(1) nojalla x kerϕ = kerϕ. Proposi-
tion 9.20 nojalla ψ on injektio.

Seuraus 12.18. Olkoon ϕ : G → G′ surjektiivinen ryhmähomomorfismi. Tällöin ryhmät
G′ ja G/ kerϕ ovat isomorfisia.

Lause 12.19. Olkoon ϕ : G → G′ surjektiivinen ryhmähomomorfismi ja olkoon H ′ ⊴ G′.
Tällöin G/ϕ−1(H ′) ∼= G′/H ′.

1Keskus määriteltiin Harjoitustehtävän 9.7 yhteydessä.
2Lause 7.22
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Todistus. Proposition 12.7(2) mukaan H = ϕ−1(H ′) ⊴ G. Olkoon π : G′ → G′/H ′ luon-
nollinen homomorfismi. Tällöin ψ̃ = π ◦ ϕ : G → G′/H ′ on surjektiivinen homomorfismi,
jonka ydin on H. Lauseen 12.17 mukaan G/H ∼= G′/H ′.

Ryhmien ensimmäinen isomorfismilause antaa myös Seurauksen 11.16 todistuksen.
Esimerkki 12.20. (a) Homomorfismi ϕ : Z2 → (Z/2Z)2,

ϕ(k1, k2) = (k1 + 2Z, k2 + 2Z) ,

on surjektio, jonka ydin on (2Z)2 ◁ Z2. Isomorfismilauseen nojalla Z2/(2Z)2 on isomorfi-
nen ryhmän K4 = (Z/2Z)2 kanssa. Siis

[Z2 : (2Z)2] = #((Z/2Z)2) = #K4 = 4 .

(b) Kuvaus ϕ : R → S1 < C×, ϕ(t) = cos(2πt) + i sin(2πt), on surjektiivinen homomorfis-
mi, jonka ydin on selvästi Z. Siis S1 ∼= R/Z.
(c) Olkoon K ∈ {Q,R,C}. Tällöin GLn(K)/SLn(K) ∼= K×, koska det GLn(K) → K× on
surjektiivinen homomorfismi, jonka ydin on SLn(K).
Esimerkki 12.21. Osoitamme nyt, että alternoivalla ryhmällä A4 ei ole kuuden alkion
aliryhmää. Jos H < A4 on aliryhmä, jonka kertaluku on 6, niin Lagrangen lauseen mukaan
[A4 : H] = 2. Proposition 12.3 nojalla H ◁ A4. Tekijäryhmässä A4/H on kaksi alkiota,
joten A4/H ∼= Z/2Z. Siis kaikille g ∈ G pätee g2H = gHgH = H, joten Proposition 11.4
nojalla g2 ∈ H kaikille g ∈ G.

Kaikki 3-syklit kuuluvat ryhmään A4 Esimerkin 10.21 nojalla. Jos g ∈ A4 on 3-sykli,
niin g = g4 = (g2)2 ∈ H. Kaikki 3-syklit siis sisältyvät aliryhmään H. Proposition 10.22
nojalla H = A4.

Päätelmän voi tehdä myös ilman Propositiota 10.22: Ryhmässä A4 on 8 3-sykliä, joiden
pitäisi edellä tehdyn laskun nojalla sisältyä kuuden alkion aliryhmään. Siis ryhmällä A4
ei ole kuuden alkion aliryhmää.

Ryhmän A4 aliryhmärakenne on seuraavan kaavion mukainen:

A4

K4

⟨(123)⟩ ⟨(124)⟩ ⟨(134)⟩ ⟨(234)⟩

⟨(12)(34)⟩ ⟨(13)(24)⟩ ⟨(14)(23)⟩

I

Mitkä tahansa kaksi ryhmän A4 kertaluvun 2 alkioista (12)(34), (13)(24) ja (14)(23)
virittävät kaaviossa esiintyvän Kleinin neliryhmän K4. Esimerkiksi

(12)(34)(13)(24) = (14)(23) = (13)(24)(12)(34) , (12.1)
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joten alkiot (12)(34) ja (13)(24) kommutoivat. Proposition 9.21 ja yhtälön (12.1) avulla
näemme, että

⟨(12)(34)⟩⟨(13)(24)⟩ = ⟨(12)(34), (13)(24)⟩ = {id, (12)(34), (13)(24), (14)(23)} .

Siis ⟨(12)(34), (13)(24)⟩ on aliryhmien ⟨(12)(34)⟩ ja ⟨(13)(24)⟩ sisäinen suora tulo. Propo-
sition 9.33 nojalla

⟨(12)(34), (13)(24)⟩ ∼= ⟨(12)(34)⟩ × ⟨(13)(24)⟩ ∼= K4 .

Aliryhmä K4 < A4 sisältää kaikki ryhmän A4 alkiot, joiden kertaluku on 2. Siis se on
normaali aliryhmä.

12.4 Ryhmien toinen ja kolmas isomorfismilause
Ryhmien ensimmäisen isomorfismilauseen avulla todistetaan lisää tekijäryhmien isomor-
fisuustuloksia.

Propositio 12.22. Olkoon G ryhmä ja olkoot N ⊴ G ja T ≤ G. Tällöin

NT = TN = ⟨N ∪ T ⟩ ≤ G .

Todistus. Harjoitustehtävä 12.14.

Propositio 12.23. Olkoon G ryhmä. Olkoot N, T ≤ G, N ⊴ G. Tällöin N ∩ T ⊴ T .

Todistus. Olkoon π : G → G/N tekijäkuvaus. Koska kerπ|T = T ∩ N , Seurauksen 12.8
nojalla T ∩N ⊴ T .

Lause 12.24 (Ryhmien toinen isomorfismilause). Olkoon G ryhmä. Olkoot N, T ≤ G,
N ⊴ G. Tällöin ryhmät T/N ∩ T ja NT/N ovat isomorfisia.

NT

⊴ T

⊴N

N ∩ T

Todistus. Proposition 12.23 nojalla T ∩N ⊴ T ja ensimmäisen isomorfismilauseen nojalla
pätee T/N ∩ T ∼= π(T ). Vastaavasti kerπ|NT = N ja koska kaikille n ∈ N ja t ∈ T pätee

π(nt) = ntN = tnN = tnN = π(t) ,

saadaan π(NT ) = π(T ) ja ensimmäisen isomorfismilauseen nojalla

NT/N ∼= π(T ) ∼= T/N ∩ T .
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Seuraus 12.25. Olkoot a, b ∈ Z .Tällöin

syt(a, b) pyj(a, b) = ab .

Todistus. Toisen isomorfismilauseen nojalla tekijäryhmät syt(ab)Z/bZ = ⟨a, b⟩/⟨b⟩ ja
⟨a⟩/⟨a⟩ ∩ ⟨b⟩ = aZ/ pyjZ ovat isomorfisia. Harjoitustehtävän 11.5 nojalla

syt(ab)/b = # syt(ab)Z/bZ = #aZ/ pyjZ = a/ pyj(a, b) ,

mistä väite seuraa.

syt(ab)Z

⊴
aZ

⊴
bZ

pyj(a, b)Z

Lause 12.26 (Ryhmien kolmas isomorfismilause). Olkoon G ryhmä. Olkoot K ≤ H ≤ G,
K,H ⊴ G. Tällöin ryhmät G/H ja (G/K)/(H/K) ovat isomorfisia.

Todistus. Osoitamme, että kuvaus ϕ : G/K → G/H, ϕ(xK) = xH on surjektiivinen
homomorfismi, kerϕ = H/K. Kuvaus on hyvin määritelty, koska K ⊂ H. Surjektiivisuus
on selvää. Lisäksi

ϕ(xKyK) = ϕ(xyK) = xyH = xHyH = ϕ(xK)ϕ(yK),

joten kuvaus on homomorfismi. Lisäksi ϕ(yK) = yH = H, kun y ∈ H, joten H/K ⊂ kerϕ.
Toisaalta, jos y /∈ H, niin yH ̸= H, joten H/K = kerϕ. Väite seuraa isomorfismilauseesta
12.17.

Harjoitustehtäviä
12.1. Todista Propositio 12.7(2).
12.2. (a) Osoita, että ryhmän G keskus Z(G) on normaali aliryhmä.3

(b) Osoita, että ryhmän Q8 kaikki aliryhmät ovat normaaleja.4

12.3. Osoita, että Q8/Z(Q8) ∼= K4.5

12.4. Olkoon H ⊴ An normaali aliryhmä, joka sisältää ainakin yhden 3-syklin. Osoita,
että H = An.6

3Keskus määriteltiin Harjoitustehtävän 9.7 yhteydessä.
4Q8 määriteltiin Harjoitustehtävän 9.4 yhteydessä.
5Muodosta tekijäryhmän laskutaulu.
6Propositio 10.22 ja Harjoitustehtävä 10.13 tai 10.15(1).
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12.5. Olkoon G ryhmä, olkoon I ̸= ∅ jokin indeksijoukko ja olkoot Hi ⊴ G, i ∈ I.
Osoita, että ⋂

i∈I
Hi ⊴ G .

12.6. Todista Propositio 12.16.
12.7. Osoita, että C×/{−1, 1} ∼= C×.7

12.8. Osoita, että C×/R+ ∼= S1.
12.9. Osoita, että tekijäryhmä Q/Z on ääretön. Osoita, että ryhmän Q/Z jokaisen al-
kion kertaluku on äärellinen ja että ryhmä Q/Z ei ole syklinen.
12.10. Olkoot N1 ⊴ G1 ja N2 ⊴ G2. Osoita, että N1 ×N2 ⊴ G1 ×G2 ja

(G1 ×G2)/(N1 ×N2) ∼= (G1/N1) × (G2/N2) .8

12.11. Olkoon H3 3-ulotteinen Heisenbergin ryhmä.9 Olkoon ψ : H3 → (R2,+),

ψ
(1 a c

0 1 b
0 0 1

) = (a, b) .

Osoita, että ψ on homomorfismi ja määritä sen ydin. Osoita, että H3/ kerψ ∼= (R2,+).
12.12. Olkoon C syklinen ryhmä. Osoita, että ryhmällä (S1, ·) on ryhmän C kanssa
isomorfinen aliryhmä.10

12.13. Olkoot q, r ∈ N−{0, 1} lukuja, joiden suurin yhteinen tekijä on 1. Osoita, että11

Z/qZ× Z/rZ ∼= Z/qrZ .

12.14. Todista Propositio 12.22.12

Olkoon G ryhmä. Alkioiden a, b ∈ G kommutaattori on [a, b] = aba−1b−1. Ryhmän G
kommutaattorialiryhmä [G,G] on kaikkien kommutaattorien [a, b], a, b ∈ G virittämä
aliryhmä

[G,G] =
〈
[a, b] : a, b ∈ G

〉
.

12.15. Osoita, että [G,G] ⊴ G.13

12.16. Osoita, että G/[G,G] on kommutatiivinen ryhmä.
12.17. Olkoon k ∈ N pariton ja olkoon G äärellinen ryhmä, jonka kertaluku on 2k.
Olkoon a ∈ G alkio, jonka kertaluku on 2. Osoita, että vasen siirto ℓa on pariton permu-
taatio.

7Sovella ryhmien ensimmäistä isomorfismilausetta.
8Sovella ryhmien ensimmäistä isomorfismilausetta.
9Heisenbergin ryhmä määriteltiin Harjoitustehtävän 9.5 yhteydessä.

10Luvussa 9 tehtiin jotain hyödyllistä.
11Propositio A.4
12Riittää osoittaa, että NT = TN on ryhmä, katso luku 9.7.
13Propositio 9.21. Laske ensin [a, b]−1 ja osoita, että g[a, b]g−1 ∈ [G, G] kaikilla a, b, g ∈ G.
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12.18. Olkoon k ∈ N pariton ja olkoon G äärellinen ryhmä, jonka kertaluku on 2k.
Osoita, että ryhmällä G on normaali aliryhmä, jonka kertaluku on k.14

12.19. Olkoon G äärellinen ryhmä ja olkoon H < G siten, että p = [G : H] on pienin
alkuluku, joka jakaa ryhmän G kertaluvun. Osoita, että H ◁ G.15

12.20. Olkoon G ryhmä ja olkoot H1, H2 ≤ G äärellisen indeksin aliryhmiä. Olkoon
ρ : G → Perm(G/H1 ×G/H2),

ρ(x)(aH1, aH2) = ((xa)H1, (xb)H2) .

Osoita, että [G : ker ρ] < ∞. Osoita, että [G : H1 ∩H2] < ∞.

Ryhmä G on yksinkertainen ryhmä, jos sen ainoat normaalit aliryhmät ovat neutraalial-
kion muodostama aliryhmä ja G.

12.21. Osoita, että A5 on yksinkertainen ryhmä.16

14Esimerkki 12.9 ja Harjoitustehtävät 9.28 ja 12.17 voivat olla hyödyllisiä.
15Tehtävä 11.4 ja Lauseet 12.17 ja 11.10 ovat hyödyllisiä.
16Harjoitustehtävä 12.5. Lisäksi tarvittavia paloja on tehty luvun 10 harjoitustehtävässä.
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Luku 13

Ryhmät ja geometria

Kurssin viimeisessä luvussa tarkastelemme euklidisen tason säännöllisten monikulmioi-
den ja 3-ulotteisen euklidisen avaruuden säännöllisten monitahokkaiden symmetrioita ab-
straktin ryhmäteorian, lineaarialgebran ja symmetristen ryhmien avulla.

13.1 Ortogonaaliryhmä

Bilineaarikuvaus (· | ·) : Rn × Rn → R,

(x | y) =
n∑
i=1

xiyi ,

on euklidinen sisätulo.
Funktio ∥ · ∥ : Rn → [0,∞[,

∥x∥ =
√

(x | x) =
√√√√ n∑
i=1

x2
i ,

on euklidinen normi.
Kolmikko

(
Rn, (· | ·), ∥ · ∥

)
on euklidinen avaruus En.

Euklidisen avaruuden En ortogonaaliryhmä on

O(n) = {A ∈ GLn(R) : TAA = In} ,

missä TA on matriisin A transpoosi. Euklidisen avaruuden En erityinen ortogonaaliryhmä
on

SO(n) = {A ∈ O(n) : detA = 1}.
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Luvussa 9.3 tehdyn sopimuksen mukaisesti ajattelemme ortogonaaliryhmän O(n) al-
kioita tarpeen mukaan joko ortogonaalisina n × n-matriiseina tai vastaavina lineaariku-
vauksina.

Lemma 13.1. Kaikille A ∈ O(n) ja kaikille x, y ∈ En pätee (Ax | Ay) = (x | y).
Erityisesti kaikille x ∈ Rn pätee ∥Ax∥ = ∥x∥.

Todistus. Lineaarialgebran tiedoilla saamme

(Ax | Ay) = T(Ax)Ay = Tx TAAy = Txy = (x | y)

kaikille A ∈ O(n) ja kaikille x, y ∈ En. Molemmat väitteet seuraavat tästä.

Lemma 13.2. O(n) < GLn(R).

Todistus. Harjoitustehtävä 13.1.

Yleisen lineaarisen ryhmän aliryhmänä ortogonaaliryhmä O(n) toimii vektoriavaruu-
della Rn lineaarikuvauksilla. Lemman 13.1 nojalla sen alkiot säilyttävät etäisyydet ja
kulmat euklidisessa avaruudessa En.

Esimerkki 13.3. (a) Matriisi

s =
(

1 0
0 −1

)
∈ O(2) − SO(2)

on lineaarikuvauksena peilaus sx = (x1,−x2), joka kiinnittää pisteittäin ensimmäisen
koordinaattiakselin R× {0}. Selvästi ord s = 2.
(b) Olkoon θ ∈ R. Matriisi

rθ =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
∈ SO(2)

on lineaarikuvauksena kierto kulman θ verran positiiviseen kiertosuuntaan. Jos n on po-
sitiivinen luonnollinen luku, niin selvästi ord r2π/n = n.

Kaikille θ ∈ R pätee
srθs = r−1

θ = r−θ.

Lisäksi rθsr−1
θ on peilaus, joka kiinnittää pisteittäin suoran rθ(R× {0}).

13.2 Säännöllisten monikulmioiden symmetrioista
Tässä luvussa tarkastelemme ortogonaalimatriiseja, joita vastaavat kuvaukset kuvaavat
0-keskisen säännöllisen monikulmion itselleen.
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Olkoon n ∈ N− {0, 1, 2}. Olkoon e1 = t(1 0). Olkoot

vk = rk−1
2π
n

e1 ,

k ∈ Z. Pisteiden vk ja vk+1 määräämä puolitaso on

Hk =
{
x ∈ E2 : (x | vk + vk+1) ≤ (vk | vk + vk+1)

}
,

kun 1 ≤ k ≤ n. Joukko

Pn =
n−1⋂
k=0

Hk

on säännöllinen monikulmio. Pisteet v0, v1, . . . vn−1 ovat monikulmion P kärjet.

Puolitaso Hk sisältään ne pisteet, jotka ovat samalla puolella kärkipisteiden vk ja
vk+1 kautta kulkevaa suoraa kuin 0.

v2

v1

r2π/3

s

r2π/3s

sr2π/3

v3

Kuva 13.1 — Säännöllinen monikulmio P3 on tasasivuinen kolmio, jonka kärjet ovat
kompleksilukujen avulla ilmaistuna 1, −1+i

√
3

2 ja −1−i
√

3
2 . Kuva havainnollistaa kolmion

P3 symmetrioita Esimerkin 13.3 merkinnöillä.

Ortogonaaliryhmän aliryhmäa

Dn = {A ∈ O(2) : APn = Pn}

on diedriryhmä eli kaksitahokasryhmä. Diedriryhmän Dn alkiot ovat monikulmion Pn sym-
metrioita. b

aKatso Harjoitustehtävä 13.3.
bMerkintä APn tarkoittaa kuvajoukkoa APn = {Ax : x ∈ Pn}.
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Euklidisen avaruuden E3 monitahokkaita voi kutsua myös kansainvälisemmällä nimel-
lä polyedri, nelitahokastahan kutsutaankin yleensä tetraedriksi, 8-tasokasta oktaedriksi
ja niin edelleen. Jos ajatellaan monikulmio Pn upotettuna 3-ulotteiseen avaruuteen, sillä
on yläpuoli ja alapuoli, joten monitahokkaana se on kaksitahokas, siis diedri.

Esimerkki 13.4. Kolmiolla P3 on kuusi symmetriaa: identtinen kuvaus id, kierrot r2π/3
ja r2

2π/3 = r−2π/3 ja peilaukset s, r2π/3s = r−1
2π/3sr2π/3 ja sr2π/3 = r2π/3sr

−1
2π/3 kunkin kärjen

kautta kulkevien kulmanpuolittajasuorien suhteen.
Jos kolmio P3 ajatellaan kolmiulotteisessa avaruudessa E3 kaksipuolisena levynä, joka

sisältyy tasoon E2 × {0}, niin kuvaukset id, r2π/3 ja r2
2π/3 kuvaavat kolmion yläpuolen

yläpuoleksi ja muut kuvaavat yläpuolen alapuoleksi.

r2s(2)

r r

rr

s

r

r

s

s

1

2

3

r(1)

r(2)

r(3) r2(2)

r2(3)

r2(1)

r2s(3)

r2s(1)s(2)

s(3)

s(1)

rs(1)

rs(3)

rs(2)

Kuva 13.2 — Ryhmän D3 toiminta kolmiolla P3. Kuvassa r = r2π/3 ja kärkiä v1, v2 ja
v3 on merkitty niiden järjestysnumeroilla 1, 2 ja 3.

Lemma 13.5. Olkoon n ≥ 3 luonnollinen luku. Tällöin
(1) Dn ≤ O(2).
(2) Dn = ⟨s, r2π/n⟩.
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(3) #Dn = 2n.1

Todistus. (1) Harjoitustehtävä 13.3.
(2) Osoitetaan ensin, että ⟨s, r2π/n⟩ ≤ Dn: Olkoon

Vn = {v1 = (1, 0), v2, . . . , vn}

monikulmion Pn kärkien joukko järjestettynä positiivisen kiertosuunnan mukaan. Matrii-
sia r2π/n vastaava lineaarikuvaus kiertää monikulmiota Pn siten, että r2π/nvj = vj+1, kun
1 ≤ j ≤ n − 1 ja r2π/nvn = v1. Jos n on parillinen, niin s kiinnittää kärkipisteet v1 ja
vn

2 +1 ja s(vk) = vn+2−k kaikille 2 ≤ k ≤ n
2 . Jos n on pariton, niin s kiinnittää vain kärjen

v1 ja s(vk) = vn+2−k kaikille 2 ≤ k ≤ n+1
2 . Kaikki kuvaukset, joita saadaan yhdistettynä

kuvauksina kuvauksista r±1
2π/n ja s = s−1 kuvaavat monikulmion Pn itselleen. Proposition

9.21 nojalla siis ⟨s, r2π/n⟩ ≤ Dn.
Osoitetaan, että Dn ≤ ⟨s, r2π/n⟩. Olkoon f ∈ Dn. Tällöin on m ∈ Z ja t ∈ {id, s} < Dn

siten, että t rm2π/nf(1, 0) = (1, 0) ja myös molemmat viereiset kärjet kuvautuvat itselleen.
Tällöin trm2π/nf = id, koska identtinen kuvaus on ainoa tason lineaarikuvaus, joka kiinnit-
tää kaksi lineaarisesti riippumatonta vektoria. Siis f ∈ ⟨s, r2π/n⟩, joten Dn ≤ ⟨s, r2π/n⟩.
(3) Kuvaus d ∈ Dn määräytyy yksikäsitteisesti, kun valitaan, mihin n eri vaihtoehdosta
kärkipiste (1, 0) kuvautuu ja valitaan, vaihtuuko kärkien kiertosuunta kuvauksessa d vai
ei (kaksi vaihtoehtoa). Siis #Dn = 2n.

Diedriryhmän Dn permutaatioesitys on kuvaus ρn : Dn → Sn, joka määritellään siten, että
alkiota A ∈ Dn vastaa permutaatio ρn(A) ∈ Sn, jolle pätee

Avk = vρ(A)(k) (13.1)

kaikille k ∈ {1, 2, . . . , n}.

Lemman 13.5(2) todistuksessa näimme, että

ρn(r2π/n) = (12 · · ·n) .

Permutaation ρn(s) lauseke riippuu siitä, onko n parillinen vai pariton: Parillisille n pätee

ρn(s) = (2 n)(3 (n− 1)) · · ·
(n

2
n

2 + 2
)

=
n
2∏

k=2

(
k (n− k + 2)

)
(13.2)

ja parittomille pätee

ρn(s) = (2 n)(3 (n− 1)) · · ·
(n+ 1

2
n+ 1

2 + 2
)

=
n−1

2∏
k=2

(
k (n− k + 2)

)
. (13.3)

Propositio 13.6. Kuvaus ρn on uskollinen esitys.
1Joissain kirjoissa monikulmion Pn symmetrioista koostuvalle diedriryhmälle käytetään merkintää

D2n. Tätä merkintää käyttää esimerkiksi [Rot] neljännestä laitoksesta alkaen.
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Todistus. Lemman 13.5 todistuksessa näimme, että lineaarikuvauksen A ∈ Dn rajoittuma
monikulmion Pn joukkoon Vn määrää symmetrisen ryhmän Perm(Vn) ∼= Sn alkion ρ(A)
yhtälön (13.1) mukaisesti. Olkoot A,B ∈ Dn. Tällöin kaikille k ∈ {1, 2, . . . , n} pätee

vρn(AB) = (AB)vk = A(Bvk) = Avρn(B)(k) = vρn(A)(ρn(B)(k)) = v(ρn(A)ρn(B))(k) ,

joten ρn on homomorfismi. Se on injektiivinen Lemman 13.5(2) todistuksen loppuosan ja
Proposition 9.20 nojalla.

Seuraus 13.7. Dn
∼= ⟨ρn(r2π/n), ρn(s)⟩ ∼= ⟨(1, 2, . . . , n), ρn(s)⟩ ≤ Sn.

Homomorfismi ρn ei ole surjektio, kun n ≥ 4, koska tällöin #Dn = 2n < n! = #Sn.
Esimerkki 13.8. Ryhmä D3 on isomorfinen ryhmän S3 kanssa, koska homomorfismi
ρ3 : D3 → S3 on injektio ja #D3 = 6 = #S3. Yhtälön (13.3) mukaan ρ3(s) = (23).
Esimerkki 13.9. Lemman 13.5 nojalla neliön diedriryhmä on

D4 = ⟨rπ/2, s⟩ =
〈(

0 −1
1 0

)
,

(
1 0
0 −1

)〉
.

Diedriryhmässä D4 on 8 alkiota: Neutraalialkion I2, lisäksi on kierrot

rπ/2 =
(

0 −1
1 0

)
ja r−1

π/2 =
(

0 1
−1 0

)
,

joiden kertaluku on 4, ja viisi kertaluvun 2 alkiota r2
π/2 = −I2 ∈ Z(D4), s,

rπ/2sr
−1
π/2 = sr2

π/2 = −s =
(

−1 0
0 1

)
,

rπ/2s =
(

0 1
1 0

)
ja srπ/2 = −rπ/2s =

(
0 −1

−1 0

)
.

Lagrangen lauseen nojalla tai virittäjiä tarkastelemalla nähdään, että

⟨rπ/2, s⟩ = ⟨rπ/2, srπ/2⟩ = ⟨rπ/2, rπ/2s⟩ = ⟨rπ/2, rπ/2s⟩ = D4 .

Samoin virittäjistä näkee helposti, että

⟨s, rπ/2s⟩ = ⟨s, srπ/2⟩ = ⟨sr2
π/2, rπ/2s⟩ = ⟨sr2

π/2, srπ/2⟩ = ⟨s, rπ/2⟩ = D4 ,

joten kertaluvun 4 alkiot esiintyvät vain syklisessä aliryhmässä ⟨rπ/2⟩ ja koko ryhmässä
D4. Kertaluvun 2 alkiot virittävät kukin kahden alkion syklisen ryhmän, joita on siis viisi.

Lisäksi on helppo tarkastaa, että

⟨−I2, s⟩ = ⟨−I2,−s⟩ = ⟨s,−s⟩ = {I2,−I2, s,−s} = K
(1)
4 .

Koska −I2 on keskuksessa, tämä ryhmä on Kleinin neliryhmä. Vastaavalla tavalla näh-
dään, että

⟨−I2, rπ/s⟩ = ⟨−I2, srπ/2⟩ = ⟨rπ/2s, srπ/2⟩ = {I2,−I2, rπ/s, srπ/2} = K
(2)
4

∼= K4 .

12. tammikuuta 2026



13.2. Säännöllisten monikulmioiden symmetrioista 139

v1

v4

v3

v2

v1

v4

v3

v2

srπ/2
rπ/2

rπ/2sr
−1
π/2

rπ/2

rπ/2s

s

Kuva 13.3 — Ryhmällä D4 on kaksi aliryhmää, jotka ovat Kleinin neliryhmiä.

Ryhmän D4 aliryhmäkaavio on siis

D4

K
(2)
4 ⟨rπ/2⟩ K

(1)
4

⟨srπ/2⟩ ⟨rπ/2s⟩ ⟨−I2⟩ ⟨−s⟩ ⟨s⟩

{I2}

Kleinin neliryhmän kanssa isomorfiset aliryhmät koostuvat identtisen kuvauksen li-
säksi kahdesta keskenään kohtisuorien akselien suhteen tehtävästä peilauksesta ja niiden
yhdistettynä kuvauksena saatavasta kierrosta −I2, katso Kuva 13.3.

Yhtälön (13.2) mukaan ρ4(s) = (24) ja Seurauksen 13.7 nojalla diedriryhmä D4 on
isomorfinen ryhmän ⟨(1234), (24)⟩ < S4 kanssa.

Seuraava tulos osoittaa, että se, että valitsimme monikulmion Pn yhdeksi kärjeksi
pisteen (0, 1) ei ole oleellista.

Lemma 13.10. Olkoon n ≥ 3, olkoon θ ∈ R ja olkoon P θ
n = rθ(Pn). Ryhmät Dn ja

{A ∈ O(2) : AP θ
n = P θ

n} ovat isomorfiset.

Todistus. Harjoitustehtävä 13.5.

Esimerkki 13.11. Olkoon

P
π/4
4 = rπ/4(P4) = {x ∈ R2 : |x1| ≤ 1, |x2| ≤ 1} .

Proposition 13.10 nojalla ryhmät {A ∈ O(2) : AP π/4
n = P π/4

n } ovat isomorfisia. Itse asiassa
tässä tapauksessa pätee jopa yhtälö D4 = {A ∈ O(2) : AP π/4

n = P π/4
n }.
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s

rπ/2

rπ/2sr
−1
π/2

Kuva 13.4 — Ryhmän D4 alkioita kierretyn neliön symmetrioina.

13.3 Monitahokkaiden symmetrioista
Esimerkki 13.12. Kolmiulotteisen avaruuden erityisen ortogonaaliryhmän SO(3) neut-
raalialkiosta poikkeavat alkiot vastaavat avaruuden R3 kiertoja jonkin (origon kautta kul-
kevan) suoran ympäri. Esimerkiksi matriisicos(θ) − sin(θ) 0

sin(θ) cos(θ) 0
0 0 1

 ∈ SO(3)

on kierto kulman θ ∈ R verran kolmannen koordinaattiakselin ympäri.

Olkoon K ⊂ R3 kuutio, jonka kärkipisteiden joukko on

VK =
{
(ε1, ε2, ε3) : ε1, ε2, ε3 ∈ {−1, 1}

}
.

Kuution K symmetriaryhmä on

ΓK = {A ∈ O(3) : AK = K}

ja sen kiertosymmetriaryhmä on

Γ+
K = {A ∈ SO(3) : AK = K}

Kuten luvussa 13.2 nähdään helposti, että ryhmät ΓK ja Γ+
K ovat isomorfisia joidenkin

ryhmän Perm(VK) ∼= S8 aliryhmien kanssa. Tässä luvussa tarkastelemme ryhmien ΓK ja
Γ+
K toimintaa pienemmällä joukolla ja saamme näiden ryhmien rakenteen selvitettyä täy-

dellisesti.

Propositio 13.13. Γ+
K

∼= S4.

Todistus. Olkoon
L =

{
{v,−v} : v ∈ VK

}
.
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Joukko L = {ℓ1, ℓ2, ℓ3, ℓ4} koostuu kuution K vastakkaisten kärkipisteiden muodostamista
joukon V osajoukoista, joita voi ajatella kuution neljänä lävistäjänä.

Kuva 13.5 — Kuutio K ja joukon L muodostavat kärkiparit.

Määritellään ryhmän ΓK toiminta ρ0 : ΓK → Perm(H) ∼= S4 joukolla L asettamalla

ρ0(g)({v,−v}) = {gv, g(−v)} = {gv,−gv}

kaikilla g ∈ ΓK ja v ∈ V . Näin saamme ryhmän ΓK toiminnan ρ joukolla {1, 2, 3, 4} mää-
rittelemällä, että ρ(g) ∈ S4 on se permutaatio, jolle pätee ρ0(g)(ℓk) = ℓρ(g)(k) kaikilla
k ∈ {1, 2, . . . , n}.

Olkoon g ∈ ΓK siten, että {gv,−gv} = {v,−v} kaikille v ∈ VK . Selvästi I3 ja −I3 ovat
tällaisia ryhmän ΓK alkioita. Oletetaan, että gv = v jollain v ∈ VK . Kolme kuution
kärkeä x, y, z on täsmälleen etäisyydellä 2 kärjestä v, joten niiden kuvat kuvauksella v
ovat etäisyydellä 2 kärjestä v, joten g{x, y, z} = {x, y, z}. Oletimme, että g kuvaa kolmion
K lävistäjät itselleen. Siis g(x) = x, g(y) = y ja g(z) = z, joten g pitää kaikki kärjet
paikallaan.

Kuution K kärjet virittävät avaruuden R3, joten g = I3. Siis ker ρ = {− id, id}. Lisäksi
ker ρ ∩ Γ+

K = {id}, joten ρ|Γ+
K

on uskollinen esitys. Harjoitustehtävässä 13.6 osoitetaan,
että ρ|Γ+

K
: Γ+

K → S4 on surjektio.

Propositio 13.14. ΓK ∼= S4 × Z/2Z.

Todistus. Determinantti det : ΓK → {−1, 1} on surjektiivinen homomorfismi multiplika-
tiiviseen ryhmään {−1, 1}, koska ±I3 ∈ ΓK ja det(±I3) = ±1. Seurauksen 12.18 nojalla
ΓK/Γ+

K
∼= {−1, 1}, joten [ΓK : Γ+

K ] = 2.
Lagrangen lauseen nojalla ⟨Γ+

K ,−I3⟩ = ΓK , koska ⟨Γ+
K ,−I3⟩ ≥ 13. Lisäksi kaikille

A ∈ Γ+
K pätee A(−I3) = −A = I3A, joten Γ+

K⟨−I3⟩ = ΓK . Lisäksi Γ+
K ∩ ⟨−I3⟩ = {I3} ja

aliryhmän ⟨−I3⟩ molemmat alkiot kommutoivat kaikkien ryhmän O(3) alkioiden kanssa,
joten Propositioiden 9.33 ja 8.19 nojalla

ΓK ∼= Γ+
K × ⟨−I3⟩ ∼= S4 × (Z/2Z) .
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Kuution K kärkipisteiden joukon VK osajoukko

VT =
{
(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1)

}
on säännöllisen tetraedrin T kärkipisteiden joukko. Tetraedrin T sivut ovat yhtä pitkiä
keskenään ja kaikki tahot ovat tasasivuisia kolmioita. Tällä tavalla muodostetun tetraedrin
painopiste on 0.

Tetraedrin T symmetriaryhmä on

ΓT = {A ∈ O(3) : AT = T}

ja sen kiertosymmetriaryhmä on

Γ+
T = {A ∈ SO(3) : AT = T} .

Kuva 13.6 — Säännöllinen tetraedri kuution sisällä kahdesta eri katselukulmasta.

Propositio 13.15. Γ+
T

∼= A4.

Todistus. On helppo tarkastaa, että VK = VT ⊔ −VT , Γ+
T ≤ Γ+

K ja että gVT = VT tai
gVT = −VT kaikille g ∈ ΓK . Olkoon h ∈ H. Jos g ∈ Γ+

K − {id} on kierto alkion h
määräämän akselin ympäri, niin g kuvaa tetraedrin T itselleen ja ρg ∈ PermH on 3-
sykli. Aliryhmä ρ(Γ+

T ) ≤ S4 sisältää ryhmän S4 kaikki 8 3-sykliä, joten Proposition 10.22
nojalla A4 ≤ ρ(Γ+

T ). Lagrangen lauseen nojalla #Γ+
T ∈ {12 = #A4, 24}. Väite seuraa,

koska Γ+
T < Γ+

K .

Vastaavaan tapaan voidaan osoittaa, että ikosaedrin ja dodekaedrin kiertosymmetria-
ryhmä on isomorfinen ryhmän A5 kanssa ja että näiden monitahokkaiden symmetriaryh-
mä on isomorfinen ryhmän A5×Z/2Z kanssa. Lisää tästä aihepiiristä voi lukea esimerkiksi
lähteistä [Arm, luku 8] ja [Ber, luku 12.5].
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Harjoitustehtäviä
13.1. Todista Lemma 13.2.
13.2. Olkoon n ≥ 2. Osoita, että SO(n) ⊴ O(n). Onko O(n) ◁ GLn(R)?2

13.3. Olkoon n ≥ 3 luonnollinen luku. Osoita, että Dn ≤ O(2).
13.4. Osoita, että D6 ∼= S3 × (Z/2Z).3

13.5. Todista Lemma 13.10.4

13.6. Osoita, että Proposition 13.13 todistuksessa käytettävä homomorfismi ρ|Γ+
K

on
surjektio.5

Olkoon A ∈ O(n) ja olkoon b ∈ Rn. Olkoon EA,b : Rn → Rn,

EA,b(x) = Ax+ b

kaikilla x ∈ Rn. Joukko

E(n) = {EA,b : A ∈ O(n), b ∈ Rn}

varustettuna kuvausten yhdistämisellä on n-ulotteisen avaruuden Eukleideen ryhmä.
Eukleideen ryhmän aliryhmä

T(n) = {EIn,b ∈ E(n) : b ∈ Rn}

on n-ulotteisen avaruuden siirtojen ryhmä.

13.7. Osoita, että E(n) on ryhmä.6

Olkoon H ryhmän G aliryhmä ja N ryhmän G normaali aliryhmä siten, että G = NH,
N ◁ G ja N ∩ H = {id}. Tällöin G on ryhmien N ja H sisäinen puolisuora tulo, jolloin
käytetään merkintää G = N ⋊H.a

Jos Ñ ∼= N ja H̃ ∼= H ja G = N ⋊H, niin G on ryhmien Ñ ja H̃ (abstrakti) puolisuora
tulo, G ∼= Ñ ⋊ H̃.

aMerkintä ei ole symmetrinen. Merkki ⋊ sisältää normaalin aliryhmän merkin ◁. Muistisääntö auttaa:
N ◁ N ⋊H, siis kolmiot ovat samoin päin merkeissä ◁ ja ⋊.

13.8. Osoita, että T(n) ◁ E(n) ja että E(n)/T(n) ∼= O(n) ja että E(n) = T(n)⋊O(n).
13.9. Osoita, että O(n) ei ole ryhmän E(n) normaali aliryhmä.
13.10. Osoita, että Sn on ryhmien An ja Z/2Z puolisuora tulo.

2Tarkastele viimeisessä kysymyksessä ensin tapaus n = 2.
3Katso Esimerkki 13.8 ja Propositio 9.33.
4Mikä on luonnollinen kuvaus väitteen ryhmien välillä?
5Mieti tilannetta geometrisesti ja osoita, että ryhmässä Γ+

K on riittävän monta alkiota.
6Kätevintä lienee osoittaa, että E(n) ≤ Perm(Rn).
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Liite A

Kokonaislukujen jaollisuus

Tarkastelemme tässä luvussa lyhyesti jaollisuutta kokonaislukujen renkaassa Z. Tulokset
lienevät tuttuja niille, jotka ovat suorittaneet kurssin Lukuteoria 1. Muutama tulos, jonka
todistus antaa mallia algebrallisen yleistyksensä todistukselle, todistetaan tässä liiitteessä,
muiden osalta viitataan kurssin Lukuteoria 1 luentoihin [Par].

Propositio A.1 (Jakoyhtälö). Olkoot a ∈ N − {0} ja b ∈ Z. Tällöin on yksikäsitteiset
q, r ∈ Z siten, että

b = qa+ r ja 0 ≤ r < a.

Todistus. Olkoon
S = {b− ka : k ∈ Z} ∩ N .

Joukko S ei ole tyhjä, koska b−(−b2)·a = b+b2a ≥ 0 kaikille b ∈ Z ja kaikille a > 0. Koska
S on luonnollisten lukujen epätyhjä osajoukko, niin sillä on pienin alkio. Määritelmän
nojalla minS = b−qa jollakin q ∈ Z. Jos minS ≥ a > 0, niin b−(q+1)a = minS−a ≥ 0,
joten minS − a ∈ S. Tämä on mahdotonta, joten minS < a. Väitteen olemassaolotulos
seuraa valitsemalla r = minS.

Oletetaan, että on q1, q2, r1, r2 ∈ Z, 0 ≤ r1, r2 < a, joille
b = q1a+ r1 = q2a+ r2.

Tällöin (q1 − q2)a = r2 − r1. Jos q1 ̸= q2, niin |q1 − q2| ≥ 1 ja siten |r2 − r1| ≥ a. Tämä on
mahdotonta, sillä 0 ≤ r1, r2 ≤ a− 1. Täytyy siis olla q1 = q2 ja siten myös r1 = r2.

Jos a, b, c ∈ Z siten, että ab = c, niin a ja b ovat luvun c tekijöitä. Tällöin luvut a ja b
jakavat luvun c, mistä käytetään merkintää a | c ja vastaavasti b | c.

Jos luku d ∈ Z jakaa kokonaisluvut a ja b, niin d on lukujen a ja b yhteinen tekijä.
Jos m,n ∈ Z ja d ∈ N on lukujen m ja n yhteinen tekijä, jonka jokainen lukujen m
ja n yhteinen tekijä jakaa, niin d on lukujen m ja n suurin yhteinen tekijä, merkitään
d = syt(m,n).
Jos syt(m,n) = 1, sanotaan, että luvut m ja n ovat suhteellisia alkulukuja ja että m ja n
ovat keskenään jaottomia.
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Esimerkki A.2. Luvun 12 tekijät ovat ±1, ±2, ±3, ±4, ±6 ja ±12. Luvun 30 tekijät
ovat ±1, ±2, ±3, ±5, ±6, ±10, ±15 ja ±30, joten lukujen 12 ja 30 yhteiset tekijät ovat
±1, ±2, ±3 ja ±6 ja syt(12, 30) = 6.

Propositio A.3 (Bezout’n yhtälö). Olkoot a, b ∈ Z. Yhtälöllä

xa+ yb = n

on kokonaislukuratkaisu (x, y) ∈ Z2, jos ja vain jos syt(a, b) | n.

Todistus. Katso [Par, luku 2.2].

Propositio A.4. Olkoot a, b ∈ Z keskenään jaottomia ja c ∈ Z. Tällöin
(1) Jos a | c ja b | c, niin ab | c.
(2) Jos a | bc, niin a | c.

Todistus. (1) Koska syt(a, b) = 1, niin xa+ yb = 1 jollain x, y ∈ Z. Oletuksen nojalla on
k, l ∈ Z siten, että ka = c = lb. Nyt on

c = c(xa+ yb) = cxa+ cyb = (lb)xa+ (ka)yb = ab(lx+ ky)
ja lx+ ky ∈ Z, joten ab | c.
(2) Kuten kohdassa (1) saadaan c = cxa+ cyb jollain x, y ∈ Z. Koska a | bc ja a | a, niin
a jakaa summan cxa+ ybc = c.

Seuraava määritelmä poikkeaa lukuteoriassa yleisesti käytetystä alkulukujen määri-
telmästä. Propositiot A.5 ja A.6 osoittavat, että tämä määritelmä on yhtäpitäva lukuteo-
riassa käytettävän määritelmän kanssa.

Luonnollinen luku p ≥ 2 on alkuluku, jos kaikille a, b ∈ N pätee p | a tai p | b, jos p | ab.
Luonnollinen luku p ≥ 2 on jaoton, jos ehdosta p = ab luonnollisilla luvuilla a, b seuraa
a = 1 tai b = 1

Propositio A.5. Jaottomat luvut ovat alkulukuja.

Todistus. Olkoon p alkuluku. Oletetaan, että p = ab. Riittää tarkastella tapaus p | a.
Tällöin a = pc jollakin c ∈ N, joten p = pcb. Supistamalla p molemmilta puolilta saadaan,
pc = 1, joten p = 1. Siis p on jaoton.

Propositio A.6 (Eukleideen lemma). Alkuluvut ovat jaottomia.

Todistus. Olkoon p ∈ Z jaoton ja olkoot a, b ∈ Z siten, että p on luvun ab tekijä. Ole-
tetaan, että p ei jaa lukua a. Tällöin syt(a, p) = 1, joten väite seuraa Proposition A.4
kohdasta (2).

Lause A.7 (Aritmetiikan peruslause). Jokainen nollasta poikkeava kokonaisluku q voi-
daan voidaan esittää positiivisten alkulukujen äärellisenä tulona muodossa

q = (−1)m(q)∏
p

pap(q),

missä m(q) ∈ {0, 1} ja ap(q) ∈ N kaikille alkuluvuille p ≥ 2. Tämä esitys on tekijöiden
järjestystä vaille yksikäsitteinen.

Todistus. Katso [Par, luku 3.2].

12. tammikuuta 2026



Kirjallisuutta

[Arm] M. A. Armstrong. Groups and symmetry. Undergraduate Texts in Mathematics.
Springer-Verlag, New York, 1988.

[Art] M. Artin. Algebra. Prentice Hall Inc., 1991.

[Ber] M. Berger. Geometry I-II. Universitext. Springer-Verlag, Berlin, 1987. Translated
from the French by M. Cole and S. Levy.

[DF] D. S. Dummit and R. M. Foote. Abstract algebra. John Wiley & Sons Inc.,
Hoboken, NJ, third edition, 2004.

[Ham] G. Hamel. Eine Basis aller Zahlen und die unstetigen Lösungen der Funktio-
nalgleichung: f(x+ y) = f(x) + f(y). Math. Ann., 60(3):459–462, 1905.

[IR] K. Ireland and M. Rosen. A classical introduction to modern number theory, vo-
lume 84 of Graduate Texts in Mathematics. Springer-Verlag, New York, second
edition, 1990.

[Kna] A. W. Knapp. Advanced algebra. Birkhäuser Boston, Inc., Boston, MA, 2007.

[LP] J. Lehrbäck and J. Parkkonen. Lukualueet. http://www.math.jyu.fi/opiskelu/
monisteet/MATA120.pdf.

[Par] J. Parkkonen. Lukuteoria. http://users.jyu.fi/~parkkone/Lukuteoria2024/
Lukuteoria24.pdf, 2024.

[Rot] J. J. Rotman. An introduction to the theory of groups, volume 148 of Graduate
Texts in Mathematics. Springer-Verlag, New York, fourth edition, 1995.

[War] S. Warner. Modern algebra. Vols. I, II. Prentice-Hall Inc., Englewood Cliffs, N.J.,
1965.

12. tammikuuta 2026 147

http://www.math.jyu.fi/opiskelu/monisteet/MATA120.pdf
http://www.math.jyu.fi/opiskelu/monisteet/MATA120.pdf
http://users.jyu.fi/~parkkone/Lukuteoria2024/Lukuteoria24.pdf
http://users.jyu.fi/~parkkone/Lukuteoria2024/Lukuteoria24.pdf

	Laskutoimituksista
	Laskutoimitukset
	Laskutoimitus
	Indusoitu laskutoimitus
	Homomorfismi
	Assosiatiivisuus ja kommutatiivisuus
	Neutraalialkio
	Käänteisalkio
	Kahdella laskutoimituksella varustetut joukot
	Kompleksiluvut
	Potenssit ja monikerrat
	Harjoitustehtäviä

	Tekijälaskutoimitus ja modulaariaritmetiikka 
	Ekvivalenssirelaatio
	Kongruenssi
	Tekijälaskutoimitus
	Kongruenssiluokkien laskutoimitukset
	Harjoitustehtäviä


	Renkaat ja kunnat
	Renkaat
	Ryhmä
	Rengas
	Alirengas
	Rengashomomorfismit
	Renkaan karakteristika
	Harjoitustehtäviä

	Kunnat
	Yksiköt
	Jakorenkaat ja kunnat
	Toisen asteen lukukunnat
	Hamiltonin kvaterniot
	Lineaarialgebraa
	Harjoitustehtäviä

	Jaollisuus
	Jaollisuudesta
	Jaottomat alkiot ja alkualkiot
	Renkaan Z/qZ yksiköt
	Harjoitustehtäviä

	Polynomirenkaat
	Polynomit ja polynomifunktiot
	Polynomirengas
	Polynomin vaihtoehtoinen määritelmä
	Aste
	Polynomien jakoyhtälö
	Polynomien juuret ja jaollisuus
	Juurien lukumäärä
	Algebrallisesti suljetut kunnat
	Harjoitustehtäviä

	Ideaalit ja kuntalaajennukset
	Ideaalit
	Pääideaalit
	Tekijärenkaat
	Polynomirenkaiden tekijärenkaita
	Maksimaaliset ideaalit
	Kuntalaajennukset polynomirenkaiden avulla
	Harjoitustehtäviä


	 Ryhmät
	Ryhmät
	Ryhmä
	Ryhmien suora tulo
	Ryhmähomomorfismit
	Jäännösluokkien multiplikatiiviset ryhmät
	Lineaarialgebrasta
	Harjoitustehtäviä

	Aliryhmät
	Aliryhmät
	Aliryhmäkaavio
	Lineaariset ryhmät
	Homomorfismit ja aliryhmät
	Osajoukon virittämä aliryhmä
	Syklinen ryhmä
	Ryhmien sisäinen suora tulo
	Lukuteorian ryhmiä
	Harjoitustehtäviä

	Symmetriset ryhmät
	Symmetrinen ryhmä Sn
	Symmetrisen ryhmän rakenteesta
	Cayleyn lause
	Permutaation merkki
	Alternoiva ryhmä An
	Harjoitustehtäviä

	Lagrangen lause
	Sivuluokat
	Sivuluokkien määräämä ositus
	Aliryhmän indeksi ja Lagrangen lause
	Lagrangen lauseen sovelluksia lukuteoriaan
	Harjoitustehtäviä

	Normaalit aliryhmät ja tekijäryhmät
	Normaalit aliryhmät
	Tekijäryhmät
	Ryhmien ensimmäinen isomorfismilause
	Ryhmien toinen ja kolmas isomorfismilause
	Harjoitustehtäviä

	Ryhmät ja geometria
	Ortogonaaliryhmä
	Säännöllisten monikulmioiden symmetrioista
	Monitahokkaiden symmetrioista
	Harjoitustehtäviä

	Kokonaislukujen jaollisuus
	Kirjallisuutta


