MATS254 Martingale theory — Tutorials 3, 3.2.2014

1. Let $M = (M_n)_{n=0}^{\infty}$ be a martingale with $M_0 := 0$ and $\mathbb{E}M_n^2 < \infty$ for all $n \ge 0$.

Define the bracket process $(\langle M \rangle_n)_{n\geq 0}$ by setting $\langle M \rangle_0 := 0$ and

$$\langle M \rangle_n := \sum_{k=1}^n \mathbb{E} \left[(M_k - M_{k-1})^2 \mid \mathcal{F}_{k-1} \right] \quad \text{for } n \ge 1.$$

Show that

- (a) $(Z_n)_{n\geq 0}$ is a martingale, where $Z_n:=M_n^2-\langle M\rangle_n$.
- (b) $\mathbb{E}M_n^2 = \mathbb{E}\langle M \rangle_n$ for all $n \geq 0$.
- **2.** Let τ be a stopping time on $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_n)_{n\geq 0})$.
 - (a) Show that $\mathcal{F}_{\tau} = \{ A \in \mathcal{F} : A \cap \{ \tau \leq n \} \in \mathcal{F}_n \text{ for all } n \in \mathbb{N} \}.$
 - (b) Suppose $A \in \mathcal{F}_{\tau}$. Is it always true that $A \cap \{\tau > n\} \in \mathcal{F}_n$ for all $n \in \mathbb{N}$?
- **3.** Let ρ and τ be stopping times on $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_n)_{n>0})$.
 - (a) Show that $\rho + \tau$ is a stopping time.
 - (b) Show that $\mathcal{F}_{\min\{\rho,\tau\}} = \mathcal{F}_{\rho} \cap \mathcal{F}_{\tau}$.
- **4.** Let $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_n)_{n=0}^{\infty})$ be a filtered probability space.
 - (a) Assume that $(Z_n)_{n\geq 0}$ is a super-martingale. Prove that there exists a non-decreasing and predictable $(A_n)_{n\geq 0}$ with $A_0\equiv 0$, such that $M_n:=Z_n+A_n$ is a martingale.
 - (b) Assume X_1, X_2, \ldots are independent random variables such that $\mathbb{E}e^{X_k} < 1$. Determine the process A_n in (a) of $(Z_n)_{n\geq 0}$ where $Z_0 := 0$ and $Z_n := \prod_{k=1}^n e^{X_k}$.
- 5. Assume $(Z_n)_{n\geq 0}$ is a positive sub-martingale, that is, $\mathbb{P}(Z_n>0)=1$ for all $n\geq 0$. Show that there exists an a.s. unique positive predictable non-increasing process $(B_n)_{n\geq 0}$ with $B_0\equiv 1$ such that $M_n:=Z_nB_n$ is a martingale.
- **6.** Let $X \in L_1(\Omega, \mathcal{F}, \mathbb{P})$ and $Z \in L_1 \in (\Omega, \mathcal{G}, \mathbb{P})$, where $\mathcal{G} \subset \mathcal{F}$, and assume $\mathbb{E}X = \mathbb{E}Z$. Define

$$\mathcal{D} := \left\{ A \in \mathcal{G} : \int_A Z dP = \int_A X dP \right\}.$$

Show that \mathcal{D} is a λ -system:

- (a) $\Omega \in \mathcal{D}$.
- (b) If $A, B \in \mathcal{D}$ and $B \subset A$, then $A \setminus B \in \mathcal{D}$.
- (c) If $A_1, A_2, \ldots \in \mathcal{D}$ and $A_1 \subset A_2 \subset \cdots$, then $A := \bigcup_{n=1}^{\infty} A_n \in \mathcal{D}$.