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Lukijalle

Téama teksti on talven ja kevddan 2026 kurssien ALGEBRA 1: RENKAAT JA KUNNAT ja
ALGEBRA 1: RYHMAT oppimateriaali. Kurssit muodostavat johdatuksen abstraktiin al-
gebraan. Kursseilla tarkastelemme laskutoimituksia, joita on maéritelty joidenkin joukko-
jen alkioille, ja laskutoimituksella varustettujen joukkojen vélisid homomorfismeja, jotka
ovat laskutoimitusten kanssa yhteensopivia kuvauksia. Teoriaa havainnollistetaan esimer-
keilld matematiikan eri aloilta (joukko-oppi, lineaarialgebra, analyysi, geometria, lukuteo-
ria). Konkreettisia esimerkkeja ovat muun muassa

o reaalilukujen kunta (R,+,-), jonka laskutoimitukset ovat tavalliset yhteenlasku ja
kertolasku,

o R-vektoriavaruudet, joissa on méaritelty vektorien yhteenlasku ja lisaksi vektorin ker-
tominen reaaliluvulla. Vektorin kertominen reaaliluvulla ei ole laskutoimitus vaan toi-
minta. Sivuamme téata aihepiiria molemmilla kursseilla, mutta emme perehdy téhan
aihepiiriin laajemmin.

o Ortogonaalisten n x n-matriisien ryhmaé, jossa laskutoimitus on matriisien kertolasku.

Yksi algebran keskeinen ajatus on se, etté erilaisissa matemaattisissa yhteyksissa tun-
nistetaan samankaltaisia rakenteita. Jos tunnistetaan jokin tunnettu algebrallinen rakenne
(ryhma, rengas,. .. ), voidaan tarkasteltavaa tilannetta usein ymmartda paremmin néiille
algebrallisille rakenteille todistettujen yleisten tulosten avulla.

Teksti koostuu kolmesta osasta ja yhdesta lyhyesta liitteestd. Osa [[| késittelee lasku-
toimituksia. Tata osaa kasitellaan molemmilla kursseilla. Osa [l muodostaa kurssin REN-
KAAT JA KUNNAT rungon ja Osa[lllmuodostaa kurssin RYHMAT rungon. Liitteeseen[A]on
koottu kursseilla tarvittavia lukuteorian alkeita. Liitteen sisalto on tuttua kurssin Luku-
teoria 1 suorittaneille. Lukuteorian kurssia ei oleteta esitietona, mutta kurssilla Lukuteoria
1 kasitellyista jaollisuuden ja modulaariaritmetiikan perusteista on hyotyd kummallakin
algebran kurssilla.

Kurssin RENKAAT JA KUNNAT aluksi luvuissa (1] ja [2] tutustutaan laskutoimituksen
kasitteeseen ja erilaisiin laskutoimituksiin sekd homomorfismeihin laskutoimituksella va-
rustettujen joukkojen valilla. Luvuissa |3| ja [4] tutustumme renkaisiin ja niiden erityis-
tapauksena kuntiin. Nama ovat kahdella laskutoimituksella varustettuja joukkoja, jotka
yleistavit kokonaislukujen renkaan ja rationaali- ja reaalilukujen kunnat, joissa laskutoi-
mitukset ovat tavanomaiset yhteen- ja kertolasku. Luvussa || tarkastelemme jaollisuutta
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renkaissa. Luvussa [6] tutustumme polynomirenkaisiin, jotka ovat tarkedssd osassa. viimei-
sessé luvussa, jossa tutustumme ideaaleihin, tekijarenkaisiin ja polynomirenkaiden avulla
tehtéaviin kuntalaajennuksiin. Sovelluksena tarkastelemme aérellisten kuntien konstruk-
tiota.

Kurssin RYHMAT aluksi tutustutaan lukujen [I] ja [2] avulla laskutoimituksen kasit-
teeseen ja erilaisiin laskutoimituksiin. Luvussa |8 tutustumme ryhmiin ja niiden vélisiin
homomorfismeihin. Ryhmaét ovat yhdella laskutoimituksella varustettuja joukkoja, joil-
la on samoja ominaisuuksia kuin esimerkiksi joukon {1,2,3} permutaatioiden ryhmaélla.
Luvussa tarkastelemme aliryhmia, jotka ovat ryhmén osajoukkoja, joihin ryhmén las-
kutoimitus méaraa ryhmén rakenteen. Permutaatioryhmié tarkastellaan lahemmin luvus-
sa erityisesti perehdymme aérellisten joukkojen permutaatioryhmiin, joita kutsutaan
symmetrisiksi ryhmiksi. Luvussa [11] tutustutaan aliryhmien sivuluokkiin ja todistetaan
Lagrangen lause, joka kertoo aérellisen ryhman aliryhmien mahdolliset koot. Luvussa
tutustumme normaaleihin aliryhmiin, maarittelemme laskutoimituksen normaalin aliryh-
méan sivuluokkien joukossa ja paddymme tarkastelemaan térkeaa tekijaryhmén késitetta.
Kurssin lopuksi tarkastellaan lyhyesti ryhméteorian ja geometrian yhteyksia.

Kurssit on suunniteltu niin, ettd kumpi tahansa on mahdollista suorittaa ensimmai-
senéd. Kurssien sisallot liittyvat kuitenkin toisiinsa monin tavoin. Muutama tulos ja har-
joitustehtava on merkitty tahdelld, esimerkiksi sen vuoksi, etta niisséd tarvitaan toisen
kurssin ainesta.
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Merkintoja

Kurssilla kaytetaan seuraavia merkintoja:

N ={0,1,2,...} on luonnolliset luvut.

#A € NU{oo} on joukon A alkioiden lukumaédra.
A—B={a€ A:a¢ B} on joukkojen A ja B erotus.
P(X)={A:AC X} on joukon X potenssijoukko.

fla: A — Y on kuvauksen f: X — Y rajoittuma osajoukkoon A C X, fla(a) = f(a)
kaikilla a € A.

Y* ={f: X — Y} on kaikkien kuvausten f: X — Y joukko.
Uaca Us = {u: 3 € A, jolle u € U,} on joukkojen U, yhdiste.
Naca Ua = {u:u € U, kaikilla & € A} on joukkojen U, leikkaus.
Llicr Ai on joukkojen A; erillinen yhdiste.

A G B joukko A on joukon B aito osajoukko: A C B ja A # B.
M,,(R) on R-kertoimisten matriisien rengas.

Jos C' on matriisi, niin C},,, on matriisin C' kerroin, joka on rivilla [/ ja sarakkeessa m.

diag(ay, ag, ..., a,) on n x n-diagonaalimatriisi, jonka diagonaalialkiot ovat ay, as, ..., a,.
I, = diag(1,1,...,1).
R+ - ]0, OO[

log: R, — R on luonnollinen logaritmi.

1A on matriisin A transpoosi.

(Z) = W'—k)' on binomikerroin.

(x| y) = X, Tryr on vektorien z,y € R" standardisisatulo.

Jokaisen luvun lopussa on kokoelma harjoitustehtéavia. Osaan tehtévista on alaviitteesséd
numeroitu vihje.

Uusien kasitteiden mddritelmdt on laatikoitu nédin. Niita ei ole numeroitu.

Tallaisessa laatikossa on jokin huomautus tai sopimus, joka on tarkea huomata.
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Luku 1

Laskutoimitukset

Tassa luvussa maéarittelemme useita keskeisia kasitteita, joita tarvitaan kursseilla REN-
KAAT JA KUNNAT ja RYHMAT. Tutustumme laskutoimituksiin ja homomorfismeihin, jotka
ovat laskutoimitusten kanssa hyvin kayttaytyvia kuvauksia laskutoimituksella varustet-
tujen joukkojen vélilla.

1.1 Laskutoimitus

Olkoon A epatyhja joukko. Kuvaus %: A x A — A on joukon A laskutoimitus tai lasku-
toimitus joukossa A.

Pari (A, %) on laskutoimituksella varustettu joukko eli magma.

Joukon A laskutoimituksen * tulosta merkitédin yleensé a * a’ = *(a,d’), kun a,d’ € A.

Laskutoimitus on siis sdanto, joka liittda joukon A alkioiden a ja o’ muodostamaan jér-
jestettyyn pariin (a,a’) alkion a x a’ € A.

Esimerkki 1.1. (a) Luonnollisten lukujen N, kokonaislukujen Z, rationaalilukujen Q ja
reaalilukujen R yhteen- ja kertolasku ovat laskutoimituksia:
(m,n) S m+n (m,n) > m-n=mn.

Néiden laskutoimitusten ominaisuudet oletetaan talla kurssilla tunnetuiksi.

(b) Lineaarialgebran kursseilta tuttu vektoriavaruuden R™ vektorien yhteenlasku on las-
kutoimitus:

(T1, T2y, @) + (Y1, Y2, - Yn) = (T1 + Y1, T2 + Yoy oo, T+ Yn) -

(c) Olkoon M, (R) reaalisten n x n—matriisien joukko. Lineaarialgebran kursseilla maari-
tellaan kaksi laskutoimitusta joukossa M, (R). Matriisien yhteenlasku méaéaritellaan aset-
tamalla

(A+ B)ij = (Aij + Bjj)
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Laskutoimitukset

kaikilla 1 < 7,5 < n. Matriisien kertolasku maéritellian asettamalla

(AB)ij = Y AwBij

k=1

kaikilla 1 < 7,5 < n. Erityisesti dimensiossa 2 saadaan laskutoimitukset
ai; Q12 bii b2\ [ain +bin a2+ bio
4 —
a21 Q22 ba1 Do ag1 + bay  agy + boy

ai; a2\ (bir b2 _ a11011 + a12021  a11b12 + a12ba
a1 Gz ) \bar ba a21011 + agebar  ag1bia + agebas )

Seuraava maaritelméa yleistad Esimerkin [1.1|(b).

ja

Olkoot (X71,%*1), (X2,%2),...,(X,,*,) laskutoimituksella varustettuja joukkoja. Tulo-
joukon X; x X, x --- x X, laskutoimitus *, joka maéaritellddn asettamalla kaikille
(IL‘l,ZEQ,...,ZL‘n),(yl,yQ,...,yn) - X1 X X2 X oo X Xn

(1, @, xy) * (Y1, Y2y -+, Yn) = (T1 %1 Y1, Ta o Yo, ooy Ty ¥ Yn)

on laskutoimitusten *i, *q, ..., *, tulolaskutoimitus.

Usein laskutoimitukselle ei kdyteta mitaan erityista merkkia vaan laskutoimitusta merki-
tdan kirjoittamalla laskutoimituksella varustetun joukon alkioista muodostettuja sanoja
kuten kokonais-, rationaali- ja reaalilukujen kertolaskussa on tapana: a - b = ab.

Edella tarkastellut esimerkit liittyvét kaikki tavanomaiseen luvuilla laskemiseen. Las-
kutoimituksen kasite on kuitenkin laajempi, kuten seuraavista esimerkeistd ndemme.

Joukon X osajoukot muodostavat potenssijoukon

P(X)={A:AC X}.

Joukkojen leikkaus (A, B) — A N B ja yhdiste (A, B) — AU B ovat laskutoimituksia
potenssijoukossa Z(X).

Laskutoimituksella varustetun aarellisen joukon (X, *) laskutaulu on joukon X alkioilla
indeksoitu taulukko, jossa paikalla (g, h), siis rivilld g ja sarakkeessa h on alkio gh.

Esimerkki 1.2. Joukon {0, 1} potenssijoukon Z({0,1}) = {(D, {0}, {1},{o0, 1}} lasku-
toimitusten N ja U laskutaulut ovat

n |0 {o} {1} {01} U 0 {op {1} {01}
0 /I 0 0 0 {oy {1} {o0,1}
{0} {or 0 {0} Ja {or | {0} {0} {o,1} {0,1}
{1} 0 {1r {1} {1} | {1} {01} {1} {0,1}
{0,1} 10 {o} {1} {01} {0,1} | {0,1} {0,1} {o,1} {0,1}

12. tammikuuta 2026

ISSERSSER SSRGS



1.2. Indusoitu laskutoimitus

Esimerkki 1.3. (a) Yhden alkion muodostamassa joukossa[] {a} on tdsmélleen yksi
laskutoimitus: Joukossa {a} x {a} on yksi alkio (a,a). Jos * on laskutoimitus joukossa
{a}, niin laskun a * @ ainoa mahdollinen arvo on joukon {a} ainoa alkio a.

(b) Kahden alkion muodostamassa joukossa X = {a,b} on 42 = 16 eri laskutoimitusta:
Joukossa

X xX = {(a, a), (a,b), (b,a), (b, b)}

on nelja alkiota ja jokaisella alkiolla on kaksi mahdollista arvoa a tai b. Seuraavat lasku-
taulut nayttavat viisi eri laskutoimitusta:

*1‘ab *g‘ab *3‘ab -‘ab —i—‘a
ala a alb b ala a ala a ala
bla a b|b b bbb b bla b blb a

1.2 Indusoitu laskutoimitus

Joissain tilanteissa laskutoimituksella varustetulla joukolla (A, %) on osajoukkoja B C A,
joihin % maaraa laskutoimituksen. Tutustumme téllaisiin tapauksiin esimerkiksi luvuissa

B.3ja 0.1}

Olkoon (A, %) laskutoimituksella varustettu joukko. Jos B C A, B # (), ja kaikille b, b’ € B
pétee b x b’ € B, niin B on laskutoimituksella varustetun joukon (A, *) vakaa osajouk-
ko. Laskutoimitus * maaraa indusoidun laskutoimituksen x|p vakaassa joukossa B, kun

asetetaan
bx gt =bxb.

Esimerkki 1.4. (a) Jos a,b € Q — {0}, niin ab # 0. Siis Q — {0} on laskutoimituksella
varustetun joukon (Q, -) vakaa osajoukko ja rationaalilukujen kertolasku indusoi laskutoi-
mituksen joukkoon Q—{0}. Vastaavasti reaalilukujen kertolasku indusoi laskutoimituksen
joukkoon R — {0}. Néin saamme laskutoimituksella varustetut joukot

@X = (@ - {0}7 )
ja
R* = (R —{0},).

Rationaali- tai reaalilukujen yhteenlasku ei indusoi laskutoimitusta joukkoon Q — {0} tai
R — {0}, koska esimerkiksi —1,1 € Q — {0}, mutta -1+ 1 =0 ¢ Q — {0}.

(b) Olkoon
P= {(i Z) EMQ(R):CZO} = {(g Z) eMQ(R)}.

Télloin kaikille A, B € P pitee A+ B € P ja AB € P, joten matriisien yhteenlasku ja
kertolasku indusoivat kaksi laskutoimitusta joukossa P C My(R).

Yleensa indusoidulle laskutoimitukselle kdytetadn samaa merkintad kuin laskutoimituk-
selle, joka indusoi sen: *|p = *.

“Yhden alkion muodostamaa. joukkoa voi kutsua yksidksi.
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Laskutoimitukset

1.3 Homomorfismi

Kahden laskutoimituksella varustetun joukon véliset kuvaukset, jotka sopivat laskutoimi-
tusten kanssa hyvin yhteen, ovat algebrassa keskeisessa osassa:

Olkoot (FE,x*) ja (E', ®) laskutoimituksella varustettuja joukkoja.
Kuvaus h: (E,*) — (E',®) on homomorfismi, jos kaikille a,b € E pétee

h(a+b) = h(a) ® h(b).

Bijektiivinen homomorfismi on isomorfismi.
Isomorfismi laskutoimituksella varustetulta joukolta E itselleen on automorfismi.

Laskutoimituksella varustetut joukot (E,x*) ja (E',®) ovat isomorfisia (keskenddn), jos
on isomorfismi h: (E, x) — (E',®).

Esimerkki 1.5. (a) Olkoon n > 2. Lineaarialgebrassa osoitettiin, etté kaikille A, B €
M, (R) péatee
det(AB) = det Adet B.
Siis kuvaus det: M, (R) — (R, -) on homomorfismi.
(b) Yhteenlaskulla varustetut joukot (M, (R),+) ja (R",+) ovat selvisti isomorfisia.
(c) Kuvaus h: (Z,+) — (Ma(R), -),

on homomorfismi:

h(n+m) = <é ”+1m> — (é ?) G) T) — h(n)h(m).

Isomorfiset laskutoimituksella varustetut joukot ovat algebrallisilta ominaisuuksiltaan
samanlaiset vaikka joukot ja laskutoimitukset voivat “ulkoisesti” olla hyvinkin erilaisia,
kuten Esimerkin [L.5] avulla huomaamme.

Esimerkki 1.6. Reaalilukujen kertolasku indusoi laskutoimituksen positiivisten reaali-
lukujen joukossa R, = ]0, 0o[. Eksponenttikuvaus exp: (R, +) — (Ry, ), exp(z) = €*, on
homomorfismi: Kaikille z,y € R pétee

exp(x +y) = "V = e"e¥ = exp(z) exp(y) .

Eksponenttifunktio on tunnetusti bijektio, joten se on isomorfismi.
Eksponenttifunktion kdanteisfunktio log: (R4, -) — (R, +) on myo6s isomorfismi: Kaan-
teiskuvauksena se on bijektio ja kaikille x,y € R, patee

log(zy) = log() + log(y).

Seuraavan tuloksen jalkimmainen kohta yleistdd Esimerkin eksponenttifunktiota
ja logaritmia koskevan havainnon kaikille isomorfismeille.
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1.4. Assosiatiivisuus ja kommutatiivisuus

Propositio 1.7. (1) Homomorfismien yhdistetty kuvaus on homomorfismi.

(2) Isomorfismin kdadnteiskuvaus on isomorfismi.

Todistus. (1) Harjoitustehtava.
(2) Olkoon ¢: (A, %) — (B,®) isomorfismi. Olkoot by, by € B. Koska ¢ on bijektio, pétee

b ®by = (67 (b)) @ B¢ (b))
Koska ¢ on homomorfismi, saamme
6(07' () @ 6(07 (b)) = &7 (bn) x 67" (b))
Yhdistdmalld ndmé kaksi yhtdlod saamme
b ®by=6(¢7 (b) x &7 (b)),

mista seuraa

¢ by ®by) = ¢ (by) x ¢ (ba),

koska ¢ on bijektio. Siis ¢~! on homomorfismi. O

Tassa luvussa esitellyn sanaston lisdksi kaytetdan melko usein seuraavia nimityksia:
Injektiivinen homomorfismi on monomorfismi.
Surjektiivinen homomorfismi on epimorfismi.

Nailla kursseilla kaytdmme néistd homomorfismityypeista padsaantoisesti nimityksié in-
jektiivinen ja surjektiivinen homomorfismi.

1.4 Assosiatiivisuus ja kommutatiivisuus

Laskutoimitusten suorittamisen jarjestyksen kanssa on syyté olla huolellinen. Sulut ker-
tovat, missa jarjestyksessé operaatiot suoritetaan: Lausekkeessa a * (b * ¢) muodostetaan
ensin tulo (b * ¢), joka kerrotaan vasemmalta alkiolla a kun taas lausekkeessa (a * b) * ¢
muodostetaan ensin tulo (a * b), joka kerrotaan oikealta alkiolla c. Lausekkeet a x (b * ¢)
ja (a = b) * c eivat valttdmatta anna samaa tulosta.

Joukon A laskutoimitus * on
(1) assosiatiivinen eli littdnndinen, jos a * (b* ¢) = (a * b) * ¢ kaikilla a,b,c € A.
(2) kommutatiivinen eli vaihdannainen, jos a * b = b * a kaikilla a,b € A.
Sulkujen maardaa lausekkeissa voi vahentéda, jos laskutoimitus % on assosiatiivinen:

Koska sulkujen paikalla ei ole merkitysté lausekkeessa a* (b c) = (a*b) * ¢, joten voimme

kayttaa merkintaa
axbxc=(axb)*xc=ax(bxc)

ilman vaaraa. Kaikki tavanomaiset laskutoimitukset eivat ole assosiatiivisia, kuten ndem-
me Esimerkissé [1.§] ja Harjoitustehtévassa [1.20]
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Laskutoimitukset

Esimerkki 1.8. (a) Luonnollisten lukujen, kokonais-, rationaali- ja reaalilukujen yhteen-
ja kertolasku ovat kommutatiivisia ja assosiatiivisia

(1) m+n=n+m jamn=nm kaikilla m,n ja
(2) m+ (n+1) = (m+mn)+1jam(nl) = (mn)l kaikilla m, n, (.
(b) Kokonaislukujen vahennyslasku ei ole assosiatiivinen eikd kommutatiivinen:
1-(1-1)=1#-1=(1-1)-1
ja
1-0=1#-1=0-1.

(c) Lineaarialgebran kurssilla on osoitettu, ettd matriisien yhteen- ja kertolaskut ovat
assosiatiivisia laskutoimituksia joukossa M, (R). Matriisien yhteenlasku on my6s kommu-
tatiivinen mutta matriisien kertolasku joukossa M,,(R) ei ole kommutatiivinen, kun n > 2.

Esimerkiksi
L) (10Y (2 1) (1 1) (1 0) (1]
0 1/\1 1/ \1 1 1 2) \1 1)\0 1)°
(d) Olkoon X joukko. Joukon &2(X) laskutoimitukset N ja U ovat assosiatiivisia:
ANn(BNC)=(AnB)nC

ja
AUu(BUC)=(AuB)uUC
kaikilla A, B,C € Z(X), ja kommutatiivisia:

ANB=BNA ja AUB=BUA
kaikilla A, B € Z(X).

Merkintoja + ja - kaytetaédn yleisesti eri laskutoimituksille. Tulomerkintaa kutsutaan usein
multiplikatiiviseksi merkinnéksi ja summamerkintda additiiviseksi merkinnaksi.

Merkintda + kaytetadn ainoastaan kommutatiiviselle laskutoimitukselle.

Seuraava tulos on hyodyllinen esimerkiksi luvussa [2] modulaariaritmetiikan ominai-
suuksien perustelussa.

Propositio 1.9. Olkoon h: (E,*) — (E',®) surjektitvinen homomorfismi.
(1) Jos * on kommutatiivinen, niin ® on kommutatiivinen
(2) Jos x on assosiatiivinen, niin ® on assosiatitvinen
Todistus. (1) Olkoot o', b € E'. Talloin on a,b € E, joille h(a) = a' ja h(b) = b'. Siis
ad®b =h(a)®h(b) =h(axb) =h(b*xa)=h(b) ®h(a) = ®d,
joten ® on kommutatiivinen.

(2) Harjoitustehtava [1.11] O
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1.5. Neutraalialkio

Olkoot A ja B epatyhjid joukkoja. Kaikkien joukosta A joukkoon B madriteltyjen ku-
vausten joukko on BA[

*Tamén merkinnin idea on se, ettd esimerkiksi R? = R{%1} = {f: {1,2} — R}. Samalla ajatuksella
voidaan potenssijoukolle kiyttii merkintdi 2% = 22(X), koska potenssijoukon alkio A € Z(X) voidaan
1, joszeA

samastaa karakteristisen funktion y4: A — {0,1}, xa(z) = , kanssa.
0 muuten

Esimerkki 1.10. Olkoon X # (). Jos f,g: X — X, niin fog: X — X. Siis kuvausten
yhdistaminen o on laskutoimitus joukossa {f: X — X}.

Laskutoimitus o on assosiatiivinen: Olkoot f, g, h € X*. Yhdistetyn kuvauksen méd-
ritelman mukaan

(folgom)(@) =f((gon)(z)) = f(g(h(x)))
kaikilla x € X ja
((fog)oh)(x) = (fog)(h(x)) = f(g(h(x)))
kaikilla z € X. Siis fo (goh) = (f o g) o h kaikilla f, g, h € X*X.
Laskutoimitus o ei ole kommutatiivinen, jos joukossa X on ainakin kaksi alkiota.

Olkoon esimerkiksi X = {0,1} ja olkoot 0,1 € X~ vakiokuvaukset 0(z) = 0 ja 1(x) = 1
Kaikilla z € X. Talléin 100 =1+£0=0o 1.

1.5 Neutraalialkio

Olkoon A # () ja olkoon * joukon A laskutoimitus.
Alkio e € A on laskutoimituksen * vasen neutraalialkio, jos e x g = g kaikilla g € A.
Alkio e € A on laskutoimituksen * oikea neutraalialkio, jos g *x e = g kaikilla g € A.

Jos e € A on laskutoimituksen * vasen ja oikea neutraalialkio, niin e on laskutoimituksen
* neutraalialkio.

Esimerkki 1.11. (a) Luku 0 € N C Z C Q C R on laskutoimituksella varustettujen
joukkojen (N,+), (Z,+), (Q,+) ja (R,+) neutraalialkio. Luku 1 e NCZ C Q C Ron
laskutoimituksella varustettujen joukkojen (N,-), (Z,), (Q,-) ja (R,-) neutraalialkio

(b) Olkoon X # (). Maaritellaan joukon (X) laskutoimitus — asettamalla
A-B={acA:a¢ B}

kaikille A, B € £(X). Talloin jokaisella A € Z(X) piatee A — () = A, joten () on
laskutoimituksen — oikea neutraalialkio. Kuitenkin ) — A = () kaikilla A € 22(X), joten ()
ei ole laskutoimituksen — vasen neutraalialkio. Vasenta neutraalialkiota ei ole, sillé kaikille
Ae P(X) patee A — X = () # X. Talla laskutoimituksella ei siis ole neutraalialkiota.

Propositio 1.12. Olkoon (X, x*) laskutoimituksella varustettu joukko. Jos e € X on las-
kutoimituksen x vasen neutraalialkio ja € € X on laskutoimituksen x oikea neutraalialkio,
niin e = €'. Erityisesti e on laskutoimituksen x neutraalialkio.

Todistus. Kayttdmalla oletettuja ominaisuuksia saadaan e = e x ¢/ = ¢/. Koska e siis
toteuttaa ehdot e x g = g ja g x e = g kaikilla g € X, niin e on neutraalialkio. O]
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Laskutoimitukset

Propositiosta [1.12] seuraa erityisesti, etta laskutoimituksella varustetun joukon neut-
raalialkio on yksikasitteinen:

Seuraus 1.13. Olkoon (X, ) laskutoimituksella varustettu joukko. Jos e € X on laskutoi-
mituksen x neutraalialkio ja € € X on laskutoimituksen x neutraalialkio, niin e = €'. [

Jos laskutoimituksesta kaytetdan tulomerkintda, neutraalialkiolle kaytetadn usein mer-

kintad 1 ja summamerkintad kéaytettaessd merkintaa 0.

Propositio 1.14. Olkoon h: (E,x) — (E',®) surjektiivinen homomorfismi. Jos lasku-
toimituksella varustetussa joukossa E on neutraalialkio e, niin h(e) on laskutoimituksella
varustetun joukon E' neutraalialkio.

Todistus. Olkoon ¢' € E'. Talloin ¢’ = h(g) jollain g € E ja pétee

hie) ® g = h(e) ® h(g) = h(exg) = h(g) = ¢
ja
g ® h(e) = h(g) ®h(e) =h(g*e) =h(g) =47,

joten h(e) on neutraalialkio. O

Esimerkki 1.15. Kuvaus h: (N, +) — (N, ), h(n) = 0 kaikillan € N, on homomorfismi,
koska kaikille m,n € N patee

h(n+m)=0=00=h(m)h(n).

Kuitenkaan neutraalialkio 0 € (N, +) ei kuvaudu neutraalialkioksi 1 € (N, -). Tama esi-
merkki osoittaa, ettd neutraalialkio ei véilttaméttd kuvaudu neutraalialkiolle, jos homo-
morfismi ei ole surjektiivinen

1.6 Kaanteisalkio

Olkoon A # () ja olkoon * joukon A laskutoimitus, jonka neutraalialkio on e.
Alkio z € A on alkion = € A vasen kddnteisalkio, jos T x x = e.
Alkio z € A on alkion = € A oikea kddnteisalkio, jos x x x = e.

Jos = on alkion x vasen ja oikea kaédnteisalkio, niin se on alkion x kddnteisalkio.

Esimerkki 1.16. Useimmilla luonnollisilla luvuilla ei ole kddnteisalkiota laskutoimituk-
sella varustetuissa joukoissa (N,+) ja (N,-). Sen sijaan jokaisella kokonais-, rationaali-
ja reaaliluvulla z on vastaluku —x, joka on luvun x kaanteisalkio laskutoimituksella va-
rustetuissa joukoissa (Z, +), (Q, +) ja (R, +).

Luvulla 0 ei ole kdénteisalkiota laskutoimituksella varustetuissa joukoissa (N, ), (Z, -),
(Q,-) ja (R,:): 0z = 20 = 0 # 1 kaikilla luvuilla x. Kaikilla nollasta poikkeavilla
rationaali- ja reaaliluvuilla z sen sijaan on kéinteisluku = = 1/x, esimerkiksi ratio-
naaliluvulle a/b # 0 pétee (a/b)~' = b/a.
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Laskutoimituksella varustetun joukon (X, x*) alkion x € X kéénteisalkiota merkitdan

yleensd x 1.

Summamerkintaé kiytettdessi kaytetadn kadnteisalkiolle merkintdd —z. Kéaanteisalkiota
kutsutaan télloin vasta-alkioksi tai vastaluvukss.

Esimerkki 1.17. (a) Olkoon X # (). Identtinen kuvaus id = idx on laskutoimituksella
varustetun joukon (X*, o) neutraalialkio:

idof =f=foid

kaikilla f € XX. Jos f € X*¥ on bijektio, sen kidnteiskuvaus f~! on kuvauksen f kiin-
teisalkio: fo f~' =id = f~' o f. Muilla joukon X% alkioilla ei ole kidnteisalkiota.
(b) Olkoot f,g € NN kuvaukset, jotka méiritelliéin asettamalla

0, kinn =0
f(n) =
n—1, kunn #0

ja g(n) = n+1 kaikillan € N. Kuvaukset f ja g eivét ole bijektioita, joten kummallakaan ei
ole kdanteisalkiota. Kuitenkin pétee fog = id, joten f on kuvauksen g vasen kaanteisalkio
ja vastaavasti g on kuvauksen f oikea kaanteisalkio.

Propositio 1.18. Olkoon X # 0 ja olkoon * joukon X assosiatitvinen laskutoimitus. Jos
alkiolla g € X on kddanteisalkio, se on yksikasitteinen.

Todistus. Harjoitustehtéava [1.15] O]

1.7 Kahdella laskutoimituksella varustetut joukot

Edella olemme jo ndhneet, etté samassa joukossa voi méaaritella useita eri laskutoimituksia.
Kokonais-, rationaali- ja reaalilukujen aritmetiikkaaP| yleistettiessi tarkastellaan kahta
samassa joukossa madriteltya laskutoimitusta.

Olkoot * ja @ joukon A laskutoimituksia. Kolmikko (A, *, @) on kahdella laskutoimituk-
sella varustettu joukko.

Kahdella laskutoimituksella varustetun joukon (A, %, @) eri laskutoimituksilla on usein
eri neutraalialkiot ja alkion a kédanteisalkioita késiteltdessd on syytéd tehda selviksi tar-
koitetaanko alkiota b € A, jolle a x b = b * a on laskutoimituksen * neutraalialkio vai
alkiota ¢ € A, jolle a ® b = b @® a on laskutoimituksen @ neutraalialkio. Esimerkiksi
renkaan (R, +,-) yhteydessa on luontevaa kayttaa nimityksia kddanteisalkio yhteenlaskun
suhteen ja kddanteisalkio kertolaskun suhteen ja kayttaa niille jarjestelmallisesti luvussa
esiteltyja merkintoja —z ja o7t

Kahdella laskutoimituksella varustettu joukko on niin yleinen késite, ettéd yhtenai-
sen teorian esittamiseksi on hyva edellyttad, ettd laskutoimitukset sopivat jollain tavalla

yhteen keskenéan.

2 Aritmetiikalla tarkoitetaan laskutoimituksilla + ja - ja niisté johdettavilla késitteilld kuten nelidjuuri,
kuutiojuuri, eksponenttifunktio tehtiavid operaatioita.
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12 Laskutoimitukset

Olkoon (A, * , @) kahdella laskutoimituksella varustettu joukko. Laskutoimitus * on dis-
tributiivinen laskutoimituksen @ suhteen, jos

ax(b@c)=(axb)® (axc) ja
(bdc)xa= (bxa)® (c*a) (1.1)

kaikilla a, b, c € A.

Distributiivisuuden méérittelevid yhtaloita (1.1]) sanotaan osittelulaeiksi.

Esimerkki 1.19. (a) Tunnetusti kaikille luonnollisille luvuille, kokonais-, rationaali- ja
reaaliluvuille a, b, ¢ pétee

(a+b)c=ac+bc=ca+cb=cla+b),

joten kertolasku on distributiivinen yhteenlaskun suhteen. Yhteenlasku ei ole distributii-
vinen kertolaskun suhteen. Esimerkiksi 1-1+1=2#4=(1+1)(1+1).

(b) Olkoon n > 2. Lineaarialgebrassa on osoitettu, ettd kaikille matriiseille A, B,C €
M, (R) pétee
(A+ B)C' = AB + AC

ja
C(A+B)=CA+CB.
Siis matriisien kertolasku on yhteenlaskun suhteen distributiivinen.
Olkoot (A, ®,®) ja (B,H,X) kahdella laskutoimituksella varustettuja joukkoja. Kuvaus
Jj: (A,®,®) = (B,H,X) on (kahdella laskutoimituksella varustettujen joukkojen) homo-

morfismi, jos j: (A, ®) — (B,H) on homomorfismi ja j: (A, ®) — (B,X) on homomor-
fismi.

Esimerkki 1.20. Kuvaus i: Q — R, i(x) = x, on injektiivinen kahdella laskutoimituk-
sella varustettujen joukkojen homomorfismi.

1.8 Kompleksiluvut

Kompleksiluvut C = (R?,+,-) on kahdella laskutoimituksella varustettu joukko, jossa
kaikille (a,b), (¢,d) € R? asetetaan

(a,b) + (¢,d) = (a+ ¢, b+ d)
ja
(a,b)(c,d) = (ac — bd, ad + bc).

Kompleksiluku i = (0, 1) on imaginaariyksikko.
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Lemma 1.21. (1) Kompleksilukujen yhteen- ja kertolasku ovat assosiatiivisia ja kom-
mutatiivisia. Yhteenlaskun neutraalialkio on 0 = (0,0) ja kertolaskun neutraalialkio on
1 =(1,0). Kertolasku on distributitvinen yhteenlaskun suhteen

(2) Olkoot z,w € C. Tdlloin zw = 0, jos ja vain jos z =0 tai w = 0.

Todistus. Harjoitustehtavéat ja|l.22] ]

Lemman [1.21)2) nojalla kertolasku indusoi laskutoimituksen joukkoon C — {0} ja
saamme laskutoimituksella varustetun joukon

C* = (C—{0},).
Lemma 1.22. Olkoon j: R — C, j(x) = (x,0). Tdlloin j on injektiivinen homomorfismi.
Todistus. Injektiivisyys on selvda. Kaikille a,c € R péatee
jla) +j(c) = (a,0) + (¢,0) = (a +¢,0) = jla+c)

ja
j(a)j(c) = (a,0)(c,0) = (ac,0) = j(ac),

joten 7 on kahdella laskutoimituksella varustettujen joukkojen homomorfismi. O

Lemman nojalla voimme samastaa kompleksiluvun (a,0) ja reaaliluvun a. Tall6in
kuvaus j on inkluusiokuvaus.
Jokainen kompleksiluku voidaan esittaéd yksikasitteisesti summana

(a,b) = (,0) + (0,b) = a(1,0) + b(0,1) = a+ib,
missa a,b € R. Nailla merkinnoilla kompleksilukujen laskutoimitukset ovat

(a+1ib)+ (c+id) = (a+c)+i(b+d),
(a+ib)(c+id) = (ac—bd) +i(ad + bc).

Erityisesti kaikille reaaliluvuille @ € R ja kompleksiluvuille ¢ + id patee
a(c+id) = (a+1i0)(c+id)=ac+iad.

Esimerkki 1.23. (a)>=(0-0—1-1)4+4(0-1+1-0)=—1.

b)) (14+i)2=(1-1-1-1)+i(1-14+1-1)=24.

Olkoot a,b € R. Kompleksiluvun z = a + ¢ b reaaliosa on Re (z) = a, sen imaginaariosa
on Im(z) = b ja sen (kompleksi)konjugaatti eli liittoluku on z = a — i b.

Kompleksiluvun z = a +ib (algebrallinen) normi on

n(z) = zz = Re(2)® + Im(2)* > 0

2| = yn(z) = [[(a,b)]].

ja sen moduli on
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Lemma 1.24. Osoita, ettd kaikilla z,w € C pdtee
(1) z=z,
(2) z+w=2z+w,
(8) zw = zw ja
(4) n(z) = n(2).
Todistus. Harjoitustehtéava [1.23] O]

Lemma 1.25. Jokaisella kompleksiluvulla z on vastaluku —z = —1-z ja jokaisella nollasta
poikkeavalla kompleksiluvulla z on kddnteisluku

Todistus. Olkoon z € C. Talloin distributiivisuuden, sen, ettd 1 + (—1) = 0 reaaliluvuilla

ja Lemman nojalla
24+ (-1)z=(1-1)z2=0z=0.

Ensimmaéinen véite seuraa tésté, koska yhteenlasku on kommutatiivinen.
Olkoon z € C — {0}. Talléin

z 2z

n(z) =2z
Toinen viite seuraa tasté, koska kertolasku on kommutatiivinen. O

Jos x € R C C, niin sen moduli on sama kuin sen itseisarvo reaalilukuna:
|z +0i| = Va2 = |z|.

Propositio 1.26. (1) Kompleksikonjugointi ~: C — C on kahdella laskutoimituksella
varustetun joukon C automorfismi.

(2) Kompleksikonjugointi~: C* — C* on automorfismi.

(3) Kuwvaukset n,|-|: (C,:) — ([O,oo[, ) jan,|-]:C* — (]O,oo[, ) ovat surjektiivisia
homomorfismeja.

Todistus. (1) Seuraa Harjoitustehtéavista [1.23]

(2) Kompleksikonjugointi~: C — C on bijektio kohdan (1) nojalla ja 0 = 0, joten komplek-
sikonjugoinnin rajoittuma joukkoon C — {0} on bijektio. Siis véite seuraa kohdasta (1).

(3) Olkoot z,w € C. Normin maaritelmén, kompleksikonjugoinnin homomorfisuuden ja
kompleksilukujen kertolaskun kommutatiivisuuden ja assosiatiivisuuden nojalla saadaan

n(zw) = (zw)(2w) = (2w)(Zw) = (2z)(ww) = n(z)n(w)

mistéd vaite seuraa. Vastaava vaite modulille seuraa ottamalla neliojuuri.
Normin ja modulin surjektiivisuus seuraa siita, ettd reaaliluvun moduli kompleksilu-
kuna on sama kuin sen itseisarvo. O
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1.9. Potenssit ja monikerrat

1.9 Potenssit ja monikerrat

Tassa luvussa otamme kayttoon hyodyllisen maéritelman, joka tiivistad merkintojé.

Olkoon (A,-) assosiatiivisella laskutoimituksella varustettu joukko. Olkoon a' = a, ja
kaikille n € N, n > 1 olkoon a"*!' = a"a. Jos laskutoimituksella varustetussa joukossa
(A, ) on neutraalialkio e, olkoon a° = e ja jos alkiolla a € A on kiéanteisalkio a~t, olkoon
a” = (a~1)"" jokaiselle n € Z, n < —1.

Néin mééritelty alkio a* € A on alkion a k:s potenssi, kun k € Z.

Jos laskutoimitukselle kaytetadn yhteenlaskumerkkia, puhutaan potenssien sijaan mo-
nikerroista. Seuraava méaritelmé on itse asiassa sama kuin potenssin médritelmé, ero on
merkinnéssa.

Olkoon (A, +) assosiatiivisella laskutoimituksella varustettu joukko. Olkoonﬁ] la =aja
olkoon (n + 1)a = na + a kaikille n € N. Jos laskutoimituksella varustetussa joukossa
(A, +) on neutraalialkio 0, olkoon 0 a = 0 € A ja jos alkiolla a € A on kdanteisalkio —a
laskutoimituksen + suhteen, olkoon (—1)a = —a ja olkoon na = (—n)(—a) jokaiseille
nezZ,n<—1.

Nain méaritelty alkio ka € A on alkion a k:s monikerta.

“Huomaa, etté tédssd 1 € Z.

Tavanomaiset laskulait patevit potensseille ja monikerroille:

Lemma 1.27. Olkoon (A,-) assosiatiivisella laskutoimituksella varustettu joukko, jolla
on neutraalialkio. Talloin

(1) a*a™ = a™*™ kaikilla a € A, n,m € N.
(2) (a™)™ = a™™ kaikilla a € A, n,m € N.

Jos alkiolla a on kddnteisalkio, niin kohtien (1) ja (2) vditteet pdtevit kaikille kokonais-
luvuille m,n € Z.

Olkoon (H,+) kommutatiivisella laskutoimituksella varustettu joukko, jolla on neutraa-
lialkio. Talloin

(3) na+ma = (n+m)a kaikilla a € H, n,m € N.
(4) n(ma) = (nm)a kaikilla a € H, n,m € N.

Jos alkiolla a on kddnteisalkio, niin kohtien (3) ja (4) vditteet pdtevdt kaikille kokonais-
luvuille m,n € Z.

Todistus. (1) Véite on selvi, jos m = 0 tai n = 0. Osoitetaan viite induktiolla positiivisille
eksponenteille m ja n. Olkoon a € A. Jos 1 < n,m jan+m = 2, niin n = m = 1. Talldin
vaite patee, silla se on toisen potenssin méaaritelma. Oletetaan, etta a"a™ = a™*™, kun
n +m < N. Oletetaan, ettd n +m = N + 1 ja n > 2. Talloin potenssin maaritelmén,
assosiatiivisuuden ja induktio-oletuksen nojalla

m m _n—1

a™a® = am(an—la) — (CL a )CL — am+n—1 m-—+n

a=a ,
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joten véite seuraa induktioperiaatteesta. Tapaus n,m < —1 kasitellaén samaan tapaan.
Olkoon m > 1 ja olkoon n < —1. Téalloin

am&n — am(a71>fn — amflaafl(afl)fnfl )

Toistamalla téatd min(m, —n) kertaa paadytdan yhtaloon a™a”™ = ™™, kuten haluttiin.

(2) Olkoon n € Z. Olkoon m > 1. Viite pétee méiritelméan nojalla, jos m = 1. Olete-
taan, ettd (a™)M = "M, Talloin potenssin mééritelmén, induktio-oletuksen ja kohdan (1)
nojalla

(an)MJrl _ (an)Man _ anMan — anMJrn — an(M+1)

)

joten véite seuraa induktioperiaatteesta.

Tarkastellaan sitten tapauksia, joissa m < —1. Kohdan (1) nojalla a "a™ = a° = 1. Siis

a™™ = (a™)7!. Oletetaan, ettd M < —1 ja (a™)™ = ¢"™. Tilléin potenssin mééritelmin,

induktio-oletuksen, tapauksen m = —1

(an>M—1 _ (an)M(an)—l _ (anM>a—n _ anM—n _ an(M—l))

joten vaite seuraa induktioperiaatteesta.
Viitteet (3) ja (4) seuraavat kohdista (1) ja (2). O

Harjoitustehtavia

1.1. Olkoon
I'={A € My(R):det A=1}.

Osoita, ettd matriisien kertolasku indusoi laskutoimituksen joukossa I'. Miten matriisien
yhteenlasku kayttaytyy?

1.2. Olkoon f: (4,*) — (C,®) homomorfismi. Osoita:
(a) Jos B C A on vakaa, niin f(B) C C on vakaa.
(b) Jos B C C on vakaa ja f~1(B) ei ole tyhji joukko, niin f~!(B) C A on vakaa.

1.3. Osoita, etta
a 0
A=l 0)een ]

on matriisien kertolaskulla varustetun joukon (My(R), ) vakaa osajoukko.
Osoita, ettd laskutoimituksella varustettu joukko (R—{0}, -) on isomorfinen matriisien
kertolaskulla varustetun joukon (A, -) kanssa.

1.4. Olkoot f: (A, %) = (B,®) ja g: (B,®) — (C,-) laskutoimituksella varustettujen
joukkojen homomorfismeja. Osoita, ettd g o f on homomorfismi.
1.5. Olkoon (A, ) laskutoimituksella varustettu joukko ja olkoon Hom(A, A) kaikkien

homomorfismien ¢: (A, *) — (A,*) joukko. Osoita, ettd homomorfismien yhdistaminen
on laskutoimitus joukossa Hom(A, A).

1.6. Ovatko laskutoimituksella varustetut joukot (Z({0,1}),N) ja (£2({0,1}),U) iso-
morfisia?
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1.7. Olkoon X joukko, jossa on ainakin 2 alkiota. Onko joukon &(X) laskutoimitus —
assosiatiivinen P

1.8. Olkoon * kahden alkion joukon X = {a, b} laskutoimitus, jonka laskutaulu on

Q| ¥
L o
SIS RS

Onko laskutoimitus * kommutatiivinen? Onko se assosiatiivinen?

1.9. Olkoon * kolmen alkion joukon X = {a,b,c} laskutoimitus, jonka laskutaulu on

Onko laskutoimitus * kommutatiivinen? Onko se assosiatiivinen? Onko jokaisella joukon
X alkiolla kdanteisalkio?

1.10. Kivi-paperi-sakset —pelissa kaksi pelaajaa néyttda samanaikaisesti kadelldan yh-
den symboleista kivi, paperi tai sakset. Kivi voittaa sakset, sakset voittaa paperin ja
paperi voittaa kiven. Jos molemmat pelaajat ndyttdvat saman symbolin, tdméa symbo-
li katsotaan voittajaksi. Pelin sdant6 maaraa laskutoimituksen kolmen alkion joukolla,
jonka alkiot ovat kivi, paperi ja sakset: laskutoimituksen tulos on voittaja.

Muodosta kivi-paperi-sakset —pelin laskutaulu. Onko pelin laskutoimitus assosiatiivi-
nen?

1.11. Todista Propositio [L.9(2).

1.12. Olkoon * rationaalilukujen laskutoimitus, joka méaritelldan asettamalla

a+b
b= )
a * 5

Onko laskutoimitus * assosiatiivinen? Onko laskutoimituksella * neutraalialkio?

1.13. Olkoon * positiivisten reaalilukujen joukon R, laskutoimitus, joka méaritellaan

asettamalla
axb=ab.

Onko laskutoimitus * assosiatiivinen? Onko laskutoimituksella * neutraalialkio?

1.14. Olkoon X joukko. Onko potenssijoukon (X ) laskutoimituksilla N ja U neutraa-
lialkiot? Onko jokaisella A € Z2(X) kadanteisalkiot laskutoimitusten N ja U suhteen?

1.15. Todista Propositio [1.18]

1.16. Keksi esimerkki laskutoimituksella varustetusta joukosta (A, x) ja alkiosta a € A,
jolla on useita vasempia kéanteisalkioita.

3Katso Esimerkki b)
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1.17. Varustetaan luonnollisten lukujen joukko N = {0,1,2,...} laskutoimituksella V,
joka maéritellaan asettamalla

a, josa>b
aVb=
b muuten.

a) Onko laskutoimitus V assosiatiivinen?

(a)
(b)
(

c¢) Milla alkioilla n € (N, V) on kaanteisalkio?

Onko laskutoimituksella V neutraalialkio?

1.18. Varustetaan reaalilukujen joukko R laskutoimituksella %, joka maaritellian aset-

tamalla
axb=+a®+0?
kaikille a, b € R.
(a) Onko laskutoimitus * assosiatiivinen?
(b) Onko laskutoimituksella x neutraalialkio?

Olkoon ¢: (R,*) — (R,+) kuvaus, joka méiritelliéin asettamalla ¢ (a) = a? kaikilla
a € R.

(¢) Onko kuvaus 9: (R, %) — (R, +) homomorfismi?

1.19. Olkoon X joukko. Onko joukon &(X) laskutoimitus N distributiivinen laskutoi-
mituksen U suhteen? Onko laskutoimitus U distributiivinen laskutoimituksen N suhteen?

Avaruuden R? wektoritulo eli ristitulo on laskutoimitus, joka maédritelliin asettamalla
kaikille a = (ay, as, az) ja b = (by, by, b3) € R3

. as bg aj bl a1 bl
axb= (det <a3 b3> , —det <a3 b3> , det <a2 b2> ) .

1.20. Osoita, etté
(a) x on antikommutatiivinen: b x a = —a X b kaikille a,b € R3.
(b) x on distributiivinen vektorien yhteenlaskun suhteen.

(c) x ei ole assosiatiivinen. 1
1.21. Todista Lemma [1.21](1).
1.22. Todista Lemma [1.21](2).
1.23. Todista Lemma [[.24]

1.24. Madritelladn Harjoitustehtavéssa kasitellylle laskutoimitukselle % joukon X
alkioiden positiiviset potenssit kuten luvussall.9 Patevatko Lemman laskusdannot?

4Keksi sopiva esimerkki.
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Luku 2

Tekijalaskutoimitus ja
modulaariaritmetiikka

Tassa luvussa tutustumme ekvivalenssirelaatioon ja maarittelemme, mita tarkoittaa, etta
ekvivalenssirelaatio on laskutoimituksen kanssa yhteensopiva. Jos joukossa on méaaritelty
ekvivalenssirelaatio, sen avulla maéaritellaén uusi joukko, jota kutsutaan tekijajoukoksi.
Jos alkuperaisessa joukossa on lisaksi ekvivalenssirelaation kanssa yhteensopiva laskutoi-
mitus, saadaan tekijajoukkoon maéariteltya laskutoimitus, jota sanotaan tekijalaskutoimi-
tukseksi. Tama konstruktio on térked erityisesti luvussa [7] kurssilla RENKAAT JA KUNNAT
ja luvussa[l2 kurssilla RYHMAT. Térkeini esimerkkind tutustumme kongruenssiin mod ¢
kokonaislukujen joukossa ja sen avulla saataviin yhteen- ja kertolaskun tekijalaskutoimi-
tuksiin kongruenssiluokkien joukossa.

2.1 Ekvivalenssirelaatio

Olkoon A epétyhja joukko. Joukon A x A osajoukko on relaatio joukossa A. Jos R C Ax A
on relaatio, merkitaan a R b, jos ja vain jos (a,b) € R.

Joukon A relaatio R on
(1) refleksiivinen, jos a R a kaikilla a € A,
(2) symmetrinen, jos bR a kaikilla a,b € A, joille a R b,
(3) transitiivinen, jos a R ¢ aina kun aR b ja bR ¢,

Jos relaatio on refleksiivinen, symmetrinen ja transitiivinen, se on ekvivalenssirelaatio.

Jos R on ekvivalenssirelaatio joukossa A ja a R b, alkiot a ja b ovat ekvivalentteja.

Ekvivalenssirelaation merkkina kaytetaan usein merkkia ~.
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Toinen tarked esimerkki relaatiosta on osittainen jarjestys <, joka on refleksiivinen,
transitiivinen ja antisymmetrinen (jos a < b ja b < a, niin a = b) relaatio.

Olkoon ~ ekvivalenssirelaatio joukossa A. Alkion a € A ekvivalenssiluokka on
[a] ={be A:a~ b}
Ekvivalenssirelaatiota ~ vastaava joukon A tekijajoukko on

Aj~={la]:a € A}.

Kuvaus 7 = m.: A — A/~, 7(a) = [a], on ekvivalenssirelaatiota ~ vastaava tekijikuvaus
eli luonnollinen kuvaus.

Alkio a € A on ekvivalenssiluokkansa [a] edustaja.

Lemma 2.1. Olkoon ~ ekvivalenssirelaatio joukossa A ja olkoot a,b € A. Talldin [a] = [b]
tai [a] N [b] = 0.

Todistus. Oletetaan, etté [a] N[b] # (). Talloin on x € [a] N [b] ja télle alkiolle pétee a ~ x
ja b ~ x. Ekvivalenssirelaation symmetrisyyden nojalla x ~ b, joten transitiivisuuden
nojalla a ~ b. Siis b € [a]. Olkoon y € [b]. Talléin b ~ y, joten transitiivisuuden nojalla
a ~y. Siis [b] C [a]. Vastaavasti osoitetaan, etta [a] C [b]. O

Olkoon I epatyhja indeksijoukko. Olkoot A;, 1 € I, joukon A epétyhjia osajoukkoja. Jos

A=A (2.1)

il

ja kaikille i # j patee A; N A; = 0, niin A on erilinen yhdiste joukoista A;, i € I.
Merkitsemme joukkojen A;, i € I, erillistd yhdistetta

el

Jos A = | Jjc; Ai, niin joukot A;, ¢ € I muodostavat joukon A osituksen.

Propositio 2.2. Olkoon ~ ekvivalenssirelaatio joukossa X . Ekvivalenssiluokat mddrddvdt
joukon X osituksen:
X= |] ld.

[aleX/~

Todistus. Jos x € X, niin = € [z], joten X = Ujyex/~[a]. Yhdiste on erillinen Lemman

2.1 nojalla. O
Joukon A osituksen A = |l;c; A; mddrddmd relaatio R on relaatio, joka maaritellaan

asettamalla x Ry, jos ja vain jos xz,y € A; jollain i € I.

Propositio 2.3. Joukon X # () osituksen mdadradamda relaatio on ekvivalenssirelaatio.
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Todistus. Olkoon R osituksen A = | |;c; A; maardama relaatio. Koska A = U;c; 4;, niin
jokaiselle a € A patee a € A; jollakin ¢ € I. Siis a R a, joten R on refleksiivinen.

Olkoot a,b € A siten, ettd a R b. Siis on ¢ € I, jolle a,b € A;. Téassa ehdossa alkioiden
a ja b jarjestys on merkitykseton, joten bR a.

Olkoot a,b,c € A siten, ettd aRb ja bR c¢. Siis on 4,5 € I, joille a,b € A; ja b,c €
A;. Koska joukot Ay, & € I muodostavat joukon A osituksen, pétee joko A; = A, tai
A; N A; = 0. Oletuksen mukaan b € A; N A;, joten A; = A; ja siis a,c € A;, joten aRc.
Siis relaatio R on transitiivinen. m

2.2 Kongruenssi

Olkoon m € N, m > 1. Kokonaisluvut a € Z ja b € Z ovat kongruentteja luvun m suhteen
tai kongruentteja modulo m, jos m | (b — a). Talloin merkitdén a = b mod m.

Luku m on kongruenssin moduli.

Relaatio = on kongruenssi mod m.

Jos a = b mod ¢, niin a —b = kq jollain k € Z, mika voidaan kirjoittaa myos muodossa
a = b+ kq jollain k£ € Z. Ottamalla kdyttoon merkinté

r+qZ={r+kq:kel}
saadaan vield yksi tapa: a = b mod ¢, jos ja vain jos a € b+ ¢Z.

0457 =5+ 57 = (24 5Z) + (3 + 57)

1452 =6+ 5Z=(2+5Z)(3 +pZ)

COQL Q.Qi .Ql

+7 —6 -5 —4 3 —2 -1 0 1 4 5 6

245Z=-34bZ="---

3+5Z=—-2+5Z="--

Kuva 2.1 — Kongruenssiluokat modulo 5.

Lemma 2.4. Olkoon q € N, q¢ > 2. Kongruenssi mod q on ekvivalenssirelaatio.

Todistus. Tarkastamme, etta ekvivalenssirelaation maarittelevat ehdot ovat voimassa
(1) a = a + 0q kaikilla a € Z,

(2) jos b —a = kq jollain k € Z, niin a — b = (—k)gq,

(3) josb—a = kq ja c—b = nq joillain k,n € Z, niin c—a = (c—b)+(b—a) = (k+n)q. O
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Olkoon g € N — {0, 1}. Kongruenssin mod ¢ ekvivalenssiluokat a + ¢Z ovat kongruenssi-
luokkia (modulo q).

Luku a € Z on kongruenssiluokan a + ¢Z edustaja.

Kongruenssin modulo ¢ tekijajoukko on kongruenssiluokkien joukko

2/qZ ={a+qZ :a € Z}.

Esimerkki 2.5. Kongruenssin modulo ¢ tekijakuvaus on 7: Z — Z/qZ, m(a) = a + qZ.
Propositio 2.6. Olkoon ¢ € N —{0,1}. Talloin #7Z/qZ = q ja

2)qZ ={0+ qZ, 1+ qZ,2 + qZ,...,q — 1 + qZ}.
Todistus. J akoyhtéléstéﬂ seuraa, ettd jokaiselle ekvivalenssiluokalle on yksikasitteinen
edustaja joukossa {0,1,...,q — 1}. Siis tekijajoukossa Z/qZ on korkeintaan ¢ alkiota.

Toisaalta, jos 0 < a <b<n-—1,niinl <b—a<n-—1, joten a+ qZ # b+ qZ. Siis
tekijajoukossa Z/qZ on ainakin ¢ alkiota. O

2.3 Tekijalaskutoimitus
Algebran yhteydesséd tarkastelemme laskutoimituksilla varustettujen joukkojen ekviva-

lenssirelaatioita, jotka ovat yhteensopivia laskutoimitusten kanssa. Néin saadaan maéri-
teltya alkuperéisiin laskutoimituksiin liittyvia laskutoimituksia tekijajoukoissa.

Joukon A laskutoimitus * ja ekvivalenssirelaatio ~ ovat yhteensopivat, jos a x b ~ a’ * b
kaikille a,b,a’,b" € A, joille a ~ a' ja b ~ V.

Lemma 2.7. Olkoon (A, x) laskutoimituksella varustettu joukko ja olkoon ~ joukon A ekvi-
valenssirelaatio, joka on yhteensopiva laskutoimituksen x kanssa. Lauseke

[a] * [b] = [a + D]
madrdada laskutoimituksen tekijijoukossa A/ ~.

Todistus. Jos [a] = [d] ja [b] = [V], niin a ~ ' ja b ~ b'. Yhteensopivuuden nojalla
axbr~a %l joten [a*b] = [a' xV]. Siis laskutoimitus on hyvin mééritelty. O

Jos joukon A ekvivalenssirelaatio ~ ja laskutoimitus * ovat yhteensopivat, niin Lemman
antama tekijajoukon A/~ laskutoimitus * on joukon A laskutoimituksen * maaraaméa
tekijalaskutoimitus.

Seuraavat havainnot seuraavat suoraviivaisesti méaritelmista:

! Propositio
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Propositio 2.8. Olkoon ~ laskutoimituksella varustetun joukon (E,*) laskutoimituksen
x kanssa yhteensopiva ekvivalenssirelaatio. Talloin:

(1) Luonnollinen kuvaus w: E — E/ ~ on surjektitvinen homomorfismi.

(2) Jos e € E on laskutoimituksen * neutraalialkio, niin [e] € E/~ on tekijilaskutoimi-
tuksen neutraalialkio.

(3) Jos laskutoimitus * on assosiatitvinen, sen tekijilaskutoimitus on assosiatiivinen.

(4) Jos x on kommutatiivinen, sen tekijilaskutoimitus on kommutatiivinen.

Todistus. Todistetaan véite (1): Kaikille a,b € E patee
m(a) x w(b) = [a] * [b] = [a*xb] = 7(a*b),

joten luonnollinen kuvaus on homomorfismi. Kuvauksen surjektiivisuus on selvid, koska
jokaisella ekvivalenssiluokalla on edustaja joukossa F.

Viite (2) seuraa Propositiosta ja vaitteet (3) ja (4) Propositiosta[l.9] koska luon-
nollinen kuvaus on véitteen (1) mukaan surjektiivinen homomorfismi. O

2.4 Kongruenssiluokkien laskutoimitukset

Tassa luvussa sovellamme tekijalaskutoimituksen konstruktiota kongruenssiluokkien las-
kutoimitusten méadrittelyyn ja Propositiota 2.8 niiden perusominaisuuksien osoittamiseen.

Lemma 2.9. Kokonaislukujen yhteenlasku ja kertolasku ovat yhteensopivia kongruenssin
kanssa.

Todistus. Osoitamme vaitteen yhteenlaskulle. Kertolaskulle viite osoitetaan samaan ta-
paan Harjoitustehtavassa Josa=da modqjab=0b mod ¢, niin on m,n € Z, joille
a = a+mqjab = b+ ng. Talloin

a4+b —(a+b)=(ad—a)+ (b —b) = (m+n)g,
joten @’ +b =a+b mod gq. ]

Propositio 2.10. (1) Kokonaislukujen yhteenlasku ja kertolasku madradvat assosiatiiviset
ja kommutatiiviset laskutoimitukset q alkion joukossa Z/qZ.

(2) Kongruenssiluokka 04 qZ on kongruenssiluokkien yhteenlaskun neutraalialkio ja 1+ qZ
on kongruenssiluokkien kertolaskun neutraalialkio.

(3) Jokaisella a + qZ € 7./qZ pitee a + qZ + (—a + qZ) = 0 + ¢Z.

Todistus. Proposition nojalla molemmat tekijalaskutoimitukset ovat assosiatiivisia ja
kommutatiivisia. Neutraalialkiot saadaan myos Propositiosta [2.8] O

Kéaytdmme molemmille kongruenssiluokkien laskutoimituksille samoja merkintoja kuin
vastaaville kokonaislukujen laskutoimituksille: kaikille a + ¢Z, b + ¢Z € Z/qZ

(a+qZ)+ (b+qZ) = (a+b) + qZ
ja
(a+qZ)(b+qZ) = ab+ qZ.
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Esimerkki 2.11. Yhteen- ja kertolaskun laskutaulut kongruenssiluokilla modulo 4

+10 1 2 3 01 2 3
0(0 1 2 3 0|0 0 0 O
111 2 3 0 110 1 2 3
212 3 01 210 2 0 2
313 01 2 310 3 21
ja modulo 5
+10 1 2 3 4 01 2 3 4
010 1 2 3 4 0[0 OO OO
111 2 3 4 0 110 1 2 3 4
212 3 4 01 210 2 4 1 3
313401 2 310 3 1 4 2
414 01 2 3 410 4 3 2 1

Néissa laskutauluissa merkitdaéan luvulla 0 < a < ¢ — 1 ekvivalenssiluokkaa a + ¢Z, kun
q € {4,5}. Huomaamme, ettd jokaisella nollasta poikkeavalla alkiolla on kéaéanteisalkio
laskutoimituksella varustetussa joukossa (Z/5Z, -) mutta alkiolla 2+ 4Z € (Z/4Z, -) €i ole
kaanteisalkiota. Tarkastelemme tdmén havainnon syita luvussa [5.3]

Lemma 2.12. Kongruenssiluokkien kertolasku on distributiivinen yhteenlaskun suhteen.

Todistus. Olkoot a, b, c € Z ja olkoon ¢ € N — {0, 1}. Talloin kokonaislukujen osittelulain
nojalla pétee
(a+ qZ)((b +qZ) + (c+ qZ)) = (a+ qZ)((b +c)+ qZ)) =a(b+c)+qZ
= (ab+ ac) + qZ = (ab+ qZ) + (ac + qZ) . O

Harjoitustehtavia

2.1. Osoita, etta kokonaislukujen kertolasku on yhteensopiva kongruenssin kanssa.

2.2. Maaritellaan relaatio ~ joukossa N x N asettamalla (m,n) ~ (p, q), jos ja vain jos
m + q¢ = n + p. Osoita, ettd ~ on ekvivalenssirelaatio.

2.3. Maaritelldan laskutoimitus * joukossa N x N asettamalla

(m,n) * (p,q) = (mp + ng,mq + np) .

Osoita, ettd * on yhteensopiva tehtévéin ekvivalenssirelaation kanssa. Todistuksessa
voi kiyttad vain luonnollisia lukujal]

2.4. Muodosta yhteen- ja kertolaskun laskutaulut kongruenssiluokilla modulo 2 ja mo-
dulo 6.

2Tehtava, liittyy kokonaislukujen méérittelemiseen luonnollisten lukujen muodollisina erotuksina.

3Tarkasteltava laskutoimitus antaa kokonaislukujen kertolaskun, kun kokonaislukuja ajatellaan kah-
den luonnollisen luvun erotuksina. Vihje: Osoita, ettd ehdosta (m,n) ~ (m/,n’) seuraa (m,n) * (p,q) ~
(m/,n’) x (p,q) ja padittele viite kiyttamalld ekvivalenssirelaatioiden ja tarkasteltavan laskutoimituksen
ominaisuuksia.
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2.5. Muodosta yhteen- ja kertolaskun laskutaulut kongruenssiluokilla modulo 3 ja mo-
dulo 9.

2.6. Maaritellaan relaatio ~ reaalilukujen joukossa R asettamalla x ~ y, jos ja vain jos
x = qy jollain ¢ € Q*. Osoita, ettd ~ on ekvivalenssirelaatio. Osoita, ettéd tekijajoukko
R/~ on ylinumeroituva.

Olkoon f: X — A kuvaus. Olkoon z 7Y jos ja vain jos f(z) = f(y) alkioille z,y € X.

2.7. Osoita, etta ? on ekvivalenssirelaatio. Osoita, etta lauseke

madarittelee bijektion F': X/? — f(X).

2.8. Olkoon ¢: (X, %) — (A, ®) homomorfismi. Osoita, etté laskutoimitus x ja ekviva-
lenssirelaatio ¥ ovat yhteensopivat. Osoita, ettd ¢(X) on laskutoimituksella varustetun
joukon (A, ®) vakaa osajoukko ja ettd homomorfismin ¢ maaraama kuvauﬂ o: X/ rg —

»(X) on isomorfismi.

4Katso Harjoitustehtéavé,
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Luku 3

Renkaat

Renkaat ovat kahdella assosiatiivisella laskutoimituksella varustettuja joukkoja, joissa
ainakin toinen laskutoimitus on kommutatiivinen. Liséksi vaaditaan, etta yksi laskutoi-
mituksista on distributiivinen toisen suhteen. Vaadimme siis néiltd kahdella laskutoimi-
tuksella varustetuilta joukoilta joitakin ominaisuuksia, joita kokonaisluvuilla on, mutta
kertolaskua vastaava laskutoimitus ei valttaméttad ole kommutatiivinen. Tassa luvussa
aloitamme tutustumisen renkaiden perusominaisuuksiin ja eri tapoihin luokitella renkai-
ta ominaisuuksiensa perusteella. Tutkimme myos useita esimerkkeja renkaista.

3.1 Ryhma

Ryhmaét ovat padosassa kurssilla RyHMAT. Télldkin kurssilla ryhmén késite on hyodylli-
nen kasite renkaiden ja vektoriavaruuksien méaritelmissa ja renkaiden teoriassa muuten-
kin. Tutustumme siksi ryhmén maéritelmaéan ja joihinkin perusominaisuuksiin jo nyt.
Laskutoimituksella varustettu joukko (G, *) on ryhmd, jos

o laskutoimitus % on assosiatiivinen,

o laskutoimituksella * on neutraalialkio ja

« jokaisella g € (G, *) on kaanteisalkio.

Lemma 3.1. Olkoon (G, *) ryhmd. Jokaisella g € G on tasmdalleen yksi kadnteisalkio.

Todistus. Alkiolla ¢ € G on ainakin yksi kadnteisalkio ryhméan madritelman nojalla.
Proposition nojalla sillé on korkeintaan yksi kédanteisalkio, koska * on assosiatiivinen
laskutoimitus. O

Esimerkki 3.2. Laskutoimituksella varustetut joukot (R,+), (Q,+), R* ja Q* ovat
ryhmia.
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Supistussddnndt ovat voimassa laskutoimituksella varustetussa joukossa (A, ), jos kaikilla
a,b,c € A patee

(1) Jos a*xb=ax*c,niin b = c.

(2) Jos a*xb=cxb, niin a = c.

Propositio 3.3. Supistussdidnndt patevdt ryhmdssa.

Todistus. Olkoon G ryhmé ja olkoot a,b,c € G siten, etta ab = ac. Siis
b=a'(ab) = a (ac) = c,

joten saanto (1) patee. Sééntd 2 todistetaan samaan tapaan. [l

Lemman toinen todistus. Riittaa osoittaa kaanteisalkion yksikésitteisyys. Olkoon g €
G. Jos e on ryhmén G neutraalialkio ja ag = e = bg, niin supistussdannon nojalla a = b.
Siis alkiolla g on vain yksikdanteisalkio. O]

Esimerkki 3.4. (a) Supistussidinto ei pade esimerkiksi laskutoimituksella varustetuissa
joukoissa (N, ) ja (R, ), koska 0a = 0 kaikille a € N C R.

(b) Supistussaanto pétee laskutoimituksella varustetussa joukossa (N — {0}, -), joka ei ole
ryhma.

Propositio 3.5. Olkoot G ja G' ryhmid ja olkoon ¢: G — G' homomorfismi. Talloin
(1) Jose € G jae € G ovat ryhmien neutraalialkiot, niin ¢(e) = €.
(2) d(g71) = ¢(g)™" kaikille g € G.

Todistus. (1) Olkoon ¢: G — G’ homomorfismi. Talloin

'pe) = d(e) = dlee) = d(e)é(e),

mistéd vaite seuraa supistussaannolla.

(2) Olkoon g € G. Talloin

ja

joten ¢(g~") = ¢(g)~". O
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3.2 Rengas

Kahdella laskutoimituksella varustettu joukko (R, +,-) on (ykkdsellinen) rengas, jos las-
kutoimitukset + ja - ovat assosiatiivisia ja

(1) (R,+) on kommutatiivinen ryhma,
(2) kertolasku on distributiivinen yhteenlaskun suhteen ja

(3) kertolaskulla on neutraalialkio 1 = 1z € R.

Ryhmé (R, +) on renkaan (R, +,-) additiivinen ryhmd.

Rengas on kommutatiivinen rengas, jos sen kertolasku on kommutatiivinen.

Laskutoimituksen + neutraalialkiolle kéytetdan merkintaa 0 = Op.

Kéytamme tavanomaista merkintaa x —y = x + (—y).

Esimerkki 3.6. Lukujen [1.7] [L.§ ja [2.4] nojalla kahdella laskutoimituksella varustetut
joukot (Z,+,-), (Q,+,-), (R,+,), (C,+,-) ja (Z/qZ,+,-), kun ¢ € N — {0,1}, ovat
kommutatiivisia renkaita.

Kun viittaamme renkaaseen Z, Q, R, C, Z/qZ tarkoitamme rengasta, jonka laskutoimi-
tukset ovat kuten Esimerkissé 3.6l

Olkoon ¢ € N — {0, 1}. Rengas Z/qZ on jaanndsluokkarengas mod q.

Renkaiden R ja S tulorengas on joukko R x S varustettuna yhteenlaskulla ja kertolaskulla,
jotka maaritellaan
(r1,81) + (12, 82) = (r1 + 72,81 + $2)
ja
(7“1,81) : (7”2,82) = (7“17’2, 8182)

kaikille (71, s1), (19, 82) € R X S.

Propositio 3.7. Tulorengas on rengas.

Esimerkki 3.8. Olkoon R rengas, jossa on vahintédan 2 alkiota. Kaikkien R-kertoimisten
n X n-matriisien joukko M, (R) varustettuna matriisien yhteen- ja kertolaskulla on rengas.
Kun R = R, kaikki renkaan ominaisuudet on osoitettu lineaarialgebrassa, katso Esimerkit
[L.1}(c) ja[L.19(b). Kun n > 2, niin M,,(R) ei ole kommutatiivinen rengas, koska matriisien
kertolasku ei ole kommutatiivinen:

0 1) (0 0) _ (10} (0 0)_ (0001
0 0o/\1 0/ \0o O 0 1/ \1 0/\0 0/~
Esimerkki 3.9. (a) Olkoon X # () ja olkoon R rengas. Olkoot f,g € RX. Asetamme

(f +9)(x) = f(z) +g(z) ja (f9)(z) = f(x)g(x)
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kaikilla € X. Kahdella laskutoimituksella varustettu joukko (R*,+,-) on rengas, jota
kutsutaan funktiorenkaaksi.

Laskutoimitusten assosiatiivisuus, yhteenlaskun kommutatiivisuus ja kertolaskun di-
stributiivisuus yhteenlaskun suhteen seuraa siita, ettd funktioiden arvot ovat renkaassa
R ja funktioiden laskutoimitukset on maééritelty pisteittdin. Yhteenlaskun neutraalial-
kio on vakiofunktio 0: X — R ja kertolaskun neutraalialkio on 1: X — R. Funktion
f € RX kiinteisalkio yhteenlaskun suhteen on funktio — f, joka méaritellidn asettamalla
(—f)(z) = —f(x) kaikilla z € R.

Rengas RX on kommutatiivinen, jos R on kommutatiivinen. Esimerkiksi siis R® on
kommutatiivinen rengas.

(b) Olkoot Ly, Lo: R™ — R™ lineaarikuvauksia. Lineaarialgebran kurssilla on osoitettu,
ettd L1 + Lo ja Ly o Ly ovat myos lineaarikuvauksia avaruudelta R™ itselleen. Vektoria-
varuuden R™ endomorfismirengas on

End(R") = {L: R" — R" : L on lineaarikuvaus}
varustettuna yhteenlaskulla
(L1 + L2)(x) = Li(z) + La()

kaikilla x € R" ja kertolaskulla
LlLQ = L1 e} L2 .

Molemmat laskutoimitukset ovat assosiatiivisiaﬂ ja yhteenlasku on kommutatiivinen.
Lineaarikuvaus 0 € End(R"™) on selvisti yhteenlaskun neutraalialkio. Maaritellaan
jokaiselle L € End(R") lineaarikuvaus —L € End(R") asettamalla (—L)(z) = —L(x)
kaikilla € R™. Talloin selvasti L + (—L) = 0 kaikilla L € End(R"), joten (End(R"™),+)
on kommutatiivinen ryhma.
Jos L, L', L € End(R"), niin kaikilla a € R™ pétee

(L+L')L"(a) = LL"(a)+ L'L"(a) = (LL" + L'L")(a),
ja
L"(L+L')(a)=L"(L(a) + L'(a)) = L"L(a) + L"L'(a) = (L"L + L"L")(a).

Siis kertolasku on yhteenlaskun suhteen distributiivinen.
Liséksi identtinen kuvaus id: R™ — R"™ on lineaarikuvaus ja se on selvésti kertolaskun
neutraalialkio. Siis End(R") on rengas.

(¢) Yhden alkion joukossa {a} on vain yksi laskutoimitus *. Kahdella laskutoimituksella
varustettu joukko ({a}, *,*) on nollarengas, jossa 0 = 1 = a.

Propositio 3.10. Olkoon R rengas. Tdlloin
(1) Og - x =0g = x - Og kaikilla x € R,
(2) x(=y) = (=2)y = —(zy) ja (=x)(—y) = xy kaikilla v,y € R,

(3) x(y — 2) =xy — xz ja (y — 2)x = yxr — zzx kaikilla z,y,z € R.

Katso Esimerkki
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Todistus. (1) Distributiivisuuden nojalla
Orz+2x=0Or+1g)xr=1gr=2=0r+=x

kaikilla € R. Renkaan R additiivisen ryhmén supistussdannosta seuraa, ettd Ogp x = Op
kaikilla = € R. Toinen yhtalo todistetaan samalla tavalla.
Loput véitteet todistetaan harjoitustehtavéssa [3.3] O

Esimerkki 3.11. Renkaassa R patee —1px = —z kaikilla z € R.

Edella osoitettujen laskusdantojen avulla on helppo osoittaa seuraavat perusominai-
suudet

Propositio 3.12. Olkoon R rengas. Jos #R > 2, niin
(1) 0#£1 ja
(2) yhteenlaskun neutraalialkiolla O ei ole kddnteisalkiota kertolaskun suhteen.

Todistus. (1) Jos 1 = 0, niin kaikille z € R pétee Proposition nojalla

r=1x=0x=0.
(2) Harjoitustehtéva O
Lemma 3.13. Kommutatiivisessa renkaassa K pitee binomikaava

(a+0b)" = f: (Z) a"FuF

k=0
kaikille a,b € K ja kaikille n € N.

Todistus. Harjoitustehtéva |3.6| O]

3.3 Alirengas

Olkoon R rengas ja olkoon S C R vakaa yhteenlaskun ja kertolaskun suhteen. Jos S
varustettuna indusoiduilla laskutoimituksilla on rengas ja jos 1g = 1, niin .S on renkaan
R alirengas.

Esimerkki 3.14. (a) Kokonaislukujen rengas Z on renkaan Q alirengas, Q on renkaan
R alirengas ja R on renkaan C alirengas.

(b) Joukko
s={(0 o) <etm)

on renkaan My (R) vakaa osajoukko ja se on rengas indusoiduilla laskutoimituksilla. Sen

kertolaskun neutraalialkio on (1) 8), joten S ei ole renkaan My(R) alirengas.

2Katso monikerran ja potenssin mééritelmé luvusta
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Esimerkki osoittaa, ettd oletus 1¢ = 1z on oleellinen alirenkaan maaritelmés-
sé. Sen sijaan alirenkaan yhteenlaskun neutraalialkio on automaattisesti sama kuin koko
renkaan yhteenlaskun neutraalialkio.

Lemma 3.15. Olkoon S renkaan R alirengas. Tdlloin Og = Og.

Todistus. Neutraalialkioiden maéritelmén nojalla patee Og + 0g = 0g = 0g + Og. Supis-
tussdannon nojalla siis 0g = Op. ]

Propositio 3.16 (Alirengastesti). Olkoon R rengas ja olkoon S C R. Tdlloin S on
renkaan R alirengas, jos ja vain jos

(1) Kaikille z,y € Sx+y € S jaxy €S ja
(2) —1p € S.
Todistus. Harjoitustehtéva [3.7] O

Esimerkki 3.17. Proposition avulla on helppo tarkastaa, etta
C’:{(aj y):x,yeR}

Esimerkki 3.18. Analyysin kursseilla osoitetaan, ettéd indusoiduilla laskutoimituksilla
varustetut joukot

on renkaan My(R) alirengas.

C'(R) = {f: R = R: f on jatkuva}, ja
CFR) = {f: R = R : f on k kertaa jatkuvasti derivoituva}, k € (N — {0}) U {oco}.

ovat funktiorenkaan R® alirenkaita

3.4 Rengashomomorfismit

Olkoot R ja R’ renkaita. Kuvaus ¢ : R — R’ on rengashomomorfismi, jos se on kahdella
laskutoimituksella varustettujen joukkojen homomorfismi, jolle pétee ¢p(1g) = 1g.

Bijektiivinen rengashomomorfismi on rengasisomorfismi.

Jos on isomorfismi ¢: R — R’, niin renkaat R ja R’ ovat isomorfisia, R = R'.

Lemma 3.19. Olkoon ¢: R — R' rengashomomorfismi. Talloin

¢(0r) = O0r ja ¢(—1g) = —1x.

Todistus. Kuvaus ¢: (R,+) — (R',+) on ryhmdhomomorfismi, joten ensimmaéinen véite
seuraa Proposition kohdasta (1), koska Or on additiivisen ryhmén (R, +) neutraa-
lialkio. Toinen vaite seuraa Proposition kohdasta (2), koska rengashomomorfismin
mééritelmén nojalla ¢(1g) = 1x. O
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Proposition nojalla rengashomomorfismille ¢: R — R’ pétee ¢(1) = 0 vain, jos
R’ = {0}. Liséksi yhden alkion renkaalta ei ole rengashomomorfismia renkaaseen, jossa
on vahintaan kaksi alkiota.

Esimerkki 3.20. Luonnollinen kuvaus k +— k + ¢Z renkaasta (Z, +, -) jadnnosluokka-
renkaaseen (Z/qZ,+,-) on surjektiivinen rengashomomorfismi Propositioiden [2.8 ja [2.10]
nojalla.

Esimerkki 3.21. Olkoon X epatyhja joukko ja olkoon R rengas. Olkoon a € X. Fva-
luaatiokuvaus pisteessi a E,: R — R, E,(f) = f(a), on rengashomomorfismi:

Eo(f+9)=(f+9)(a) = fla) + gla) = Eu(f) + Ealg),
Eu(fg) = (fg9)(a) = f(a)g(a) = Eu(f)Eu(9)
ja
E(1) = 1(a) = 1.
Esimerkki 3.22. Olkoon K = {vy,vs,...,v,} vektoriavaruuden R" kanta ja olkoon
(Lv;)k € R™ vektorin Lv; koordinaattivektori sarakevektorina kannassa K. Lineaarial-
gebrassa on osoitettu, ettd kuvaus Mat: End(R™) — M, (R), joka liittd4 lineaarikuvauk-

seen L sen matriisin tdssd kannassa, on rengasisomorfismi. Jos L, L’ € End(R™), niin
(L+ L") (v) = Lv+ L'v, joten

Mat(L + L') = Mat(L) + Mat(L'),

eli Mat on ryhméhomomorfismi additiivisten ryhmien valilla. Lisdksi kaikille lineaariku-
vauksille L, L' € End(R"™) pétee

Mat(L'L) = Mat(L") Mat(L)
ja identtisen kuvauksen matriisi on I, = Iy, (g)-

Propositio 3.23. (1) Jos f: R — S ja g: S — T ovat rengashomomorfismeja, niin go f
on rengashomomorfismi.

(2) Rengashomomorfismi f: R — S on rengasisomorfismi, jos ja vain jos on rengasho-
momorfismi f: S — R, jolle fo f=1idg ja fo f =idg.

Todistus. Harjoitustehtavat [1.4] ja [3.11] O

Rengashomomorfismin ¢): R — R’ ydin on
kery =~ 1(0) = {z € R: ¢(x) = 0}.
Esimerkki 3.24. Luonnollisen rengashomomorfismin Z — Z/qZ, a — a + qZ, ydin on
qZ kaikilla g > 2.
Propositio 3.25. Rengashomomorfismi on injektio, jos ja vain jos sen ydin on {0}.

Todistus. Olkoon ©: R — S rengashomomorfismi. Koska (0) = 0, niin 0 € ker). Jos
ker¢ # {0}, on z € R — {0}, jolle ¥(z) = 0 = ¢(0). Siis ¢ ei ole injektio. Jos taas ¢ ei
ole injektio, on x,y € R, = # vy, joille ¥ (x —y) = ¥ (z) — ¥ (y) = 0. Koska = —y # 0, patee
ker v # {0}. O
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Olkoon Y joukko ja olkoon ) # X C Y. Kuvausi: X — Y, i(z) = z, on inkluusiokuvaus[’

“Inkluusiokuvausta kutsutaan myo6s kanoniseksi injektioksi.

Esimerkki 3.26. Olkoon S renkaan R alirengas. Alirenkaan méaéritelmén mukaan ali-
renkaan inkluusiokuvaus on rengashomomorfismi. Sen ydin on {0}.

Rengashomomorfismin ¢ : R — S ydin ei yleensa ole renkaan R alirengas, koska se ei
valttamatta sisilla kertolaskun neutraalialkiota 1x. Palaamme tdhan aiheeseen luvussa[7]
Seuraava tulos yleistda Esimerkin havainnon.

Propositio 3.27. Olkoon ¢: R — R’ rengashomomorfismi.
(1) Jos S on renkaan R alirengas, niin ¢p(S) on renkaan R’ alirengas.

(2) Jos S' on renkaan R’ alirengas, niin ¢~'(S') on renkaan R alirengas.
Todistus. (1) Sovelletaan alirengastestiaf| Olkoot ¢(a), ¢(b) € ¢(5). Tallsin
¢(a) + ¢(b) = d(a+b) € ¢(5)
ja
¢(a) ¢(b) = ¢(ab) € &(5),

koska ¢: (R,+) — (R',+) ja ¢: (R, ) — (R,-) ovat homomorfismeja. Koska —1p € S,
niin Lemman nojalla

—lp = —¢(1r) = ¢(—1r) € 6(5).

Siis ¢(.S) on alirengas.
(2) Harjoitustehtéava (3.12] O

Seuraus 3.28. Olkoon ¢: R — R' rengashomomorfismi. Talloin ¢(R) on renkaan R’
alirengas ja ¢~ *(R') on renkaan R alirengas. O

3.5 Renkaan karakteristika

Kokonaislukujen renkaan Z rakenne on yksinkertainen: sen kaikki alkiot ovat alkion 1
monikertoja [[Tastd seuraa erityisominaisuus renkaassa 7 maééritellyille rengashomomor-
fismeille.

Propositio 3.29. Olkoon R rengas. On tismdlleen yksi rengashomomorfismi ¢: Z — R.

Todistus. Kuvaus ¢: Z — R,
p(n) =nlg=1g+1p+- - +1g,
on rengashomomorfismi, silla

d(m+n)=(m+n)lg=mlg+nlg=o(m)+ ¢(n)

3Propositio
4Katso monikerran mééritelmé luvusta
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ja
d(mn) =mnlg = mlgnlg = ¢(m)p(n)

kaikille m,n € Z. Siis haluttuja kuvauksia on ainakin yksi.
Jos ©: Z — R on rengashomomorfismi, niin ¢(1) = 1. Siis ¢¥(m) = m (1) kaikille
m € Z, joten v = ¢. O]

Esimerkki 3.30. Olkoon ¢: Z — R rengashomomorfismi ¢ (k) = k 1z. Homomorfismin
¢ kuva ¢(Z) = {k1g : k € Z} on renkaan R alirengas Proposition nojalla.

Olkoon R rengas. Jos homomorfismi Z — R, k — k1g, on injektio, niin renkaan R
karakteristika x(R) on 0. Muuten renkaan R karakteristika on

X(R) =min{k € N— {0} : k1 = 0}.

Esimerkki 3.31. (a) Renkaiden Z, Q, R karakteristika on 0, koska ne siséltévit kaikki
alirenkaana isomorfisen kopion kokonaislukurenkaasta Z.

(b) Jaannosluokkarenkaan Z/qZ karakteristika on g.

(c) Jos x(R) = 0, niin R on diretén. PolynomirenkaidenP| avulla huomaamme, ettd on
aarettomia renkaita, joiden karakteristika on aarellinen.

Lemma 3.32. Jos renkaan R karakteristika on q, niin qv = Og kaikille x € R.

Todistus. Harjoitustehtéava (3.15 O

Harjoitustehtavia

3.1. Todista Propositio (3.7

3.2. Madritelladn joukossa Z3 yhteenlasku komponenteittain ja kertolasku asettamalla
(a,b,c)(x,y,2) = (ax,bx + cy, cz)
kaikilla (a,b,c), (z,y,z) € Z3. Osoita, ettd Z* varustettuna niilld laskutoimituksilla on

rengas. Onko se kommutatiivinen?

3.3. Olkoon R rengas. Osoita, etta
(a) z(—y) = (—x)y = —(zy) kaikilla z,y € R ja
(b) x(y — 2) = a2y —zz ja (y — z)x = yx — zz kaikilla z,y, z € R.

3.4. Olkoon (R, ®,-) kahdella assosiatiivisella laskutoimituksella varustettu joukko si-
ten, etta

(1) (R,®) on ryhma,
(2) kertolasku on distributiivinen yhteenlaskun suhteen ja

(3) kertolaskulla on neutraalialkio 1 = 15 € R.

5Katso luku @
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Osoita, ettd (R, ®,-) on rengasf]
3.5. Todista Propositio [3.12|2).
3.6. Todista Lemma 3.13

3.7. Todista Propositio [3.16]

3.8. Osoita, etté
a b
Y = { (0 c) € MQ(Z/2Z)}

on rengas, joka ei ole kommutatiivinen. Montako alkiota renkaassa Y on? Milld renkaan
Y alkioilla on kdanteisalkio kertolaskun suhteen?

3.9. Osoita, ettd Esimerkin [3.17| rengas C' on isomorfinen kompleksilukujen renkaan C
kanssa. Mika renkaan C' kuvaus vastaa kompleksikonjugointia?

3.10. Ovatko funktiorenkaat RI®! ja RI®Z isomorfisia?

3.11. Todista Propositio [3.23(2).

3.12. Todista Propositio [3.27/2).

3.13. Olkoot m,n € N — {0, 1}. Osoita, ettd kuvaus ®: Z — (Z/mZ) x (Z/nZ),

o(k) = (k+mZ, k+nZ),

on rengashomomorfismi.

3.14. Olkoot m > 2 ja n > 2 luonnollisia lukuja, joiden suurin yhteinen tekija on 1.
Osoita, etta renkaat Z/mnZ ja (Z/mZ) x (Z/nZ) ovat isomorfisia.

3.15. Todista Lemma [3.32
3.16. Osoita, ettd renkaalla Z ei ole muita alirenkaita kuin Z.

3.17. Olkoon ¢ € N — {0, 1}. Osoita, etté ei ole rengashomomorfismia jaannosluokka-
renkaalta Z/qZ renkaaseen Z.

3.18. Sievenné lauseke (a + b)P? kommutatiivisessa renkaassa, jonka karakteristika on
alkuluku p. Miksi oletamme, etta p on alkuluku?

3.19. Olkoon K kommutatiivinen rengas, jonka karakteristika on alkuluku p. Olkoon
¢: K — K kuvaus ¢(a) = aP. Osoita, ettd ¢ on rengashomomorfismi.

Renkaan R alkio x on idempotentti, jos 2* = .

Jos renkaan B kaikki alkiot ovat idempotentteja, niin B on Boolen rengas.

3.20. Olkoon B Boolen rengas. Osoita, ettéa
(1) B on kommutatiivinen ja

(2) 2z = 0 kaikille z € B.

6Tehtivissi ei oleteta, ettd © on kommutatiivinen. Tarkastele lauseketta (1 @ 1)(z @ y).
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Olkoon X joukko. Joukkojen A, B € & (X) symmetrinen erotus on

AAB=(A-—B)U(B—A).

3.21. Osoita, ettd (Z(X),A) on ryhma.
3.22. Osoita, ettd (Z(X),A,N) on Boolen rengas.
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Tassa luvussa tarkastelemme renkaita, joiden kaikilla nollasta poikkeavilla alkioilla on
kaanteisalkio kertolaskun suhteen. Téllaisia renkaita kutsutaan jakorenkaiksi. Erityisesti
tarkastelemme kommutatiivisia jakorenkaita eli kuntia, mutta tutustumme lyhyesti myos
Hamiltonin kvaternioihin, jotka muodostavat jakorenkaan, joka ei ole kunta.

4.1 Yksikot

Jos R on rengas ja alkiolla u € R on kaénteisalkio kertolaskun suhteen, niin v on renkaan
R yksikko.

Propositio 4.1. Renkaan yksikéiden joukko varustettuna kertolaskulla on ryhmd.

Todistus. Renkaan R kertolasku on assosiatiivinen laskutoimitus, jonka neutraalialkio on
1. Yksikoiden joukko on vakaa kertolaskun suhteen: Jos u ja v ovat yksikoité, niin wv on
yksikko, koska

(wo)(v ™) =1 = (v u ) (w).

Kertolasku on siis assosiatiivinen laskutoimitus yksikoiden joukossa. Laskutoimituksella
on neutraalialkio, koska 1 on yksikké. Maaritelman mukaan jokaisella yksikolla u on
kidnteisalkio u~! renkaassa R. My6s u™! on yksikké, koska (u=1)~! = u. O

Renkaan R yksikoiden ryhmd (tai multiplikatitvinen ryhmd) on
R* ={u € R : u on yksikko}

varustettuna renkaan R kertolaskun indusoimalla laskutoimituksella.

Esimerkki 4.2. (a) Jos renkaassa on ainakin kaksi alkiota, niin Proposition mu-
kaan 0 # 1 ja 0 ei ole yksikko.
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(b) Renkaissa Q ja R ja C kaikki nollasta poikkeavat alkiot ovat yksikoita, joten aiem-
min esitellyt multiplikatiiviset ryhmét Q*, R* ja C* sopivat yhteen yksikéiden ryhmén
maaritelméan kanssa.

(c¢) Kokonaislukujen renkaan yksikéiden ryhmé on Z* = {—1, 1}.

(d) Funktiorenkaan R alkio f on yksikko, jos ja vain jos f(X) C R*.

4.2 Jakorenkaat ja kunnat

Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat
alkiot ovat yksikoita, niin K on jakorengas.

Kommutatiivinen jakorengas on kunta.
Jakorengas, joka ei ole kunta on vino kunta.

Jos K ja K’ ovat kuntia, niin rengashomomorfismi ¢: K — K’ on kuntahomomorfismi.

Esimerkki 4.3. (a) Renkaassa Z on darettémén monta alkiota mutta sen ainoat yksikot
ovat 1. Siis Z ei ole jakorengas eiké siis kunta.
(b) Q, R ja C ovat kuntia ja inkluusiokuvaukset Q <4 R < C ovat kuntahomomorfismeja.

(c) Olkoon R rengas, jossa on vihintédén kaksi alkiota. Matriisirengas M,,(R) ei ole jako-
rengas, kun n > 2, koska esimerkiksi matriisilla A, jonka ainoa nollasta poikkeava kerroin
on A;; el ole kddnteismatriisia.

Jos k on kunnan K alirengas ja k on kunta, niin £ on kunnan K alikunta. Talloin kunta
K on kunnan k kuntalaajennus.

Esimerkki 4.4. Rationaalilukujen kunta Q on kunnan R alikunta. Kunnat Q ja R ovat
kunnan C alikuntia.

Esimerkki 4.5. Olkoon F' = {0, 1, «, 8} joukko, jossa on maaritelty kaksi laskutoimi-
tusta + ja -, joiden laskutaulut ovat

+10 1 a p 01 a f
010 1 a f 0(0 0 0 O
111 0 0 « ja 110 1 a G -
ala 01 all0 a g 1
B1B a 1 0 610 B 1 «

Laskutaulusta on helppo tarkastaa, ettd F' on kunta. Sen osajoukko {0, 1} on vakaa yh-
teenlaskun ja kertolaskun suhteen ja —1 = 1, joten Proposition nojalla {0,1} on
kunnan F' alikunta.

Kunnan K osajoukko K’ voidaan osoittaa kunnaksi ndyttimalli ensin alirengastestin|
avulla, ettd K’ on renkaan K alirengas ja sitten osoittamalla, ettd nollasta poikkeavilla
alkioilla on kdanteisalkio kertolaskun suhteen. Seuraava tulos antaa menetelmén, jossa ei
kéayteté alirengastestia.

! Propositio

12. tammikuuta 2026



4.3. Toisen asteen lukukunnat

43

Propositio 4.6 (Alikuntatesti). Olkoon K kunta. Osajoukko K' C K on alikunta, jos ja
Vain Jjos

(1) #K' =2,
(2) a—be K kaikilla a,b € K’ ja
(3) ab™' € K’ kaikilla a,b € K', b # 0.

Todistus. Oletetaan ensin, ettd K’ on alikunta. T&lloin se on erityisesti kunta, joten
#K' > 2. Koska (K’,+) on ryhméi, saadaan a — b € K’ Xkaikilla a,b € K’. Vastaa-
vasti (K')* on ryhméa Proposition nojalla, joten ab™! € K’ kaikilla a,b € K,b # 0.

Oletetaan sitten, ettd osajoukolla K’ on ominaisuudet (1)—(3). Oletuksen (2) nojalla
kaikille a € K’ patee O = a —a € K', joten —a = O — a € K’ ja kaikille a,b € K’
pitee a + b = a — (—b) € K’. Vastaavalla tavalla saadaan oletuksesta (3), etté kaikille
b e K' — {0k} pitee 1 = bb™! € K', joten b= = 10~ € K’. Siis ominaisuuden (3)
nojalla ab = a(b™')™' € L’ kaikilla a € K’ ja b € K' — {0x}. Edelli ndimme, etté
Ok, lx € K', joten ominaisuuden (2) nojalla —1%. Alirengastestin nojalla siis K’ on
renkaan K alirengas.

Alirengas K’ on kommutatiivinen koska K on kommutatiivinen. Liséksi edelld ndimme,
ettd b~! € K’ kaikilla b # Og. Siis K’ on kunta. O

Kuntaominaisuudet sailyvat homomorfismeissa:

Propositio 4.7. Olkoon K kunta ja olkoon R rengas, jossa on ainakin kaksi alkiota. Ol-
koon ¢: K — R rengashomomorfismi. Tdlloin ¢ on injektio ja ¢(K) on kunta. Erityisesti
kuntahomomorfismi on injektio.

Todistus. Seurauksen mukaan ¢(K') on rengas, joka on Proposition |1.9{mukaan kom-
mutatiivinen. Koska ¢ on rengashomomorfismi ja renkaassa R on vahintaédn kaksi alkiota,
pétee Proposition mukaan

¢(0k) = O0r # 1r = o(1k) .
Siis renkaassa ¢(K) on vahintadn kaksi alkiota. Yksikon kuva on yksikko: Jos u € K*,
niin
pu)p(u™) = pluv™) = ¢(1x) = 1r.

Siis renkaan ¢(K) nollasta poikkeavat alkiot ovat yksikoitd, joten ¢(K) on kunta.
Olkoon a € ker ¢. Jos a # 0, niin

1 = ¢(1g) = plaa™") =0 ¢(a™") = O,

mika on mahdotonta. Siis ¢ on injektio Proposition nojalla. O

4.3 Toisen asteen lukukunnat

Jokaisella positiivisella reaaliluvulla = > 0 on positiivinen neliojuuri /z > 0, jolle patee
(v/z)? = . Negatiivisella reaaliluvulla ei ole reaalista neliojuurta. Sen sijaan, jos x < 0,

niin (i/—x)? = z. Kompleksilukuna ajateltuna luvulla z < 0 on siis neliojuuri i,/|z|, jolle
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kaytamme merkintad /. Seuraavassa esimerkissa tutustumme kuntiin ja renkaisiin, jotka
saadaan rationaalilukujen kunnasta ja kokonaislukujen renkaasta, kun niita laajennetaan
jonkin kokonaisluvun neliojuuren avulla.

Esimerkki 4.8. Olkoon d € Z — {0} kokonaisluku, joka ei ole neli6. Olkoot
Q(Vd) = {a+bVd:abeQ} CR,

kun d € N ja
Q(Vd) ={a+bVd:a,beQ} CC,

kun d ¢ N. Harjoitustehtavissa osoitetaan, ettéd Q(v/d) on rationaalilukujen kunnan
laajennus. Jos d € N — {0}, niin Q(v/d) on kunnan R alikunta. Jos d < 0, niin Q(+v/d) on
kompleksilukujen kunnan alikunta. Samaan tapaan on helppo tarkastaa, ettéa

ZIVd) ={a+bdeC:abeZ}

on kunnan Q(v/d) alirengas.

Olkoon d kokonaisluku, joka ei ole jaollinen minkdan kokonaisluvun a > 1 neliolla. Kunta
Q(v/d) on kunnan Q toisen asteen kuntalaajennus eli toisen asteen lukukunta.

Kunta Q(i)on Gaussin rationaalilukujen kunta.
Kokonaisalueen Z[i| alkiot ovat Gaussin kokonaislukuja.

4.4 Hamiltonin kvaterniot

Hamiltonin kvaterniot on joukko

-{(

varustettuna renkaasta Ms(C) indusoiduilla laskutoimituksilla.

B

g:mbeC}chQ

a

S

Propositio 4.9. Hamiltonin kvaterniot on vino kunta.

Todistus. Harjoitustehtavassa osoitetaan, ettd H on renkaan My (C) alirengas. Lisaksi

a b\ | o 9
det(_b a)—|a| +10]°,

joten jokainen A € H — {0} on kddntyvd matriisi. Itse asiassa kaikki nollasta poikkeavat

alkiot ovat yksikoité, koska
1 a —b
— | H
PEERDE (b ) ©

1 C:L —b a b g
lal?+[0]2\b a) \-b a B

ja patee

Siis H on jakorengas.
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Jakorengas H ei ole kommutatiivinen silla esimerkiksi

i 0 0 1\ _ (0 4y _ (0 1\ fi O
0 —i/\—=1 0/ \i 0) -1 0)\0 —i)
Siis H on vino kunta. O]

Kvaternioita kasitellessa on tapana kayttad esimerkiksi merkintoja

(00 =6 ) =) 6

iP=jP=k*=-1 (4.1)

Talloin

ja

ij=k=—ji, ki=j=-ik, jk=1i= —Kkj. (4.2)
Matriisit 1, i, j ja k virittdvat avaruuden H neliulotteisena reaalisena vektoriavaruutena,
joten Hamiltonin kvaterniot voidaan esittda reaalisina lineaarikombinaatioina

$:I01+$1i+$2j+1'3k7

xo, X1, T2, x3 € R, joilla voi laskea kuten kompleksiluvuilla huomioiden laskusaannot (4.1])
ja (4.2). Hamiltonin kvaternioiden alirengas {zo1 : xy € R} on isomorfinen kunnan
R kanssa ja usein kaytetadnkin esimerkiksi merkintéa

$:$0+$1i+$2j+$3k.

Hamiltonin kvaternioiden alirengas {z¢l + z1i : p € R} on isomorfinen kunnan C
kanssa. Jos ajattelemme kvaternioita kompleksikertoimisten matriisien avulla, ndemme,
ettd injektiivinen kuvaus ¢: C — H, ¢(z) = diag(z,2) = Re 21 4 Im z i, on rengashomo-
morfismi.

4.5 Lineaarialgebraa

Lineaarialgebran kursseilla kasitelty reaalisten vektoriavaruuksien ja lineaarikuvausten
teoria yleistyy K-kertoimiseen tilanteeseen. Téssé luvussa tutustumme muutamaan méaa-
ritelmééan yleisessa tilanteessa ja ndemme ensimmaéiset sovellukset kuntien teoriaan. Line-
aarialgebran perustulosten todistukset ovat samat kuin lineaarialgebran kursseilla, joten
ohitamme niiden yksityiskohdat. Yleiseen kuntakertoimiseen lineaarialgebraan voi pereh-
tyd monien lineaarialgebran ja algebran kirjojen avulla, esimerkiksi [Art], [DF], [War].

Olkoon K kunta ja olkoon (V, +) kommutatiivinen ryhmé. Vakiolla kertominen on kuvaus
K xV =V, (\v)— A, joka toteuttaa ehdot

(1) AMv+w) = Ao+ \w kaikille A € K jav,w €V,
(2) A+ p)v = v+ po kaikille \, p € K jav € V,
(3) pu(Av) = (pA)v kaikille A, p € K jav € V ja
(4) 1v = v kaikille v € V.

Ryhma V' varustettuna talld rakenteella on K -vektoriavaruus.
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Propositio 4.10. Olkoon K kunnan L alikunta. Tdlloin L on K-vektoriavaruus.

Todistus. Koska L on kunta, (L,+) on kommutatiivinen ryhmé. Maaritelladn vakiolla
kertominen K x L — L asettamalla (A\,v) — Av kunnan L kertolaskuna. Tama toi-
mii, koska K on kunnan L alikunta. Ehdot (1)—(3) seuraavat kunnan L laskutoimitusten
distributiivisuudesta ja assosiatiivisuudesta ja (4) seuraa siité, etta 1x = 1. ]

Esimerkki 4.11. Kompleksilukujen kunnalla C on alikunta j(R), joka on isomorfinen
reaalilukujen kunnan kanssa. Proposition mukaan C on R-vektoriavaruus, kun maé-
ritellddn vakiolla kertominen asettamalla zz = j(z)z kaikilla z € R ja z € C. Yleensa
tallaisessa tilanteessa unohdetaan kuntahomomorfismi j ja ajatellaan, ettd R C C.

Lineaarisen riippuvuuden ja kannan maéritelmat yleistavat vektoriavaruudessa R™ li-
neaarialgebran kursseilla tavatut méaritelmat.

Olkoon K kunta ja olkoon V' K-vektoriavaruus. Joukko A C V' on lineaarisesti riippuma-

ton, jos kaikille aarellisille joukoille {v, v, ..., vy} ainoat kertoimet ay,aq,...,ay € K,
N
joille péatee > apvy =0, ovat a1 = as = --- =ay = 0.
k=1
Vektorit vy, vq,...,vny € V muodostavat K-vektoriavaruuden V  kannan, jos jokaiselle
x € V on yksikasitteiset x1,xs,...,xny € K, joille patee

N
xr = Z T;U; .
i=1
Lemma 4.12. Olkoot vy,va,..., oy € V ja wy,ws,...,wy € V K-vektoriavaruuden V
kantoja. Tdlléin M = N.

Todistus. Todistetaan kuten lineaarialgebran kurssilla. O]

Olkoon V' K-vektoriavaruus, jolla on kanta, jossa on d alkiota. T&ll6in avaruus V' on
d-ulotteinen ja sen dimensio on d.

Lemma 4.13. Olkoon K kunta, jossa on N alkiota. Jos V' on d-ulotteinen K -vektoriavaruus,
niin avaruudessa V on N alkiota.

Todistus. Harjoitustehtéva |4.15] O

Esimerkki 4.14. Esimerkin [4.5| kunta F' on 2-ulotteinen Z/2Z-vektoriavaruus. Joukko
{1,a} on sen kanta: Lemman [4.13 nojalla kannassa on oltava 2 alkiota. Alkioille 1 ja a
patee 1 # 0, a # 0, a + 1 = 8 # 0 kunnan F' yhteenlaskutaulun mukaan.
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Harjoitustehtavia

4.1. Olkoon B Boolen rengasP| Marita B*.

Hyperboliset luvut on joukko

SZ{(Z 2) Z(l,bER}CMg(R)

varustettuna matriisirenkaasta Ms(R) indusoiduilla laskutoimituksilla.

4.2. Osoita, ettd S on renkaan My(R) alirengas. Onko S kunta?
4.3. Osoita, ettd ei ole kuntahomomorfismia ¢: R — Q.

4.4. Olkoon K kunta ja olkoon K’ C K vakaa osajoukko, joka on kunta indusoiduilla
laskutoimituksilla. Osoita, ettd O = O ja 1 = 1.

4.5. Osoita, ettd ei ole kuntahomomorfismia ¢: C — Rf]
4.6. Osoita, ettd Q(i) on kompleksilukujen kunnan alikunta.

4.7. Olkoon d € Z.Osoita, ettd Q(v/d) on reaalilukujen kunnan alikunta, jos d > 0 ja
kompleksilukujen kunnan alikunta, jos d < 0.

4.8. Maiaritd Gaussin kokonaislukujen yksikéiden ryhmal[]

4.9. Olkoon d € Z d € Z — {0} kokonaisluku, joka ei ole neli6. Osoita, ettd Z[v/d] on
reaalilukujen renkaan alirengas.

4.10. Osoita, ettd Z[v/2]* on ééireté')n

4.11. Olkoon d = 1 mod 4 kokonaisluku, joka ei ole jaollinen minkdan kokonaisluvun
a > 1 neliolla. Osoita, ettéd

Z[l +2\/E] - {a+ b +2\/E

EC:a,bGZ}

on kompleksilukujen kunnan alirengas.

712‘/5} alkiot ovat Eisensteinin kokonaislukuja.

Kommutatiivisen renkaan Z[
4.12. Maarita Eisensteinin kokonaislukujen yksikéiden ryhma.
4.13. Osoita, ettd Hamiltonin kvaterniot muodostavat renkaan.

4.14. Osoita, ettd yhtalolla 2> = —1 on dédrettomin monta ratkaisua Hamiltonin kva-
ternioiden vinossa kunnassa.f

4.15. Todista Lemma [L.13]

2Katso Harjoitustehtéva

3Minne imaginaariyksikké kuvautuisi?

4Kaytd kompleksilukujen normin tai modulin ominaisuuksia.

5Etsi sopiva yksikké ja kiytd Propositiota

STarkastele kvaternioita, jotka ovat muotoa ai + bj + ck, a® + b% + ¢ = 1.
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Jaollisuus

Tassa luvussa kasittelemme jaollisuutta kommutatiivisissa renkaissa. Tama teoria yleistad
kokonaislukujen jaollisuustuloksia yleisempéan tilanteeseen.

5.1 Jaollisuudesta

Jaollisuus méadaritellaan kommutatiivisessa renkaassa samalla tavalla kuin se maaritellaan
lukuteorian kursseilla kokonaislukujen renkaassa.

Jos K on kommutatiivinen rengas ja a,b,c € K siten, ettd ab = ¢, niin a ja b ovat alkion
c tekijoita. Talloin alkiot a ja b jakavat alkion ¢, mistd kdytetddn merkintdd a | ¢ ja
vastaavasti b | ¢. Jos a ei ole alkion b tekijé, kiytetddn merkintdd a 1 b.

Propositio 5.1. Olkoon K kommutatiivinen rengas. Talloin
(1) a | a kaikille a € K.

(2) Josa|bjabl|c, niinalc.

(3) Josa|bjaalc, niinalb+c.

Todistus. Harjoitustehtéava 5.1 O

Olkoon K kommutatiivinen rengas, jossa on vahintaén 2 alkiota. Jos a,b € K, a,b # 0 ja
ab = 0, niin a ja b ovat nollanjakajia.

Kommutatiivinen rengas K, jossa ei ole nollanjakajia, on kokonaisalue.

Esimerkki 5.2. (a) Kokonaislukujen rengas Z on kokonaisalue.
(b) Jos ¢ = ed joillain ¢,d € N —{0,1}, niin ¢+ qZ #0 € Z/qZ, d+ qZ # 0 € Z/qZ ja

(c+qZ)(d+qZ)=cd+qZ =q+qZ =0+ qZ =0 € Z/qZ,

joten Z/qZ ei ole kokonaisalue. Tamé esimerkki osoittaa, ettd kokonaisalueen kuva ren-
gashomomorfismissa ei valttamatta ole kokonaisalue.

12. tammikuuta 2026 49



50

Jaollisuus

Propositio 5.3. Yksikko ei ole nollanjakaja.

Todistus. Olkoon a yksikko ja oletetaan, ettd ab = 0. Silloin b = o= 0 = 0. Vastaavasti
nahdaén, ettd b = 0, jos ba = 0. O

Seuraus 5.4. Jakorenkaassa ei ole nollanjakajia. Erityisesti kunta on kokonaisalue. []

Renkaassa R patee kertolaskun supistussadnto, jos b = ¢ aina, kun jollekin a € R — {0}
pétee ab = ac tai ba = ca.

Renkaan kertolaskun supistussaénto poikkeaa hieman Luvussa tarkastellusta lasku-
toimituksen supistussadnnosté, koska 0a = 0 kaikille a € R.

Propositio 5.5. Kommutatiivinen rengas K on kokonaisalue, jos ja vain jos kertolaskun
supistussadanto pdatee renkaassa K.

Todistus. Harjoitustehtava O
Propositio 5.6. Kokonaisalueen karakteristika on 0 tai alkuluku.

Todistus. Olkoon R rengas, jonka karakteristika on x(R) = ab, missd a,b ¢ {0,1}. Pro-
position nojalla on tasmalleen yksi rengashomomorfismi ¢: Z — R . Karakteristikan
madritelman mukaan ¢(ab) = 0. Nyt ¢(a), ¢(b) # 0, koska 1 < a,b < ab = x(R). Liséksi
o(a)p(b) = ¢(ab) = 0, joten R ei ole kokonaisalue. O

Lause 5.7. Adrellinen kokonaisalue on kunta.

Todistus. Olkoon E kokonaisalue ja olkoon a € E'—{0}. Kuvaus ¢, : E — E, {,(x) = az
on injektio Proposition nojalla. Kun oletamme lisaksi, etta E& on &darellinen, niin
kuvaus ¢, on myos surjektio. Talloin on a € E, jolle aa = {,(a) = 1. Koska E on
kommutatiivinen, @ = a~!. O

Seuraava aarellisia renkaita koskeva tulos on vaikeampi todistaa, mutta se on hyva
tietad.

Lause 5.8 (Wedderburnin lause). Adrellinen jakorengas on kunta.

Todistus. Katso esimerkiksi [Knal, Theorem 2.48] tai [War, Theorem 39.9]. O

5.2 Jaottomat alkiot ja alkualkiot

Kokonaisalueen F alkio p € E — (E* U{0}) on jaoton, jos a tai b on yksikko aina, kun
p = ab.

Lukuteoriassa renkaan Z positiivisia jaottomia alkioita sanotaan alkuluvuiksi.

Seuraava tulos on hyoédyllinen tutkittaessa jaollisuutta ja jaottomuutta luvussa [4.3
tarkastelluissa renkaissa.
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Lemma 5.9. Olkoon d < 0 kokonaisluku.
(1) Jos a | b renkaassa Z[\/d], niin a | b renkaassa Z[\/d] ja n(a) | n(b) renkaassa Z.
(2) Jos a € Z[Vd] ja n(a) = 1, niin a € Z[V/d]*.

Todistus. (1) Jos b = ac, niin Proposition |[1.26(1) nojalla b = @¢ = ac, joten a | b.

Jos ¢ = ¢, + icoV/d € Z[/d), niin n(c) = cé = & — dc} € N. Proposition M(?)) nojalla
n(b) = n(ac) = n(a)n(c), joten n(a) | n(b).

(2) Jos a € Z[\/d], niin @ € Z[\/d] ja oletuksen mukaan 1 = n(a) = aa, joten a on
yksikko. O]

Esimerkki 5.10. Kokonaislukurenkaan Z alkuluvut eivit valttaméatta ole jaottomia
kaikissa renkaissa Z[\/E], joiden alirengas Z on. Esimerkiksi, jos d € Z on alkuluku, niin
se on jaoton kokonaislukujen renkaassa. Kuitenkin v/d € Z[v/d] ja d = (v/d)?, joten d ei
ole jaoton renkaassa Z[v/d|.

Osoitetaan, ettd 2 € Z[v/—5] on jaoton. Huomataan ensin, ettd n(2) = 22 = 4. Jos
a,b € Z[y/=5) ja ab = 2, niin Lemman [5.9(1) nojalla n(a) | n(2) = 4 ja n(b) | n(2) = 4
renkaassa Z. Siis n(a) € {1,2,4}. Renkaan Z[y/—5] alkioiden normeille péitee

n(m+n\/—5) =m?+5n® € N. (5.1)

Siis renkaassa Z[v/—5] ei ole alkiota, jonka normi on 2, joten a tai b on yksikkd Lemman
5.9(2) nojalla, joten 2 € Z[/=5] on jaoton.

Samalla tavalla osoitetaan, ettd myos alkiot 3 ja 1 4 iv/5 ovat jaottomia renkaassa
Z[\/=5|: Lasku osoittaa, ettd n(3) = 32 = 9 ja n(1 £ iv/5) = (1 +iv/5)(1 — i/5) = 6.
Yhtélon (5.1) nojalla renkaassa Z[v/—5] ei ole alkioita, joiden normi olisi 2 tai 3.

Kokonaisalueen K alkio p € K — (K* U {0}) on alkualkio (tai alkuluku), jos kaikille
a,b € K pitee p | a taip|b, jos p | ab[]

“Esimerkiksi kokonaislukuja késiteltdessd merkintd p varataan usein alkualkioille tai alkuluvuille.
Tédmé johtuu siitéd, ettd alkuluku on englanniksi prime, saksaksi Primzahl, ranskaksi nombre premier.

Propositio 5.11. Kokonaisalueen alkualkiot ovat jaottomia.

Todistus. Olkoon K kokonaisalue ja olkoon p € K alkualkio. Oletetaan, ettd p = ab.
Riittda tarkastella tapaus p | a. Télloin a = pe jollakin ¢ € K, joten p = pcb. Proposition
nojalla kertolaskun supistussdanto on voimassa kokonaisalueessa K, joten 1 = cb. Siis
b on yksikko, joten p on jaoton. O]

Propositio 5.12 (Eukleideen lemma). Kokonaislukujen renkaan jaottomat alkiot ovat
alkualkioita.

Todistus. Katso Propositio [A.6] O

Kokonaislukujen renkaassa jaottomat alkiot ja alkualkiot ovat samoja Eukleideen lem-
man ja Proposition [5.11] nojalla. Nailla méaritelmilla luvut £2, £3, £5, £7, +11, 4+13,
+17, £19, £23, £29 ja niin edelleen ovat renkaan Z alkualkioita ja jaottomia alkioita.

Kokonaislukuja yleisemmissa kokonaisalueissa jaottomat alkiot eivat kaikissa tapauk-
sissa valttamétta ole alkualkioita.
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Esimerkki 5.13. (a) Renkaan Z[\/—5| jaottomat alkio 2, 3 ja 1 £1i+/5 eivit ole al-
kualkioita. Yhtalosta

2-3=6=(1+4/5)(1—5)

niemme esimerkiksi, ettd 2 | (14-4v/5)(1—+/5), mutta toisaalta 2 { (14+iy/5) ja 2 1 (1—iv/5),
koska n(2) = 416 = n(1 +14/5).

(b) Renkaassa Z[+/10] voidaan osoittaa, ettd alkiot 2, 3, 44++/10 ja 4—+/10 ovat jaottomia
mutta eivat alkualkioita, koska

2-3=6=(4+V10)(4 — V10)
mutta 2 tai 3 ei ole lukujen (4 £ +/10) tekiji ja vastaavasti (4 £ +/10) ei ole lukujen 2 tai
3 tekiji.

5.3 Renkaan Z/qZ yksikot

Sovellamme nyt liitteessa [A] kerrattavia kokonaislukujen jaollisuustuloksia jadnnosluok-
karenkaan Z/qZ yksikéiden ryhmén ominaisuuksien tarkasteluun.

Propositio 5.14. Olkoon q > 2. Tdlléin a + qZ € Z/qZ on yksikko, jos ja vain jos
syt(a,q) = 1. Jos p on alkuluku ja a £ 0 mod p, niin a + pZ € (Z/pZ)*.

Todistus. Jaannosluokka a + qZ € Z/qZ on yksikko, jos ja vain jos on b € Z, jolle pétee
1+qZ = (a+qZ)(b+qZ) = ab+ qZ.

Tamé on yhtapitavda ehdon ab = 1 mod ¢ kanssa, joka taas péatee, jos ja vain jos on
c € Z, jolle ab = 1 + cq. Tamé Bézout’'n yhtéilénﬂ nojalla yhtapitavaa sen kanssa, etta
syt(a,q) = 1. O

Seuraus 5.15. Jos p on alkuluku, niin Z/pZ on kunta.
Lukuteoreettinen todistus. Seuraa Proposition jalkimmaisestd véitteesta. O

Algebrallinen todistus. Olkoon p alkuluku ja olkoot a,b € Z siten, etté
ab+pZ = (a +pZ)(b+pZ) = 0.

Alkuluvun maéaritelmén nojalla p | a tai p | b, joten a + pZ = 0 tai b+ pZ = 0. Siis
Z/pZ on kokonaisalue, joten Lauseen nojalla se on kunta. O

Propositio 5.16. Olkoon q > 2. Alkio a + qZ € (Z/qZ) — {0} on nollanjakaja, jos ja
vain jos syt(a,q) > 1. Jos q ei ole alkuluku, niin renkaassa Z/qZ on nollanjakajia.

Todistus. Propositioiden ja nojalla a 4+ ¢Z ei ole nollanjakaja, jos syt(a,q) = 1.
Jos syt(a,q) = d > 1, niin a = bd ja g = cd joillain b, c € N — {0}. Talloin

(a +qZ)(c+ qZ) = ac+ qZ = bdc + qZ = bq + qZ = 0 + qZ . O

1Katso Esimerkki )

2Propositio
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Seuraus 5.17. Renkaan Z/qZ nollasta poikkeava alkio on joko nollanjakaja tai yksikko.

Todistus. Seuraa Propositioista jap.14 O

Esimerkki 5.18. (a) Seurausta vastaava tulos ei pade renkaille yleisesti, silla ko-
konaislukujen renkaassa Z ei ole nollanjakajia ja siind on ainoastaan kaksi yksikkoa =41.

(b) Jaénnosluokkarengas Z/117Z on kunta Seurauksen nojalla. Alkiot +1 4 117Z ovat
omia kaanteisalkioitaan kaikissa renkaissa. Kokeilemalla havaitsemme, ettéa

2+ 11Z)(6+11Z) =12+ 11Z =1+ 11Z,

(34+112)(4+112Z) =12+ 11Z =1+ 11Z,

5+ 11Z)9+11Z) =45+ 11Z =1+ 11Z,

(T+11Z)(8+ 11Z) =56+ 11Z =1+ 117,

joten
(2+112)"' = (6 + 117Z),
(3+11Z)' = (4+117),
(5+11Z)"' = (9+117),
(7+112)"' = (8 +117Z).

(c) Proposition nojalla Z/12Z ei ole kunta. Renkaan Z/12Z yksikot ovat 1 + 127,
54127, 7T+ 127 ja 11 4+ 12Z = —1 + 127 ja huomaamme, etta

(5+12Z)? =25+ 12Z =1+ 12Z ja

(T+12Z)* =49+ 12Z = 1+ 12Z.

Seurauksen [5.17] nojalla renkaan muut nollasta poikkeavat alkiot ovat nollanjakajia. Ko-
keilemalla havaitsemme, etté

(2+12Z)(6 +12Z) = 12+ 12Z = 0 + 12Z,

(3+12Z)(4+12Z) =12+ 12Z =0+ 12Z,

(8 +12Z)(3 4+ 12Z) = (2 + 12Z)(4 + 12Z)(3 + 12Z) = 0 + 127,

(9+12Z)(4 +12Z) = 3+ 12Z2)(3+ 12Z)(4 + 12Z) =0+ 12Z ja
(10 4+ 12Z)(6 + 12Z) = (5 + 12Z)(2 + 12Z)(6 + 12Z) = 0 + 12Z.

Jaannosluokkarenkaiden yksikoiden ryhmén rakennetta tarkastellaan kurssin RYHMAT

luvussa [8.4] .

Lause 5.19. Seuraavat vditteet ovat yhtapitavid:

(1) Z/qZ on kokonaisalue.
(2) Z/qZ on kunta.
(3) q on alkuluku.

Lukuteoreettinen todistus. Seuraa Propositioista ja .16} []
Algebrallinen todistus. Kohtien (1) ja (2) yhtépitéavyys seuraa Lauseesta 5.7 Kohdat (1)
ja (3) ovat yhtapitavia Seurauksen ja Esimerkin [5.2(b) nojalla. O
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Harjoitustehtavia

5.1. Olkoon K kommutatiivinen rengas. Osoita, etta

1
(1) a | a kaikille a € K.

(2) Josa|bjab|c, ninalc.

(3) Josa|bjaal|ec niinalb+ec.
5.2. Todista Propositio 5.5

5.3. (1) Olkoon K kommutatiivinen rengas. Olkoon u € K* ja olkoon a € K. Osoita,
ettd a € K*, jos a | u.

(2) Olkoon K kokonaisalue. Jos a | b ja b | a, niin a = ub jollain v € K*.

5.4. Olkoon K kommutatiivinen rengas. Olkoot a,b € K siten, ettd ab on nollan jakaja.
Osoita, ettéd a on nollan jakaja tai b on nollan jakaja.

5.5. Olkoon D &arellinen rengas, jossa ei ole nollanjakajia. Osoita, etté

(1) jokaisella d € D — {0} on vasen ja oikea kddnteisalkio kertolaskun suhteen, ja
(2) D on jakorengas [

5.6. Osoita, etté Z[i] on kokonaisalue. Osoita, ettd 1 4 ¢ on jaoton renkaassa Z][i].

5.7. Olkoon p alkuluku ja olkoon

K:{T:T,SEZ,S;TéO modp}CQ.
s

(1) Osoita, ettd K on rationaalilukujen renkaan alirengas.

(2) Osoita, ettd § € K on yksikko, jos ja vain jos a ei ole jaollinen alkuluvulla p.

(3) Missé kohtaa kaytimme oletusta, ettd p on alkuluku?

5.8. Olkoot q1,¢2,...,qv € Z siten, ettd syt(¢;,q;) = 1 kaikilla ¢ # j. Olkoon k € Z
N

siten, etta ¢; | & kaikilla 1 <14 < N. Osoita, ettd [] ¢; | k.
i=1

5.9. Maarita renkaan Z/107Z yksikot ja nollanjakajat.
5.10. MaAaritd renkaan Z/14 7 yksikot ja nollanjakajat.
5.11. Osoita, etté kokonaisalueen K ainoat idempotentitlﬂ alkiot ovat 0 ja 1.

3Katso mééritelmét luvusta Lauseen [5.7| todistus antaa idean kohdan (1) todistukseen, kohdassa
(2) pitdd vield ndyttdd, ettd vasen ja oikea kiédnteisalkio ovatkin sama alkio.
4Katso Harjoitustehtévé,
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Polynomirenkaat

Tassa luvussa tutustumme polynomeihin, joiden kertoimet ovat kommutatiivisessa ren-
kaassa ja maéaarittelemme niille laskutoimitukset, jotka ovat samat kuin tutussa reaali-
kertoimisessa tapauksessa. Nain saamme maériteltyd yhden muuttujan polynomirenkaat,
joita kéytetdan kurssin viimeisessa luvussa kuntalaajennusten ja erityisesti darellisten
kuntien konstruktiossa.

6.1 Polynomit ja polynomifunktiot

Tassa luvussa ja myohemmin polynomeja késiteltdessa X on muodollinen symboli, jota
usein kutsutaan muuttujaksi.

Olkoon K kommutatiivinen rengas. Olkoon n € N ja olkoot a,,a,_1,...,a1,a9 € K.
Lauseke

P(X) = Zaka = aan+an—1Xn_1 4+ 4+ X + aqg
k=0

on yhden muuttujan K -kertoiminen polynomi. Luku ag on polynomin P(X) wvakiotermi.
Josm >njaay, = apio =+ = a, =0, niin

Zaka = Zaka .
k=0 k=0
Kéaytamme K-kertoimisten polynomien joukolle merkintaa
K[X] :{Zaka:nEN, ay EKkaikiHaOSk:gn}.
k=0

Kommutatiivinen rengas K on polynomin P(X) € K[X] kerroinrengas.
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On hyva huomata, ettd edelld maarittelimme polynomit algebrallisina lausekkeina,
erityisesti polynomit eivit ole funktioita. Algebrassa tulee pitda erillidn polynomin ja
polynomifunktion késitteet ja siksi on hyva kayttdd polynomille ja polynomifunktiolle
selkedsti erilaisia merkintatapoja.

Olkoon K kommutatiivinen rengas. Polynomin P(X) = i apX* € K[X] mairaama
k=0

polynomifunktioon P: K — K,

x> aa” = P(z).
k=0

Polynomien joukko voi renkaasta riippuen olla paljon suurempi joukko kuin vastaava
polynomifunktioiden joukko: Jos K on kommutatiivinen rengas, jossa on ainakin kak-
si alkiota, niin polynomirengas K[X] on dareton. Kuitenkin, jos K on aarellinen, niin
funktioita joukolta K joukkoon K on ainoastaan darellinen maara.

Kun tarkastelemme (Z/qZ)-kertoimisia polynomeja, merkitsemme kerrointa a + ¢Z yk-
sinkertaisuuden vuoksi edustajalla a.

Esimerkki 6.1. Kuvausten joukossa {f: Z/27Z — 7Z/27Z} on nelja alkiota. Toisaalta
joukko Z/27Z[X] on direton, koska se sisiltdé esimerkiksi polynomit Py(X) = X* kaikilla
k € N. Polynomifunktioille Py: Z/2Z — Z/27 patee Pi(0) = 0 ja Pi(1) = 1 kaikilla
k > 1, joten polynomit Py(X) méédrdivit saman polynomifunktion kaikilla k& > 1.

6.2 Polynomirengas

Tassa luvussa madrittelemme K-kertoimisten polynomien joukossa kaksi laskutoimitusta
ja tarkastelemme néin saatavan renkaan perusominaisuuksia.

Olkoon K kommutatiivinen rengas. Polynomien[’|

P(X) = fj aX® € K[X] ja Q(X)= f: b X* € K[X]

P(X)+Q(X) = an(ak +bp) X* € K[X] (6.1)
ja niiden tulo on
P(X)Q(X) = ; (Z_k aib;) X* € K[X]. (6.2)

*Yhteenlaskun médritelméa on helpoin kirjoittaa, kun molempien polynomien summilla on sama yléa-
raja n. Voimme rajoittua tdhén tapaukseen lisdamalld tarvittaessa toiseen polynomiin termejé, joiden
kerroin on 0.

Propositio 6.2. Olkoon K kommutatitvinen rengas. Joukko K[X] varustettuna polyno-
mien yhteen- ja kertolaskulla on kommutatiivinen rengas.
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Todistus. Selvésti polynomit Ogx) = 0g X Va1l rx] = 1g X Y ovat yhteenlaskun ja kerto-
laskun neutraalialkiot. Muut renkaan maéaaritteleviat ominaisuudet seuraavat suoraviivai-
sesti siitd, ettd K on kommutatiivinen rengas, Harjoitustehtéva [6.1] O]

Olkoon K kommutatiivinen rengas. Rengas K[X| on K-kertoiminen polynomirengas.

Lemma 6.3. Olkoon K kommutatitvinen rengas. Kuvaus i: K — K[X], joka kuvaa
renkaan K alkion a polynomiksi a = aX® € K[X], on injektiivinen rengashomomorfismi.

Todistus. Kuvaus ¢ kuvaa ainoastaan alkion 0 € K nollapolynomiksi, joten Proposition
nojalla ¢ on injektio, kunhan se osoitetaan homomorfismiksi. Olkoot siis a,b € K.
Talloin polynomien laskutoimituksen maéritelman nojalla

i(@) +i(b) = aX® +bX° = (a+ b)X° = i(a+b)
" i(a) i(b) = aX® bX° = abX" = i(ab).

Lisdksi i(1) = 1- X joten 7 on homomorfismi. O

Olkoon K kommutatiivinen rengas. Olkoon Fun: K[X] — K,
Fun(P(X)) =P

kuvaus, joka liittaa polynomiin P(X) sitd vastaavan polynomifunktion P.

Propositio 6.4. Olkoon K kommutatiivinen rengas. Kuvaus Fun: K[X] — KX on ren-
gashomomorfismi.

Todistus. Harjoitustehtava [6.7] O

Propositio 6.5. Polynomirenkaan karakteristika on sama kuin sen kerroinrenkaan ka-
rakteristika.

Todistus. Lemman [6.3] mukaan polynomirenkaalla K[X]| on kerroinrenkaan K kanssa
isomorfinen alirengas S = {aX" : a« € K}. Renkaan K[X] kertolaskun neutraalialkio on
renkaassa S, joten renkailla K[X] ja S on sama karakteristika. ]

6.3 Polynomin vaihtoehtoinen maaritelma

Polynomeille P(X),Q(X) € K[X] pitee P(X) = Q(X) tasmélleen silloin, kun niiden
kerroinjonot ovat samat. Vahemmaén havainnollinen mutta edella esitettyd tédsmallisem-
pi ja sen kanssa yhtédpitdva tapa madritelli polynomit on korvata polynomin lauseke
S_oarX® sen kertoimien muodostamalla jonolla (ag,ay, ..., an,0,0,...) ja méiiritelld
yhteenlasku komponenteittain kuten jonoille on tapana ja kertolasku kaavan (6.2]) mu-
kaisesti. Téll6in jono (0,1,0,0,0,...) on symbolin X vastine. Seuraavassa mééritelméassa
jono (ag, ay, ..., a,,0,0,...) ajatellaan funktiona w: N — K siten, ettd w(k) = a;, kaikilla
ke N.
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Olkoon K kommutatiivinen rengas, jossa on vahintdan kaksi alkiota. Kuvaus w: N — K|
jolle on N, € N siten, etta w(k) = 0 kaikille £ > N, on K-kertoiminen polynomi.

Joukko
K[X]={w:N— K} =K"

varustettuna laskutoimituksilla
(w4 (k) =w(k) + ' (k)
ja
i,jeN:i+j=k

on K-kertoiminen polynomirengas.

6.4 Aste

Tassa luvussa tutustumme polynomin asteen perusominaisuuksiin. Aste on kayttokelpoi-
nen itseisarvon korvike polynomien jakoyhtalossé, jota kasittelemme luvussa [6.5

Symbolilla —oo on seuraavat ominaisuudet:
o —oo < a kaikilla kokonaisluvuilla a,
0 —00 + —00 = —00 ja
o —o0 + a = —oo kaikilla kokonaisluvuilla a.

Symbolille —oco ei ole méaritelty muita ominaisuuksia, kdytdmme sitd ainoastaan nolla-
polynomin asteen merkkina.

Olkoot an,an_1,...,a1,a9 € K ja olkoon a, # 0. Polynomin
P(X) = Zaka - aan + an—an_l + 4 CL1X + ag
k=0

aste on deg(P(X)) = n ja a, on polynomin P(X) korkeimman asteen kerroin.

Nollapolynomin 0 aste on —oo.

Esimerkki 6.6. (a) Olkoot P(X),Q(X) € Z[X],
P(X)=2X%4+2, Q(X)=1+2X.
Talloin
P(X)Q(X) =4X? +2X? +4X +2.

Nyt deg(P(X)) = 2, deg(Q(X)) = 1 ja deg(P(X)Q(X)) = 3.
(b) Jos polynomit P(X),Q(X) € (Z/47)[X] mééaritelladan samoilla lausekkeilla kuin koh-
dassa (a), niin

P(X)Q(X) =2X%+2.
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Siis P(X)Q(X) = P(X) = P(X) - 1 mutta Q(X) # 1, joten kertolaskun supistussaanto
ei pade polynomirenkaassa (Z/4Z)[X].
Lisdksi patee deg(P(X)) = 2 ja deg(Q(X)) = 1 mutta

deg(P(X)Q(X))=2<3=2+1

ja

—o00 = deg0 = deg((2X)(2X)) < 2deg(2X) = 2.
Lemma 6.7. Olkoon K kommutatiivinen rengas, K # {0}. Tdllsin

deg(P(X)Q(X)) < deg P(X) + deg Q(X)
kaikille P(X),Q(X) € K[X].
Todistus. Olkoot P(X) = i apX*ja Q(X) = § by X" ja oletetaan, ettd a, # 0, b, # 0.
k=0 k=0

Tulopolynomin P(X)Q(X) korkeimman asteen termi on a,,b,, X" jos a,b,, # 0, muuten

aste on alempi. ]

Seuraava tulos osoittaa, ettéd kokonaisalueominaisuus periytyy kerroinrenkaasta poly-
nomirenkaaseen.

Propositio 6.8. Jos Kon kokonaisalue ja P(X),Q(X) € K[X], niin
deg(P(X)Q(X)) = deg(P(X)) + deg(Q(X)). (6.3)
Lisiksi K[X] on kokonaisalue.

Todistus. Oletetaan, ettd P(X),Q(X) € K[X] — {0}. Lemman [6.7] merkinnoilla polyno-
min P(X)Q(X) korkeimman asteen termi on a,b, X™*™, missé a,b, # 0, silldi K on
kokonaisalue. Siis yhtalo pétee naille polynomeille.

Oletetaan sitten, ettd P(X) = 0. Télloin kaikille Q(X) patee 0 - Q(X) = 0, joten

deg(0-Q(X)) =deg0 = —00 = —00 +deg Q(X) = deg 0 + deg Q(X) . (6.4)
Siis yhtalo (6.3]) pétee kaikille polynomeille.

Erityisesti ndimme, ettd kahden nollasta poikkeavan polynomin tulo ei ole nollapoly-

nomi, koska deg P(X)Q(X) € N. O
Yhtalosta ndemme, ettd polynomin 0 € K[X] aste ei voi olla reaaliluku.
Seuraus 6.9. Jos K € {Z,Q,R,C} tai K = Z/pZ jollain alkuluvulla p, niin
deg(P(X)Q(X)) = deg P(X) + deg Q(X)
kaikille P(X),Q(X) € K[X]. O
Propositio 6.10. Jos K on kunta, niin P(X) € K[X]*, jos ja vain jos deg P(X) = 0.
Todistus. Jos Q(X) € K[X]| — {0}, niin
deg(P(X)Q(X)) = deg P(X) + deg Q(X) > deg P(X)
joten P(X) ei ole yksikko, jos deg P(X) > 1. Jos taas deg P(X) = 0, niin P(X) = aX"
jollain a € K* ja pitee aX® a1 X° = 1X°, joten aX° on yksikko. O]
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Polynomirengas ei ole koskaan kunta. Jos K on kokonaisalue, niin Proposition
mukaan ainoat polynomit, joilla on kaénteisalkio kertolaskun suhteen, ovat vakiopolyno-
mit u, missd u € K*. Sen sijaan, jos kerroinrengas ei ole kokonaisalue, niin esimerkiksi
vakiopolynomeilla @ = aX°, missi a on nollanjakaja renkaassa K, ei ole kidnteisalkiota

Propositioiden [5.3] ja [6.2] nojalla.

Propositiosta seuraa, ettd ensimméisen asteen polynomit ovat jaottomia kunta-
kertoimisessa polynomirenkaassa, koska kaikki nollasta poikkeavat polynomit, joiden aste
on pienempi kuin 1 ovat vakiopolynomeita, siis yksikoita. Korkeamman asteen polynomin
osoittaminen jaottomaksi ei ole valttdmatta kovin helppoa.

6.5 Polynomien jakoyhtalo

Yleistamme nyt kokonaislukujen jakoyhtélénE] polynomirenkaille.

Lause 6.11 (Polynomien jakoyhtld). Olkoon K kommutatiivinen rengas, jossa on vd-
hintadn kaksi alkiota. Olkoot A(X), B(X) € K[X] siten, etta B(X) # 0 ja polynomin
B(X) korkeimman asteen termin kerroin on yksikké. Tdlloin on yksikdsitteiset polynomit

Q(X), J(X) € K[X], joille patee
AX) = Q(X)B(X) + J(X)
ja deg J(X) < deg B(X).
Todistus. Osoitetaan ensin, ettd on polynomit Q(X) ja J(X), jotka toteuttavat vaitteen
yhtélon. Jos B(X) jakaa polynomin A(X), ei ole mitdén todistettavaa. Muuten olkoon
S = {A(X) - D(X)B(X) : D(X) € K[X]}.
Koska B(X) ei jaa polynomia A(X), niin 0 ¢ S, joten joukko
degS = {deg P(X) : P(X) € S}

on luonnollisten lukujen joukon epatyhja osajoukko ja silla on siis minimi m > 0.
Olkoon Q(X) € K[X] polynomi, jolle patee deg(A(X) — Q(X)B(X)) = m. Olkoon

J(X) = AX) — Q(X)B(X) = anX™ + -+ ap.

Nyt polynomit Q(X) ja J(X) siis toteuttavat vaitteen yhtélon.
Osoitetaan sitten, ettd m < d = deg B(X). Olkoon b; polynomin B(X) korkeimman
asteen kerroin, joka on oletuksen mukaan yksikko. Jos olisi m > d, niin

J(X) = apmb' X" IB(X) = A(X) — (Q(X) 4 amb,' X" HB(X) € S

ja deg (J(X) — ambngm_dB(X)) < m, mutta tdméi on mahdotonta, koska polynomin
J(X) aste on minimaalinen.

Osoitetaan lopuksi polynomien Q(X) ja J(X) yksikasitteisyys. Jos Q(X) ja J(X)
ovat polynomeja, joille pétee

A(X) = Q(X)B(X) + J(X)

! Propositio
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ja deg J(X) < d, niin

Jos @(X ) # Q(X), niin yhtalon vasemman puolen polynomin aste on vahintéén d, koska
polynomin B(X) korkeimman asteen termi on oletuksen mukaan yksikkéﬂ Kuitenkin,
koska deg J(X) < d ja deg J(X) < d, niin

deg(J(X) — J(X)) < d.
Siis Q(X) = Q(X) ja J(X) = J(X). O

Seuraus 6.12 (Kuntakertoimisten polynomien jakoyhtalé). Olkoon K kunta. Olkoot A(X),
B(X) € K[X] siten, ettd B(X) # 0. Tdlldin on yksikdsitteiset Q(X), J(X) € K[X], joille

A(X) = Q(X)B(X) + J(X)
ja deg J(X) < deg B(X). O
Esimerkki 6.13. Jakoyhtalo voidaan toteuttaa algoritmisesti jakokulman avulla.

Olkoot A(X) = 2X3+X?—X—1 € Z|X] ja B(X) = X?-2 € Z[X]. Téllsin jakokulma
antaa

2X 41

X2-2| 2X% 4+X? —-X -1

- Fx +4X
X? +3X -1
X2 +2

3X +1

Proposition [6.8{ nojalla lasku pyséahtyy tahan, koska deg(3X +1) < deg(X? —2). Saimme
siis yhtalon

2X3 4+ X2 - X —1=(2X +1)(X?-2) +3X + 1.
Esimerkki 6.14. Olkoot A(X) =2X*+X?— X —1 € Z[X] ja B(X) =2X +1 € Z[X].
Jakoyhtal6 ei toimi tassa tapauksessa, koska polynomin B(X) korkeimman asteen kerroin
ei ole yksikko. Jakokulmassa paddytaan ongelmalliseen tilanteeseen

2X3P 4+ X2 - X —1=X?*2X +1) - X — 1,

josta ei voi jatkaa.
Jos A(X) =2X3+ X? - X — 1€ (Z/3Z)[X] ja B(X) =2X +1 € (Z/3Z)[X], niin
jakoyhtalo toimii, koska Z/37Z on kunta. Nyt
2X3 4 X2 - X —1=(X>+1)2X +1)+1.
Jakoyhtald toimii myds, jos A(X) = 2X3+X2—-X -1 € Q[X]ja B(X)=2X+1 € Q[X].
Télloin 1 1
2X3+X2—X—1:(X2—§)(2X+1)—§.

?Katso Lemma ja Proposition todistus.
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6.6 Polynomien juuret ja jaollisuus

Olkoon K kommutatiivinen rengas ja olkoon P(X) € K[X]. Alkio ¢ € K on polynomin
P(X) juuri, jos P(c) = 0.

Kun tarkastelemme (Z/qZ)-kertoimisia polynomeja, laskemme polynomifunktioiden ar-

voja usein edustajien avulla ja tarkastelemme arvoja mod gq.

Esimerkki 6.15. (a) Esimerkin [6.6(a) polynomeilla P(X),Q(X) € Z[X] ei ole juu-
ria. Sen sijaan samalla lausekkeella méaritellylla rationaalilukukertoimisella polynomilla
Q(X) = 142X € Q[X] on juuri, silld Q(—%) = 0. Yleisemmin, jos K on kunta ja
P(X) = aX + b € K[X] on ensimméisen asteen polynomi, niin polynomilla P(X) on
juuri, silla P(—2) = 0.

(b) Esimerkin [6.6{b) polynomin P(X) = 2X? 4+ 2 € (Z/4Z)[X] juuret ovat 1 + 47Z ja
3+ 4Z:

P0)=2-0°+2=2=2 mod 4,
P(1)=2-14+2=4=0 mod 4,
P(2)=2-24+2=10=2 mod 4,
P(3)=2-34+2=20=0 mod 4.

Polynomilla Q(X) =1+ 2X € (Z/4Z)[X] ei ole juuria, koska
Q0)=Q(2)=1#0 mod 4
ja
Q(1)=QB)=3%#0 mod4.
(c) Polynomin X? + X = X(X + 1) € (Z/2Z)[X] juuret ovat 0,1 € Z/27Z.
Jakoyhtalo antaa seuraavan perustuloksen:

Propositio 6.16. Olkoon K kommutatiivinen rengas, jossa on vdihintddn kaksi alkiota.
Olkoon P(X) € K[X] ja olkoon ¢ € K. Talloin ¢ on polynomin P(X) juuri, jos ja vain
jos (X —¢) | P(X).

Todistus. Oletetaan, ettd P(c) = 0. Koska polynomin X — ¢ korkeimman asteen termin
kerroin on 1 € K*, voimme soveltaa jakoyhtloa | Jakoyht#lon mukaan on K-kertoimiset
polynomit Q(X) ja J(X), joille deg J(X) < 1 ja

PX)=QX)(X —¢)+ J(X). (6.5)
Koska deg J < 1, J(X) on vakiopolynomi J(X) = b jollakin b € K. Erityisesti
0= P(c) =Q(c)(c—c)+ J(c) = b,

joten b = 0. Siis J(X) = 0 ja yhtalon (6.5)) nojalla (X — ¢)|P(X).
Toisaalta, jos P(X) = (X — ¢)Q(X) jollain polynomilla Q(X) € K[X], niin

P(c) = (c—c)Q(c) =0. O

3Lause
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Seuraus 6.17. Olkoon K kunta. Toisen tai kolmannen asteen polynomi P(X) € K[X]
on jaoton, jos ja vain jos silld ei ole juurta kunnassa K.

Todistus. Harjoitustehtéava [6.12 O
Esimerkki 6.18. (a) Polynomi P(X) = X2+ 1 € C[X] ei ole jaoton koska
X2+ 1=(X+i)(X —1i).

Téamén polynomin juuret ovat +i € C. Sen sijaan Proposition nojalla samalla lausek-
keella mééaritellyt polynomit P(X) € R[X], P(X) € Q[X] ja P(X) € Z[X] ovat jaottomia,
koska niilla ei ole juuria.

(b) Renkaassa (Z/2Z)[X] on nelja toisen asteen polynomia: X%, X? + 1, X? + X ja
X?+ X +1. Proposition mukaan polynomi X2+ X +1 € (Z/2Z)[X] on jaoton, koska
silla ei ole yhtdén juurta kahden alkion kunnassa Z/27Z, katso Harjoitustehtéva . Sen
sijaan mikdin muu toisen asteen polynomi ei ole jaoton tissi renkaassa, koska X2 = X X
X2+ X=XX+1)jaX?+1=(X+1)>2

(c) Seuraus soveltuu vain toisen ja kolmannen asteen polynomien tarkasteluun. Nel-
jannen asteen polynomi X*+ X? +1 = (X?+ X + 1) € (Z/2Z)[X] ei ole jaoton, koska
se on toisen asteen polynomin nelié. Silla ei ole yhtadn juurta.

6.7 Juurien lukumaara

Olkoon ¢ polynomin P(X) € K[X] juuri. Jos P(X) = (X —¢)*Q(X) jollain Q(X) € K|[X]
ja c ei ole polynomin Q(X) juuri, niin ¢ on polynomin P(X) k-kertainen juuri.

Kun lasketaan polynomin P(X) juuria, k-kertainen juuri lasketaan k juureksi.

Esimerkki 6.19. Polynomilla X?(X —1) € C[X] on kertaluku huomioiden kolme juurta,
koska 0 on kaksinkertainen juuri.

Lause 6.20. Olkoon K kokonaisalue ja olkoon n > 0. Jos P(X) € K[X] — {0} ja
deg P(X) = n, niin polynomilla P(X) on korkeintaan n juurta.

Todistus. Jos polynomin aste on 0, niin se on nollasta poikkeava vakiopolynomi. Téllaisella
polynomilla ei ole juuria, joten vaite patee, kun n = 0. Oletetaan, etta kaikillan—1 asteen
polynomeilla on korkeintaan n — 1 juurta. Olkoon P(X) polynomi, jonka aste on n. Jos
polynomilla P(X) on juuri ¢ € K, niin Proposition nojalla P(X) = (X — ¢)Q(X)
jollain Q(X) € K[X]. Koska K on kokonaisalue, P(a) = 0, jos ja vain jos a = c tai Q(a) =
0. Proposition [6.8 mukaan deg(Q (X)) =n — 1 ja silla on siis induktio-oletuksen mukaan
korkeintaan n — 1 juurta. Siis polynomilla P(X) on kertaluku huomioiden korkeintaan n
juurta. ]

Seuraus 6.21. Olkoon K kokonaisalue. Olkoot ¢y, ca, ..., ¢, polynomin P(X) € K[X]
Juuria. Talloin on mq,ma,...,m; € N—{0} ja Q(X) € K[X], joille pdtee

P(X) = (X —c1)"™(X =)™+ (X — )" Q(X)

ja deg Q(X) = deg P(X) — (my +mg + -+ - + my). O
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Esimerkki 6.22. Lauseen vaite ei pade kaikille kommutatiivisille renkaille. Toisen
asteen polynomilla X? € (Z/16Z)[X] on nelji juurta: 0> = 4*> = 82 = 122 = 0 mod 16.
Tamé on mahdollista, koska kerroinrengas Z/16Z ei ole kokonaisalue.

Polynomin X? € (Z/16Z)[X] voi esittid kolmella eri tavalla kahden ensimméisen
asteen polynomin tulona:

X?P=XX=(X+4)(X+12)= (X +8)*.

Téastd ndemme, ettd 0 + 16Z ja 0 4+ 8Z ovat kaksinkertaisia juuria, joten toisen asteen
polynomilla Q(X) on kertaluku huomioiden 6 juurta.

Propositio 6.23. Olkoon K ddireton kokonaisalue. Tdlloin jokaista kokonaisalueen K
polynomifunktiota vastaa yksikasitteinen polynomi renkaassa K[X].

Todistus. Proposition nojalla kuvaus Fun: K[X] — K% on rengashomomorfismi.
Proposition nojalla riittda osoittaa, ettd tdman homomorfismin ydin on {0}. Jos
Fun(P (X)) on nollafunktio, niin polynomilla P(X') on darettémén monta juurta. Lauseen

nojalla ainoa téallainen polynomi on 0 € K[X]. O
Seuraus 6.24. Jos K € {Z, Q,R,C}, niin Fun: K[X] — KX on injektio. O

6.8 Algebrallisesti suljetut kunnat

Kunta K on algebrallisesti suljettu, jos jokaisella vakiosta poikkeavalla polynomilla
P(X) € K[X] on juuri.

Esimerkki 6.25. (a) Reaalilukujen kunta R ei ole algebrallisesti suljettu: Esimerkiksi
toisen asteen polynomilla X2 + 1 € R[X] ei ole juurta.

(b) Rationaalilukujen kunta @ ei ole algebrallisesti suljettu: Esimerkiksi toisen asteen
polynomilla X% + 1 € Q[X] ei ole juurta.

(c) Kahden alkion kunta Z/27 ei ole algebrallisesti suljettu: Esimerkiksi toisen asteen
polynomilla X% + X + 1 € (Z/2Z)[X] ei ole juurta.

(d) Toisen asteen polynomilla X?+1 € C[X] on juuret +i ja polynomilla X?+X+1 € C[X]

on juuret %“/3

Lause 6.26 (Algebran peruslause). Kompleksilukujen kunta on algebrallisesti suljettu.
Todistus. Todistetaan kompleksianalyysin kursseilla. Katso myos [LP), Lause 6.23]. O

Lause 6.27. Olkoon K algebrallisesti suljettu kunta. Jokainen vakiosta poikkeava polyno-
mi P(X) € K[X]| on ensimmdisen asteen polynomien tulo. Jokaisella nollasta poikkeavalla
polynomilla P(X) € K[X]| on juurten kertaluku huomioiden deg P(X) juurta. Polynomi
P(X) € K[X] on jaoton, jos ja vain jos deg P(X) = 1.

Todistus. Todistetaan kuten Lause Harjoitustehtéva [6.17] O

Seuraus 6.28. Jokainen vakiosta poikkeava polynomi P(X) € C[X] on ensimmdisen
asteen polynomien tulo. Nollasta poikkeavalla polynomilla P(X) € C[X] on juurien ker-
taluku huomioiden deg P(X) juurta. O
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Harjoitustehtavia

6.1. Todista Propositio [6.2
6.2. Olkoot P(X),Q(X) € (Z/5Z)[X],
P(X)=3+2X +4X* +2X°3

ja

Q(X) =4+4X +4X° +4X° +4X*.
Maarita polynomi P(X)Q(X).
6.3. Laske (1 — 2X)® renkaassa (Z/16Z)[X ][]
6.4. Laske (1 +4X)(X?+ 2X + 3) polynomirenkaissa Z[X], (Z/5Z)[X] ja (Z/7Z)[X].

6.5. Madrita polynomien X? + X +1 € (Z/2Z)[X], X?* + X +1 € (Z/3Z)[X] ja X® +
2X +1 € (Z/3Z)[X] juuret.

6.6. Osoita, ettd 1+ 2Z on polynomin P(X) € (Z/2Z)[X] juuri, jos ja vain jos polyno-
milla P(X) on parillinen maara nollasta poikkeavia kertoimia.

6.7. Todista Propositio [6.4
6.8. Jaa polynomi (kuten Luvussa [6.5] tehddén)

P(X)=X%+2X?+3X +2
polynomilla
Q(X)=2X?+3X+1

(1) polynomirenkaassa Q[X] ja
(2) polynomirenkaassa (Z/7Z)[X].

6.9. Jaa polynomi
P(X)=X*+2X*+ X +2€ (Z/3Z)[X]
polynomilla
QX)=X*+2¢€ (2/32)[X].

6.10. Olkoon K kokonaisalue. Olkoot P(X),Q(X) € K[X]. Osoita: Jos P(X) | Q(X)
ja Q(X) | P(X), niin on u € K*, jolle P(X) = uQ(X).

6.11. Olkoot a; € R kaikilla k € {0,1,2,...,n} ja olkoon
P(X) = f: arX* € C[X].
k=0
Olkoon zy € C polynomin P(X) juuri. Osoita, ettd Z; on polynomin P(X) juuri.
6.12. Todista Seuraus [6.17
6.13. Péiteeko Seurauksen véite, jos oletamme vain, ettd K on kokonaisalue?

4Kayta binomikaavaa.
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6.14. Mitka polynomit aX? + bX + ¢ € R[X] ovat jaottomia?

6.15. (a) Onko polynomi X? — 2 € (Z/5Z)[X] jaoton?

(b) Onko polynomi X? + 1 € (Z/5Z)[X] jaoton?

6.16. Esitd polynomi X° + 1 € (Z/2Z)[X] jaottomien polynomien tulona.
6.17. Todista Lause 627

6.18. Olkoon

P(X)=0a, X"+ ap1 X" '+ + a1 X +ap € Z[X] C Q[X].

(a) Olkoon ¢ € Z on polynomin P(X) € Z[X] juuri. Osoita, etta ¢ | ao.

(b) Olkoon £ € Q polynomin P(X) € Q[X] juuri supistetussa muodossaﬁ Osoita, etté
r|agjas|ap.

6.19. Esitd polynomi X* + 2X3 — 10X?% — 11X — 12 € Q[X] jaottomien polynomien
tulona.

6.20. Esitd polynomi 5X°+7X%—-23X3-5X?—-28X —12 € Q[X] jaottomien polynomien
tulona.

°Siis syt(r,s) = 1.
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Ideaalit ja kuntalaajennukset

Tasséa luvussa tutustumme renkaiden ideaaleihin ja niiden avulla muodostettuihin tekija-
renkaisiin. Kurssin huipentumana sovellamme polynomirenkaiden ideaaleja kuntalaajen-
nusten ja erityisesti aarellisten kuntien konstruktioon.

7.1 Ideaalit

Olkoon G ryhmé. Olkoon B C G, B # (), vakaa osajoukko. Jos indusoidulla laskutoimi-
tuksella varustettu joukko B on ryhmé, niin se on ryhmén G aliryhmd.

Lemma 7.1. Olkoon G ryhmd. Jokaisen aliryhmdn H < G neutraalialkio on ryhmdn G
neutraalialkio.

Todistus. Olkoon e € G neutraalialkio. Jos joillekin a,b € H < G pétee ab = b = eb ja
ba = b = be , niin ryhmén G supistussddnnén| nojalla a = e. [

Luvussa huomasimme, ettd rengashomomorfismin ydin ei yleensa ole méarittely-
renkaansa alirengas. Ytimellad on kuitenkin seuraavat téarkedat ominaisuudet:

Propositio 7.2. Olkoon ¢: R — R’ rengashomomorfismi. Ydin ker ¢ on additiivisen
ryhmdn (R, +) aliryhmd. Kaikille x € R ja kaikille a € ker ¢ pdtee ax, za € ker ¢.

Todistus. Jos x,y € ker ¢, niin

¢(z+y) = o(x) +o(y) =0+0=0,

joten x + y € ker ¢. Siis ydin on yhteenlaskun suhteen vakaa ja renkaan R additiivisen
ryhmén (R, +) laskutoimitus + indusoi assosiatiivisen laskutoimituksen joukkoon ker ¢.
Lemman nojalla 0 € ker ¢. Proposition kohdan (2) nojalla jokaisella x € ker ¢
pétee ¢p(—x) = —¢(x) = 0. Siis —x € ker ¢, joten ker ¢ on ryhma.

TKatso luku
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Toinen vaite seuraa helposti huomaamalla, etta kaikille x € R ja kaikille a € ker ¢
patee
¢(za) = ¢(x)p(a) = ¢p(x)0 =0
ja
¢(ax) = ¢(a)p(r) = 0¢(z) = 0. O
Renkaan R epétyhja osajoukko .# C R on ideaali, jos
(1) (&, +) on additiivisen ryhmén (R, +) aliryhma4 ja

(2) za,ax € & kaikillaz € Rjaa € .Z.

Jos rengas R on kommutatiivinen, riittad tarkastaa ideaalin médritelmén ehto (1) ja
kumpi tahansa ehdon (2) tuloista.

Lemma 7.3. Jos .# C R on renkaan R ideaali, niin Or € 7.

Todistus. Maaritelman mukaan .# on additiivisen ryhmén (R, +) aliryvhmé ja Lemman

nojalla O € .. O
Seuraus 7.4. Rengashomomorfismin ¢: R — R’ ydin on renkaan R ideaali. [

Propositio 7.5 (Ideaalitesti). Olkoon R rengas. Osajoukko A C R, A # (0, on ideaali,
jos ja vain jos

(1) a—0be A kaikilla a,b € A ja
(2) ra,ar € A kaikilla a € A ja kaikilla r € R.
Todistus. Harjoitustehtéava [7.1] O

Esimerkki 7.6. (a) Jokaisella renkaalla R on ainakin ideaalit R ja {0}.

(b) Ideaalitestilla on helppo tarkastaa, ettd kokonaislukujen renkaan Z parillisten lukujen
osajoukko 27 = {2k : k € Z} on ideaali, koska 2k — 20 = 2(k — () € 2Z kaikilla k,{ € Z
ja kaikille a, k € Z patee a(2k) = 2(ak) € 2Z.

Lemma 7.7. Jos renkaan R ideaali & sisdltdd yksikon, niin & = R.

Todistus. Olkoon u € .# yksikkod. Télloin 1 = uu~"! € .#. Koska .# on ideaali, niin kaikilla
r € Rpateex =21 € . Siis .4 = R. O]

Propositio 7.8. Jos renkaan R ideaali & on alirengas, niin % = R.

Todistus. Jos .# on renkaan R alirengas, niin 1 = 1z € #. Viite seuraa Lemmasta

(.1 O

Propositio 7.9. Olkoon % jakorenkaan R ideaali. Tdlloin & = R tai & = {0}. Erityi-
sesti kunnan K ainoat ideaalit ovat {0} ja K.

Todistus. Vaite seuraa Lemmasta [7.7] O
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Ideaalien avulla saamme toisen todistuksen Proposition [4.7] injektiivisyysvaitteelle:

Seuraus 7.10. Olkoon K kunta ja olkoon R rengas, jossa on ainakin kaksi alkiota. Olkoon
¢: K — R rengashomomorfismi. Tdlloin ¢ on injektio. Erityisesti kuntahomomorfismi on
injektio.

Todistus. Olkoon ¢: R — K rengashomomorfismi. Talloin ker ¢ on kunnan K ideaali.
Proposition nojalla O # 1g. Siis ker ¢ # K, koska ¢(1x) = 1r # Ogr. Proposition
nojalla ker ¢ = {0}, joten ¢ on injektio Proposition nojalla. O

Propositio 7.11. Olkoon ¢: R — S rengashomomorfismi. Tdlloin
(1) Jos & C R on ideaali, niin ¢(.#) on renkaan ¢(R) ideaali.
(2) Jos & C S on ideaali, niin ¢~*(F) on renkaan R ideaali.

Todistus. (1) Harjoitustehtévé [7.3]

(2) Lemman nojalla 0g € .#. Lemman nojalla ¢(0g) = 0g, joten ¢~ 1 (&) # 0.
Olkoot a,b € ¢~ (#) jar € R. Talloin ¢(a — b) = ¢(a) — ¢(b) € &, koska .# on ideaali.
Siis a — b € ¢~ (F). Liséiksi ¢(ra) = ¢(r)d(a) € &, koska ¢(a) € .# ja .# on renkaan S
ideaali. Siis ra € ¢~1(.#). Vastaavasti osoitetaan, ettd ar € ¢~1(.#). Ideaalitestin?| nojalla
¢ H(F) on ideaali. O

7.2 Paaideaalit

Lemma 7.12. Olkoon K kommutatiivinen rengas ja olkoon a € K. Joukko
aK = Ka={ka:ke K}

on ideaali.

Todistus. Joukko Ka ei ole tyhja, sillda a = 1-a € Ka. Jos x,y € Ka, niin x = kia ja
y = ksa joillain kq, ke € K. Télloin z —y = (ky — k2)a € Ka. Lisdksi kaikille k € K pétee

kx = (kk1)a € Ka. Proposition [7.5 nojalla Ka on ideaali. O
Olkoon K kommutatiivinen rengas ja olkoon z € K. Ideaali () = zK on alkion z

virittama padideaals.

Kokonaisalue, jonka kaikki ideaalit ovat péaideaaleja on pddideaalialue.

Lemma 7.13. Jos K on kommutatiivinen rengas ja u € K*, niin (ua) = (a) kaikille
a€ K.

Todistus. Harjoitustehtava [7.8] ]
Esimerkki 7.14. Esimerkin nojalla kaikki kunnat ovat péaideaalialueita.
Propositio 7.15. Kokonaislukujen rengas 7 on padideaalialue.

2Propositio
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Todistus. Olkoon .# # {0} renkaan Z ideaali. Koska jokaiselle b € .# péitee —b € &,
joukko {b € .# : b > 0} ei ole tyhja. Olkoon

a=min{be ¥ :b>0}.

Osoitetaan, ettd . = aZ. Ideaalin méaéritelmén nojalla kaikki alkion ¢ monikerrat ovat
joukossa ., joten aZ C .#.

Olkoon b € .#. Jakoyhtalon nojalla on k € Z ja 0 < r < a siten, ettd b = ka + 7.
Ideaalin maaritelmén nojalla » € .#. Jos r # 0, niin 0 < r < a, miki on ristiriita luvun
a madritelmén kanssa. Siis b € aZ, joten & C aZ. ]

Seuraavan tarkean tuloksen todistus muistuttaa Proposition todistusta.
Lause 7.16. Olkoon K kunta. Tdlloin polynomirengas K[X| on pddideaalialue.

Todistus. Olkoon .# # {0} ideaali kokonaisalueessa K[X]. Olkoon B(X) € .# —{0} alkio,
jolle pétee deg(B(X)) < deg(C(X)) kaikille C(X) € .# — {0}. Ideaalin mééritelmén
nojalla (B(X)) C 4.

Osoitetaan, ettd & C (B(X )) Olkoon A(X) € .#. Kuntakertoimisten polynomien
jakoyhtalénf| mukaan on Q(X), R(X) € K[X], joille pitee A(X) = Q(X)B(X)+ R(X) ja
deg(R(X)) < deg(B(X)). Erityisesti R(X) = A(X)—Q(X)B(X) € .#. Koska deg(B(X))
on minimaalinen nollasta poikkeaville ideaalin .# alkioille, patee siis R(X) = 0, joten

A(X) € (B(X)). 0

Seurauksen véite ei pade ilman oletusta, etté kerroinrengas on kunta. Esimerkiksi
kokonaislukukertoimisten polynomien renkaan ideaalirakenne on monimutkaisempi:

Esimerkki 7.17. Polynomirenkaan Z[X] ideaali .# = (2, X), joka koostuu niista ko-
konaislukukertoimisista polynomeista, joiden vakiotermi on parillinen ei ole paiideaali:
Jos # = (P(X)) jollekin P(X) € Z[X], niin P(X) jakaa polynomin 2 € .#. Propo-
sition nojalla deg P(X) < deg2 = 0, koska kerroinrengas Z on kokonaisalue. Siis
P(X) € {£1,£2} C Z[X]. Koska X € . ja £2 1 X taytyy olla P(X) = +£1, jo-
ten .# = (P(X)) = Z[X], mika on ristiriita. Erityisesti siis polynomirengas Z[X] ei ole
paaideaalialue.

7.3 Tekijarenkaat

Olkoon R rengas. Ideaalin .# C R mddrdidmd ekvivalenssirelaatio ~ méaritelldén aset-
tamalla x ~ y, jos ja vain jos z —y € I [

Ekvivalenssirelaation ~ ekvivalenssiluokkia kutsutaan jadnndsluokiksi mod .# tai sivu-
luokiksi. Alkion x € R jadnnosluokalle kdytetdadn additiivista merkintad

r+ S ={yeR:x—ye J}.

“Harjoituksissa tarkastamme, ettd ~ on todellakin ekvivalenssirelaatio. Ekvivalenssirelaation mé&ari-

telméd on luvussa
3Seuraus
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Ideaalin maardama ekvivalenssirelaatio on kokonaislukurenkaan Z kongruenssin yleis-
tys. Jos .Z on renkaan Z ideaali, niin Proposition nojalla .¢ = qZ jollain q € Z. Jos
q > 1, niin x — y € ¢Z, jos ja vain jos z = y mod q.

Propositio 7.18. Olkoon R rengas ja olkoon ¢ C R ideaali. Renkaan R yhteenlasku ja
kertolasku ovat yhteensopivia ideaalin & mddrdiman ekvivalenssirelaation kanssa.

Todistus. Tarkastellaan kertolaskua: Olkoot a,a’,b,0' € R,a ~a' jab~ V. Nyta—a € &
jab—V € .7, joten

ab—a't =ab—ab +ab/ —d't =a(b—-V)+ (a—d)b € 7,

koska # on ideaali. Siis ab ~ a'b’.

Yhteenlaskun yhteensopivuus todistetaan Harjoitustehtavéssa [7.11] O

Proposition ja Lemman nojalla renkaan R molemmat laskutoimitukset maa-
rittelevit tekijalaskutoimituksen tekijajoukossa R/.Z.

Jaannosluokkien laskutoimitukset ovat
x4+ )+ y+I)=(x+y) +5
ja
x4+ A\y+I)=ay+ S

kaikille x,y € R. Erityisesti 0g + .# = .# on yhteenlaskun neutraalialkio ja 1z + . on
kertolaskun neutraalialkio.

Seuraava tulos yleistda Esimerkkien ja tulokset kokonaislukurenkaan tilan-
teesta yleiseen tapaukseen:

Propositio 7.19. Olkoon R rengas ja olkoon & sen ideaali. Tdlldin tekijijoukko R/
on rengas ja tekijikuvaus w: R — R/.% on rengashomomorfismi.

Todistus. Todistetaan samalla tavalla kuin vastaavat vaitteet jaannosluokkarenkaille lu-

vuissa [2.3] ja Harjoitustehtéva [7.12] O

Seuraus 7.20. Jokainen ideaali on jonkin rengashomomorfismin ydin.

Todistus. Olkoon R rengas ja olkoon .# sen ideaali. Proposition nojalla tekijaku-
vaus 7: R — R/ on homomorfismi. Sen ydin 7—!(0) on tekijirenkaan méaritteleviin
ekvivalenssirelaation méaritelméan mukaan .#. O

Propositio 7.21. Tekijarengas on kommutatiivinen, jos alkuperdinen rengas on kommu-
tatitvinen.

Todistus. Tekijakuvaus on surjektiivinen homomorfismi, joten véite seuraa Propositiosta
tai Propositiosta [2.8 O

Lause 7.22 (Renkaiden isomorfismilause). Olkoon ¢: R — S rengashomomorfismi. Tal-
loin tekijarengas R/ ker i on isomorfinen renkaan ¥ (R) kanssa.
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R/ ker ) ———)(R)

Todistus. Maaritelldéan kuvaus ¥ : R/ kery — 1(R) asettamalla

U(z + kerv)) = ¢(x)

kaikille « + kertv € R/kert. Tarkastetaan, ettd kuvaus ¥ on hyvin maaritelty, mika
tarkoittaa, ettd sen arvo ei riipu kuvattavan ekvivalenssiluokan edustajan valinnasta. Jos
x4+ ker ¢ = y + ker ¢, niin x ~ y, mika maaritelman mukaan tarkoittaa x —y € ker. Siis

Y(r) —P(y) = Y(r —y) =0, joten
V(x +keryp) = ¢(x) = ¥(y) = ¥(y + ker ).
Osoitetaan, ettd W on rengashomomorfismi: Olkoot x,y € R. Talloin

U(x+ker) + U(y +keryp) = o(x) +¢(y) = Y(z+y) = V(x4 y + ker ¢)
= U(x + keryp +y + ker ),

Wl + Ker p)U(y + ker ) = b(a)b(y) = ¥loy) = V(g + ker )
= U((x + ker)(y + kerv))

ja ¥(1+ kerty) =1(1) = 1, koska 1 on rengashomomorfismi.

Kuvaus ¥ on méaaritelménsa nojalla surjektio. Osoitetaan se vield injektioksi, jolloin
véite tulee todistetuksi. Olkoon z + ker ) € ker U. Télléin ¢ (x) = 0, joten x € ker ). Siis
x +kert) =0+ kertp =0 € R/ ker. Siis ¥ on injektio. O

Esimerkki 7.23. (a) Koska R on aina renkaan R ideaali ja R/R = {0}, niin tekijarengas
R/.7 voi olla kommutatiivinen vaikka R ei olisikaan. Toinen dariesimerkki tekijarenkaasta
on R/{0} = R.

(b) Olkoon € # () ja olkoon R rengas. Esimerkissa tarkasteltu evaluaatiohomomor-
fismi E.: R? — R on surjektio kaikille ¢ € 2, koska F.(a) = a kaikille a € R. Renkai-
den isomorfismilauseen nojalla R®/ ker E. on rengasisomorfinen renkaan R kanssa kaikille
cefl

(¢) Reaaliluvut konstruoidaan kurssilla Lukualueetﬂ rationaalilukujen Cauchyn jonojen
renkaan nollaan suppenevien jonojen ideaalia vastaavana tekijarenkaana.

Seuraus 7.24. Kunnalla, jonka karakteristika on p, on alikunta, joka on isomorfinen
kunnan 7Z/pZ kanssa.

4Katso [LP} luku 5].
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Todistus. Olkoon K kunta, jonka karakteristika on p. Olkoon ¢: Z — K rengashomomor-
fismi. Proposition nojalla ¢(Z) on kunnan K alirengas. Karakteristikan mééritelman
nojalla ker ¢ = pZ, joten isomorfismilauseen nojalla ¢(Z) on isomorfinen kunnan Z/pZ
kanssa. O

Lause 7.25. Olkoon K ddrellinen kunta. Tdlloin on alkuluku p ja posititvinen luonnolli-
nen luku ¢ € N — {0} siten, ettd #K = p?.

Todistus. Kunnan K karakteristika on Proposition nojalla p jollain alkuluvulla pJ
Olkoon ¢: Z — K rengashomomorfismi. Seurauksen nojalla kunnalla K on alikunta
k, jossa on p alkiota. Proposition nojalla K on k-vektoriavaruus, joten vaite seuraa
Lemmasta [£.13] O

7.4 Polynomirenkaiden tekijarenkaita

Tassa luvussa tarkastelemme kuntakertoimisten polynomirenkaiden tekijarenkaita, joita
kaytamme luvussa [7.6) kuntalaajennusten muodostamisessa.

Lause 7.26. Olkoon K kunta ja olkoon P(X) € K[X] polynomi, jonka aste on d > 1.
Jos kunnassa K on q alkiota, niin renkaassa K[X]/(P(X)) on ¢% alkiota.

Todistus. Polynomien jakoyhtalon nojalla jokaisella tekijirenkaan K[X]/(P(X)) alkiolla
Q(X)+(P(X)) € K[X]/(P(X)) on edustaja Q(X), jolle piatee deg Q(X) < deg P(X) = d:

Q(X) =T(X)P(X) + Q(X)

yksikisitteiselle T(X) € K[X]. Tallaisia polynomeja on ¢¢ kappaletta ja mitkidn kaksi
eivit ole ekvivalentteja. O

Esimerkki 7.27. Olkoon P(X) = X?+ X +1 € (Z/27)[X]. Lauseen todistuksesta
seuraa, ettd renkaan (Z/27)[X]/(P(X)) alkiot ovat

0 =(P(X)), 1=1+(P(X)),
a =X+ (P(X) ja a+l=X+1+(P(X)).

Tekijarenkaan yhteen- ja kertolaskun laskutaulut ovat

+ 0 1 «Q a+1 0 1 o a—+1
0 0 1 «Q a+1 0 0 0 0 0

1 1 0 a+1 a ja 1 0 1 o a+1 .
a a a+1 0 1 a 0 a a+1 1
a+1|la+1 « 1 0 a+1|0 a+1 1 «

Laskutauluja vertaamalla ndemme, etta tekijarengas (Z/27)[X]/(P(X)) on isomorfinen
Esimerkissa 4.9 tarkastellun kunnan F' kanssa, siellihén 8 = o + 1.

5Jos renkaan R karakteristika on 0, niin R on direton.

6Seuraus
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7.5 Maksimaaliset ideaalit

Olkoon R rengas. Renkaan R ideaali . on aito ideaali, jos & # R.

Renkaan R aito ideaali .# on maksimaalinen ideaali, jos se ei ole minkdan aidon ideaalin
aito osajoukko.

Proposition mukaan kunnan nollaideaali on maksimaalinen ideaali.

Propositio 7.28. Kokonaislukurenkaan Z ideaali qZ, q > 2, on maksimaalinen, jos ja
vain jos q on alkuluku.

Todistus. Jos q ei ole alkuluku, niin ¢ = ab joillakin a,b € N — {0, 1}. Talloin ¢ € aZ ja
a ¢ qZ, joten ideaali ¢Z sisaltyy aidosti aitoon ideaaliin aZ eiké ¢Z siis ole maksimaalinen.

Olkoon ¢ alkuluku ja olkoon rZ ideaali, joka sisdltéa aidosti ideaalin gZ. Siis r # +q.
Erityisesti ¢ € rZ. Koska ¢ on alkuluku, sen tekijat ovat +1 ja +q, joten r = +1. Siis
rt. = 7. m

Lauseen mukaan tekijarengas Z/qZ on kunta tasmélleen silloin, kun ¢ on alku-
luku. Proposition mukaan tdméa on yhtapitavaa sen kanssa, ettd ¢Z on kokonaislu-
kurenkaan maksimaalinen ideaali. Seuraava tulos yleistaa tdman havainnon.

Lause 7.29. Olkoon # kommutatiivisen renkaan K maksimaalinen ideaali. Talloin te-
kijarengas K/.# on kunta.

Todistus. Proposition nojalla tekijarengas K/.# on kommutatiivinen. Koska .# on
renkaan K aito osajoukko, niin tekijarenkaassa K/.# on ainakin kaksi alkiota. Olkoon
a+ H# € K|/ M — {0+ #}. Harjoitustehtavan nojalla

N ={ak+m:ke Kme H#}=aK+ H

on renkaan K ideaali. Ideaali A4 sisaltdé aidosti ideaalin 4, koska a € A — .# . Koska
A on maksimaalinen, pitee .4 = K. Erityisesti 1 € .4, joten on k € K jam € .#
siten, etta ak + m = 1. Mutta tasta saadaan

(a+ M) k+ M)=ak+ M =1—m+ M =1 K| M,
joten a + .# on yksikko. H

Seuraava tulos antaa keinon maksimaalisten ideaalien tunnistamiseen padideaalialueis-
sa.

Lause 7.30. Olkoon K pddideaalialue ja olkoon a € K —{0}. Tdlloin pddideaali (a) on
maksimaalinen ideaali, jos ja vain jos a on jaoton.

Todistus. Olkoon a jaoton ja olkoon .4 ideaali, joka sisiltad padideaalin (a). Koska K
on péadideaalialue, niin A4 = (b) jollain b € K. Pétee siis a = ¢b jollain ¢ € K. Koska a
on jaoton, taytyy olla ¢ € K* tai b € K*. Jos ¢ on yksikko, niin Lemman nojalla
N = (b) = (¢gb) = (a). Jos taas b on yksikko, niin Lemman [7.7] nojalla .4~ = (b) = K.
Siis (a) on maksimaalinen.

Toinen suunta osoitetaan Harjoitustehtavéssa [7.24] O

Proposition toinen todistus. Proposition nojalla Z on péiideaalialue. Renkaan
Z jaottomat alkiot ovat +p alkuluvuille p € N. Viite seuraa Lauseesta [7.30] O]
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7.6 Kuntalaajennukset polynomirenkaiden avulla

Seuraus 7.31. Olkoon K kunta ja olkoon P(X) € K[X] jaoton. Tdlloin (P(X)) on

maksimaalinen ideaals.

Todistus. Polynomirengas K|[X| on padideaalialue Lauseen nojalla, joten viite seuraa
Lauseesta [Z.30l O

Seuraus 7.32. Olkoon K kunta ja olkoon P(X) € K[X] jaoton polynomi. Talldin teki-
jarengas K[X]/(P(X)) on kunta.

Todistus. Véite seuraa Lauseesta [7.29] ja Seurauksesta [7.31] O

Esimerkki 7.33. Esimerkissa osoitimme, ettd polynomi P(X) = X? + X + 1 on
jaoton toisen asteen polynomi polynomirenkaassa (Z/2Z)[X]. Seurauksen ja Lauseen
[7.26) nojalla Fy = (Z/2Z)[X]/(P(X)) on neljin alkion kunta. Totesimme saman laskutau-
luja tarkastelemalla Esimerkissa

Esimerkin lisiksi olemme tavanneet dérelliset kunnat F, = Z/pZ, missd p on
alkuluku. Erityisesti ndiden kuntien alkioiden lukumaéérd on alkuluku. Esimerkin [7.27]
tulos yleistyy kaikille alkulukupotensseille p?.

Lause 7.34. Jokaiselle luonnolliselle luvulle ¢ > 1 ja alkuluvulle p on ddrellinen kun-
ta, jossa on p? alkiota. Toisaalta jokaisessa ddrellisessd kunnassa on p? alkiota joillain
tallaisilla p ja q.

Todistuksesta. Lauseen mukaan ddrellisessé kunnassa on p? alkiota jollain alkulu-
vulla p ja jollain luonnollisella luvulla ¢ > 1. Seurauksen nojalla riittaa osoittaa, etta
renkaassa (Z/pZ)[X] on jaoton polynomi, jonka aste on ¢. Talla kurssilla emme todis-
ta tallaisen polynomin olemassaoloa yleisessé tapauksessa, Harjoitustehtédvissa tehdaan
muutamia muita erikoistapauksia, katso myos Esimerkki [7.35]

Koko lauseen todistus on esimerkiksi kirjan [IR] luvussa 7.2. O

Esimerkki 7.35. Polynomi X? + 1 on jaoton polynomirenkaassa (Z/pZ)[X] kaikilla
alkuluvuilla p = 3 mod 4. Todistamme tdmén kurssilla. RYHMAT ryhméteorian Lagran-
gen lauseen avulla Lemmana [11.20} Kunnassa (Z/pZ)[X]/(X? + 1) on p? alkiota niilld
alkuluvuilla p. Toisaalta X2+ 1 ei ole jaoton, jos p = 1 mod 4. Emme todista tita viitetta
mutta se on helppo tarkastaa esimerkiksi alkulukujen 5, 13 ja 17 tapauksissa. Aihetta
kasitellaan yksityiskohtaisesti esimerkiksi lahteessa [IR], Luku 5] ja kurssin Lukuteoria 2
materiaalissa [Par, Propositio 7.7] .

Seuraava tulos osoittaa, ettd kuntakertoimisesta polynomirenkaasta K[X] saadaan
jaottoman polynomin avulla muodostettua kerroinkunnan K kuntalaajennus k. Konstruk-
tiossa kéytetylla polynomilla P(X) € K|[X] ei ole juuria Proposition nojalla. Kun
polynomin P(X) kertoimet ajatellaan uuden kunnan alkioiksi samastamalla K vakiopo-
lynomien antaman alikunnan kanssa[]| havaitaan, ettéd polynomilla P(X) € k[X] on juuri.

Lause 7.36. Olkoon K kunta ja olkoon P(X) € K[X]| jaoton polynomi. Talloin kunnal-
la k = K[X]/(P(X)) on alikunta, joka on isomorfinen kunnan K kanssa. Polynomilla
P(Y) € k[Y] on juuri.

"Katso Lemma
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Todistus. Olkoon i: K — K[X] homomorfismi a v aX" ja olkoon ®: K[X] — k luon-

nollinen homomorfismi Q(X) +% Q(X) + (P(X)). Kuvaus ® oi on kuntahomomorfismi,
joten ensimmainen véite seuraa Propositiosta [4.7].

Olkoon .

PX) =Y hX"e K[X].
k=0
Osoitetaan, etta polynomilla
P(Y) =Y (bs+ (P(X)) Y* € k[Y]
k=0
on juuri. Olkoon
a=d(X)=X+(P(X)) ek.

Talloin patee

P(a) = P(X + (P(X))) = kz (b + (P(X)) (X + (P(X)))"

- z (b + (P(X)) (X + (P(X))) = P(X) + (P(X)) = 0.

joten a on polynomin P(Y) € k[Y] juuri. O

Esimerkki 7.37. Polynomi X? + 1 € R[X] on jaoton, koska silli ei ole juurta. Tekijé-
rengas k = R[X]/(X?+1) on Seurauksen nojalla kunta ja polynomilla X2 +1 € k[X]
on juuri Lauseen [7.36] nojalla.

Reaalikertoimisten polynomien rengas R[X]| on kompleksikertoimisten polynomien
renkaan C[X] alirengas ja Seurauksen nojalla reaalikertoimiset polynomit voidaan
samastaa kompleksitasossa maériteltyjen reaalikertoimisten polynomifunktioiden renkaan
kanssa.

Olkoon E;: C¢ — C evaluaatiokuvau ja olkoon E; = E; o Fun: ClX]—C,

E(P(X)) = P(i).

Proposition nojalla ker E; = (X — i). Rajoittumakuvaus EJR[X} :R[X] - C on
surjektiivinen rengashomomorfismi, koska F;(bX + a) = a +ib kaikilla a,b € R.

Harjoitustehtévin mukaan —i on jokaisen sellaisen polynomin P(X) € C[X]
juuri, jonka kertoimet ovat reaalisia ja jonka yksi juuri on 7. Siis jokainen homomorfismin
E;|rpx] ytimeen kuuluva polynomi on jaollinen polynomilla X?+1 = (X —i)(X +1i), joten
ker Ey|ppx) = (X? 4 1). Renkaiden isomorﬁsmilauseenﬂ mukaan kunta R[X]/(X? 4+ 1) on
isomorfinen kompleksilukujen kunnan C kanssa.

Esimerkki 7.38. Polynomirenkaan C[X| maksimaaliset ideaalit ovat Seurauksen
mukaan jaottomien polynomien virittamét padideaalit. Algebran peruslauseen nojalla C
on algebrallisesti suljettu. Siis P(X) € C[X] on jaoton, jos ja vain jos deg P(X) = 1. Jos
deg P(X) = 1, niin P(X) = aX + b joillakin a € C* ja b € C. Lemman mukaan
polynomirenkaan C[X| maksimaaliset ideaalit ovat padideaalit (X — ¢) = ker E,, ¢ € C.
Evaluaatiokuvaus E.: C[X] — C on surjektiivinen rengashomomorfismi, joten renkaiden
isomorfismilauseen nojalla tekijarengas C[X]/(X — ¢) on isomorfinen kompleksilukujen
kunnan C kanssa.

8Katso Esimerkki

9Lause
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Harjoitustehtavia

7.1. Todista Propositio
7.2. Olkoon R rengas ja olkoon .# renkaan R epétyhji osajoukko. Osoita, ettd .# on

ideaali, jos ja vain jos xa + 2'd’,ax + d'x’ € 7 kaikilla x,2’ € R ja a,d’ € .Z.

7.3.  Todista Propositio [7.11{(1).

7.4. Anna esimerkki, joka osoittaa, ettd Proposition [7.11|(1) tilanteessa 1 (.#) ei valtté-
mattéd ole renkaan S ideaali.

7.5. Olkoot ., i € I, renkaan R ideaaleja. Osoita, ettd ;c; - on renkaan R ideaali.

7.6. Olkoon K kommutatiivinen rengas. Olkoot aq,as,...a, € K. Osoita, etta
Kay + Kay + -+ Ka, = {z1a1 + 2200 + - - - + Tpay, : 1, 29,...,2, € K}

on renkaan K ideaali.

7.7. Osoita, ettd kommutatiivisen renkaan Z[iv/5] ideaali 2 Z[iv/5] + (14 iv/5) Z[iv/5] ei
ole piaideaali"

7.8. Todista Lemma [7.13

7.9. Todista Bézout'n yhtald ! Proposition avulla]™]

7.10. Olkoon R rengas ja olkoon .¢# C R ideaali. Asetetaan = ~ y, jos ja vain jos
xr —y € &. Osoita, ettd ~ on ekvivalenssirelaatio.

7.11. Olkoon R rengas ja olkoon .# C R ideaali. Osoita, ettd renkaan R yhteenlasku
on yhteensopiva ideaalin .# maardaméan ekvivalenssirelaation kanssa.

7.12. Todista Propositio [7.19|

7.13. Osoita, ettd .# = {0,2 + 6Z,4 + 6Z} on renkaan Z/67Z ideaali. Osoita, etté
tekijarengas (Z/67Z)/.# on rengasisomorfinen renkaan Z/27Z kanssa.

7.14. Maérita tekijarenkaan R = (Z/27Z)[X]/(X? + 1) laskutaulut. Mitké renkaan R
alkiot ovat yksikoita? Onko rengas R kunta?

7.15. Olkoon P(X) = X3+2X+1 € (Z/5Z)[X]. Onko P(X) jaoton polynomi? Onko te-
kijarengas (Z/57)[X]/(P(X)) kunta? Montako alkiota tekijarenkaassa (Z/5Z)[X]/(P(X))
on?

7.16. Olkoon K kommutatiivinen rengas ja olkoon Olkoon P(X) = X* +1 € K[X].
Osoita, ettda X + (P(X)) € K[X]/(P(X)) on yksikko.

7.17. Osoita, ettd polynomi X3 + X? + X + 2 € (Z/3Z)[X] on jaoton. Osoita tdméin

avulla, ettd on kunta, jossa on 27 alkiota.

7.18. Olkoon P(X) = X* 42X +4X? +4X + 3 € (Z/7Z)[X]. Esiti P(X) jaottomien
polynomien tulona. Anna esimerkki kunnasta, jossa on 343 alkiota.

Tehtavissa [7.19 ei riita todeta, ettéd tallainen kunta on Lauseen nojalla.

YLemma5.9(1) auttaa.
HPropositio
12Tarkastele ideaalia aZ + bZ.
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7.19. Osoita, ettd on kunta, jossa on 9 alkiota.
7.20. Osoita, ettd on kunta, jossa on 16 alkiota. E
7.21. Osoita, ettd on kunta, jossa on 125 alkiota.

7.22. Olkoon P(X) = X* —4X?+4 € (Z/5Z)[X]. Esitd P(X) jaottomien polynomien
tulona. Anna esimerkki nollanjakajasta tekijarenkaassa (Z/5Z)[X]/(P(X)). Maarité al-
kion X + (P(X)) € (Z/5Z)[X]/(P(X)) kaanteisalkio kertolaskun suhteen.

7.23. Olkoon P(X) = X? +3X + 1 € (Z/72)[X].
(a) Esitd P(X) jaottomien polynomien tulona.
(b) Osoita, ettd X? + 3+ (P(X)) € (Z/7Z)[X]/(P(X)) on yksikko.

7.24. Olkoon K kokonaisalue ja olkoon a € K — {0} alkio, joka ei ole jaoton. Osoita,
ettd (a) ei ole maksimaalinen ideaali.

Kommutatiivisen renkaan K ideaali & # K on alkuideaali, jos silld on seuraava ominai-
suus: Jos a,b € K jaabe & niina € & taibe A.

7.25. Mitka kokonaislukujen renkaan ideaalit ovat alkuideaaleja?

7.26. Olkoon K kommutatiivinen rengas ja olkoon .# # K sen ideaali. Osoita, ettéd
tekijarengas K/.# on kokonaisalue, jos ja vain jos .# on alkuideaali.

7.27. Osoita, ettd kommutatiivisen renkaan jokainen maksimaalinen ideaali on alkuide-
aali.

7.28. Osoita, esimerkilla, ettd ettd kommutatiivisen renkaan alkuideaali ei valttamatta
ole maksimaalinen.

Olkoot L ja M kommutatiivisen renkaan K ideaaleja. Ideaalien L ja M tulo on
LM = {x1y1 + xoy2 + - + 2y : ¥ € Ly; € M,n € N}

ja niiden summa on
L+M={zx+y:x€Lye M}.

7.29. Olkoot L ja M kommutatiivisen renkaan K ideaaleja. Osoita, ettd LM ja L+ M
ovat renkaan K ideaaleja.

7.30. Maaérita renkaan Z ideaalien 4 Z ja 19 Z summa ja tulo. Anna vastaukset muodossa
m 7 sopivalla m € N.

Olkoon K kommutatiivinen rengas. Alkion k € K annihilaattori on
A(k) ={a € K : ak = 0}.

7.31. Olkoon K kommutatiivinen rengas ja olkoon k € K. Osoita, ettd A(k) on ideaali.

13Muista Seuraus ja Harjoitustehtéva
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Luku 8

Ryhmat

Tassa luvussa tarkastelemme laskutoimituksella varustettuja joukkoja, joiden laskutoi-
mitukselta oletamme muutamia yksinkertaisia ominaisuuksia. Nain maériteltdva ryhmén
kasite on tarkea esimerkiksi geometriassa ja lukuteoriassa. Ryhmia kasitellaan lyhyesti
myo6s kurssilla RENKAAT JA KUNNAT luvussa koska kommutatiivisen ryhméan kasite
esiintyy renkaan maéritelmassa.

8.1 Ryhma

Laskutoimituksella varustettu joukkd?] (G, *) on ryhmd, jos
» laskutoimitus * on assosiatiivinen,
o laskutoimituksella % on neutraalialkio,
« jokaisella g € (G, *) on kdanteisalkio.

Ryhméan G alkioiden lukumaéaérd #G on ryhmén G kertaluku.

“Muista maaritelmé luvusta

Ryhmaé on keskeinen algebran rakenne, joka esiintyy monilla matematiikan aloilla esi-
merkiksi lineaarialgebrassa, geometriassa ja lukuteoriassa. Télla kurssilla kasittelemme
esimerkkeja eri aloilta yleisen teorian tarkastelun lisaksi.

Esimerkki 8.1. Esimerkkien ja nojalla laskutoimituksella varustetut joukot
(Z,+), (Q,,+) (R,+), (C, +), kongruenssiluokkien additiivinen ryhmd (Z/qZ,+) kaikilla
q € N—{0, 1}|1_-]ja multiplikatiiviset ryhmdt

7 =({-1,1},-), Q@*=(@Q-{0},-), R*=(R-{0},-) ja C*=(C—{0},)
ovat ryhmia.

'Katso luvut [2.1] ja
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Kurssilla RENKAAT JA KUNNAT kasitelladn ndiden esimerkkien yleistyksié, renkaan R
additiivista ryhmaa (R, +) ja yksikoiden ryhméé eli multiplikatiivista ryhmééd R*, jonka
laskutoimitus on renkaan R kertolasku.

Ryhmén laskutoimitus jatetddn usein mainitsematta ja puhutaan vain ryhmdstd G. Tal-
16in laskutoimitus on kuitenkin kiinnitetty ja usein konkreettisessa tilanteessa se on en-

nalta tiedossa.

Esimerkki 8.2. Ryhmén Z laskutoimitus on yhteenlasku, ryhmén Z/q¢Z laskutoimitus
on kongruenssiluokkien yhteenlasku, ryhmén (Z/qZ)* laskutoimitus on kongruenssiluok-
kien kertolasku ja ryhméan C* laskutoimitus on kertolasku.

Puhuttaessa abstraktisti ryhméasta G merkitdén laskutoimitusta usein kuten kertolaskua
ja neutraalialkiolle kaytetdan merkintéda e tai joskus myos merkintad 1. Talloin ryhmaé
G kutsutaan multiplikatiiviseksi ryhmdksi.

Jos tarkastellaan useampia ryhmié samalla kertaa voidaan niiden neutraalialkioille
kayttad ryhmille kaytettavien merkintojen kanssa yhteensopivaa merkintda esimerkiksi
niin, ettd esimerkiksi ryhméan G’ neutraalialkiota merkitdan e’.

Propositio 8.3. Olkoon G ryhmd, jonka neutraalialkio on e. Tdlloin
(1) Neutraalialkio e on yksikdsitteinen.
(2) Jokaisen alkion kddnteisalkio on yksikdsitteinen.
(3) Jos aa = e, niin a on alkion a kddnteisalkio.
(4) (ab)™' =b"'a™! kaikilla a,b € G.

Todistus. (1) Propositio [1.12]
(2) Katso Propositio ja Harjoitustehtava [1.15]
(3) Alkiolla a on kédnteisalkio a=!. Oletuksesta seuraa a = a(aa™') = (aa)a™ =a

(4) Koska pétee
(b taH(ab) = b Hala)b =b"tb =,

niin véite seuraa kohdasta (3). O

Propositio (3) helpottaa kéanteisalkion etsimistd ryhmassa: riittda tarkastaa, etté
alkio on vasen tai oikea kaédnteisalkio.

Supistussddnndt ovat voimassa laskutoimituksella varustetussa joukossa (A, ), jos kaikilla
a,b,c € A patee

(1) Jos a*b=ax*c, niin b= c.
(2) Jos a*xb=cx*b, niin a = c.
Propositio 8.4. Supistussianndt patevat ryhmassd.
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Todistus. Olkoon G ryhmé ja olkoot a,b,c € G siten, ettd ab = ac. Siis
b=a*(ab) = a (ac) = c,
joten saanto (1) patee. Séénto 2 todistetaan samaan tapaan. [l

Propositio 8.5. Olkoon A assosiatiivisella laskutoimituksella varustettu joukko, jossa on
neutraalialkio. Tdalloin A on ryhmd, jos ja vain jos yhtdloilld ax = b ja ya = b on ratkaisu
joukossa A kaikilla a,b € A.

Todistus. Harjoitustehtéava (8.4} O

Lemma 8.6. Adrellisen ryhmdn laskutauluss jokaisella rivilld ja jokaisessa sarakkeessa
estintyvdt kaikki ryhmdan alkiot.

Todistus. Harjoitustehtava [8.5] [

Esimerkki 8.7. Neljan alkion ryhmén Z /47, laskutaulu on

+10 1 2 3
0/0 1 2 3
111 2 3 0.
212 3 01
313 01 2

Laskutaulussa kaytetdan kongruenssiluokan k + 47 merkintané edustajaa k € Z.

Ryhmé G on kommutatiivinen ryhmd eli Abelin ryhmd, jos sen laskutoimitus on kommu-
tatiivinen.

Jos kommutatiivisen ryhmén G laskutoimituksen merkki on +, niin ryhméé (G, +) kut-
sutaan addititviseksi ryhmdksi.

Merkintda + kaytetadn ainoastaan kommutatiiviselle laskutoimitukselle.

Esimerkki 8.8. Ryhmat Z, Q, R, C ja Z/qZ ovat kommutatiivisia.
Esimerkki 8.9. Olkoon X # (). Esimerkissi havaitsimme, ettd joukon X lasku-

toimitus o on assosiatiivinen ja etta se ei ole kommutatiivinen, jos joukossa X on ainakin
kaksi alkiota.

Osajoukko {f: X — X : f on bijektio} C X¥ on vakaa, koska tunnetusti kahden
bijektion yhdistetty kuvaus on bijektio. Siis laskutoimitus o madrasa laskutoimituksen
bijektioiden muodostamassa osajoukossa. Edella tekemamme havainnot osoittavat, etta
joukon X bijektiot itselleen muodostavat ryhman.

Olkoon X epatyhja joukko. Laskutoimituksella varustettu joukko
Perm(X) = ({f: X — X : f on bijektio}, o)

on joukon X permutaatioryhmd.

Ryhmén Perm(X) alkiot ovat joukon X permutaatioita.

2Katso luku Ryhmaén laskutaulua kutsutaan usein kertotauluksi, jos laskutoimitus ei ole +.
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8.2 Ryhmien suora tulo

Luvussa tutustuimme laskutoimistusten tulolaskutoimitukseen. Maarittelemme nyt
ryhmien suoran tulon mahdollisesti darettoman monelle ryhmélle.

Olkoon A # () indeksijoukko ja olkoot G, ryhmia kaikilla @ € A. Ryhmien G,, a € A,
suora tulo [aea Go on joukko

H G, = {(ga)aeA . go € G, kaikilla o € A}

a€cA

varustettuna tulolaskutoimituksella: Jos g = (ga)aca ja b = (ha)aca, niin ¢ = ((gh)a)aca,
missa

(gh)a = gaha
kaikilla o € A kaikilla g, h € [Tpea Ga-

Propositio 8.10. Olkoon A # 0 indeksijoukko ja olkoot G, ryhmid kaikilla o € A.
Tdlloin [laea Ga on ryhmd. Jos kaikki ryhmdt G., o € A, ovat kommutatiivisia, niin
[Toca Go on kommutatiivinen ryhmd.

Todistus. Olkoot g = (ga)aca; b = (ha)aca, k = (ka)aca € [laea Go- Ryhmén Gg lasku-
toimituksen assosiatiivisuuden nojalla

(g(hk))s = gs(hsks) = (gshs)ks = ((gh)k)s

kaikille g € A. Siis tulojoukon laskutoimitus on assosiatiivinen. Jos e, € G, on neutraa-
lialkio, niin (e4)aea on neutraalialkio laskutoimituksella varustetussa joukossa [],c4 Ga
Alkion (ga)aca kdédnteisalkio on (g, ') aeca-

Oletetaan, ettd kaikki ryhmét G,, o € A ovat kommutatiivisia. Ryhméan G laskutoi-
mituksen kommutatiivisuuden nojalla

(gh)s = gshs = (hsgs) = (hg)s
kaikille g € A. Siis tulojoukon laskutoimitus on kommutatiivinen. O
Adirellisen monen ryhmién suora tulo on helpompi hahmottaa kuin yleinen mééritelmaé.
Esimerkki 8.11. Jos G ja G5 ovat ryhmié, niin
II Go=GixGs

ac{l,2}

ja laskutoimitus on
(91, 92)(h1, ha) = (g1h1, g2ho)
kaikille (91792)7 (hl,hg) € G1 X GQ.
Seuraus 8.12. Olkoot G ja G ryhmid. Niiden tulo G1 X G on ryhmd. Jos ey ja eo ovat

ryhmien Gy ja Gy neutraalialkiot, niin (eq,e2) on ryhmdan Gy x Go neutraalialkio. Alkion
(91, 92) € G1 x Gy kddnteisalkio on (g7, 95"). O
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Esimerkki 8.13. (a) Kommutatiivisen ryhmén (R, +) n-kertainen tulo
(R", +) = (R,+)"

on kommutatiivinen ryhmé. Samoin (Z", +) on kommutatiivinen ryhma.

(b) Jos ¢, € N—{0,1}, niin Z/qZ x Z/rZ on aérellinen kommutatiivinen ryhmé. Ylei-
semmin, jos n € N—{0} ja ¢; € N—{0, 1} kaikille 1 <14 < n, niin [I}" ; Z/¢;Z on darellinen
kommutatiivinen ryhma.

Esimerkki 8.14. Neljésta alkiosta koostuvan Kleinin neliryhmdn
K, =(Z)2Z) x (Z/27)

laskutaulu on

1,1)
1,1)
1,0) - (8.1)
0,1)
(1,1) (1,0) (0,1) (0,0)

Laskutaulussa kéytetdan kongruenssiluokan k& + 2Z merkintana edustajaa k € Z. Erityi-
sesti huomaamme, etté jokaiselle g € K, péatee g + g = (0,0).

8.3 Ryhmahomomorfismit

Laskutoimituksella varustettujen joukkojen homomorfismien perusasioita késiteltiin lu-
vussa [1.3] Téssé luvussa aloitamme ryhmien vélisten homomorfismien tarkastelun.

Jos G ja G’ ovat ryhmié, niin homomorfismi ¢: G — G’ on ryhmdhomomorfismi.
Bijektiivinen ryhmahomomorfismi on ryhmdisomorfismi.
Isomorfismi a: G — G on ryhman G ryhmdautomorfismi.

Jos on isomorfismi ¢: G — G’, niin ryhmat G ja G’ ovat isomorfisia, G = G'.

Esimerkki 8.15. (a) Eksponenttikuvaus exp: (R,+) — (R4, ), exp(z) = €”, on ryh-
méisomorfismi Esimerkin nojalla.

(b) Proposition [1.26[1) nojalla kompleksikonjugointi -: (C,+) — (C,+) on kompleksi-
lukujen additiivisen ryhmén automorfismi. Saman tuloksen kohdan (2) nojalla komplek-
sikonjugoinnin rajoittuma -: C* — C* on kompleksilukujen multiplikatiivisen ryhmén
automorfismi. Kohdan (3) nojalla kompleksilukujen normi n: C* — R, = (]O, oo, ) on
surjektiivinen ryhmahomomorfismi.

Propositio 8.16. (1) Ryhmdahomomorfismien yhdistetty kuvaus on ryhmdahomomorfismi.

(2) Isomorfismin kddnteiskuvaus isomorfismi.

(8) Jos G =G ja G =G", niin G=G".
Todistus. Seuraa Propositiosta [1.7] O

Propositio 8.17. Ryhmahomomorfismi ¢: G — G’ kuvaa ryhmdan G neutraalialkion
ryhmdn G’ neutraalialkioksi ja jokaiselle g € G pitee ¢p(g~1) = ¢(g) L.
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Todistus. Olkoon ¢: G — G’ homomorfismi. T&ll6in

€'de) = d(e) = dlee) = d(e)o(e),

mistd ensimméinen viite seuraa supistussaannolla.
Olkoon g € G. Tall6in

o(g No(9) = d(g7'g) = ¢(e) = ¢,

joten Proposition [8.3(3) nojalla ¢(g~") = ¢(g)~". O

Jos ryhmét G ja G5 ovat isomorfisia, niin ryhmateorian kannalta voidaan ajatella,
ettd pohjimmiltaan on kyse samasta abstraktista ryhmasté.

Jatkossa merkinta K tarkoittaa ryhméé, joka on isomorfinen ryhmén (Z/27) x (Z/27)

kanssa. Kutsumme téllaista ryhméa Kleinin neliryhmaéksi.

Esimerkki 8.18. Neljan alkion kommutatiiviset ryhmét Z /47 ja K, eivat ole isomorfi-
sia. Kaikille (a + 2Z,b + 27Z) € Z/27 x Z]2Z pétee

(a+2Z,b+27) + (a + 2Z,b + 27) = (2a + 27, 2b + 27) = (0 + 27, 0 + 27Z).

Jos ¢: Z/27 x 1]27 — Z./AZ on homomorfismi ja (a + 2Z,b+ 27) € Z/27 x Z./2Z, niin

Proposition edellisen huomion ja homomorfismin méaritelméan nojalla

0+4Z = ¢(0 +2Z,0+2Z) = ¢((a + 2Z,b+ 2Z) + (a + 2Z,b + 2Z))
= ¢(a+2Z,b+27Z) + ¢p(a+2Z,b+2Z) .

Jos ¢ olisi surjektio, niin kaikille ¢ 4+ 47 € Z/4Z pétisi siis (¢ +47) + (¢ +4Z) = 0 + 4Z,
mutta tama ei pade, jos ¢ = £1.

Homomorfismit sopivat hyvin yhteen ryhmien tulon kanssa:
Propositio 8.19. Jos G; = Hy ja Gy = H,, niin G; X G9 = Hy X Hs.

Todistus. Olkoot ¢1: G1 — Hy ja ¢o: Gy — Hs isomorfismeja. Méaritellaan isomorfismien
1 ja ¢g tulo @: G x Gy — Hy X Hy asettamalla

(g1, 92) = (01(91), $2(92))

kaikille (gl,gg) c G1 X GQ.
On helppo tarkastaa, ettd ® on bijektio ja sen kaanteiskuvauksen lauseke on

& (hn, ha) = (67 (h), 65" (ha)) -
Riittaa siis osoittaa, ettd ® on homomorfismi. Olkoot (g1, 92), (971, 95) € G1 X Gs. Télloin
®((91,92)(61, 9)) = P(9197, 9295) = (61(9191), b2(925))

= (61(01)n(91). 62(92)6(s5))
= ®(g1,92) (g}, 92) - -
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8.4 Jaannosluokkien multiplikatiiviset ryhmaéat

Téssd luvussa tutustumme tirkeddn kommutatiivisten ryhmien luokkaan | Téssd luvussa
tarvittavat lukuteorian mééritelmét ja tulokset on esitetty liitteessé [A]

Propositio 8.20. Olkoon q > 2. Tadlloin alkiolla a + qZ € 7./qZ on kddnteisalkio, jos ja
vain jos syt(a,q) = 1. Jos p on alkuluku ja a #Z 0 mod p, niin alkiolla a + pZ € (Z/pZ)
on kadnteisalkio.

Todistus. Jaannosluokalla a + qZ € Z/qZ on kéénteisalkio, jos ja vain jos on b € Z, jolle
1+ qZ = (a+qZ)(b+qZ) = ab+ qZ.

Tamaé pétee, jos ja vain jos on ¢ € Z, jolle ab = 1+ cq. Taméa on Bézout’'n yhtéilénﬁ nojalla
yhtépitavdd sen kanssa, ettd syt(a,q) = 1. ]

Propositio 8.21. Joukko {a+qZ : syt(a,q) = 1} on laskutoimituksella varustetun joukon
(Z/qZ,-) vakaa osajoukko.

Todistus. Olkoot a,b € Z siten, etté syt(a, q) = syt(b,q) = 1. Proposition nojalla on
a,b € Z siten, etta syt(a,q) = syt(b,q) =1 ja

(a+qZ)(a+qZ) =1+ qZ = (b+qZ)(b+ qZ).

Talloin
(a+ qZ)(b+ qZ)(b + qZ)(a + qZ) = 1 + qZ,
joten Proposition nojalla joukko {a + ¢Z : syt(a,q) = 1} on vakaa. O

Seuraus 8.22. ({a + qZ : syt(a,q) = 1}, ) on ryhmd.
Todistus. Seuraa Propositioista ja|8.21] O]
Olkoon ¢ € N — {0, 1}. Laskutoimituksella varustettu joukko

(Z/q2)" = ({a + qZ : syt(a,q) = 1}, ")

on jadnndsluokkien mod q multiplikatiivinen ryhmd.

Esimerkki 8.23. (Z/8Z)* = ({1 + 8Z,3 + 87,5 + 87,7 + 8Z},-). Ryhméan (Z/8Z)*
laskutaulu on

135 7
111357
31317 5, (8.2)
515 7 1 3
717 5 31

kun merkitsemme kongruenssiluokkaa k + 8Z edustajallaan k € {1,3,5,7}.

3Nyt médriteltivi ryhmé on renkaan Z/qZ yksikdiden ryhmd. Katso luku

4Propositio
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Esimerkki 8.24. Vertailemalla laskutauluja (8.1) ja (8.2) huomaamme, ettd kuvaus

1+8Z— (0+22,0+2Z),
34+8Zw— (14+27,0+27),
54 8Z — (04 2Z,1 + 27Z),
7T+8Zw— (1+2Z,1+27Z)

on ryhméisomorfismi ryhmien (Z/8Z)* ja K4 = (Z/27Z) x (Z/2Z) valilla.

8.5 Lineaarialgebrasta

ReaalinenE] vektoriavaruus (eli R-vektoriavaruus) muodostuu kommutatiivisesta ryhmés-
ta (V,+), jossa on madritelty alkioiden yhteenlaskun kanssa yhteensopiva kertominen
reaaliluvulla. Reaaliluvulla kertominen tarkoittaa kuvausta R x V' — V., (A, v) — Av.
Laskutoimitukselta ja reaaliluvulla kertomiselta oletetaan

(1) Mv+w) = I+ \w kaikille A € R jav,w € V,
(2) (A4 p)v = v + po kaikille \, p e Rjav eV,
(3) u(Av) = (pA)v kaikille A, p e Rjav €V ja
(4)

4) 1v =wv kaikillev € V.

Jos V' ja W ovat R-vektoriavaruuksia, niin kuvaus L: V' — W on (R-)lineaarikuvaus,
jos se on homomorfismi kommutatiivisesta ryhmésta (V,+4) kommutatiiviseen ryhméaan
(W,+), joka on lisdksi yhteensopiva reaaliluvulla kertomisen kanssa: Kaikille A € R ja
v € V patee L(Av) = AL(v).

Sen todistaminen, ettd kaikki homomorfismit reaalilukujen additiiviselta ryhmélta it-
selleen eivit ole R-lineaarikuvauksia, on monimutkaisempaa. G. Hamel [Ham| todisti té-
man tuloksen valinta-aksiooman avulla vuonna 1905.

Harjoitustehtavia

Olkoon X joukko. Joukkojen A, B € Z(X) symmetrinen erotus on
AAB=(A—B)U(B - A).
8.1. Olkoon X # (). Osoita, ettd (Z(X),A) on ryhma.

8.2. Olkoon X = {1,2,3}. Muodosta ryhmén (£(X),A) laskutaulu.

8.3. Olkoon (G, *) ryhma. Maaritelldén uusi laskutoimitus ® joukossa G asettamalla
a®b=bxa

kaikille a,b € G. Osoita, ettd (G, ®) on ryhma.

5Tamé esimerkki pitee yleisessé kuntakertoimisessa vektoriavaruudessa, katso luku
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8.4. Todista Propositio
8.5. Todista Lemma [8.6

8.6. Olkoon G ryhma ja olkoon e € G neutraalialkio. Oletetaan, ettéd jokaiselle g € G
pitee g? = e. Osoita, ettd, G on kommutatiivinen ryhmaé.

8.7. Olkoon F' = {fi, fa,..., fn} ddrellinen kommutatiivinen ryhmé. Olkoon e = f; ryh-
man F neutraalialkio. Olkoon a = fi fs--- f, kaikkien ryhmén F' alkioiden tulo. Osoita,
ettd a? = e. Keksi esimerkki, jossa a = e ja toinen esimerkki, jossa a # e[

8.8. Varustetaan joukko A = {a, b, c,d, e} laskutoimituksella %, jonka laskutaulu on

xle a b ¢ d
ele a b ¢ d
ala ¢ e d b
blb d ¢ a e
clec e d b a
dld b a e c

Pétevitko supistussaannot laskutoimituksella varustetussa joukossa (A, *)? Onko (A, x)
ryhma?

8.9. Monellako eri tavalla voit taydentaa taulukon

x|e a b
ele a b
ala
blb

niin, ettd tuloksena on ryhmén laskutaulu? Mita voit péaatella tdstd havainnosta?

8.10. Olkoon G ryhmé ja olkoon (A, x) laskutoimituksella varustettu joukko. Olkoon
¢: G — (A, %) homomorfismi. Osoita, ettd ¢(G) on laskutoimituksella varustetun joukon
(A, *) vakaa osajoukko, joka on ryhmé indusoidulla laskutoimituksellaﬂ

8.11. Maaritelladn reaalilukujen joukossa R laskutoimitus * asettamalla

rxy =+ 3.

Osoita, ettd (R, %) on ryhmé, joka on isomorfinen ryhmén (R, +) kanssa.

8.12. Olkoon G kommutatiivinen ryhmé. Osoita, ettd kuvaus ¢: G x G — G,
v((g,h)) = gh™!

on homomorfismi.

8.13. Olkoon G ryhmaé ja olkoon a € G. Olkoon ¢,: G — G,

a(g) = aga™ .

Osoita, ettéd ¢, on ryhméan G automorfismi.

6Tassé tehtévissd kiytetddn multiplikatiivista merkintds mutta esimerkissi laskutoimitus voi olla
my6s +. Télloin tarkastellaan siis kommutatiivisen ryhmén kaikkien alkioiden summaa.
"Luvuissa ja on hyodyllisid tuloksia.
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8.14. Minka kurssilla kasitellyn ryhmén kanssa ryhmé (Z/12Z)* on isomorfinen?

8.15. Olkoon n € N — {0} ja olkoon %, niiden laskutoimitusten * joukko, joille las-
kutoimituksella varustettu joukko ({1,2,...,n},*) on ryhma. Maaritelldén joukossa %,
relaatio ~ asettamalla * ~ o, jos ja vain jos ryhméat ({1,2,...,n},*) ja ({1,2,...,n},0)
ovat isomorfisia. Osoita, etté relaatio ~ on ekvivalenssirelaatio,

*8.16. Olkoon p > 3 alkuluku. Osoita, ettd 1 + pZ ja —1 + pZ ovat ainoat ryhmén
(Z/pZ)* alkiot, jotka ovat omat kédnteisalkionsa | Osoita, etté
(2+pZ)3+pZ)---(p—2+pZL)=1+pL.
*8.17. Osoita, etta
(p—1)!'=-1 mod p,
jos p on alkuluku.

8.18. Osoita, etté
(g—1)!'=0 mod q

jos q¢ > 6 ei ole alkuluku.

*8.19. Olkoon p pariton alkuluku ja olkoon k = %. Osoita, etté

(p—1)!'=(=1)*%!)? mod p.

Osoita, ettd polynomi X2 + 1 € (Z/pZ)[X] ei ole jaoton, jos p = 1 mod 4[]

8Katso ekvivalenssirelaation méidritelma luvusta H

9Tama tehtivi liittyy kurssin RENKAAT JA KUNNAT sisiltoon eiké tehtéivid ole mielekisté ratkaista
pelkéstadn kurssin RYHMAT tiedoilla. Katso Lause

10Tam4 tehtdva liittyy kurssin RENKAAT JA KUNNAT siséltéon eiké tehtivid voi ratkaista pelkistiain
kurssin RYHMAT tiedoilla. Katso luku
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Luku 9

Aliryhmat

Téassa luvussa tarkastelemme jonkin ryhméan G osajoukkoja, jotka ovat itsekin ryhmié
ryhmén G laskutoimituksella. Naemme esimerkkeja siitd, miten namé aliryhmat esiintyvat
luonnollisella tavalla muun muassa homomorfismien ytimina ja tarkastelemme ryhmén
osajoukkojen virittamia aliryhmié.

9.1 Aliryhmat

Olkoon G ryhmé. Olkoon B C G, B # (), vakaa osajoukko[y Jos indusoidulla laskutoimi-
tuksella varustettu joukko B on ryhmé, niin se on ryhmén G aliryhmd. Jos H C G on
ryhmén G aliryhma, kidytdmme merkintad H < G.

Jos aliryhmé& H on ryhméan G aito osajoukko, se on ryhman G aito aliryhmd. Talloin
kaytamme merkintda H < G.

“Katso luku

Merkinnat H < G ja H' < G siséaltavat tietojen H, H' C G ja H' # G lisaksi siis sen, etté
H ja H' ovat ryhmi4, joiden laskutoimitus on ryhmén G laskutoimituksen indusoima.

Propositio 9.1. Jos G1 < G5 ja Gy < G3, niin G1 < Gj.

Todistus. Oletuksen nojalla G # (0. Jos g,h € G, niin gh € G, koska G; < Gs. Siis
(1 on vakaa ryhmésséd GG3. Ryhmén G4 laskutoimitus indusoi joukkoon G; saman lasku-
toimituksen kuin ryhmén G5 laskutoimitus. Koska (G; on ryhma talla laskutoimituksella,
niin se on ryhmén G3 aliryhmé. ]

Esimerkki 9.2. (a) Olkoon a € Z. Talloin aZ = {ak : k € Z} on kokonaislukujen
ryhmén Z aliryhma.

(b) Positiivisten reaalilukujen multiplikatiivinen ryhméa Ry = (]O, ool ) on ryhmén R*
aito aliryhma.
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Lemma 9.3. Olkoon G ryhmd. Jokaisen aliryhmdin H < G neutraalialkio on ryhmdn G
neutraalialkio.

Todistus. Jos joillekin a,b € H < G pétee ab = b, niin ryhmén G supistussaénnoén nojalla
a on ryhmén G neutraalialkio. m

Kaikki ryhméan vakaat osajoukot eiviat ole ryhmié, esimerkiksi ryhman Z vakaa osa-
joukko N ei ole ryhmé. Seuraava tulos antaa keinon tarkastaa, onko jokin ryhmén osa-
joukko aliryhma:

Propositio 9.4 (Aliryhmaétesti). Ryhmdn G osajoukko H # 0 on aliryhmd, jos
(1) kaikilla x,y € H pitee vy~ € H, tai
(2) kaikilla x,y € H pitee xy € H jay™ € H.

Todistus. Olkoon e € G neutraalialkio. Tarkastellaan ehtoa (1): Olkoon h € H. Oletuksen
mukaan hh~! € H, joten e € H. Samoin y~! = ey ! € H kaikilla y € H. Kaikki
on siis kunnossa, jos H on vakaa osajoukko. Edellisen nojalla kaikille x,y € H pétee
ry =x(y )"t € H, joten H on vakaa.

Ehdosta (2) seuraa ehto (1), joten véite seuraa kohdasta (1). O

Propositio 9.5. Olkoon G ryhmd, olkoon I # () jokin indeksijoukko ja olkoot H; < G
kaikilla © € I. Tdlloin

(N H <G.

icl
Todistus. Harjoitustehtavi [9.9][1] O
Seuraus 9.6. Olkoon G ryhmd, olkoot H,, Hy < G. Tdalloin Hy N Hy < G. L]

Esimerkki 9.7. (a) Jokaisella ryhmalld on aliryhmid: ryhmé itse ja neutraalialkion
muodostama yhden alkion ryhma.

(b) ({0}, +) < (Z,+) < (Q,+) < (R, +) < (C, +).
(c) {1} < {-1,1} < Q* < R* < C*.
(d) Olkoot G ja G' ryhmii ja olkoot e € G ja e’ € G’ niiden neutraalialkiot. Aliryhmétes-

tilld on helppo tarkastaa, ettd G x {€'} < GxG"ja{e} xG' < GxG": Jos g,h € G x {€'},
niin g = (go, €’) ja h = (ho, €') joillain go, hy € G.

Esimerkki 9.8. Maaritelmadn mukaan reaalisen vektoriavaruuden V' aliavaruus on osa-
joukko H C V, joka on vakaa vektoriavaruuden V' yhteenlaskun ja reaaliluvulla kerto-
misen suhteen ja on néilla operaatioilla varustettuna reaalinen vektoriavaruus. Erityisesti
(H,+) on additiivisen ryhmén (V, +) aliryhma.

Kaikki additiivisen ryhmén (V,+) aliryhmét eiviat ole R-vektoriavaruuden V' vekto-
rialiavaruuksia. Esimerkiksi R-vektoriavaruudella R on vain kaksi aliavaruutta {0} ja R
mutta reaalilukujen additiivisella ryhmaélla on paljon enemmén aliryhmié: Esimerkiksi
joukot

aZ ={ak:keZ} CR

IKatso yleisen leikkauksen médritelms sivulta
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ja
aQ={aq:qeQ}CR
ovat ryhméan (R, +) vakaita osajoukkoja kaikilla av € R ja on helppo tarkastaa, etta

(aZ,+) < (aQ,+) < (R, +)
kaikilla o € R — {0}.

9.2 Aliryhmakaavio
Monissa tapauksissa ryhméan rakennetta voi havainnollistaa aliryhmékaaviolla.

Aliryhmdakaaviossa tarkasteltavan ryhmén aliryhmaét asetellaan péallekaisille tasoille. Ali-
ryhmé H yhdistetdan janalla ylemmaélla tasolla olevan aliryhmén K kanssa, jos H < K
eika ole aliryhmaé L, jolle patee H < L < K.

Adirellisen ryhmén aliryvhmékaaviossa esiintyviit aliryhmét voidaan esimerkiksi jaotella
niiden kertaluvun mukaan siten, ettd kertaluvultaan suuremmat ryhméat ovat ylemmill&
tasoilla.

Esimerkki 9.9 (Kleinin neliryhmén aliryhmékaavio). Jokaisella ryhmaélla on yksi yh-
den alkion aliryhmé, joka koostuu neutraalialkiosta, siis {0} = {(0 + 2Z,0 + 2Z)} <
K,. Merkintojen yksinkertaistamiseksi merkitsemme seuraavassa ryhmén 7/27 alkiota
a + 27 edustajalla a € {0,1}. Lemman [9.3| nojalla (0,0) € H, joten ryhmélla K, on kol-
me kahden alkion osajoukkoa, jotka voivat olla aliryhmié: {(0,0),(0,1)} = {0} x Z/2Z,
{(0,0),(1,0)} = Z/2Z x {0} ja {(0,0),(1,1)}. Esimerkin [8.14] ja aliryhmétestin nojalla
namé ovat kaikki aliryhmid. Itse asiassa {0} x Z/2Z < K4 ja ZZ/27Z x {0} < K, my0s
Esimerkin nojalla.
Olkoon H < (Z/27)? = K, siten, ettd #H > 3. Jos (1,0),(0,1) € H, niin

(1+42Z,142Z) = (1+ 22,0+ 2Z) + (0+2Z,1+2Z) € H
joten H = K,. Vastaavasti nahdaan, etta ehdoista (1,0),(1,1) € H ja (0,1),(1,1) € H

seuraa H = K. Siis ryhmalla K ei ole kolmen alkion aliryhmié, joten Kleinin 4-ryhméan
K, =17/27 x 727 aliryhméakaavio on

/

{0y xZ/22  {(0,0),(1,1)}  Z/2Z x {0}

\ /
{(0,0)}

Tarkastelemme aliryhmékaavion muodostamista uudelleen luvussa [11.3] jossa todis-
tettava Lagrangen lausd’] sulkee joitain direllisen ryhmén aliryhmén kertalukuja pois. La-
grangen lauseen nojalla Esimerkissa tarkastellulla Kleinin neliryhmélla ei ole kolmen
alkion aliryhmia. Koska tama tulos ei viela ole kaytettévissa, tarkastelimme nyt kaikki
mahdollisuudet erikseen.

2Lause
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9.3 Lineaariset ryhmat

Matematiikan eri aloilla joukkoihin voidaan liittaé erilaisia lisdrakenteita kuten vektoria-
varuusrakenne, sisatulo, laskutoimitus tai etédisyysfunktio. Téllaisten joukkojen permu-
taatioryhmienP| osajoukot, jotka sdilyttévit valitun rakenteen tai ovat sen kanssa yhteen-
sopivia, ovat usein ryhmié.

Esimerkki 9.10. Lineaarialgebrassa osoitetaan, etta lineaarikuvausten yhdistetty ku-
vaus on lineaarikuvaus ja ettd lineaarisen bijektion kaanteiskuvaus on lineaarikuvaus.
Aliryhmétestin nojalla {L € Perm(R") : L on lineaarikuvaus} < Perm(R").

Vektoriavaruuden R™ yleinen lineaarinen ryhmd on

GL(R") ={L € Perm(R") : L on lineaarikuvaus} .

Propositio 9.11. Olkoon K € {Q, R, (C}EI ja olkoon n € N—{0}. Matriisien kertolaskulla
varustettu joukko GL,(K) = {A € M,,(K) : det A # 0} on ryhma.

Todistus. Esimerkin [1.5(1) nojalla GL,(K) on matriisien kertolaskulla varustetun jou-
kon M, (K) vakaa osajoukko. Siis matriisien kertolasku indusoi tdhén joukkoon laskutoi-
mituksen, joka on lineaarialgebran tietojen nojalla assosiatiivinen[] Identtinen matriisi
I, € GL,(K) on taméan laskutoimituksen neutraalialkio.

Jos K € {Q,R,C}[] niin jokaisella matriisilla A € M,(K), jonka determinantti ei
ole 0, on kaanteismatriisi A~' € M, (K), jonka determinantti on 1/det A # 0. Ké&én-
teismatriisi A~! on alkion A kiénteisalkio matriisien kertolaskulla varustetussa joukossa
{A € M,,(K) : det A # 0}, joka on siis ryhma. O

Olkoon K kunta. Matriisien kertolaskulla varustettu joukko
GL,(K) = {A € M,,(K) : det A #£ 0}
on K-kertoiminen yleinen lineaarinen ryhmd.

Esimerkki 9.12. Ryhmit SL,(R) ja GL,,(R) eivit ole kommutatiivisia, katso Esimerkki
I3

Propositio 9.13. GL(R") = GL,(R).

Todistus. Olkoon Mat: GL(R") — GL,(R) kuvaus, joka liittdéd lincaariseen bijektioon
L € GL(R™) sen matriisin standardikannan eq, es, ..., e, suhteen:

Mat(L);; = (e; | Lej)

kaikille 1 < 7,5 < n. Lineaarialgebran kurssilla osoitetaan, ettd kaikille L, Ly € GL(R"™)
patee
Mat(Lng) = Mat(Ll) Mat(Lg) .

3Permutaatioryhmit méériteltiin luvun lopussa.
4Riittad, ettd K on kokonaisalue, katso lisda luvuissa 4] ja
5Katso Esimerkki

ORiittdd, ettd K on kunta, katso luku
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Liséksi on helppo tarkastaa, ettd jokainen matriisi A € GL, (R) maaraé lineaarikuvauksen
L, € GL(R") asettamalla L4(z) = Ax kaikille x € R” ja ettd Mat(Ly) = A kaikille
A € GL,(R). O

Olkoon G ryhmé ja olkoon X # (). Ryhman G toiminta joukolla X on homomorfismi
p: G — Perm(X).

Jos toiminta on injektio, se on uskollinen toiminta.

Esimerkki 9.14. Isomorfismi Mat™' on ryhmén GL,(R) uskollinen toiminta joukolla
R™.

Olkoon p: G — Perm(X) ryhmén G toiminta joukolla X. Usein homomorfismi p jatetaan
merkitseméttéd ja kuvausta p(g): X — X merkitdan alkiolla ¢ € G. Merkinta g(x) tar-
koittaa tdllaisessa yhteydessi samaa kuin merkinta(p(g))(x). Usein toiminnalle kiytetaan
merkintaa g - x = (p(g))(z).

Jatkossa samastamme matriisin ja sen standardikannassa maaraamén lineaarikuvauk-
sen. Matriisin A méardamad lineaarikuvausta kutsutaan usein lineaarikuvaukseksi A.

Matriisien kertolaskulla varustettu joukko {A € M, (Z) : det A # 0} on yleisen line-
aarisen ryhmén GL,(Q) vakaa osajoukko mutta se ei ole aliryhmé: Diagonaalimatriisin
D = diag(2,2,...,2) determinantti on 2" # 0, joten matriisilla D on rationaalisessa
yleisessa lineaarisessa ryhmaéssa kadnteismatriisi

D! = diag(1/2,1/2,...,1/2) € GLy(Q) .

Matriisien kertolasku on assosiatiivinen, joten kdanteismatriisi on yksikasitteinen Proposi-
tion nojalla. Siis matriisilla D ei ole kddnteismatriisia laskutoimituksella varustetussa
joukossa {A € M,,(Z) : det A # 0}.

Propositio 9.15. Jokaisella n € N — {0} pdtee
SL,(Z) ={A e M,(Z) : det A =1} < GL,(Q).
Todistus. Harjoitustehtava [9.10] O

Olkoon K kokonaisalue. Matriisien kertolaskulla varustettu joukko
SL,(K) ={A € M,(K) : det A = 1}
on K-kertoiminen erityinen lineaarinen ryhmd.

Esimerkki 9.16. Kaikilla n > 2 patee esimerkiksi
{L.} <{-1I,,1,} < GL,(Q) < GL,(R) < GL,(C).
Kun n on parillinenﬂ niin péatee

{L,} <{-1I,,I,} <SL,(Z) < SL,(Q) < SL,(R) < GL,(R) < GL,(C).

"Huomaa, ettd det(—1I3) = —1.
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Yleisten ja erityisten lineaaristen ryhmien suhteita voi myos havainnollistaa aliryhméakaa-
violla.

GL,(C)

e

SL.(C)  GLy(R)

e

SL,(R)

SL,.(Z)

9.4 Homomorfismit ja aliryhmaét
Seuraava tulos osoittaa, ettd homomorfismit sopivat aliryhmien kanssa hyvin yhteen.

Propositio 9.17. Olkoon ¢: G — G' ryhmdhomomorfismi. Talloin
(1) o(H) < G kaikilla H < G.
(2) o~ (H") < G kaikilla H < G'.

Todistus. (1) Koska H on ryhma, se siséltdé ainakin yhden alkion, joten ¢(H) ei ole tyhja
joukko. Olkoot ¢(g), ¢(h) € ¢(H). Proposition nojalla

$(9)(0(h) ™" = d(g)e(h™") = d(gh™") € o(H),

koska gh™' € H. Siis ¢(H) < G’ Proposition [9.4]1) nojalla.
(2) Harjoitustehtava [0.13] O

Olkoot G ja G' ryhmii ja olkoon ¢ ryhmén G’ neutraalialkio. Ryhméhomomorfismin
¢: G — G ydin on

ker ¢ = ¢71(¢')
ja sen kuva on

Im¢ = ¢(G).

Seuraus 9.18. Jos ¢: G — G’ on ryhmdahomomorfismi, niin Im ¢ < G’ jaker¢p < G. [
Esimerkki 9.19. (a) Tekijihomomorfismin n,: (Z,+) — (Z/qZ,+), (k) = k + ¢Z,
ydin on ¢Z.

(b) Determinantti maardd ryhmédhomomorfismin det: GL,(R) — R*, jonka ydin on
SL,,(R). Samoin ryhméahomomorfismin det: GL,,(C) — C* ydin on SL,(C).

Tarkastelemme ryhmédhomomorfismin ydinté ja kuvaa lahemmin luvussa[l12] Seuraava
ytimen ominaisuus on hyva todeta jo téssa vaiheessa:

Propositio 9.20. Ryhmdahomomorfismi on injektio, jos ja vain jos sen ydin on neutraa-
lialkion muodostama ryhmd.
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Todistus. Olkoon ¢: G — G’ ryhmé&homomorfismi. Proposition nojalla ryhmén G
neutraalialkio e kuvautuu ryhmén G’ neutraalialkioksi €/, joten jos ¢ on injektio, sen ydin

on {e}.

Oletetaan, ettd ker ¢ = {e}. Olkoot x,y € G siten, ettd ¢(z) = ¢(y). Talloin

dlay™") = o(x)(d(y)) " =€
Oletuksen nojalla zy~! = e, joten z = y. O]

Proposition mukaan ryhmahomomorfismin injektiivisyyden toteamiseksi riittaé
tarkastella neutraalialkion alkukuvaa.

9.5 Osajoukon virittama aliryhma

Olkoon G ryhmé ja olkoon B C G, B # (. Joukon B wirittimad aliryhmd (B) on

(By=({H<G:BCH}<G.

Joukko B on aliryhméan (B) virittdjajoukko ja joukon B alkiot ovat ryhmén (B) wirittajid.

Jos (B) = G, niin joukko B wvirittdd ryhmén G.

Proposition nojalla osajoukon B C G virittdmé aliryhmé on ryhmén G aliryhma.
Se on pienin joukon B sisaltava aliryhmé. Erityisesti, jos H < G, niin (H) = H. Seuraava
tulos kertoo, miten aliryhmé (B) voidaan esittdd konkreettisesti virittdjiensd avulla:

Propositio 9.21. Olkoon G ryhmd ja olkoon e € G neutraalialkio. Olkoon B C G, B # .
Olkoon B™' = {b™' : b € B}. Joukon B wirittimdi aliryhmd on

{605 b by by, by € B,k € N—{0}}
:{a1a2~~ak:al,aQ,...,akEBUB’l,kEN—{O}}. (9.1)

Todistus. Lausekkeen antama osajoukko B on ryhmén G aliryhmé Propositioiden
M(él) ja nojalla. Se sisdltda joukon B, joten (B) < B.

Proposition nojalla (B) on ryhmén G aliryhmé, joten erityisesti se on vakaa os-
ajoukko. Koska B C (B), niin jokaisen alkion b € B kdanteisalkio b~! kuuluu ryhméén
(B). Vakaudesta seuraa, ettd (B) sisiltda kaikki muotoa bi'b3' - --- - bif' olevat alkiot.
Siis B < (B). O

Proposition nojalla ryhméan G osajoukon B virittama aliryhma koostuu kaikista
niistd ryhméan G alkioista, jotka voidaan esittda sanoina joukon B alkioista ja niiden
kaanteisalkioista.

Esimerkki 9.22. (a) Z = (1) = (1) ja kaikilla ¢ € Z — {—1,1} pitee (q) < Z.
Toisaalta Z = (2,3) = (6,10,15), koska 1 = 3 —2 = 6 + 10 — 15, mutta aliryhmét
(2, (3),(6,10) = (2), (6,15) = (3) ja (10,15) = (5) ovat ryhméan (Z, +) aitoja aliryhmié.
(b) Kokeilemalla kaikki tapaukset on helppo ndhda, etté jokainen nollasta poikkeava alkio
virittdd ryhmén Z/5Z:

Z]5Z = (1 +5Z) = (2+5Z) = (3+5Z) = (4 +5Z) .
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Toisaalta Z/47 = (1 + 4Z) = (3 + 4Z) mutta (2 + 4Z) = {0 + 47,2 + 47} < Z,/AZ.

(c¢) Jos G on ryhmé, B C G ja b € B, niin ryhmén G neutraalialkio e voidaan esittaa
adrettoméan monen sanan avulla e = bb~! = b=1b = bbb~1b~! = - ... Tésti seuraa, etti jo-
kainen aliryhmén (B) alkio voidaan esittdé ddrettomén monella eri tavalla sanana joukon
B U B~ alkioista.

Seuraava tulos osoittaa, ettd ryhméassa G maaritelty ryhmahomomorfismi maaraytyy
yksikésitteisesti, jos sen arvot tunnetaan virittajajoukossa.

Propositio 9.23. Olkoon G = (S) ryhma. Olkoot ¢, : G — H ryhmdhomomorfismeja,
joille patee ¢|s = |s. Tdlldin ¢ = ).

Todistus. Harjoitustehtava [9.15] O

9.6 Syklinen ryhma

Tassa luvussa tarkastelemme yhden alkion virittamia ryhmié.
Ryhmé Z on syklinen ryhmd, jos on a € Z siten, ettd Z = (a).

Esimerkki 9.24. (a) Olkoon G multiplikatiivinen ryhma ja olkoon H additiivinen ryh-
ma. Aliryhmét
(a) ={a":neZ} <G
ja
by ={nb:neZ} <H
ovat alkioiden a € G ja b € H virittdmat sykliset aliryhmét

(b) Edella kasitellyista esimerkeistda muun muassa ryhméat Z = (1) ja Z/qZ = (1 + qZ),
q > 2, ovat syklisia.

(c) Ryhméan (R?, +) alkiot (0,1) ja (1,0) virittévit aliryhmén
<(07 1)7 (17 O)> = (227 +) < <R27 +).

(Z?,+) ei ole syklinen ryhmé: Jos a,b € Z — {0}, niin (—a,b) ¢ {(a,b)). Lisiksi alkioiden
(a,0) ja (0,a) virittdmét sykliset ryhmét sisiltyvit ryhmén (Z?, +) aitoihin aliryhmiin
Z x {0} ja {0} x Z, joten myoskaan tata muotoa olevat alkiot eivit voi yksindén virittaa
ryhméa (72, +).

(d) Kleinin neliryvhmé K, ei ole syklinen, koska jokaisen neutraalialkiosta poikkeavan
alkion virittdma syklinen ryhmé on isomorfinen ryhmén Z /27 kanssa.

Ryhmén G alkion g kertaluku ord g on sen virittdméan syklisen aliryhméan kertaluku,

ordg = #(g) -

8Katso potenssin ja monikerran maéritelméat luvusta
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Lemma 9.25. Olkoon G ryhmd, jonka neutraalialkio on e. Jos jollain k € N — {0} pdtee
k _ ..
9" =e, niin
ordg = min{k > 1: ¢* =e}.
Lisdksi
(9) ={e,0,9%,. ., g™}

Todistus. Harjoitustehtéva [9.20] O

Esimerkki 9.26. (a) Ryhméan K, kertaluku on 4 ja sen jokaisen neutraalialkiosta poik-
keavan alkion kertaluku on 2.

(b) Ryhmén Z/4Z kertaluku on 4 ja sen alkioiden 1+ 47 ja 3 4 4Z kertaluku on 4. Tadma
on helppo tarkastaa vaikka alkiolle 3 + 47Z:

23+ 47Z) = (34 4Z) + (3+47Z) = 6 + 4Z = 2 + 4Z,

33+4Z) = (24+4Z) + (3+4Z) =5+4Z =1+ 4Z
ja
A3+4Z) = (1+4Z)+ (3+4Z) = (4 +4Z) =0.

Kokonaislukujen additiivisella ryhmélla on sykliset aliryhmét
nZ = (n) ={kn:keZ},
n € N. Itse asiassa ryhmaélla (Z, +) ei ole mitddn muita aliryhmié:
Propositio 9.27. Kokonaislukujen ryhman 7 kaikki aliryhmdat ovat syklisid.

Todistus. Huomataan ensin, ettd {0} = 0Z ja Z = 1Z. Olkoon H < Z, H # {0} jokin
aliryhmé. Télloin H N (N — {0}) ei ole tyhja ja tédssd joukossa on pienin positiivinen
kokonaisluku ¢ € H. Erityisesti qZ < H.

Osoitamme, etta H = gZ. Jos on m € H — qZ, niin kokonaislukujen jakoyhtéilénﬂ
nojalla m = aq + b joillakin a,b € Z siten, ettd 1 < b < q. Nyt b € H, joten q ei olekaan
pienin positiivinen kokonaisluku ryhmassa H, mika on ristiriita. Siis H = ¢Z. O

Lause 9.28. (1) Syklinen ryhmd, jossa on vahintidn kaksi alkiota, on isomorfinen joko
ryhmdn 7 tai jonkin ryhmdn Z/qZ, q > 2 kanssa.

(2) Syklisen ryhmdan kuva ryhmdhomomorfismissa on syklinen.

(8) Jokainen syklisen ryhmdn aliryhmd on syklinen.

Todistus. (1) Olkoon C' = (g) syklinen ryhmé ja olkoon ¢: Z — C, ¢(n) = g". Lemman
[1.27 nojalla ¢ on homomorfismi ja ryhmén C maéritelmén nojalla se on surjektio. Jos ¢
on injektio, se on isomorfismi.

Jos ¢ ei ole injektio, niin Propositioiden [9.17], [9.20] ja [0.27] nojalla ker ¢ = ¢Z jollain
q > 2. Olkoon ¢: (Z/qZ,+) — C,

Uk +qZ) = p(k) = ¢*.

9Propositio
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Kuvaus ¢ on hyvin maéritelty: jos k = k' mod ¢, niin k — k' € qZ = ker ¢, joten
9" = oK) = o(K)o(k — ') = 6(k) = g"
koska ¢ on homomorfismi. Kuvaus ¢ on homomorfismi:

V(n+qZ)p(m+qZ) = g"g™ = ¢"" = Y((n +m) + ¢Z)
=¥((n+qZ) + (m +qZ)).

Homomorfismi 1) on surjektio, koska ¢ on surjektio. Proposition nojalla injektiivi-
syyden todistamiseen riittda osoittaa, ettd ker b = {0}. Oletetaan, etta ¥ (k+qZ) = e € G.
Talloin ¢(k) = e, joten k € ¢qZ ja k+qZ = qZ = 0. Siis C on isomorfinen dérellisen sykslien
ryhmén (Z/qZ,+) kanssa.

(2) Harjoitustehtava [0.25

(3) Viite todistettiin sykliselle ryhmélle Z Propositiossa Olkoon C' = (g) syklinen
ryhmé ja olkoon H < C. Olkoon ¢: Z — C' (surjektiivinen) homomorfismi ¢(n) = ¢"
kuten kohdan (1) todistuksessa. Proposition nojalla ¢~'(H) < Z, joten Proposition
nojalla ¢~*(H) = NZ jollain N € Z. Erityisesti ¢~!(H) on syklinen ryhmi. Koska
H = ¢(¢~(H)), viite seuraa kohdasta (2). O

Esimerkki 9.29. Syklisen ryhmén Z/127Z kaikki aliryhmét ovat syklisid. Sen aliryh-
makaavio on

7127
\<2 +127)
(3 +122)
(4 +122)
(6 + 122,)

N

{0}
Taméa on helppo tarkastaa, silla (1 + 12Z) = (5 + 12Z) = (7 + 12Z) = (11 + 127Z),
(24 127) = (10 + 12Z), (3 + 12Z) = (9 + 127)

Esimerkki 9.30. Ryhmaét Q ja R eivét ole syklisia. Reaaliluvuille tdma on selvaa, koska
syklinen ryhmé on Lauseen [9.28| seurauksena aina numeroituva. Rationaalilukujen tapaus
kéasitellaan harjoitustehtavéssa |9.22

Koska Lauseen mukaan kaikki keskenadn yhtd mahtavat sykliset ryhmat ovat iso-
morfisia keskenddn, voimme puhua abstraktista n alkion syklisestd ryhmdstd C,, ja ddret-
tomastd syklisesta ryhmdastd Coo. [

%Toisinaan syklisille ryhmille kaytetdan merkintéja 7, ja Zs.

12. tammikuuta 2026



9.7. Ryhmien sisdinen suora tulo 101

9.7 Ryhmien sisidinen suora tulo

Tassa luvussa tarkastelemme tilannetta, jossa voidaan osoittaa, etté jokin ryhma on iso-
morfinen kahden aliryhménsé suoran tulon kanssa["| Téma tieto helpottaa tarkasteltavan
ryhmén rakenteen hahmottamisessa. Sovellamme tatd menetelmaéd Esimerkissa ja
tunnistamme, ettd (Z/8Z)* = K.

Olkoon G ryhma ja olkoot S,T < G. Olkoon

ST ={st:seS, teT}.

Proposition [9.21] nojalla
SUT Cc ST C(SUT).

Jos ST on ryhma, niin se sisdltaa joukon S U T ja sisdltyy joukon S U T virittdmaan
aliryhméén, joten télloin ST = (SUT).

Lemma 9.31. Jos G on kommutatiivinen ryhmd ja S, T < G, niin ST = (SUT).
Todistus. Harjoitustehtéava [9.32 O]

Myo6hemmin todistettava Propositio [12.22] yleistda Lemman ryhmille, jotka eivét
ole véalttamattd kommutatiivisia ja antaa yleisemméan ehdon sille, ettd ST = (S UT).
Seuraava esimerkki osoittaa, ettda ST ei valttdméatta ole ryhma.

Esimerkki 9.32. Olkoot

()= ()=
{5 7))

Jos m,n # 0, niin
1+mn m\ (1 —m
n 1 \—n 1+ mn

ei ole joukossa UL, joten UL ei ole ryhmén SLy(R) aliryhmé. Vastaavalla tavalla nahd&én,
ettd LU ei ole ryhma.

Talloin

Olkoon G ryhma, jonka neutraalialkio on e, ja olkoot H,J < G aliryhmia. Jos HJ = G,
HnJ={e}jahj=jhkaikille h € H ja j € J, niin G on aliryhmien H ja J sisdinen
suora tulo.

Sisdisen suoran tulon maééritelméssi edellytetddn, ettd aliryhmien H ja J alkioille
patee hy = jh kaikille h € H ja j € J. Taméa ehto on usein kateva ilmaista sanallisesti,
seuraava maaritelméa antaa sanastoa:

Olkoon (A, x) laskutoimituksella varustettu joukko. Jos g,h € A ja g*xh = h* g, niin g
ja h kommutoivat.

10Gyoraa tuloa késiteltiin luvussa
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Propositio 9.33. Olkoon G aliryhmien H ja J sisdinen suora tulo. Talloin G = H x J.
Todistus. Harjoitustehtava [9.33] O

Esimerkki 9.34. Esimerkissi tarkasteltu ryhma G = (Z/8Z)* on aliryhmiensa
H = (34 8Z) ja J = (5 + 8Z) sisdinen suora tulo:

(3+8Z)? =(5+8Z2)*=1+8Z ja (3+8Z)(5+8Z)=T7+8Z,

joten
HJ = (3+4+8Z)(5+8Z) =(Z/82)" =G.

Lisaksi (3 + 8Z) N (5 + 8Z) = {1 + 8Z} ja sisdisen suoran tulon kommutoimisehto pétee,
koska (Z/8Z)* on kommutatiivinen.

Proposition nojalla (Z/8Z)* on siis isomorfinen suoran tulon (3 + 8Z) x (5 + 8Z)
kanssa. Huomaa, ettd aliryhmét (3 + 8Z) ja (5 + 8Z) ovat kahden alkion syklisi& ryhmié
Lemman nojalla. Siis Proposition nojalla (Z/8Z)* on Kleinin neliryhmaé.

9.8 Lukuteorian ryhmia

Seuraava pieni havainto antaa ryhméteoreettisen ndkokulman Bézoutin yhtéléénﬂ ja suu-
rimpaan yhteiseen tekijaan. Kahden kokonaisluvun suurin yhteinen tekija maéaaritellaédn
liitteessa [Al

Propositio 9.35. Olkoot m,n € Z — {0}. Jos (m,n) = (d), niin d = £syt(m,n).

Todistus. Luku d on lukujen m ja n yhteinen tekijé, koska m,n € (d). Olkoon e # 0
lukujen m ja n yhteinen tekiji. Koska d € (m,n), on luvut r, s, my,n; € Z siten, etté

d=rm+ sn=r(mie) + s(nie) = (rmy + snq)e,
joten e jakaa luvun d. Siis d on lukujen m ja n suurin yhteinen tekija. O]

Seuraus 9.36. Nollasta poikkeavilla kokonaisluvuilla on suurin yhteinen tekija.

Todistus. Olkoot m,n € Z — {0}. Proposition mukaan kaikki kokonaislukujen addi-
titvisen ryhmén aliryhmét ovat syklisié, joten on d € N siten, ettda (d) = (m,n). Viite
seuraa siis Propositiosta [9.35] O

Olkoot a,b € Z. Lukujen a ja b pienin yhteinen jaettava on
pyj(a,b) = min{c € N — {0} : a ja b ovat luvun c tekijoita} .

Seuraava helppo Lemma kuvailee pienimmaén yhteisen tekijén ryhméteoreettisesti.

Lemma 9.37. Olkoot a,b € Z. Tdlloin

aZ NVZ = pyj(a,b)Z.

HPropositio
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Todistus. Harjoitustehtava [9.34] O
Seuraava tulos yleistdd Esimerkissd [9.22)(b) tehdyn havainnon.
Propositio 9.38. Olkoon q > 2. Talloin Z./qZ = {(a + qZ), jos ja vain jos syt(a,q) = 1.
Todistus. Jos syt(a,q) = s > 2, niin ¢ = ks ja a = {s joillain k, ¢ € N. Siis
ka = kls = lq € qZ,

joten ryhméssé (a + gZ) on korkeintaan k < ¢ alkiota. Siis (a + ¢Z) < Z/qZ.

Oletetaan sitten, etta syt(a, q) = 1. Kaikki ryhmén Z/qZ alkiot ovat alkion 14 ¢Z mo-
nikertoja, joten a + ¢Z on virittajé, jos 1 + ¢Z € {(a + qZ). Bézout'n yhtélén@ nojalla on
x,y € Z siten, ettd axr + qy = 1 mutta tdmahan tarkoittaa, etta

r(a+qZ)=1—yq+qZ =1+ qZ. ]

Jos p on alkuluku, niin Propositiosta seuraa, ettd Z/pZ = (k + pZ) jokaisella
k#0 mod p.

Harjoitustehtavia

9.1. Oksoita, etta
St ={z€C:|z| =1} = {cos(t) +isin(t) : t € R}
on ryhmén C* aliryhma[|
9.2. Anna esimerkki surjektiivisesta homomorfismista f: (R, +) — (S, -)[1]
9.3. Olkoon g € N — {0}. Osoita, ettd joukko
Jy={weC:uw=1}

varustettuna kompleksilukujen kertolaskulla on ryhméan C* aliryhma.

Ryhmé
Qs = {£1, £i, +j, £k} <H~*

on kvaternioryhmda Qs[]

“Ryhmé H* on Hamiltonin kvaternioiden multiplikatiivinen ryhmaé, katso luku

9.4. Osoita, ettd Qg < H*.

Kolmeulotteinen Heisenbergin ryhmda on joukko

1 =z
H; = 0 1 cx,y,z €R
0 0

i SN

varustettuna matriisien kertolaskulla.

12Propositio
13Opiskele tarvittaessa kompleksiluvuista luvusta jonka tuloksia voi kaytta.
14 Joukon S' jilkimméinen esitysmuoto Harjoitustehtavissi saattaa auttaa.
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9.5. Osoita, ettd Hz on ryhma.
9.6. Osoita, ettd ryhmé Hj ei ole isomorfinen ryhmén (R3, +) kanssa[?]

Ryhmén G keskus on

Z(G) ={z € G: zg = gz kaikilla g € G}.

9.7. Olkoon G ryhma. Osoita, ettd Z(G) < G.
9.8. Olkoon X joukko ja olkoon zy € X. Olkoon

F={fe€Perm(X): f(xg) = x0}

Osoita, ettd F < Perm(X).
9.9. Todista Propositio [9.5

9.10. Todista Propositio [9.15][]

9.11. Olkoon T': SLy(Z) — SLy(Z), T(B) = TB, kuvaus, joka liitt44 matriisiin B sen
transpoosin. Olkoon inv: SLy(Z) — SLy(Z) kuvaus inv(B) = B~!. Mitkd kuvauksista T,
inv, T o inv ja inv oT" ovat homomorfismeja’

9.12. Olkoon
Bz{(% b):a,be@,a;«éO}.

a b
Osoita, ettd B < SLy(C) ja ettd kuvaus ¢ on homomorfismi. Mééritd homomorfismin ¢

ydin ja kuvajoukko.
9.13. Todista Propositio [9.17(2).

Q=

Olkoon ¢: B — C*,

Olkoon n > 2. Kertaluvun 4n disyklinen ryhmd on

Dicn:<<en 9i>zlcos7r+isinﬂ,j><HX.
0 en n n

9.14. Osoita, ettd # Dic,, = 4n. Osoita, ettd Dicy = Qs .

9.15. Todista Propositio [9.23][]
9.16. Olkoon G ryhmé ja olkoon H < G. Osoita, ettd (G — H) = G.

9.17. Osoita, ettd ryhmit Z/6Z ja Z/2Z x Z/3Z ovat isomorfisia. []

15Propositio
6Kertaa lineaarialgebraa! Cramerin sdéntd/kofaktorimatriisi.
I"Kertaa lineaarialgebraal

BPropositio auttaa.

Y0soita, ettda Z/27 x 7,/37 on syklinen ryhmi.
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9.18. Osoita, etta (Z/6Z)* ja (Z/10Z)* ovat syklisid ryhmié.
9.19. Osoita, ettd ryhmét (Z/9Z)* ja (Z/6Z,+) ovat isomorfisia.

9.20. Todista Lemma [0.25]

1+iv3

9.21. Maaritd luvun w = 5

aliryhméan (w)?

€ C* kertaluku. Mitkd kompleksiluvut muodostavat

9.22. Osoita, ettéd rationaalilukujen additiivinen ryhmaé ei ole Syklinen.m

9.23. Olkoon S C (Q,+) aérellinen joukko. Osoita, ettd joukon S virittdma aliryhmé
on syklinen ja ettd se on ryhmén (Q, +) aito aliryhmaé.

9.24. Osoita, etta rationaalilukujen multiplikatiivinen ryhméa Q> ei ole syklinen. E
9.25. Todista Lause [9.2§)2).
9.26. Maarita (30,42,70,105) < (Z,+).

9.27. Olkoon G ryhma ja olkoon H C G &aarellinen vakaa osajoukko, jossa on ainakin
yksi alkio?] Osoita, ettd H < G.

9.28. Olkoon G éarellinen ryhmé, jonka kertaluku on parillinen. Osoita, ettd ryhmaéssa
G on alkio, jonka kertaluku on 27

Kommutatiivisen ryhmén G torsioaliryhmd on

TorG={g€ G:ordg < co}.

9.29. Osoita, ettd Tor G on kommutatiivisen ryhmén G aliryhma.
9.30. Maidritd Tor(Z x (Z/5Z)).
9.31. Maarita matriisien A, B, C' € SLy(Z) kertaluvut, kun

() ol e )
Osoita, ettd joukko
{F € SLy(Z) : ord F < o0}
ei ole ryhmén SLy(Z) aliryhma.
9.32. Todista Lemma [0.31]%%
9.33. Todista Propositio [0.33
9.34. Todista Lemma [0.37

20Jos se olisi syklinen, niin .. ..

2! Aritmetiikan peruslause (Lause auttaa.
22Miten sykliset ryhmiit liittyvit tAhan?
2Tarkastele joukkoa P = {g € G : g~ # g}.
24Miksi riittdi osoittaa, ettd, ST on ryhmé?
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Luku 10

Symmetriset ryhmat

Tassa luvussa tarkastelemme &arellisten joukkojen permutaatioryhmia, joita kutsutaan
symmetrisiksi ryhmiksi. Symmetriset ryhmét antavat meille esimerkkejé darellisista ryh-
misté, jotka eivat ole kommutatiivisia. Niilla on paljon sovelluksia esimerkiksi geometrias-
sa ja kombinatoriikassa.

10.1 Symmetrinen ryhma 5,

Harjoitustehtavan nojalla kaikkien n alkion joukkojen permutaatioryhmatl] ovat iso-
morfisia keskenadn.

Adrellisen, n alkiosta koostuvan joukon permutaatioryhmé on symmetrinen ryhmd S,,.

Jokaisen n alkiosta koostuvan joukon permutaatioryhmaé sanotaan Harjoitustehtavian
nojalla ryhmaéksi S,, vastaavalla tavalla kuin voidaan puhua abstrakteista syklisisté
ryhmista C), ja Cw. Kun todistetaan véitteitd symmetriselle ryhmalle S,,, voidaan todis-
tuksessa tarkastella esimerkiksi joukon {1,2,...,n} permutaatioita.

Symmetriset ryhmét ovat tarkeitda matematiikan eri aloilla, esimerkiksi Galois'n teo-
riassa, joka késittelee muun muassa polynomien algebrallista ratkeavuutta. Symmetriset
ryhmat tulevat vastaan geometriassa tarkasteltaessa esimerkiksi sadnnollisten monikul-
mioiden ja monitahokkaiden symmetriaryhmia. Téstd saamme hieman esimakua luvussa

13.3l

Propositio 10.1. (1) Symmetrisen ryhmdn S,, kertaluku on n!.

(2) Jos m > 3, niin S, ei ole kommutatiivinen.

Todistus. (1) Harjoitustehtava.

(2) Tarkastellaan ensin tapaus n = 3, jonka avulla pdédttelemme yleisen tapauksen. Olkoon
o€ S; 0(1)=2,0(2) =1, 0(3) =3jaolkoon 7 € S3, 7(1) =1, 7(2) = 3, 7(3) = 2.
Talloin Too(1) =7(2) =3jacor(l) =0(l) =2, joten coT # T 0 0.

'Katso mééritelmé Esimerkin jalkeen.
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Edelld méaaritellyt permutaatiot on helppo laajentaa n alkion permutaatioiksi méaa-
rittelemalld kaikille n > 4 permutaatiot o,7 € S,, joille olf103) = 0, Tl23 = 7, ja
o(k) = k = 7(k) kaikille 4 < k < n. Naille permutaatioille piatee 6 o T # T o ¢ kuten
tapauksessa n = 3. O

Myohemmin Harjoitustehtavéassa [11.11] osoitetaan, ettéd ryhmat, joissa on korkeintaan
5 alkiota, ovat kommutatiivisia. Siis S3 on pienin ryhma, joka ei ole kommutatiivinen.

Permutaatioilla operointia voi havainnollistaa monilla eri tavoilla. Proposition
todistuksessa kayttdméamme tapa antaa permutaatio luettelemalla kaikkien alkioiden ku-
vautuminen ei ole kovin kétevaa. Seuraavat kaaviot havainnollistavat Proposition [10.]]
todistuksessa esiintyvien permutaatioiden o ja 7 yhdistettyja kuvauksia 7o o0 ja o o :

X b X
i 2><3 1><2 £

Yksinkertaistamista varten otamme kéiyttoon tiiviimman merkintatavan:

Olkoon {ay,as,...,a,} C {1,2,...,n} m alkion osajoukko, m > 2.

Sykli (ayas - - - ay,) € S, kuvaa alkion a; alkioksi a4 kaikilla ¢ € {1,2,...,m — 1}, alkion
a,, alkioksi a; ja on identtinen kuvaus osajoukon {ai,as, ..., a,} komplementissa.
Syklin (ayas - - - a,,) pituus on m.

Jos syklin pituus on m, se on m-sykli.

Jos syklin pituus on 2, niin se on wvaihto eli transpositio ja 2-sykli (i i + 1) on alkeisvaihto
eli alkeistranspositio.

Syklien o = (ajas---am) ja 7 = (biby - - - by), yhdistetty kuvaus on niiden tulo. Syklien
yvhdistettya kuvausta merkitédan

goT = <a1a2 e am)(b1b2 ce bk)
Syklit (ajag - - - an) ja (biby - - - by) ovat erilliset, jos

{CLl,CLQ,...,CLm}ﬂ{bl,bg,...,bk}:(Z).

Esimerkki 10.2. (a) Sama n-sykli on mahdollista kirjoittaa n eri tavalla, kun valitaan,
mika syklissa esiintyvista alkioista merkitdan syklimerkinnén ensimmaéiselle paikalle. Esi-
merkiksi (1234) = (2341) = (3412) = (4123).
(b) Syklien tulon laskeminen on hyvin mekaanista. Lasku aloitetaan oikeassa reunassa
olevasta syklista ja selvitetddn, miten siiné esiintyvét alkiot kuvautuvat tulossa esiintyvilla
sykleilld oikealta vasemmalle. Lopputuloksena saadaan syklien tulo esitettyné erillisten
syklien tulona, joka on yksinkertaisin tapa esittdd permutaatio.

Esimerkiksi permutaatio 7 = (372)(1234)(1348) kuvaa 1 — 3 — 4 — 4, koska (372)
pitaa alkion 4 paikallaan. Seuraavaksi lasketaan 4 — 8, 8 — 1 +— 2 +— 3 ja 3 — 4 — 1.
Koska paadyttiin takaisin alkioon 1 saadaan sykli (1483) osaksi permutaation 7 lauseketta.
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10.2. Symmetrisen ryhméin rakenteesta 109

Seuraavaksi lasketaan 2 — 3 — 7 ja 7 +— 2 ja saadaan toiseksi osaksi vaihto (27). Kaikki
permutaation 7 madrittelyssé esiintyvit luvut on késitelty, joten 7 = (1483)(27). Alkion
8 kuvautumista tarkasteltaessa on jatetty huomioimatta syklit (372) ja (1234), koska 8 ei
esiinny naiden syklien lausekkeissa. Talloinhan ndma syklit pitavat alkion 8 paikallaan.
Vastaavasti alkion 2 kuvautumista tarkastellessa on jatetty huomioimatta ensimmaéisen
syklin (1348) vaikutus, koska tadmé sykli pitda alkion 2 paikallaan.

Esimerkki 10.3. (a) Kaikki Proposition todistuksessa esintyvit kuvaukset ovat
sykleja: o = (12), 7 = (23), To o = (23)(12) = (132) ja 0 o7 = (12)(23) = (123). Loput
permutaatioryhmén Sz alkiot ovat vaihto (13) ja identtinen kuvaus.

(b) Kaikki syklin identtisestd kuvauksesta poikkeavat potenssit eivit vélttdmatta ole
sykleji. Esimerkiksi (1234)? = (1234)(1234) = (13)(24).
(c) (agag—1---ar)(araz---a;) = id kaikille aq, ..., a, € {1,2,...,n}, joten

(alaz e ak)_l = (akak—l “en a1> .

Lemma 10.4. Erilliset syklit kommutoivat.

Todistus. Jos o ja o’ ovat erillisid, ne ovat kahden toisiaan leikkaamattoman osajoukon
permutaatioita, joten vaite péatee selvésti. O

Jos f: X — X on kuvaus ja z € X, niin pisteen x rata (kuvauksella f) on

O(x) = 0p(x) = U{f"(@)}.

neN

Lemma 10.5. (1) Jokaisen m-syklin kertaluku on m.

(2) Jos 01,09, . ..,0% ovat erillisic permutaatioita ja o = o105 - - - o, niin ord o on lukujen
ordoy,ord oy, . ..,ord oy pienin yhteinen jaettava.

Todistus. (1) Olkoon o = (ajas - - - a.,). Pisteen a; rata

O(a1) = {a1,0(ay) = ay,0*(ay) = as,..., o™ ay) = am,0(an) = ai,...}
={ay,0(a1) = ay,0*(ay) = as,...,c™ ay) = an}
koostuu m pisteesta ja sama péatee kaikille muillekin pisteille ao, ..., a,,. Siis kuvaukset
of ke {2,3,...,m— 1}, eivit ole identtisii kuvauksia ja 0™ = id. Viite seuraa tist.

(2) o™ = id, jos ja vain jos ord o; | m kaikilla 1 < j < k. Véite seuraa Lemmasta[9.25] [

10.2 Symmetrisen ryhméan rakenteesta

Tarkastelemme seuraavaksi symmetrisen ryhmén S,, rakennetta.
Propositio 10.6. Jokainen sykli on vaihtojen tulo.

Todistus. Induktiolla on helppo osoittaa, etta
(arag - am) = (a1am)(a1am—-1) . . . (a1a2).
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Todistuksen idea sisiltyy seuraavaan kaavioon:

—_ —_
[\ [\

w

e~ e

Yksityiskohdat harjoitustehtavassa |10. O
Propositio 10.7. Jokainen vaihto on alkeisvaihtojen pariton tulo.

Todistus. Koska

(km) = (1k)(1m)(1k)
kaikilla k,m € {2,3,...,n}, k # m, riittdé osoittaa, ettd (1k) on alkeisvaihtojen pariton
tulo kaikilla k € {2,3,...,n}. Vaihto (12) on alkeellinen. Oletetaan, ettd (1 k¥ — 1) on
alkeisvaihtojen pariton tulo. Vaite seuraa, koska

(Ik)=1k—-1)(k—1k)(QEk-1). O
Propositio 10.8. Jokainen permutaatio T € S,, — {id} voidaan esittad erillisten syklien
tulona.
Todistus. Jos permutaatio T kiinnittdéd pisteet ay, as,...,ar € {1,2,...,n}, riittda todis-
taa viite permutaation 7 rajoittumalle joukkoon {1,2,...,n} — {ay,as,...,a;}. Riittda

siis tarkastella permutaatioita, jotka eivét kiinnita yhtaan pistetta.

Selvésti viite patee, kun n = 2. Oletetaan, ettd se pétee kaikilla Sy, kun £ < n — 1.
Olkoon 7 € S,,. Jos 7 on sykli ei ole mitdan todistettavaa, joten voimme olettaa, etta 7 ei
ole sykli. Pisteen 1 rata on

o(1) = {1,7(1),7%(1),...,7(1),...}.

Koska {1,...,n} on darellinen joukko, niin téytyy olla 7¢(1) = 77(1) joillain luonnollisilla
luvuilla ¢ < r. Valitaan luvut ¢ ja r niin, ettd ne ovat pienimmét mahdolliset. Koska 7
on bijektio, taytyy olla ¢ = 0, 77(1) = 1: Jos nimittdin ¢ > 1, niin

(7 (1) = 7 (1) = 71(1) = (7 (1)),

joten bijektiivisyyden nojalla 7771(1) = 7971(1), miké on ristiriidassa lukujen ¢ ja r mi-
nimaalisuuden kanssa. Tastda nahdaéan, etta

T‘ﬁ(l) = (1 7’(1) 72(1) . -7'7”_1(1)).

Induktio-oletuksen nojalla permutaation 7 rajoittuma osajoukkoon {1,2,...,n} — &(1)
on erillisten syklien tulo, joten véiite on todistettu. O]

Lause 10.9. (Alkeis)vaihdot virittdvit symmetrisen ryhmdan S, .

Todistus. Seuraa Propositioista [10.6] [10.7] ja [10.8 O
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10.3 Cayleyn lause

Osoitamme seuraavaksi, etta kaikki ryhmat voi halutessa ajatella permutaatioryhmien
aliryhminé.

Olkoon G ryhmé ja olkoon g € G. Kuvaus {,: G — G, {,(x) = gz kaikilla z € G, on
vasen siirto alkiolla g € G.

Lemma 10.10. Vasen siirto on bijektio.

Todistus. Olkoon g € G. Kuvaus ¢,: G — G on surjektio, koska £,(g7'z) = z kaikilla
z € G ja supistussdannon nojalla se on injektio: Jos y(z) = {,(y), niin gz = gy, joten
supistussaannon nojalla x = y. O]

Propositio 10.11. Ryhma G on isomorfinen ryhmdn Perm(G) jonkin aliryhmdn kanssa.

Todistus. Lemman [10.10| nojalla voidaan mééaritelld kuvaus p: G — Perm(G), p(g) = £,.
Kaikille x € G pétee

p(gh)(z) = len(x) = (gh)x = g(hx) = £, 0 by (x) = p(g) o p(h) ().

Siis p(gh) = p(g) o p(h), joten kuvaus p on homomorfismi.
Olkoot sitten g, h € G siten, ettd p(g) = p(h). Télloin

g ="Ly(e) = Lln(e) = h,
joten p on injektio ja téten p: G — p(G) < Perm(G) on isomorfismi. O

Lause 10.12 (Cayleyn lause). Olkoon G ddrellinen ryhmd, jonka kertaluku on n. Sym-
metriselld ryhmdlld S,, on aliryhmd, joka on isomorfinen ryhmdan G kanssa.

Todistus. Ryhmét S,, ja Perm(G) ovat isomorfisia, joten voimme késitelld ryhméaa Perm(G)
ja vaite seuraa Propositiosta [10.11 L]

Esimerkki 10.13. Olkoon G ryhmé. Propositiossa [10.10] méarittelimme ryhmén G us-
kollisen toiminnanf| joukolla G asettamalla p(g) = ,.
10.4 Permutaation merkki

Tassa luvussa osoitamme, ettd symmetrisen ryhmaéan alkiota, joka voidaan esittaa tulona
parillisesta maarasta vaihtoja, ei voi esittaa tulona parittomasta méaaréasta vaihtoja.

Permutaatio o € .S,, on parillinen, jos se on tulo parillisesta maérasta vaihtoja ja pariton,
jos se on tulo parittomasta maarasta vaihtoja. Permutaation o merkki on

—1, jos o on pariton
g(o) = : .
1, jos o on parillinen.

2Katso toiminnan médritelms sivulta
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Proposition nojalla permutaatio on tulo parillisesta méaarasta vaihtoja, jos ja vain
jos se on tulo parillisesta maarasta alkeisvaihtoja. Jos o on r vaihdon tulo, niin

e(o) =(=1)". (10.1)
Osoitetaan, ettd permutaation merkki on hyvin mééritelty kuvaus. Apuna kaytetdan

antisymmetrisia kuvauksia:

Olkoon X epétyhja joukko ja olkoon (V,+) additiivinen ryhmé. Kuvaus f: X™ — V on
antisymmetrinen, jos kaikille alkeisvaihdoille 7 € S,, patee

f(xT(1)7 Tr(2)y--- 7xT(n)) = _f(x)
On hyva tuntea ainakin yksi esimerkki antisymmetrisesta funktiosta, joka ei ole nol-
lafunktio. Seuraava tulos antaa téllaisen.

Lemma 10.14. Kuvaus f: Z" — Z,

floy="11 (zi—=y),

1<i<j<n
on antisymmetrinen. Lisdiksi f ei ole nollakuvaus.

Todistus. Olkoon 1 < iy < n ja olkoon 7 = (i ip + 1). Talloin

F@ry, @r@yy o Tem) = @i — @) [ (@i —ay) = = f(2),
1<i<j<n
{Z7]}¢{7/077/0+1}
silla
(1) jos {i,j} N {io,io + 1} = 0, niin permutaatio 7 ei vaikuta termiin z; — z;,

(2) josi < ig, niin molemmat termit x; —z;, ja x;—x;,41 esiintyvét tulossa ja permutaatio
vaihtaa ne keskendén ja

(3) jos j > ip + 1, niin molemmat termit x;, — z; ja x;+1 — x; esiintyvit tulossa ja
permutaatio vaihtaa ne keskenédan.

Lisdksi, kun muuttujan x komponentit ovat eri kokonaislukuja, f(z) # 0. O
Propositio 10.15. Olkoon f: X™ — V antisymmetrinen kuvaus. Tdalloin

f(ma(lﬁ To(2)y--- ;xa(n)) = (_1)7"]('(1,)7
jos o on r alkeisvaihdon tulo.

Todistus. Vaite pétee selvasti, kun r = 1. Oletetaan, ettd se patee, kun o on r — 1
alkeisvaihdon tulo. Olkoon ¢ = 7 ow permutaatio, joka on r alkeisvaihdon tulo siten, etté
w on r — 1 alkeisvaihdon tulo ja 7 on alkeisvaihto. Nyt soveltamalla antisymmetrisyyden
mééritelméd alkeisvaihdolla 7 ja pisteelld (To(1), To(2); - - -, To(m)) saadaan

f(xa(l)u Ts(2)s - - - wra(n)) = f(‘TT(w(l)7 LTr(w(2)s - - - 7I7’(w(n)))
= —f(®uq), Tw(2), - - - Tw

(n))
= (=) f(x) = (=1)" f(z) . O
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Proposition [10.7] avulla saadaan valittomasti

Seuraus 10.16. Jos f on antisymmetrinen, niin kaikille vaihdoille T € S,, patee

f(l'-r(l), Tr(2)y - - - ,wT(n)) = —f(:zc) . ]
Propositio 10.17. Permutaation merkki on hyvin madritelty.

Todistus. Oletetaan, ettd permutaatio o voidaan esittda r vaihdon tulona ja toisaalta s
vaihdon tulona ja osoitetaan, etta télloin r = s mod 2. Kuvaus f: Z" — Z,

floy="1] (zi—=5).

1<i<j<n

on Lemman [10.14] nojalla antisymmetrinen funktio. Proposition [10.15| nojalla

(=1)"f(z) = f(Zo)s To@)s - > Tom)) = (=1)° f(2),

kaikilla = € Z". Koska f ei ole nollafunktio, on x € Z", jolle f(z) # 0 ja saadaan
(—1)" = (—1)°. Siis = s mod 2. O

Lause 10.18. Merkkic: S, — {—1,1} on ainoa homomorfismi permutaatioryhmdsta S,
multiplikatiiviseen ryhmdadn {—1,1}, joka saa vaihdoilla arvon —1.

Todistus. Olkoot 01,09 € S,,. Oletetaan, ettd o on r vaihdon tulo ja ettd o5 on s vaihdon
tulo. Talloin o109 on r + s vaihdon tulo, joten yhtalon (10.1) nojalla

e(0102) = (1) = (=1)"(=1)" = &(01)e(02) -

Siis € on homomorfismi.

Maaritelman mukaan e(7) = —1 kaikille vaihdoille 7 € S,,, joten merkki toteuttaa ha-
lutun ehdon. Toisaalta Lauseen [10.9nojalla alkeisvaihdot virittdvat ryhmén S,,, joten Pro-
position nojalla homomorfismi f: S, — {—1, 1} méérdytyy, jos sen arvot tunnetaan
téssé virittajajoukossa. Siis € on ainoa homomorfismi, jolla on haluttu ominaisuus. O]

Esimerkki 10.19. Permutaatiot ja niiden merkit esiintyvéit lineaarialgebrassa determi-
nanttien yhteydessé: Neliomatriisin A = (a;;)!~, determinantti onE|

det A= > €(0)ao(1)10o@)2 " * Ao(n)n -
O'ESTL
Jos nelidmatriisien vektoriavaruus M, (R) samastetaan avaruudeksi (R")™ esittdmalla mat-
riisi A € M,,(R) sarakkeidensa tai riviensd avulla muodossa

wh
AZ(”l"'vn): ’

W,
niin determinantti on antisymmetrinen kuvaus det: (R")" — R:

We(1)
Wo(2)

det(vo(l) Vg(2) " " Ua(n)) = det = 6(0’) det A.

Wo(n)

3Katso esimerkiksi [Art], luku 1.6].

12. tammikuuta 2026



114 Symmetriset ryhméat

10.5 Alternoiva ryhmia A,

Parilliset permutaatiot muodostavat ryhmén S,, aliryhmén:
Olkoon n > 3. Merkkihomomorfismin ¢: S,, = {—1,1} ydin on alternoiva ryhmd A,,.

Alternoiva ryhmé koostuu parillisista permutaatioista. Se on symmetrisen ryhmén aito
aliryhmé, koska (12) € S,, — A, kaikille n > 2.

Propositio 10.20. Olkoon n > 2. Alternoivan ryhmdn A, kertaluku on n!/2.

Todistus. Olkoon 7 € S,, alkeisvaihto. Vasen siirto £, on bijektio joukkojen A, ja S, — A,
valilla. Siis #S,, = n! = 2#A,,. O

Esimerkki 10.21. (a) (12---n) € A,, jos ja vain jos n on pariton: (123) = (13)(12) on
parillinen permutaatio, (1234) = (14)(123) on parillisen permutaation ja vaihdon tulona
pariton permutaatio, (12345) = (15)(1234) on parittoman permutaation ja vaihdon tulona
parillinen permutaatio ja niin edelleen.

(b) Ryhméd Az = ((123)) < S5 on syklinen ryhméa A3 = C5 joten se on kommutatiivinen.
Sen sijaan ryhma A, ei ole kommutatiivinen, jos n > 4, koska esimerkiksi

(123)(234) = (12)(34) # (13)(24) = (234)(123).

(c) Permutaatiot (12)(34) ja (123) = (13)(12) ovat parillisia, joten ((12)(34), (123)) < Aj.
Itse asiassa Ay = ((12)(34), (123)) < Sy. Tamén voi tarkastaa laskemalla

(12)(34)(123) = (243),
(123)(12)(34) = (134),
(12)(34)(123)(12)(34) = (142)

ja
(123)(241) = (13)(24),
(13)(24)(12)(34) = (14)(23).

Koska ryhma ((12)(34), (123)) sisdltaa liséksi identtisen kuvauksen ja edelld lueteltujen
neljan 3-syklin neliot, saadaan kaikki ryhmén A4 yhteensd 12 alkiota. Palaamme tahén
esimerkkiin Esimerkissa TT.12

Propositio 10.22. Olkoon n > 3. Alternoiva ryhmda A, on 3-syklien virittamd.

Todistus. Jokainen ryhmén A,, alkio on tulo parillisesta méiarasta vaihtoja. Kahden vaih-
don tuloille patee (zy)(x2) = (x2y) ja (zy)(2t) = (ztz)(zyz), jos x,y, z,t € {1,2,...,n}ja
#{x,y,z,t} = 4. Siis parillisen monen vaihdon tulo voidaan kirjoittaa 3-syklien tulo-

na. O
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Harjoitustehtavia
10.1. Olkoot X ja Y epatyhjid joukkoja ja olkoon f: X — Y bijektio. Osoita, etté
permutaatioryhmét Perm(X) ja Perm(Y") ovat isomorfisia.

10.2. Osoita, ettd permutaatioryhmén S,, kertaluku on n!.

10.3. Kirjoita permutaatiot (123)(24) ja (1234)(235) ja kaavioita

ja

vastaavat permutaatiot erillisten syklien tuloina.

10.4. Olkoon o: {1,2,...,7} — {1,2,...,7} permutaatio, jolle pétee
o(1)=3, 0(2)=5, 0(3)=7, oc4)=1, o(5)=6, 0(6)=2, o(7)=4.

Kirjoita permutaatio o erillisten syklien tulona.

10.5. Olkoot a = (13457) ja 8 = (2645). Maérita permutaatio o' 37! erillisten syklien
tulona. M&éritd permutaation o' 37! kertaluku.

10.6. Mééaritd permutaatio 7 = (13428)(2648735) erillisten syklien tulona ja méérita
sen kertaluku.

10.7. Taydennéa Proposition todistus induktiotodistukseksi.
10.8. Osoita, ettd S3 = ((12), (23))
10.9. Olkoon n > 3 ja olkoot «,, = (123---n) ja B = (123). Méérita permutaatiot

an(122)a,t ja B la,(122)a,'p
jokaiselle 3 < x < n.

10.10. Maéarita permutaatiot
o (1y2)(12z)(12y) kaikille z,y > 3, z #y ja
o (lzt)(lyz)(1tz) kaikille z,y,t, 2 > 1, kun #{z,y,t,z} = 4.
10.11. Osoita, ettd jokaiselle parittomalle n > 5 pétee A, = ((123), (123---n)).[]

10.12. Osoita, ettd S3 = SLy(Z/2Z)[]

10.13. Olkoon n > 3. Olkoot a,b,c,d,e, f € {1,2,...,n} siten, ettd a # b # ¢ # a ja
d # e # f # d. Osoita, ettd on o € A, jolle pitee {c(a),(b),o(c)} = {d, e, f} ]
4Kaytd tehtdvien m ja tuloksia ja Propositiota

STarkastele ryhmén SLy(Z/2Z) lineaarista toimintaa vektoriavaruudessa (Z/27Z)2.
6Tata teknistd tulosta kiytetddn Harjoitustehtivissa m
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10.14. Olkoon o € As — {id}. Osoita, ettd o on 3-sykli, 5-sykli tai kahden erillisen
vaihdon tulo.

10.15. Olkoot a,b,c,d,e € {1,2,3,4,5} siten, etta {a,b,c,d,e} = {1,2,3,4,5}. Méarita
seuraavat permutaatiot erillisten syklien tuloina:

ab)(cd)(abe)(cd)(ab),
acb)(abede)(abe),

1
2

4) (aeb)(ab)(cd)(abe) ja

1) (
(2) (ac
(3) (abede)(abdec)™,
(4) (
(5) (ab)(cd)(ae)(cd).

5

Olkoon k € N —{0}. Olkoot 2 < ny <ny < --- < ny jaolkoot 01,09,...,0, € S, erillisid
syklejé siten, etta o; on n;-sykli jokaisella 1 < j < k. Permutaation o = 0103 - - - 0}, sykli-
tyyppi on (ny,ng, ..., ng).

10.16. Osoita, ettd permutaatioilla o,7 € S, on sama syklityyppi, jos ja vain jos on
w € S, siten, ettd o = wrw™!.

10.17. Olkoon o: {1,2,...,8} — {1,2,...,8} permutaatio, jolle pitee
o(1)=3, 0(2)=6, 0(3)=7, 0(4)=8, d(b)=2, 0(6)=5, o(7)=4, o8 =1.

Kirjoita permutaatio o erillisten syklien tulona. Maaritd permutaation o kertaluku.

10.18. Maérita permutaatio 7 = (13579)(34259876) ! erillisten syklien tulona. M&éarita
permutaation 7 kertaluku. Onko 7 parillinen vai pariton permutaatio?

10.19. Maéritd permutaatio 7 = (148352)(35127) erillisten syklien tulona. Maarita per-
mutaation 7 kertaluku. Onko 7 parillinen vai pariton permutaatio?

10.20. Symmetriselld ryhmélla Sy on nelja Kleinin 4-ryhmén K4 kanssa isomorfista
aliryhméad. Mitkd ne ovat ]

"Yksi 16ytyy Proposition [10.11|todistuksessa kiytetylld homomorfismilla p, kun G = K. Toiset kolme
voi 16ytaéd esimerkiksi Lemman ja Proposition avulla.
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Luku 11

Lagrangen lause

Téssa luvussa tarkastelemme ryhmén ja sen aliryhmien suhdetta. Otamme kayttoon lu-
vussa esitellyt osituksen ja ekvivalenssirelaation késitteet. Aliryhmd H < G maéraa
ryhmén G osituksen keskendén yhta mahtavilla joukoilla. Taméa ositus antaa aliryhman
indeksin kasitteen, joka osoittautuu hyodylliseksi.

11.1 Sivuluokat

Olkoon G ryhmé ja olkoon H < G. Alkion g € G vasen sivuluokka (aliryhmén H suhteen)
on

gH ={gh:h e H}

ja sen oikea sivuluokka (aliryhmén H suhteen) on
Hg={hg:he H}.

Aliryhmén H wvasempien sivuluokkien joukko ryhmaéssa G on
G/H ={gH : g€ G}

ja oikeiden sivuluokkien joukko on’|

H\G={Hg:gecGY}.

“Merkintdd ei pidé sekoittaa joukkojen erotukseen.

Jos kommutatiivisen ryhmén G laskutoimitusta merkitaan additiivisesti, niin aliryhmén
H < G sivuluokkia merkitdén x + H (tai H + z).

Esimerkki 11.1. Aliryhmén ¢Z < Z sivuluokkien joukko on kongruenssiluokkien jouk-
ko (modulo ¢). Taméa on selitys sille, miksi kongruenssiluokkien joukolle kaytetdan mer-
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118 Lagrangen lause

kintad Z/qZ. Aliryhméan ¢Z < Z sivuluokille pétee
n+qL={n+kq:keZ={kq+n:keZ}=qZ+n.

Edella tehty havainto vasemmista ja oikeista sivuluokista yleistyy kaikille kommuta-
tiivisille ryhmille:

Lemma 11.2. Olkoon G kommutatiivinen ryhmd. Tdlléin jokaiselle x € G ja jokaiselle
H < G pdtee tH = Hz. O

Esimerkki 11.3. Olkoon H = ((12)) < Ss. Aliryhmén H vasemmat sivuluokat ovat

H = (12)H = {id, (12)},
(123)H = (13)H = {(123), (13)} ja
(132)H = (23)H = {(132), (23)}

Sen oikeat sivuluokat ovat

Harjoitustehtavisséa ja [L1.10] tarkasteltava kvaternioryhméa (Js on esimerkki ryh-
masta, joka ei ole kommutatiivinen, vaikka sen kaikkien aliryhmien vasemmat ja oikeat
sivuluokat ovat samoja joukkoja.

Propositio 11.4. Olkoon G ryhmd ja olkoon H < G. Talloin
(1) xH = yH, jos ja vain jos y~‘x € H. Erityisesti tH = H, jos ja vain jos x € H.
(2) Hx = Hy, jos ja vain jos xy~' € H. Erityisesti Hx = H, jos ja vain jos v € H.

Todistus. Harjoitustehtéava [11.2] O

Propositio 11.5. Olkoon G ryhmd ja olkoon H < G. Tdlloin joukot H, gH ja Hg ovat
yhti mahtavid kaikilla g € G.

Todistus. Lemman [10.10| nojalla vasen siirto /,: G — G on bijektio. Vasemman sivuluo-
kan maédritelméan nojalla ¢,(H) = xH. Vastaavasti oikea siirto r,: G — G, joka mééritel-
laan asettamalla r,.(h) = hz kaikille z € G, antaa bijektion joukkojen H ja Hx vilille. [

11.2 Sivuluokkien maaraama ositus

Kongruenssiluokat modulo ¢ muodostavat kokonaislukujen ryhmén (Z,+) osituksen ja
Esimerkissi aliryhmin H = ((12)) vasemmat ja oikeat sivuluokat méadrdavit kaksi
ryhmén G = S5 ositusta joukoilla, joissa jokaisessa on 2 alkiota. Seuraava tulos yleistaa
tdman havainnon.

LJoukot A ja B ovat yhtd mahtavia, jos on bijektio f: A — B.
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11.3. Aliryhmén indeksi ja Lagrangen lause 119

Propositio 11.6. Olkoon G ryhmd ja olkoon H sen aito aliryhmda. Tdlloin

(1) Vasemmat sivuluokat muodostavat ryhmdn G osituksen. Erityisesti, jos x,y € G, niin
xH = yH, jos ja vain jos x € yH.
(2) Oikeat sivuluokat muodostavat ryhmdn G osituksen. Erityisesti, jos z,y € G, niin
Hzx = Hy, jos ja vain jos x € Hy.

Todistus. (1) Vasempien sivuluokkien yhdiste on koko G silla x € xH kaikille z € G.
Jos tH NyH # (), niin on h,h’ € H, joille xh = yh'. Mutta talloin, jos ¢ € xH, niin
g = xzh” jollain h” € H, joten g = zh” = yhW'h™'h" € yH. Vastaava péiittely antaa
inkluusion toiseen suuntaan. Siis vasemmat sivuluokat muodostavat osituksen.

Viite (2) todistetaan samaan tapaan. O

Olkoon H < G. Aliryhmdn H mddrddimdt relaatiot Y ja ~ maéaaritelladn asettamalla
« Ty, jos ja vain jos v~y € H ja
e z~y, jos ja vain jos yr—t e H.
Propositio 11.7. Olkoon H < G. Aliryhman H mddradmdt relaatiot ovat ekvivalenssi-

relaatioita joukossa G.

Todistus. Proposition nojalla relaatio ~ on aliryhmén vasempien sivuluokkien maéa-

raama relaatio, joka on Propositioiden ja nojalla ekvivalenssirelaatio. Vastaavasti

relaatio ~ on oikeiden sivuluokkien maaraamaéa ekvivalenssirelaatio. O
(0]

11.3 Aliryhméan indeksi ja Lagrangen lause

Sivuluokkien joukon koko osoittautuu kéyttokelpoiseksi ryhmén ja sen aliryhmén suhdetta
kuvaavaksi késitteeksi.

Propositio 11.8. Olkoon G ryhmd ja olkoon H < G. Joukot G/H ja H\G ovat yhtd
mahtavia.

Todistus. Harjoitustehtéava O

Aliryhmén H < G indeksi o]

(G- H] = #(G/H) = #(H\G).

“Proposition nojalla aliryvhmén H indeksi voidaan mééritelld kumman tahansa sivuluokkien
joukon avulla.

Esimerkki 11.9. (a) [Z: ¢Z] = q.
(b) Aliryhmén Cy x {e} indeksi ryhméssia Cy x Cy on

[Cg X 02 : CQ X {6}] = 2.
(c) [R?: R x {0}] = oo, silld sivuluokat ovat (0,a) + R x {0} =R x {a}, a € R.
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Lause 11.10 (Lagrangen lause). Olkoon G ddrellinen ryhmd ja olkoon H < G. Tdlldin

#G
G:H|=-—.
G =1
Todistus. Proposition nojalla jokaisessa sivuluokassa on #H alkiota. Proposition
nojalla sivuluokat osittavat ryhman G. Siis

#G = #(G/H)#H = #(H\G)#H ,
mista vaite seuraa. [

Lagrangen lauseen mukaan &arellisen ryhméan G aliryhmien indeksit ja kertaluvut ovat
ryhméan kertaluvun tekijoita. Esimerkissa naimme, ettd ryhmalla Z /127 on kaikkien
mahdollisten indeksien 1, 2, 3, 6 ja 12 aliryhmat.

Esimerkki 11.11. Ryhmaén S3 kertaluku on 6, joten sen aliryhmien mahdolliset kertalu-
vut (ja indeksit) ovat 1, 2, 3 ja 6. Kolmen alkion permutaatioiden ryhmén aliryhmérakenne
on yksinkertainen ja sité voi havainnollistaa aliryhmékaaviolla, jossa I = {id}.

N

((123))

S3

((12)) ((13)) ((23))
\1

Siis symmetriselld ryhmaélla S3 on jokaista Lagrangen lauseen sallimaa kokoa olevia ali-
ryhmia.

Esimerkki 11.12. Alternoivan ryhmén A, kertaluku on 12. Siis sen aidossa aliryhmaéssé
voi Lagrangen lauseen mukaan olla korkeintaan 6 alkiota. Esimerkissa[10.21](c) osoitimme,
ettd Ag = ((12)(34), (123)). Voimme paatella saman tuloksen myos néin: Koska aliryhma
((12)(34), (123)) sisaltaa 3-syklit (123), (243) ja (134) ja niiden kaikki potenssit, niin
siind on ainakin 8 > 6 = % alkiota. Lagrangen lauseen nojalla aliryhmé on koko Ajy.

Esimerkissi osoitetaan, ettd ryhmalld A, ei ole kuuden alkion aliryhméa vaikka
Lagrangen lauseen mukaan 6 on mahdollinen aliryhmén kertaluku.

Seuraus 11.13. Jos G on ddrellinen ryhmd ja g € G, niin ord g | #G.

Todistus. Alkio g € G virittéé oletuksen nojalla aliryhmén (g), jonka kertaluku on ord g.
Lagrangen lauseen nojalla ord g = #(g) | #G. O]

Seuraus 11.14. Jos ryhmdn G kertaluku on alkuluku, niin G on syklinen.

Todistus. Olkoon g € G alkio, joka ei ole neutraalialkio. Talloin ordg > 1 ja ordg on
kertaluvun #G, joten ord g = #G. Siis (g) = G. ]

Propositio 11.15. Olkoon G ddrellinen ryhmd. Télloin g#¢ = e jokaiselle g € G.
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Todistus. Seurauksen [11.13| mukaan #G = kord g jollain k € N, joten potenssisaantojen
ja Lemman nojalla

GG = ghords — (gordayk — ok — ¢ 0
Seuraus 11.16. Olkoon G ddrellinen ryhmd ja olkoon ¢: G — G’ ryhmdahomomorfismi.
Tdlloin
#0(G) =[G : ker ¢]
ja
#G = # ker ¢ #0(G).

Todistus. Proposition nojalla z ker ¢ = yker ¢, jos ja vain jos y~'x € ker ¢. Tama
pétee, jos ja vain jos ¢(z) = ¢(y). Siis kuvaus x ker ¢ — ¢(x) on bijektio joukosta G/ ker ¢
joukkoon ¢(G). Siis #¢(G) = [G : ker ¢] ja toinen véite seuraa Lagrangen lauseesta. [

Propositio 11.17. Olkoon G ryhmd. Olkoot K < H < G siten, etti |G : H| < oo ja
[H : K| < oc0. Tdlloin
(G:K|=|G:H|H: K]

Todistus. Harjoitustehtéavat ja[11.9 O

11.4 Lagrangen lauseen sovelluksia lukuteoriaan

Tassa luvussa sovellamme Lagrangen lausetta lukuteoriaan.

Lause 11.18 (Fermat'n pieni lause). Olkoon p alkuluku. Kaikille a € Z pdtee a? = a
mod p.

Todistus. Proposition nojalla ryhmaéssa (Z/pZ)* on p — 1 alkiota. Proposition [11.15
nojalla (a + pZ)P~' = 1 + pZ, joten

a? +pZ = (a + pZ)? = a+ pZ.

Siis a? — a € pZ kaikille a ¢ pZ. Jos a € pZ, niin p | a, joten p | a? — a. Siis a? — a € pZ
kaikille a € Z. O

Lemma 11.19. Jos p on alkuluku, p = 3 mod 4, niin —1 + pZ ei ole minkddn alkion
nelié ryhmdssd (Z./pZ)* |

Todistus. Jos —1+pZ = (a+pZ)?, niin ord(a+pZ) = 4, koska (a+pZ)* = 1. Seurauksen
11.13|nojalla #(Z/pZ)* =0 mod 4 mutta oletuksen nojalla #(Z/pZ)* =2 mod 4. O

*Propositio 11.20.[ Olkoon p pariton alkuluku. Téllsin X*+ 1 € (Z/pZ)[X] on jaoton
polynomi, jos ja vain jos p = 3 mod 4.

Todistus. Proposition nojalla X% + 1 € (Z/pZ)[X] on jaoton, jos ja vain jos silld
ei ole juurta. Lemman [11.19]sill4 ei ole juurta, jos p = 3 mod 4. Harjoitustehtévén [8.19]
polynomilla X% + 1 € (Z/pZ)[X] on juuri, jos p = 1 mod 4. O

2Lukuteorian kielelld ilmaistuna: —1 ei ole neliénjiinnés mod p, kun p = 3 mod 4.
3Tama tulos liittyy kurssin RENKAAT JA KUNNAT siséltoon. Katso luku
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Harjoitustehtavia

11.1. Osoita, ettd R, < C* ja méérita aliryhman R, sivuluokat ryhméssd C*. Piirréd
kuva, joka havainnollistaa sivuluokkien maardamaa ositusta.

11.2. Todista Propositio [11.4]

11.3. Olkoon G ryhma ja olkoon H < (. Osoita, etta tekijajoukkojen vélinen kuvaus
b:G/H — H\G, b(aH) = Ha™! on bijektio.

11.4. Olkoon G ryhma ja olkoon H < G. Olkoon p: G — Perm(G/H),

p(x)(gH) = (zg)H
kaikilla gH € G//H. Osoita, ettd p on homomorfismi ja etta kerp < H.
11.5. Olkoot ¢, d € Z siten, ettd ¢ jakaa luvun d. Laske indeksi [¢Z : dZ)].
11.6. Maarita kaikki ryhmien (Z/6Z,+) ja (Z/7Z,+) aliryhmat.
11.7. Piirrd ryhmén Z /27 x Z/6Z aliryhmékaavio.

11.8. Olkoon G éaérellinen ryhmaé. Olkoot K < H < (. Osoita Lagrangen lauseen avulla,
ettd indekseille patee:

|G: K]=|G: H|H:K].
11.9. Todista Propositio [11.17[]
11.10. Piirrd ryhmén Qg aliryhmékaavio[’

11.11. Olkoon G ryhmaé, jossa on korkeintaan 5 alkiota. Osoita, ettd G on kommutatii-
vinen ]

11.12. Maarita aliryhma ((123), (124)) < A,.
11.13. Osoita, ettd Sy = ((12), (1234))[]
*11.14. Olkoon p alkuluku. Osoita, ettd kunta Z/pZ ei ole algebrallisesti suljettuﬁ

4T4ssé ei oleteta, ettd G on direllinen, joten Lagrangen lausetta ei voi kiyttia.
5Katso Harjoitustehtévi

SKertaluku 4 teettiif eniten tyoté.

"Kéytd Lagrangen lausetta.

8Katso luku Mountako juurta polynomilla X? — X + 1 € (Z/pZ)[X] on?
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Luku 12

Normaalit aliryhmat ja tekijaryhmat

Tassa luvussa tarkastelemme aliryhmié, joiden suhteen muodostettujen sivuluokkien jou-
kossa on luonnollinen tekijaryhmén rakenne.

12.1 Normaalit aliryhmat

Ryhmén G aliryhm& H on normaali aliryhmd, jos gH = Hg kaikille g € G. Jos H on
ryhmén G normaali aliryvhmé, merkitddn H < G. Aitoa normaalia aliryhmaa merkitdan
H<dG.

Lemma 12.1. Olkoon K < G joa K < H < G. Tdilloin K < H. O

Esimerkki 12.2. (a) Ryhma4 itse ja neutraalialkion muodostama aliryhmé ovat nor-
maaleja aliryhmia.

(b) Jos G on kommutatiivinen ryhmé, niin Lemman mukaan sen kaikki aliryhmat
ovat normaaleja. Erityisesti ¢Z <1 (Z,+) ja R x {0} < (R?, +).

(c) Esimerkisséi havaitsimme, ettd symmetrisen ryhmén Sy aliryhmé H = ((12)) < S
ei ole normaali, koska esimerkiksi (13)H # H(13).

Joissain tilanteissa normaalius on helppo tarkastaa:
Propositio 12.3. Jos |G : H] =2, niin H < G.
Todistus. Vasemmat sivuluokat ovat H ja G — H, samoin oikeat sivuluokat. [

Esimerkki 12.4. (a) Olkoon n > 3. Lagrangen lauseen nojalla [S, : A,] = 2, joten
Proposition nojalla A,, < S, kaikilla n > 3. Erityisesti C5 = ((123)) = A3 < Ss.

(b) Esimerkin [12.2{(c) nojalla Proposition viite ei pédde indeksille 3 sellaisenaan.
Harjoitustehtavassa [12.19] todistetaan yleistys, joka vaatii lisdehdon.

Usein on kateva kayttaa seuraavaa normaalin aliryhman karakterisointia:
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124 Normaalit aliryhmét ja tekijaryhmaét

Propositio 12.5. Ryhmdin G aliryhmd H on normaali, jos ja vain jos ghg™' € H kaikilla
h € H ja kaikilla g € G

Todistus. Jos H on normaali, niin gH = Hg kaikille g € G. Siis jokaiselle g € Gjah € H
péitee gh = h/g jollain I/ € H, joten ghg™' = W € H.

Jos taas kaikille g € G ja h € H pitee ghg™! € H, niin jokaiselle g € G ja h € H
on h' € H, jolle ghg~* = K. Siis gh = h'g € Hyg, joten gH C Hg kaikille g € G. Samoin
saadaan hg™' € ¢g7'H, joten Hg~' C g 'H kaikille ¢ € G. Koska jokainen ryhmin G
alkio on jonkin alkion kdanteisalkio, véite on todistettu. 0

Esimerkki 12.6. Jos a € A, < S,, on parillinen permutaatio ja § € S,, on permutaa-
tio, niin faB~! on parillinen permutaatio. Siis Propositio antaa toisen todistuksen
sille, ettd A,, < S,.

Sovellamme Propositiota[12.5] kun osoitamme, ettd normaalit aliryhmét sopivat hyvin
yhteen homomorfismien kanssa.
Propositio 12.7. Olkoon ¢: G — G' ryhmdhomomorfismi.
(1) Olkoon H < G. Tdlloin ¢(H) < ¢(G) = Im ¢.
(2) Olkoon H' < G'. Tilloin ¢~ (H') < G.
Todistus. (1) Proposition nojalla ¢(H) < ¢(G). Olkoot ¢’ € ¢(H) ja g € ¢(G).
Talloin on a € H ja g € G, joille ' = ¢(a) ja ¢ = ¢(g). Nyt

gd'(g) " = dlg9)p(a)d(g)™! = dlgag™) € o(H),

koska gag~! € H. Viite seuraa Proposition nojalla.
(2) Harjoitustehtava [12.1] O

Propositiosta [12.7] saadaan tarkeané erikoistapauksena

Seuraus 12.8. Ryhmdhomomorfismin ydin on normaali aliryhmd. [

Esimerkki 12.9. (a) A, =kere < S,.
(b) SL,(R) = ker det \GLn(R) < GL,(R).

(¢) SO(n) = ker det \O(n) < 0(n)

Proposition kohdassa (1) on syyta pitdd mielessé, ettd ¢(H) ei vilttamatta ole
ryhmén G’ normaali aliryvhmé: Jos H < G on aliryhmé, joka ei ole normaali ja jos
¢: H — G on inkluusiokuvaus, ei tietenkéén ¢(H) = H ole ryhmén G normaali aliryhma.

12.2 Tekijaryhmat

Propositioiden ja 2.3l mukaan ryhmén G normaalin aliryhméan H vasemmat sivuluo-
kat maaraavat ekvivalenssirelaation, jonka ekvivalenssiluokat ovat vasemmat sivuluokat
ja vastaavasti oikeat sivuluokat maardavit ekvivalenssirelaation, jonka ekvivalenssiluo-
kat ovat oikeat sivuluokat. Koska normaalin aliryhméan H vasemmat ja oikeat sivuluo-
kat maaraavat saman osituksen ryhmélle G, ne maaraavit saman ekvivalenssirelaation

~N=~v=nrv,

A4 o
Seuraava tulos on jatkon kannalta oleellinen:
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Lause 12.10. Olkoon G ryhmd ja olkoon H < G. Tdlloin sivuluokkien mddraidmd ekvi-
valenssirelaatio on yhteensopiva ryhmdn G laskutoimituksen kanssa.

Todistus. Olkoot x,z",y,y € G siten, ettd x ~ 2’ ja y ~ y/. Télloin siis 2/ € =H ja
Yy € yH, joten on hy, he € H, joille 2’ = xhy, y' = yhs. Koska H on normaali, on hy € H,
jolle hyy = yhg. Siis

'y = xhiyhy = xyhshy € vyH ,

joten xy ~ 2’y ja laskutoimitus on yhteensopiva sivuluokkien maardaméan ekvivalenssire-
laation kanssa. O

Jos G on multiplikatiivinen ryhmé ja N < G, niin tekijalaskutoimitus on
(aH)(bH) = abH

kaikille a,b € G. Additiivisen ryhmén (A, +) alkion = sivuluokalle kéytetdan merkintaa
x + H ja tekijalaskutoimitus on siis téalla merkintétavalla

(x+H)+(y+H)=(x+y) +H
kaikille z,y € A.

Seuraus 12.11. Jos H < G, niin tekijajoukko G /H varustettuna tekijalaskutoimituksella
on ryhmd. Tekijiryhmdan G/H neutraalialkio on H.

Todistus. Tekijalaskutoimituksen assosiatiivisuus osoitettiin Propositiossa[2.8| Koska luon-
nollinen homomorfismi on surjektiivinen, niin Proposition nojalla se kuvaa ryhman G
neutraalialkion tekijilaskutoimituksen neutraalialkioksi, joka siis on H € G/H. Tekijé-
laskutoimituksen méaritelman mukaan kaikille gH € G/H patee (¢H)(g~*H) = H, joten
laskutoimituksella varustetun joukon G/H jokaisella alkiolla on kaanteisalkio. [

Ryhmé G/H on normaalin aliryhmén H maarddma ryhmén G tekijaryhmd.
Esimerkki 12.12. Ryhmad Z/qZ on kongruenssia mod ¢ vastaava kokonaislukujen ryh-
man tekijaryhma.

Propositio 12.13. Olkoon G ryhma ja olkoon H < G. Jos ryhmdn G laskutoimitus on
yhteensopiva ekvivalenssirelaation ~ tai ~ kanssa, niin H on normaali.

v o

Todistus. Oletetaan, etta laskutoimitus on yhteensopiva ekvivalenssirelaation ~ kanssa.

Kuten Seurauksen[12.11|todistuksessa, G/H varustettuna tekijélaskutoimituksella on ryh-
mé, jonka neutraalialkio on H. Luonnollinen homomorfismi 7: G — G/H on ryhmého-
momorfismi ja sen ydin on H < . Proposition nojalla A on normaali.

Toinen tapaus todistetaan samaan tapaan. ]

Sykliset ryhmét kayttéytyvat hyvin tekijaryhmienkin suhteen
Propositio 12.14. Jokainen syklisen ryhmdan tekijiryhmd on syklinen.

Todistus. Olkoon G = (v) syklinen ryhmé ja olkoon H < G. Télloin

G/H={gH:g€G}={v"H: kecZ}={(wH): kecZ}=(vH). O
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Esimerkki 12.15. Harjoitustehtévéssa osoitetaan, ettd keskugl] Z(G) on ryhméin
G normaali aliryhmé. Jos G on kommutatiivinen, niin Z(G) = G, joten tekijaryhmé
G/Z(G) kuvaa ryhmén G epakommutatiivisuutta.

Propositio 12.16. Olkoon G ryhmd. Aliryhmd H < G on normaali aliryhmd, jos ja vain
jos se on jonkin ryhmdssd G madritellyn ryhmdahomomorfismin ydin.

Todistus. Harjoitustehtava [12.6] O

12.3 Ryhmien ensimmainen isomorfismilause

Todistamme seuraavaksi tarkeimman tekijaryhmié koskevan tuloksen. Todistus on Lauseen
9.28(1) todistuksen yleistys ja itse asiassa sama kuin renkaiden isomorfismilauseenf] to-
distus.

Lause 12.17 (Ryhmien (ensimmaéinen) isomorfismilause). Jos ¢: G — G’ on ryhmdho-
momorfismi, niin Im ¢ = G/ ker ¢.

<

G/kerp —— &

1%

Todistus. Jos x ker ¢ = yker ¢, niin Proposition[11.6nojalla jollain i € ker ¢ pétee y = xh.
Siis
o(y) = ¢(xh) = ¢(x)d(h) = ¢(x)e’ = ¢(x).

Tahén havaintoon perustuen mééritelladn kuvaus ¢ : G/ ker ¢ — Im ¢,

P(xker ) = (),

joka on homomorfismi: Olkoot =,y € G. Talloin

(xker @)y (y ker @) = d(x)p(y) = ¢(zy) = Y(zyker §) = h(x ker ¢ y ker ¢).

Kuvaus ¢ on selvasti surjektio. Osoitetaan se viela injektioksi. Jos x ker ¢ € ker, niin
¢(z) = (xH) = ¢, joten x € ker ¢. Proposition [11.4[1) nojalla z ker ¢ = ker ¢. Proposi-
tion nojalla ¢ on injektio. ]

Seuraus 12.18. Olkoon ¢: G — G’ surjektiivinen ryhmdahomomorfismi. Tdlloin ryhmdt
G’ ja G/ ker ¢ ovat isomorfisia. ]

Lause 12.19. Olkoon ¢: G — G’ surjektiivinen ryhmdahomomorfismi ja olkoon H' < G'.
Tillgin GJo~ (H') = G'/H'.

'Keskus méériteltiin Harjoitustehtévin (9.7 yhteydessa.

2Lause
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Todistus. Proposition [12.7/(2) mukaan H = ¢~'(H') < G. Olkoon 7: G’ — G'/H' luon-
nollinen homomorfismi. Talléin ¢ = 7o ¢: G — G'/H' on surjektiivinen homomorfismi,
jonka ydin on H. Lauseen [12.17| mukaan G/H = G'/H'. O

Ryhmien ensimméinen isomorfismilause antaa myos Seurauksen todistuksen.

Esimerkki 12.20. (a) Homomorfismi ¢: Z* — (Z/27)?,
O(k1, ko) = (kv +2Z, k2 + 27) ,

on surjektio, jonka ydin on (2Z)% <1 Z?2. Isomorfismilauseen nojalla Z?/(27Z)? on isomorfi-
nen ryhmén K, = (Z/27)? kanssa. Siis

2% : (22)%) = #((Z/22)?) = #K, = 4.

(b) Kuvaus ¢: R — S' < C*, ¢(t) = cos(2nt) + isin(27t), on surjektiivinen homomorfis-
mi, jonka ydin on selvisti Z. Siis S! = R/Z.

(c) Olkoon K € {Q,R,C}. Talloin GL,(K)/SL,(K) = K*, koska det GL,(K) — K* on
surjektiivinen homomorfismi, jonka ydin on SL, (K).

Esimerkki 12.21. Osoitamme nyt, ettd alternoivalla ryhmalld A4 ei ole kuuden alkion
aliryhmad. Jos H < A4 on aliryhmaé, jonka kertaluku on 6, niin Lagrangen lauseen mukaan
[Ay : H] = 2. Proposition nojalla H <1 Ay. Tekijaryhméassa Ay/H on kaksi alkiota,
joten Ay/H = 7,/27. Siis kaikille g € G patee g*>H = gHgH = H, joten Proposition
nojalla ¢? € H kaikille g € G.

Kaikki 3-syklit kuuluvat ryhméin A, Esimerkin nojalla. Jos g € A, on 3-sykli,
niin g = g* = (¢%)? € H. Kaikki 3-syKklit siis sisiltyvit aliryhméén H. Proposition
nojalla H = Ay.

Padtelmén voi tehda myos ilman Propositiota[10.22} Ryhmaéssa A4 on 8 3-syklié, joiden
pitéisi edelld tehdyn laskun nojalla sisdltya kuuden alkion aliryhméén. Siis ryhmalla Ay
ei ole kuuden alkion aliryhmaé.

Ryhmén A, aliryhmérakenne on seuraavan kaavion mukainen:

N

Ky

Ay

((123))  ((124))  ((134)) ((234))

((12)(34))  ((13)(24)) _((14)(23))

|

Mitka tahansa kaksi ryhméan A, kertaluvun 2 alkioista (12)(34), (13)(24) ja (14)(23)
virittavat kaaviossa esiintyvan Kleinin neliryhmén K. Esimerkiksi

(12)(34)(13)(24) = (14)(23) = (13)(24)(12)(34), (12.1)
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joten alkiot (12)(34) ja (13)(24) kommutoivat. Proposition ja yhtélon (12.1) avulla

naemme, etta

((12)(34))((13)(24)) = ((12)(34), (13)(24)) = {id, (12)(34), (13)(24), (14)(23)} .

Siis ((12)(34), (13)(24)) on aliryhmien ((12)(34)) ja ((13)(24)) sisdinen suora tulo. Propo-
sition [9.33| nojalla

((12)(34), (13)(24)) = ((12)(34)) x ((13)(24)) = K.

Aliryhmé Ky < Ay sisaltda kaikki ryhmén A4 alkiot, joiden kertaluku on 2. Siis se on
normaali aliryhma.

12.4 Ryhmien toinen ja kolmas isomorfismilause

Ryhmien ensimmaéisen isomorfismilauseen avulla todistetaan lisda tekijaryhmien isomor-
fisuustuloksia.

Propositio 12.22. Olkoon G ryhmd ja olkoot N QG ja T < G. Tdlloin
NT=TN=(NUT)<Q@G.

Todistus. Harjoitustehtava O

Propositio 12.23. Olkoon G ryhmd. Olkoot N, T < G, N 1 G. Tdlloin NNT I T.

Todistus. Olkoon 7: G — G/N tekijikuvaus. Koska kerw|p = T'N N, Seurauksen [12.§]
nojalla TN N I T. [

Lause 12.24 (Ryhmien toinen isomorfismilause). Olkoon G ryhmd. Olkoot N,T < G,
N < G. Talloin rypmat T/N N'T ja NT/N ovat isomorfisia.

ey

Todistus. Proposition [12.23|nojalla TN N < T ja ensimmaisen isomorfismilauseen nojalla
piatee T/N N'T = w(T'). Vastaavasti ker m|y7 = N ja koska kaikille n € N ja t € T pétee

w(nt) =ntN =tnN = tnN = n(t),
saadaan m(NT') = 7(T') ja ensimméisen isomorfismilauseen nojalla

NT/N 2#(T)2T/NNT. 0
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Seuraus 12.25. Olkoot a,b € 7 .Tdlléin

syt(a, b) pyj(a,b) = ab.
Todistus. Toisen isomorfismilauseen nojalla tekijaryhmét syt(ab)Z/0Z = (a,b)/(b) ja
(a)/{a) N (b) = aZ/pyjZ ovat isomorfisia. Harjoitustehtévin nojalla

syt(ab)/b = # syt(ab)Z/VZ = #aZ/ pyj Z = a/ pyi(a,b),

mistéd vaite seuraa. O

Lause 12.26 (Ryhmien kolmas isomorfismilause). Olkoon G ryhmd. Olkoot K < H < G,
K,H < G. Talloin ryhmdat G/H jo (G/K)/(H/K) ovat isomorfisia.

Todistus. Osoitamme, ettd kuvaus ¢: G/K — G/H, ¢(xK) = xH on surjektiivinen
homomorfismi, ker ¢ = H/K. Kuvaus on hyvin méaritelty, koska K C H. Surjektiivisuus
on selvaa. Lisaksi

bz KyK) = $(ayK) = ayH = cHyH = ¢(xK)o(yK).

joten kuvaus on homomorfismi. Lisdksi p(yK) = yH = H,kuny € H, joten H/K C ker ¢.
Toisaalta, jos y ¢ H, niin yH # H, joten H/K = ker ¢. Viite seuraa isomorfismilauseesta

1217 O

Harjoitustehtavia

12.1. Todista Propositio [12.7](2).

12.2. (a) Osoita, ettd ryhméin G keskus Z(G) on normaali aliryhmi[]
(b) Osoita, ettd ryhmén Qg kaikki aliryhmét ovat normaaleja[]

12.3. Osoita, ettd Qs/Z(Qs) = K4 [

12.4. Olkoon H < A, normaali aliryhmé, joka sisaltdd ainakin yhden 3-syklin. Osoita,
etta H = A, [

3Keskus miériteltiin Harjoitustehtivin yhteydessa.
4Qg mairiteltiin Harjoitustehtivin yvhteydessa.
5Muodosta tekijairyhmén laskutaulu.

6Propositio [10.22| ja Harjoitustehtivi [10.13[ tai [10.15(1).
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12.5. Olkoon G ryhma, olkoon I # () jokin indeksijoukko ja olkoot H; < G, i € I.
Osoita, etté
(NH: <G.
i€l
12.6. Todista Propositio [12.16]
12.7. Osoita, ettd C*/{—1,1} = C*[]
12.8. Osoita, ettd C* /R, = S'.
12.9. Osoita, ettd tekijaryhméa Q/Z on dareton. Osoita, ettd ryhmén Q/Z jokaisen al-
kion kertaluku on dérellinen ja ettd ryhméa Q/Z ei ole syklinen.

12.10. Olkoot N7 < G ja Ny < Gy, Osoita, ettd N; x Ny I Gy X Gy ja
(G x G2)/ (N1 x Na) = (G1/Ny) x (G2/N2) i
12.11. Olkoon Hj 3-ulotteinen Heisenbergin ryhméﬂ Olkoon : Hz — (R?, +),

c

1
v(|0 1 b|)=(ab).
0

S = Q
—

Osoita, ettd 1) on homomorfismi ja mééritd sen ydin. Osoita, ettd Hz/kert = (R?, +).

12.12. Olkoon C' syklinen ryhmé. Osoita, ettd ryhmélla (S',-) on ryhmén C' kanssa
isomorfinen aliryhma [[7]

12.13. Olkoot ¢, € N—{0, 1} lukuja, joiden suurin yhteinen tekija on 1. Osoita, ettéiE|
2)ql X L)L = Z)qr.

12.14. Todista Propositio [12.22]7]

Olkoon G ryhmé. Alkioiden a,b € G kommutaattori on [a,b] = aba~'b~'. Ryhméin G
kommutaattorialiryhmd |G, G| on kaikkien kommutaattorien [a,b], a,b € G virittama
aliryhmé

(G, G = ([a,b] 1 a,b € G).

12.15. Osoita, ettd [G,G] < G|
12.16. Osoita, ettd G/[G, G] on kommutatiivinen ryhma.

12.17. Olkoon k € N pariton ja olkoon G &arellinen ryhmad, jonka kertaluku on 2k.
Olkoon a € G alkio, jonka kertaluku on 2. Osoita, etta vasen siirto ¢, on pariton permu-
taatio.

"Sovella ryhmien ensimméisti isomorfismilausetta.

8Sovella ryhmien ensimmdisti isomorfismilausetta.

9Heisenbergin ryhmé maéariteltiin Harjoitustehtavan yhteydessa.

10T uvussa |§| tehtiin jotain hyodyllisté.

HPropositio

12Riitta4 osoittaa, ettd NT = TN on ryhmé, katso luku

BPropositio Laske ensin [a,b] ™! ja osoita, etti g[a,%1 € [G, G] kaikilla a,b, g € G.
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12.18. Olkoon k£ € N pariton ja olkoon G &aarellinen ryhmaé, jonka kertaluku on 2k.
Osoita, ettd ryhmaélla G on normaali aliryhma, jonka kertaluku on kE

12.19. Olkoon G aéarellinen ryhmé ja olkoon H < G siten, ettd p = [G : H] on pienin
alkuluku, joka jakaa ryhmén G kertaluvun. Osoita, ettd H <1 G[7]

12.20. Olkoon G ryhma ja olkoot H;, Hy < G aérellisen indeksin aliryhmié. Olkoon
p: G — Perm(G/H; x G/H,),

p(x)(aHy,aHs) = ((xa)Hy, (xb)Hy) .

Osoita, etta [G : ker p| < co. Osoita, etta [G : Hy N Ha] < oo.

Ryhmé G on yksinkertainen ryhmd, jos sen ainoat normaalit aliryhmét ovat neutraalial-
kion muodostama aliryhmaé ja G.

12.21. Osoita, ettd A5 on yksinkertainen ryhmém

MEsimerkki ja Harjoitustehtévit [9.28] ja [12.17| voivat olla hyodyllisié.
15 Tehtivi ja Lauseet [12.17|ja [11.10[ ovat hyddyllisié.
6 Harjoitustehtévi 12.5. Lisdksi tarvittavia paloja on tehty luvun [10| harjoitustehtévissé.
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Luku 13

Ryhmat ja geometria

Kurssin viimeisessa luvussa tarkastelemme euklidisen tason sadnnollisten monikulmioi-
den ja 3-ulotteisen euklidisen avaruuden séannollisten monitahokkaiden symmetrioita ab-
straktin ryhmateorian, lineaarialgebran ja symmetristen ryhmien avulla.

13.1 Ortogonaaliryhma
Bilineaarikuvaus (- | -): R* x R" — R,
(z|y) = i,
=1

on euklidinen sisdtulo.
Funktio || - ||: R™ — [0, o0,

el = /(@ [ ) = z

on euklidinen normi.
Kolmikko (R”, 1) H) on euklidinen avaruus E™.

Euklidisen avaruuden E™ ortogonaaliryhmd on
O(n) = {A € GL,(R) : "AA = I,,},

missd 74 on matriisin A transpoosi. Euklidisen avaruuden E™ erityinen ortogonaaliryhmi
on

SO(n) ={A € O(n):det A =1}.
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Luvussa tehdyn sopimuksen mukaisesti ajattelemme ortogonaaliryhmén O(n) al-
kioita tarpeen mukaan joko ortogonaalisina n X n-matriiseina tai vastaavina lineaariku-
vauksina.

Lemma 13.1. Kaikille A € O(n) ja kaikille x,y € E™ pdtee (Ax | Ay) = (x| y).
FErityisesti kaikille x € R™ pdtee ||Az|| = ||z]].

Todistus. Lineaarialgebran tiedoilla saamme

(Az | Ay) = H(A2)Ay = T2 TAAy ="y = (¢ | y)
kaikille A € O(n) ja kaikille z,y € E". Molemmat viitteet seuraavat tésté. ]
Lemma 13.2. O(n) < GL,(R).

Todistus. Harjoitustehtava [13.1] O

Yleisen lineaarisen ryhmén aliryhméné ortogonaaliryhmé O(n) toimii vektoriavaruu-
della R™ lineaarikuvauksilla. Lemman nojalla sen alkiot sailyttavit etdisyydet ja
kulmat euklidisessa avaruudessa E™.

Esimerkki 13.3. (a) Matriisi

5= (é _?) € 0(2) — SO(2)

on lineaarikuvauksena peilaus st = (x1, —x2), joka kiinnittdd pisteittdin ensimmaéisen
koordinaattiakselin R x {0}. Selvésti ord s = 2.

(b) Olkoon # € R. Matriisi

_ [cos(f) —sin(6)
T = <sin(9) Cos(9)> € S0O(2)

on lineaarikuvauksena kierto kulman 6 verran positiiviseen kiertosuuntaan. Jos n on po-
sitiivinen luonnollinen luku, niin selvésti ord ray/, = n.
Kaikille 8 € R patee

SreS = 7‘9_1 =7r_gp.

Lisiiksi rgsr, ! on peilaus, joka kiinnittd pisteittdin suoran ry(R x {0}).

13.2 Saannollisten monikulmioiden symmetrioista

Tassa luvussa tarkastelemme ortogonaalimatriiseja, joita vastaavat kuvaukset kuvaavat
0-keskisen sédannollisen monikulmion itselleen.
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Olkoon n € N — {0,1,2}. Olkoon e; = (1 0). Olkoot
Vp = Tg;q'el,
k € Z. Pisteiden vy, ja vgy 1 madraama puolitaso on
Hy, = {x €E?: (v ] vk + k1) < (vr | vp +vk+1)},
kun 1 < k < n. Joukko
n—1
P, = ﬂ H,
k=0
on sadanndéllinen monikulmio. Pisteet vy, vy, ...v,_1 ovat monikulmion P kdrjet.

Puolitaso Hj, sisdltdan ne pisteet, jotka ovat samalla puolella karkipisteiden v ja
vr11 kautta kulkevaa suoraa kuin 0.

U2
é?"gﬂ-/
s\
Tor/38
U3
Kuva 13.1 — Saannollinen monikulmio P3; on tasasivuinen kolmio, jonka kérjet ovat

—14;‘\/3 ja —1—21‘\/:7,. Kuva havainnollistaa kolmion

kompleksilukujen avulla ilmaistuna 1,
P; symmetrioita Esimerkin [13.3] merkinnoilla.

Ortogonaaliryhmén aliryhmd|
D,={A€0(2): AP, =P,}

on diedriryhmd eli kaksitahokasryhmd. Diedriryvhméan D,, alkiot ovat monikulmion P,, sym-
metrioita. [l

?Katso Harjoitustehtéva
®Merkinti, AP, tarkoittaa kuvajoukkoa AP, = {Az:z € P,}.

12. tammikuuta 2026



136

Ryhmait ja geometria

Euklidisen avaruuden E* monitahokkaita voi kutsua myds kansainvilisemmélld nimel-
14 polyedri, nelitahokastahan kutsutaankin yleensé tetraedriksi, 8-tasokasta oktaedriksi
ja niin edelleen. Jos ajatellaan monikulmio P, upotettuna 3-ulotteiseen avaruuteen, sillé
on ylapuoli ja alapuoli, joten monitahokkaana se on kaksitahokas, siis diedri.

Esimerkki 13.4. Kolmiolla P3 on kuusi symmetriaa: identtinen kuvaus id, kierrot ro./3
ja rgﬂ/?) = r_o,/3 ja peilaukset s, ror/35 = 7"2;1/357’2”/3 ja STz = 7"2”/387“2;1/3 kunkin kérjen
kautta kulkevien kulmanpuolittajasuorien suhteen.

Jos kolmio Py ajatellaan kolmiulotteisessa avaruudessa E? kaksipuolisena levyna, joka
sisiltyy tasoon E? x {0}, niin kuvaukset id, Tor/3 ja ra /3 kuvaavat kolmion ylapuolen
ylapuoleksi ja muut kuvaavat ylapuolen alapuoleksi.

rs(1)

r25(2)

r?s(1)

r25(3)

Kuva 13.2 — Ryhmén D3 toiminta kolmiolla P3;. Kuvassa r = ry;/3 ja karkia vi, vs ja
vy on merkitty niiden jarjestysnumeroilla 1, 2 ja 3.

Lemma 13.5. Olkoon n > 3 luonnollinen luku. Tdalldin

(1) D, < 0(2).
(2) Dy = (8, T2n/n)-
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(3) #D,, = 2n[]

Todistus. (1) Harjoitustehtéva [13.3]
(2) Osoitetaan ensin, etté (s, 72x/n) < Dy: Olkoon

Vo ={v1 = (1,0),v9,...,0,}

monikulmion P, karkien joukko jarjestettyné positiivisen kiertosuunnan mukaan. Matrii-
sia Tor/n Vastaava lineaarikuvaus kiertda monikulmiota P, siten, ettd ror/,v; = vj11, kun
1 <j<n-1jary,v, =wv. Josn on parillinen, niin s kiinnittaa kérkipisteet v; ja
vn i ja 5(Vk) = Vpga—y, kaikille 2 < k < . Jos n on pariton, niin s kiinnittdé vain kérjen
vy ja s(vg) = Vpao_k kaikille 2 < k < ’%1 Kaikki kuvaukset, joita saadaan yhdistettyna
kuvauksina kuvauksista 7’;;1/” ja s = s~ kuvaavat monikulmion P, itselleen. Proposition
nojalla siis (s, 7ox/m) < Dy,.

Osoitetaan, ettéd D, < (s,72:/n). Olkoon f € D,,. Talloin on m € Z jat € {id, s} < D,
siten, ettd ¢y}, f (1,0) = (1,0) ja myo6s molemmat viereiset kirjet kuvautuvat itselleen.
Talloin try, f =id, koska identtinen kuvaus on ainoa tason lineaarikuvaus, joka kiinnit-
téé kaksi lineaarisesti riippumatonta vektoria. Siis f € (s, 72x/n), joten D,, < (5,795 /n).
(3) Kuvaus d € D,, méérdytyy yksikésitteisesti, kun valitaan, mihin n eri vaihtoehdosta
kérkipiste (1,0) kuvautuu ja valitaan, vaihtuuko kérkien kiertosuunta kuvauksessa d vai
ei (kaksi vaihtoehtoa). Siis #D,, = 2n. O

Diedriryhmén D,, permutaatioesitys on kuvaus p,: D,, — S,, joka maéaritellaén siten, etta
alkiota A € D,, vastaa permutaatio p,(A) € S, jolle patee

Avg = vp(ay) (13.1)

kaikille k € {1,2,...,n}.
Lemman [13.5(2) todistuksessa ndimme, etté

Pn(r2ﬂ/n) =(12---n).
Permutaation p,(s) lauseke riippuu siitd, onko n parillinen vai pariton: Parillisille n patee

n
2

pu(s) = (2n)(3 (n—1))-- (g g +2) = ng (k (n—k +2)) (13.2)
ja parittomille patee
puls) = (20)(3 (n—l))...(n;—l ”;1 +2) = k]l(k (n—k+2). (13.3)

Propositio 13.6. Kuvaus p, on uskollinen esitys.

! Joissain kirjoissa monikulmion P, symmetrioista koostuvalle diedriryhmiille kiytetdin merkintii
D,,,. Tata merkintad kiyttad esimerkiksi [Rot] neljdnnesté laitoksesta alkaen.
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Todistus. Lemman todistuksessa ndimme, etté lineaarikuvauksen A € D,, rajoittuma

monikulmion P, joukkoon V,, maaraa symmetrisen ryhmén Perm(V,,) = S, alkion p(A)
yhtéalon ((13.1) mukaisesti. Olkoot A, B € D,,. Talloin kaikille k£ € {1,2,...,n} pétee

Vp,(aB) = (AB)vy, = A(Bug) = AV, (B)(k) = Vpn(A)(pn(B)(K) = V(on(A)pn(B))(K)

joten p, on homomorfismi. Se on injektiivinen Lemman [13.5(2) todistuksen loppuosan ja

Proposition nojalla. O]
Seuraus 13.7. D, = (p,(r2z/n), Pn(5)) = ((1,2,...,1), pn(s)) < Sy. O

Homomorfismi p, ei ole surjektio, kun n > 4, koska talloin #D,, = 2n < n! = #5,,.

Esimerkki 13.8. Ryhmé& D3 on isomorfinen ryhmén S35 kanssa, koska homomorfismi
p3: D3 — S3 on injektio ja #D3 = 6 = #55. Yhtélon (13.3) mukaan ps(s) = (23).

Esimerkki 13.9. Lemman nojalla nelion diedriryhma on

D4=<7’7r/273>:<<(1] _é>’((1) —(1)>>'

Diedriryhméssa D4 on 8 alkiota: Neutraalialkion I5, lisaksi on kierrot

o -1\ . 0 1
m2=A\1 o) I Tm2T 1 o)

joiden kertaluku on 4, ja viisi kertaluvun 2 alkiota r? p=—hLeZ (Dy), s,
N T (-1 0
Taf2STa = SThpp = =5 = | o 1]

01 . 0 -1
Trj2s = |4 0 ja srrpp=—Trps=|_,4 E

Lagrangen lauseen nojalla tai virittajia tarkastelemalla nahdaén, etta
(rj2,8) = (Trj2, STj2) = (Trj2,Tnj28) = (Trj2,Tr/28) = Da.
Samoin virittajista ndkee helposti, etta
(8,77/28) = (8,877 /2) = <ST72r/2,T7r/23> = <S7"72r/2,ST7r/2> = (8,7x2) = Dy,

joten kertaluvun 4 alkiot esiintyvét vain syklisessé aliryhméssa (rr/2) ja koko ryhmaéssé
Dy. Kertaluvun 2 alkiot virittavat kukin kahden alkion syklisen ryhmén, joita on siis viisi.
Lisaksi on helppo tarkastaa, etté

(—Ih,8) = (=I5, —s) = (s, —s) = {Ip, — 5, 5, —s} = K{" .

Koska —I5 on keskuksessa, tdma ryhma on Kleinin neliryhma. Vastaavalla tavalla nah-
ddan, etta

(—1a,7x/8) = (=Is, 5Tr)2) = (rrj28, 875 y2) = {Ia, =12, 775,875 /2 } = Kf) =Ky.
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13.2. Sadnnoéllisten monikulmioiden symmetrioista

V2 V2

U3 \» U1 U3 U1

-1
T /25T /o

V4 V4

Kuva 13.3 — Ryhmaélla D, on kaksi aliryhméé, jotka ovat Kleinin neliryhmia.

Ryhmén D, aliryhméakaavio on siis

e

(87x/2) (T /25) (—12) (=) (s)

T S

{2}

Kleinin neliryhmén kanssa isomorfiset aliryhmat koostuvat identtisen kuvauksen li-
siksi kahdesta keskenaén kohtisuorien akselien suhteen tehtéavasta peilauksesta ja niiden
yhdistettynéd kuvauksena saatavasta kierrosta —Io, katso Kuva [13.3]

Yhtéalon (13.2) mukaan py(s) = (24) ja Seurauksen nojalla diedriryhmé D, on
isomorfinen ryhmén ((1234), (24)) < Sy kanssa.

Seuraava tulos osoittaa, ettd se, ettd valitsimme monikulmion P, yhdeksi karjeksi
pisteen (0, 1) ei ole oleellista.

Lemma 13.10. Olkoon n > 3, olkoon 0 € R ja olkoon P° = re(P,). Ryhmit D,, ja
{A€0(2): AP? = P} ovat isomorfiset.

Todistus. Harjoitustehtava [13.5] O

Esimerkki 13.11. Olkoon
Pt = u(P) = {o € R? - |2y < 1, |ag| < 1}

Proposition [13.10|nojalla ryhmét {A € O(2) : AP™/* = P4} ovat isomorfisia. Itse asiassa
téissi tapauksessa pitee jopa yhtdlo Dy = {A € O(2) : APT/* = Pr/4}.
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Tr/2

(0

Kuva 13.4 — Ryhmén D, alkioita kierretyn nelion symmetrioina.

13.3 Monitahokkaiden symmetrioista

Esimerkki 13.12. Kolmiulotteisen avaruuden erityisen ortogonaaliryhmén SO(3) neut-
raalialkiosta poikkeavat alkiot vastaavat avaruuden R3 kiertoja jonkin (origon kautta kul-
kevan) suoran ympéri. Esimerkiksi matriisi

cos(f) —sin(d) 0
sin(f)  cos(f) 0] € SO(3)
0 0 1

on kierto kulman # € R verran kolmannen koordinaattiakselin ympéri.

Olkoon K C R3 kuutio, jonka kérkipisteiden joukko on
Vi = {(51,52,53) D €1,69,63 € {—1, 1}}
Kuution K symmetriaryhmd on
'y ={A€03): AK = K}
ja sen kiertosymmetriaryhmd on

It = {A€S0(3): AK = K}

Kuten luvussa nihddan helposti, ettd ryhmit Tk ja T'J ovat isomorfisia joidenkin
ryhmén Perm (Vi) = Sg aliryhmien kanssa. Téssé luvussa tarkastelemme ryhmien 'k ja
[} toimintaa pienemmélld joukolla ja saamme niiden ryhmien rakenteen selvitettys téy-

dellisesti.
Propositio 13.13. I'j; = 5.

Todistus. Olkoon
L= {{U,—U}:UE VK}.
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13.3. Monitahokkaiden symmetrioista 141

Joukko L = {{y, (5, (3, {4} koostuu kuution K vastakkaisten karkipisteiden muodostamista
joukon V' osajoukoista, joita voi ajatella kuution neljana lavistdjana.

Kuva 13.5 — Kuutio K ja joukon L muodostavat karkiparit.

Maééritelladn ryhmén 'k toiminta po: 'y — Perm(H) = S, joukolla L asettamalla

po(9)({v, —v}) = {gv, 9(=v)} = {gv, —gv}

kaikilla g € I' ja v € V. Ndin saamme ryhmén I'g toiminnan p joukolla {1, 2, 3,4} méa-
rittelemalld, ettd p(g) € Si on se permutaatio, jolle pétee po(g)(lx) = Ly kaikilla
ke{l,2,...,n}.

Olkoon g € T'k siten, etta {gv, —gv} = {v, —v} kaikille v € V. Selvésti I3 ja —I3 ovat
téllaisia ryhmén 'y alkioita. Oletetaan, ettd gv = v jollain v € Vi. Kolme kuution
kéarkea x,y,z on tasmélleen etaisyydella 2 karjesta v, joten niiden kuvat kuvauksella v
ovat etéisyydella 2 kérjesta v, joten g{z,y, z} = {z,y, z}. Oletimme, ettd g kuvaa kolmion
K lavistajat itselleen. Siis g(x) = z, g(y) = y ja g(z) = z, joten g pitdd kaikki kéarjet
paikallaan.

Kuution K kérjet virittavit avaruuden R3, joten g = I3. Siis ker p = {—id, id}. Liséksi
ker p N T} = {id}, joten p\F; on uskollinen esitys. Harjoitustehtavassa osoitetaan,
ettd plpy : T'je — Sy on surjektio. O

Propositio 13.14. 'y = Sy x Z/27Z.

Todistus. Determinantti det: I'xr — {—1, 1} on surjektiivinen homomorfismi multiplika-
tiiviseen ryhméaan {—1,1}, koska +1I3 € 'k ja det(£I3) = +1. Seurauksen nojalla
Lg/THh = {—1,1}, joten Tg : T%] = 2.

Lagrangen lauseen nojalla (I'};, —I3) = DI'g, koska ('), —I3) > 13. Lisiksi kaikille
A € T}, pitee A(—1I3) = —A = I3A, joten T'};(—1I3) = T'x. Lisiksi T N {(—13) = {3} ja
aliryhmén (—I3) molemmat alkiot kommutoivat kaikkien ryhman O(3) alkioiden kanssa,

joten Propositioiden ja nojalla
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142 Ryhmit ja geometria

Kuution K kérkipisteiden joukon Vi osajoukko

Ve ={(1,1,1),(1,-1,-1),(=1,1,-1), (-1, -1, 1)}

on saannollisen tetraedrin 7' karkipisteiden joukko. Tetraedrin 7' sivut ovat yhtéd pitkia
keskenadn ja kaikki tahot ovat tasasivuisia kolmioita. Téalla tavalla muodostetun tetraedrin
painopiste on 0.

Tetraedrin T° symmetriaryhmd on
Ir={Ac€0O@B3): AT =T}

ja sen kiertosymmetriaryhmd on

If={AeS0(3): AT =T}.

Kuva 13.6 — Saannollinen tetraedri kuution sisalld kahdesta eri katselukulmasta.

Propositio 13.15. I'; & A,.

Todistus. On helppo tarkastaa, ettd Vi = Vp U —Vp, T'F < Tk ja ettd gVp = Vp tai
gVr = —Vr kaikille g € T'x. Olkoon h € H. Jos g € Tk — {id} on kierto alkion h
maardaman akselin ympaéri, niin g kuvaa tetraedrin 7' itselleen ja pg € Perm H on 3-
sykli. Aliryhmé p(I'}) < Sy siséltds ryhméan Sy kaikki 8 3-syklid, joten Proposition
nojalla A; < p(T'F). Lagrangen lauseen nojalla #I';. € {12 = #A,, 24}. Viite seuraa,
koska '} < T'%. O

Vastaavaan tapaan voidaan osoittaa, etta ikosaedrin ja dodekaedrin kiertosymmetria-
ryhmé on isomorfinen ryhméan As kanssa ja ettd ndiden monitahokkaiden symmetriaryh-
mé on isomorfinen ryhmén As x Z /27 kanssa. Lisaa tastd aihepiirista voi lukea esimerkiksi
l&hteistd [Arm) luku 8] ja [Ber), luku 12.5].

12. tammikuuta 2026



13.3. Monitahokkaiden symmetrioista 143

Harjoitustehtavia

13.1. Todista Lemma 3.2

13.2. Olkoon n > 2. Osoita, ettd SO(n) < O(n). Onko O(n) < GL,(R)%H]
13.3. Olkoon n > 3 luonnollinen luku. Osoita, ettd D,, < O(2).

13.4. Osoita, ettd Dg = S5 x (Z/2Z)f]

13.5. Todista Lemma [13.10/f1

13.6. Osoita, etta Proposition [13.13| todistuksessa kaytettava homomorfismi p|FI+{ on
surjektio [

Olkoon A € O(n) ja olkoon b € R™. Olkoon E4;: R* — R”,
Esp(z) =Ax+b
kaikilla = € R"™. Joukko
E(n) ={E4sp: A€ O(n), beR"}

varustettuna kuvausten yhdistamiselld on n-ulotteisen avaruuden Fukleideen ryhmid.
Eukleideen ryhmén aliryhma

T(n) = {Eln,b c E(?’L) :be Rn}

on n-ulotteisen avaruuden siirtojen ryhmd.
13.7. Osoita, ettd E(n) on ryhmélf]

Olkoon H ryhmén G aliryhmé ja N ryhmén G normaali aliryhma siten, ettd G = NH,
N < G ja NN H = {id}. Talléin G on ryhmien N ja H sisdinen puolisuora tulo, jolloin
kaytetddn merkintdd G = N x H [

Jos N = N ja E >~ [ ja G = N x H, niin G on ryhmien N ja H (abstrakti) puolisuora
tulo, G = N x H.

*Merkinté ei ole symmetrinen. Merkki x siséltdéd normaalin aliryhmén merkin <. Muistisdanto auttaa:
N < N x H, siis kolmiot ovat samoin pain merkeissi <1 ja X.
13.8. Osoita, ettd T(n) < E(n) ja ettd E(n)/T(n) = O(n) ja ettd E(n) = T(n) x O(n).
13.9. Osoita, ettd O(n) ei ole ryhmén E(n) normaali aliryhma.
13.10. Osoita, etta S,, on ryhmien A, ja Z/2Z puolisuora tulo.

2Tarkastele viimeisessé kysymyksessi ensin tapaus n = 2.

3Katso Esimerkki ja Propositio W
4Miké on luonnollinen kuvaus viitteen ryhmien valilli?

5Mieti tilannetta geometrisesti ja osoita, ettd ryhméssa I‘} on riittdvin monta alkiota.
6Kitevintd lienee osoittaa, ettd E(n) < Perm(R™).
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Liite A

Kokonaislukujen jaollisuus

Tarkastelemme téssé luvussa lyhyesti jaollisuutta kokonaislukujen renkaassa Z. Tulokset
lienevat tuttuja niille, jotka ovat suorittaneet kurssin Lukuteoria 1. Muutama tulos, jonka
todistus antaa mallia algebrallisen yleistyksensé todistukselle, todistetaan tassa liiitteessa,
muiden osalta viitataan kurssin Lukuteoria 1 luentoihin [Par].

Propositio A.1 (Jakoyhtélo). Olkoot a € N — {0} ja b € Z. Talloin on yksikdsitteiset
q,r € 7 siten, etta
b=qga+r ja 0<r<a.

Todistus. Olkoon
S={b—ka:keZ}nN.
Joukko S ei ole tyhji, koska b—(—b%)-a = b+b?a > 0 kaikille b € Z ja kaikille a > 0. Koska
S on luonnollisten lukujen epéatyhja osajoukko, niin silla on pienin alkio. Maaritelmén
nojalla min S = b—qa jollakin ¢ € Z. Jos min S > a > 0, niin b— (¢+1)a = min S —a > 0,
joten min S — a € S. Taméa on mahdotonta, joten min S < a. Vaitteen olemassaolotulos
seuraa valitsemalla » = min S.
Oletetaan, ettd on q1,qs, 71,72 € Z, 0 < 11,79 < a, joille

b= qa+ry = qa+rs.

Talloin (¢1 — q2)a = 19 —r1. Jos q1 # @, niin ¢ — qo| > 1 ja siten |re — 1| > a. Tadma on
mahdotonta, sillda 0 < ry,r, < a — 1. Taytyy siis olla ¢; = ¢o ja siten myos r; = rs. O

Jos a,b,c € Z siten, ettd ab = ¢, niin a ja b ovat luvun c tekijoitd. Téalloin luvut a ja b
jakavat luvun ¢, mista kiaytetaan merkintéé a | ¢ ja vastaavasti b | c.

Jos luku d € Z jakaa kokonaisluvut a ja b, niin d on lukujen a ja b yhteinen tekija.

Jos m,n € Z ja d € N on lukujen m ja n yhteinen tekija, jonka jokainen lukujen m
ja n yhteinen tekija jakaa, niin d on lukujen m ja n suurin yhteinen tekijd, merkitaan
d = syt(m,n).

Jos syt(m,n) = 1, sanotaan, ettd luvut m ja n ovat suhteellisia alkulukuja ja ettd m ja n
ovat keskenddn jaottomia.
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Esimerkki A.2. Luvun 12 tekijiat ovat £1, £2, 43, +4, £6 ja £12. Luvun 30 tekijit
ovat +1, £2, +3, 45, £6, £10, £15 ja 4+30, joten lukujen 12 ja 30 yhteiset tekijat ovat
+1, £2, £3 ja £6 ja syt(12,30) = 6.

Propositio A.3 (Bezout’'n yhtéld). Olkoot a,b € Z. Yhtdlolla
rxa+yb=n
on kokonaislukuratkaisu (x,y) € Z?, jos ja vain jos syt(a,b) | n.
Todistus. Katso [Par, luku 2.2]. O

Propositio A.4. Olkoot a,b € 7Z keskenddn jaottomia ja ¢ € Z. Tdlldin
(1) Josa|c jab]|ec, niinab|c.
(2) Jos a | be, niin a | c.
Todistus. (1) Koska syt(a,b) = 1, niin xza + yb = 1 jollain x,y € Z. Oletuksen nojalla on
k,l € Z siten, ettd ka = ¢ = [b. Nyt on
c = c(za+ yb) = cxa+ cyb = (Ib)za + (ka)yb = ab(lx + ky)

jalr + ky € Z, joten ab | c.
(2) Kuten kohdassa (1) saadaan ¢ = cxa + cyb jollain x,y € Z. Koska a | be ja a | a, niin
a jakaa summan cxa + ybc = c. O]

Seuraava madaritelma poikkeaa lukuteoriassa yleisesti kaytetysta alkulukujen maéri-
telmésta. Propositiot ja osoittavat, ettd tama maéritelma on yhtipitidva lukuteo-
riassa kaytettavan maaritelmén kanssa.

Luonnollinen luku p > 2 on alkuluku, jos kaikille a,b € N pétee p | a tai p | b, jos p | ab.

Luonnollinen luku p > 2 on jaoton, jos ehdosta p = ab luonnollisilla luvuilla a,b seuraa
a=1taib=1

Propositio A.5. Jaottomat luvut ovat alkulukuja.

Todistus. Olkoon p alkuluku. Oletetaan, ettd p = ab. Riittad tarkastella tapaus p | a.
Talloin a = pc jollakin ¢ € N, joten p = pcb. Supistamalla p molemmilta puolilta saadaan,
pc =1, joten p = 1. Siis p on jaoton. n

Propositio A.6 (Eukleideen lemma). Alkuluvut ovat jaottomia.

Todistus. Olkoon p € Z jaoton ja olkoot a,b € Z siten, ettd p on luvun ab tekija. Ole-
tetaan, ettd p ei jaa lukua a. Talldin syt(a,p) = 1, joten viite seuraa Proposition
kohdasta (2). O

Lause A.7 (Aritmetiikan peruslause). Jokainen nollasta poikkeava kokonaisluku q voi-
daan voidaan esittid posititvisten alkulukujen ddrellisend tulona muodossa

q= (_1)7”((1) Hpap(Q)’
p

missi m(q) € {0,1} ja a,(q) € N kaikille alkuluvuille p > 2. Tdmd esitys on tekijoiden
jarjestysta vaille yksikdasitteinen.

Todistus. Katso [Par, luku 3.2]. O
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