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ABSTRACT. We give a negative answer to the rigidity conjecture of
He and Schramm by constructing a rigid circle domain €2 on the Rie-
mann sphere C with conformally non-removable boundary. Here rigidity
means that every conformal map from 2 onto another circle domain is
a Mobius transformation, and non-removability means that there is a
homeomorphism of C which is conformal on €\ &9 but not everywhere.

Our construction is based on a theorem of Wu, which states that
the product of any Cantor set E with a sufficiently thick Cantor set F'
is non-removable. We show that one can choose E and F' so that the
complement of the union of E x F' and suitably placed disks is rigid.

The proof of rigidity involves a metric characterization of conformal
maps, which was recently proved by Ntalampekos. The other direction
of the rigidity conjecture, i.e., whether removability of the boundary
implies rigidity, remains open.

1. INTRODUCTION

A subdomain Q of the Riemann sphere C is a circle domain if every
connected component of Jf2 is a circle or a point. The long-standing Koebe
conjecture [Koe08] asserts that every subdomain of C admits a conformal
map f onto a circle domain. Koebe proved that every finitely connected
domain satisfies the conjecture and that f is unique up to postcomposition
by a Mobius transformation.

Uniqueness is equivalent to ridigity: a circle domain €2 is (conformally)
rigid, if every conformal map f : Q — ' onto another circle domain is
the restriction of a Mdobius transformation. Complements of Cantor sets K
with positive area are basic examples of non-rigid circle domains; solving
the Beltrami equation (see e.g. [Ahl66], [AIMO09]) with coefficient 1 = $xx

yields a quasiconformal homeomorphism which is conformal only in C \ K.

In a breakthrough work [HS93], He and Schramm applied the rigidity
of countably connected circle domains to verify Koebe’s conjecture for all
countably connected domains. In [HS94], they moreover proved the rigidity
of circle domains whose boundary has o-finite length. Further sufficient con-
ditions for rigidity were established by Ntalampekos and Younsi in [N'Y20],
[Youl6], and [Nta23] (see also [BKMO09], [Bonll], [Mer12]).
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Towards a characterization of rigid circle domains €2, He and Schramm
[HS94] pointed out connections to conformal removability, and conjectured
that the rigidity of £ is equivalent to the conformal removability of Of).
Here a compact K C C is conformally removable (or CH-removable), if
every homeomorphism 5 : C— @, which is conformal on C \ K, is a M&bius
transformation. Our main result gives a negative answer.

THEOREM 1.1. There is a rigid circle domain Q@ C C such that 98 is
conformally non-removable.

The proof below shows that the answer to another version of the rigidity
conjecture given in [HS94], which asks if rigidity is equivalent to the confor-
mal removability of every Cantor set contained in 02, is also negative.

It follows from the definitions that if the boundary of a rigid circle domain
is a Cantor set K, then K is conformally removable. The other direction of
the rigidity conjecture, which asks if circle domains with removable bound-
aries are rigid, remains open even for domains with Cantor set boundaries.

Conformal removability is an active and challenging research topic, see
e.g. [JS00], [Youl5], [Ntal9], [Nta24a], [Nta], and the references therein.
A major difficulty is that constructing non-trivial conformal maps f out-
side exceptional sets becomes considerably harder if one also requires the
existence of a homeomorphic extension of f to C.

A basic example of a non-removable set is K = E %[0, 1] for any Cantor set
E: one can apply an essentially 1-dimensional construction, starting with a
continuous measure on F, to produce a non-trivial homeomorphism which is
conformal off K. Much more involved constructions of non-removable sets
were given by Kaufman [Kau84], Bishop [Bis94], and Wu [Wu98|, whose
result is an important ingredient of the proof of Theorem 1.1. Here cap is
the logarithmic capacity, see e.g. [Pom92, Ch. 9].

THEOREM 1.2 ([Wu98|). Let E and F be two Cantor sets in R. If
(L.1) cap([a, b] \ F') < cap([a, b])

for some interval [a,b], then E x F is conformally non-removable.

Although the proof of Theorem 1.2 is subtle, the rough idea is similar to
the case E x [0, 1] above. Namely, by Ahlfors and Beurling [AB50], Condition
(1.1) yields a non-trivial conformal embedding f : C\ ({0} x F) — C. Such
an f cannot admit a continuous extension to C. However, given a continuous
probability measure p on F, one can produce a global homeomorphism that
is conformal off E x F, by considering averages of the map f with respect
to p in the real variable. Thus, E x F' is non-removable.

To prove Theorem 1.1 we choose a thick Cantor set F satisfying (1.1), a
thin Cantor set E, and closed disks D;. We let Q = C\(Ex F)U (U;Dy)),
and show that the disks D; can be placed so that every conformal map
f:Q — € between circle domains must have bounded eccentric distor-
tion. Therefore we can, after extending f to a homeomorphism of C using
a familiar reflection (Schottky group) method, apply a recent result of Nta-
lampekos [Nta24b] to prove that f is a Mobius transformation. Thus Q is
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rigid. But since 02 O E x F', Theorem 1.2 shows that 02 is conformally
non-removable.

The non-removability of £ x F' immediately implies the non-rigidity of
@\E x F'. Thus, our construction shows that, unlike conformal removability,
rigidity is not preserved under taking subsets. More precisely, we obtain the
following corollary by choosing Q as above and ' = C \ ExF.

Corollary 1.3. There are circle domains ,Q C C so that Q is rigid and
00 C 99, but Q' is non-rigid.

2. PROOF OF THEOREM 1.1: CONSTRUCTION OF {2

To start the proof of Theorem 1.1, we construct the complement of a
circle domain ) by using the basic building block in Section 2.1 followed by
an iteration procedure in Section 2.2.

2.1. Basic building block. We fix an integer N > 2 and let I}, n €
{1,..., N}, be closed segments with equal length ¢(I}) =: 2s obtained by
removing N — 1 open segments of length a from [0,1]. The segments are
ordered so that I contains 0 and IV contains 1. Notice that s < ﬁ
We remove another open segment of length a from the middle of each I
to obtain segments J'(Do) and J'(Up) of equal length s — §, containing
the left, respectively right, endpoint of I}
Next, we fix € > 0 and define the following subsets of C forn € {1,..., N}:
I'"(Le) = —e+iI}, I"(Ri) =€+,
J"(Le,Do) = —e+iJ(Do), J*(Le,Up) = —¢ + iJ"(Up),
J"(Ri,Do) = e+ 1iJ} (Do), J"(Ri,Up) =€+ iJ](Up).
We denote by R” the closed rectangle whose vertical sides are the segments
I"(Le) and I™(Ri), and by iy™ the center of R™. Finally, let D"(Le) and

D™(Ri) be the closed disks with radius s and centers —2¢ — s + iy" and
2¢ + s + iy™, respectively.

2.2. Iteration. Given the sequence of integers N; defined below, we denote
by N the collection of words of length k with letters n; € {1,..., N,}, i.e.,

Ny = {ﬁ:nlng---nk: n; € {1,...,Nj} for all j € {1,...,k}}.
We also denote Wy, = M}, x N}, where
My, = {Th:mlmg---mk: m; € {Le, Ri} for all j € {1,...,]4:}}.

We apply the construction in Section 2.1 with parameters N = Nj,a =
ai,s = s1,€ = €1 satisfying

al S1
2.1 N=2 e6=—=—.
(2.1) O T T 00 108
We obtain rectangles R', R?, as well as the other sets defined above. We
complete the first step of the construction by “duplicating”, i.e., if n; €

{1,2} we define

RY _ -2+ R™M, w=(Le,ny) € Wi,
| 2+ R™, w=(Ri,n1) €Wy,
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FIGURE 1. First step of the construction.

o~

and use similar notation for the other sets constructed. Altogether, after
the first step we have two copies of the sets constructed in Section 2.1;
one on the left half-plane and another one on the right half-plane, e.g.,
J(e2)(Le, Up) := J?(Le, Up) — 2 and J(B:2)(Le, Up) := J?(Le, Up) 4 2. See
Figure 1 for an illustration.

We then assume that rectangles

(2.2) RY = [2™ — tp_1,a™ + te_1] X [y — rr—1, ¥ + rp—1]
and disks D" (Le), D" (Ri) with radius r¢_; and centers
(2.3) 2™ 4 (2tp_q 4 TR_1) + iy

have been constructed for all w = (m,n) € Wg_1, k > 2. The coordinate

2™ does not depend on 71, and the coordinate 4™ does not depend on 7. By

the first step above we have 1 = s1, ™ = —2, 28 =2 and t; = €.
Intervals J*(-,Do) and J*(-,Up) are obtained by removing an open in-

terval of length dj_1 from I"(-);

() = 2™ £t +ily" — o1,y + reei),
7 7 = O
(2.4) JU(,Do) = a™tty_q+i [y” — 1,y — 1621] 7
w - m - |n Ok—1 7
J <7Up) = "ttty +T,y + k-1 -

We fix such a w. Our goal is to construct the segments, rectangles and
disks corresponding to all the “children” w’ = (mmy, ing) € Wy of w. We
denote by ¢, and U the homotheties (i.e., maps z — az+ [, where a > 0
and 5 € C) for which

T z 7 = Ok—
¢Il§o(xm+i(yn—7”k—1))=0 and ¢%O(wm+i(y"—%)>:i7

5 R O— w m Yo 0} ;
ot (o7 " + 1)) =0 and 6l (7 + il 4 ) =
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Then
?bo(J"(Le,Do)) = ¢5,(J*(Le,Up)) = —éx—1 +i[0,1] and
(2 5) qbgo(Jw(Ri? DO)) = ¢%p(‘]w(RI> Up)) = €k—l + 2[O> 1]7
' . lp—1
where é,_1 = 5
Tk—1— —g

Let N = N, € 2N and a = ag,s = Sg, ¢ = €, > 0 be the numbers for
which

1 _
N, = 200 [max {A, k-1 }-‘ , Sk _ exp((QNk)Zk)a
€k—1 Ap—1 a

min{éx_1,a}
100
Remark 2.1. The idea behind the construction of € is that we can first

choose Ni (number of new rectangles R“’/) to be as large as we wish, then

(2.6)

€L —

Z—: (relative size of removed segments) as small as we wish, and finally ¢
(relative width) as small as we wish. The requirement on Ny and the upper
bound on € in terms of €;_; in (2.6) imply that the sets defined below are
disjoint subsets of R¥; see Lemma 2.2 below.

The requirement on Z—’Z guarantees that the holes between the vertical
segments are thin. Such thinness will lead to a thick Cantor set F' (on the
imaginary axis) satisfying Condition (1.1), and to the non-removability of
0f). The upper bound on €; in terms of a; will lead to a Cantor set E
(on the real axis), which “is thinner than F' is thick”. The precise meaning
of such thinness will be given in terms of conformal modulus estimates in

Section 3.3, which will be applied to prove the ridigity of 2.

Applying the construction in Section 2.1 with the parameters %, O, Sk, €k
defined in (2.6) yields rectangles and disks
(2.7) R.:= R™  D,(Le) := D" (Le), D.(Ri):= D" (Ri)
for all n, € {1,..., %} Finally, given w’ = (mmy, nng), we define
(2.8) RY = (@) N(Ra+A), DY) = () (Dul-) + V),
for - = Le or Ri, where

N { 7—65_1 my = Le,

€L_—1 . .
7 >, M= Rla

and

H:{ Do, ng€{l,..., %k},
Up, nke{%—l—l,...,Nk}.

The segments I*'(-), J%'(,-) are defined in a similar manner. See Figure 2
for an illustration.

These sets can be represented as in (2.2), (2.3), (2.4) above, replacing w
by w’ and the lengths t_1,7%,_1,0k_1 by tg, 7k, 0x. We record some basic
properties for future reference.
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F1GURE 2. The next generation inside a rectangle R“. The

figure is rotated by 90 degrees to improve the layout, and the
parameters in the actual construction are different.

Lemma 2.2. The sets RY', D¥'(Le), and DY (Ri) are pairwise disjoint
subsets of R*. Moreover, if k > 1 then

J 1
(29) < ﬁ <1op @@ Ok <exp(—(2Nk) ) < exp(—(2Nk)*),
and if k > 2 then
5k—1 le—1
k<, d t, < ==L
100 S 00
Proof. Recall that the rectangles and disks in Section 2.1 are pairwise dis-
joint. Thus, in view of (2.5) and the definition (2.8) of the sets R*', D*'(Le),
and D" (Ri), the claims concerning them follow if we can show that the sets

in (2.7) satisfy

(2.10) Nk Z QONk,1 Z 20N1 = 40, Tk <

(211) R UD.(Le)UD(R) C {z=a+iy: % <o < L]

for every my and ng. Since the rectangle R, lies in the “middle” of the
two disks, replacing the union on the left side of (2.11) by D, (Le) U D, (Ri)
results in an equivalent claim. Moreover, since D,(Ri) lies in the right half-
plane and the two disks can be mapped to each other by a reflection across

the imaginary axis, it suffices to show that

A~

€k—1

(2.12) x < for every x € D, (Ri).

By the construction of D,(Ri), we have
x < 2(ex + sx) for every x € D, (Ri).

By the last part of (2.6), we have €, < €x_1/100. Recall also that we have
applied the construction in Section 2.1 with parameter N = Nj /2, so that
Sk < Nk_1 (see Section 2.1). In particular, by the first part of (2.6) we have
sk < €x—1/100. Combining the estimates yields (2.12).
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It remains to prove (2.9) and (2.10). First, notice that ¢y = &4y for every
k > 1 by the above construction. Thus the first part of (2.9) follows from
the second part of (2.1) and the last part of (2.6).

Next, notice that dp = Z—:rk and 1, < 1 for every £ > 1, again by con-
struction. Thus the second part of (2.9) follows from the second parts of
(2.1) and (2.6).

The first part of (2.10) follows by recalling that N7 = 2 and noticing that
the first two parts of (2.6) give

200sy._
Njp > 521 = 900 exp((2N-1)2*D) > 20N .
ak—1

The second inequality in the second part of (2.10) follows from the con-
Tk—1 __ Sk—1
Ok—1  ap—1’

struction. For the first inequality, notice that r Ny < rp_1 and
Combining with the first part of (2.6) yields
7Ny <L g S Op—1
N k Nk ak—lNk 100
The last part of (2.10) follows from the last part of (2.6) by noticing that

te . _€k i
=g The proof is complete. Ol

T =

2.3. Definition of ). We carry out the above construction for every w €
W = UpWgk. Lemma 2.2 guarantees that all the disks DY(-) are pairwise
disjoint. We now define the circle domain €2 as follows:

o0

C\Q = ( U (D“’(Le)UD“’(Ri))) U ﬂ( U R“’)

weWw k=1 weWy

= (U o aeup ®i))u(ExF).

we

By Lemma 2.2, E'X F is the product of Cantor sets E C [—3,3] and F C [0, 1]
which is disjoint from the union of the disks D*(-).

Lemma 2.3. The set
oo
ExF=(J RY)
k=1 weWy

has Lebesgue measure zero.

Proof. Given k € N, the Cantor set FE is covered by 2 intervals of length
2t. By (2.9) we have 1 < 15, and by (2.10) we have ty41 < fﬁ for all
k € N. Since 2¥t11007% — 0 as k — oo, F has zero length. The claim
follows by Fubini’s theorem. O

2.4. Non-removability of 0. In this section we apply Theorem 1.2 to
show that 9€ is conformally non-removable.

THEOREM 2.4. The boundary of € is conformally non-removable.
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Proof. We will prove Condition (1.1) for F' and [a, b] = [0, 1], i.e.,
cap([0, 1]\ F) < cap([0, 1]).
Theorem 1.2 then gives the desired conclusion. The construction of €2 can in
fact be carried out so that cap([0, 1]\ F') is smaller than any predetermined

€ > 0, so crude estimates are sufficient below.

Recall the following properties of the logarithmic capacity:
(i) For intervals [c,d] C R we have

d—
(2.13) cap([e,d)) = — € (see [Pom92, p. 207)).
(ii) If Ey are Borel sets and if £ = Up2, Ey satisfies diam £/ < §, then
1 - 1
(2.14) ———— < Z — (see [Pom92, Cor. 9.13]).

08 cap(B) (=1 log cap(E;)
The set [0,1] \ F' is the union of the removed intervals:

o0

o\ F= (U a0) o (U (U U 56.0)).

k=2 @eN; (=1
Here A({) is the projection to the imaginary axis of one of the three
intervals removed from —2 — ¢; +4[0, 1] in the first step of the construction,
and A(n, ) is the projection to the imaginary axis of one of the 2Ny, — 2
intervals removed from I*(Le) in the k:th step, for any w = (m,n). The
combined cardinality of the segments A(7n,¢), n € Ny, is

#i, = 2(N), — DIEZIN;.

Since N; < Ny, for all j < k by (2.10), it follows that #; < 2NF. By (2.9),
the length d;, of such segments is bounded from above by exp(—(2Ny)?).

We recall that diam([0, 1] \ F') = 1. Since Ny > 20N;_; and Ny = 2 by
(2.10), we can apply the above estimates together with (2.13) and (2.14) to
conclude that

1 > 2NF 1
(2.15) — < k < -
log aap([(fw — log(8 exp((2Ni)?*) ~ 4
Combining (2.13) and (2.15) yields
1
cap([0,1]\ F) < 2exp(—4) < + = cap([0, 1))
as desired. The proof is complete. O

3. PROOF OF THEOREM 1.1: RIGIDITY OF {)

In this section we prove the rigidity of €2.

THEOREM 3.1. Domain Q is rigid; every conformal map f : Q@ — €
onto another circle domain ' is the restriction of a Mdbius transformation.
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Theorem 1.1 follows from Theorems 2.4 and 3.1. The key property to-
wards Theorem 3.1 is that we can surround every z € E x F' with unions
of nearby disks and families of paths in € of large conformal modulus, see
Section 3.3. It follows (see Section 3.4) that there is a sequence of disks
DY(z) whose relative distances to z are small both in the domain and after
mapping with any conformal map from {2 onto another circle domain. Com-
bining with the extension procedure in Section 3.5 and Ntalampekos’ metric
characterization of conformal maps (see Section 3.6) shows that f must be
the restriction of a Mdbius transformation.

3.1. Conformal modulus. The conformal modulus mod(I') of a family of
paths I in C is

mod(T") = inf/ p? dA,
C
where the infimum is over all admissible functions, i.e., Borel functions p :

C — [0, 00] satisfying f7 pds > 1 for all locally rectifiable v € I'. We will
apply the following basic properties, see e.g. [Ahl66, Ch. IJ:

Proposition 3.2. (i) A sense-preserving homemorphism f : U — V
between subdomains of C is conformal if and only if every path family
I' on UNC satisfies

mod(fT") = mod(T").

(ii) If I'y and Ty are path families so that for every v1 € I'y there is a
Yo € 'y which is a restriction of 1, then

mod(T'y) > mod(I'y).

(iii) If T' is the family of horizontal (vertical) segments connecting the
vertical (horizontal) edges of rectangle ((,( +1t) x (§,£ + s), then
s t

mod(I) = - (mod(F) - ;).

(iv) If T is the family of circles S(zp, ), s1 < s < Sa, then

log 32
mod(I') = —=+
27
(v) If A is the family of paths joining S(z0,s1) and S(zg, s2), $1 < S2,
then 5
T
d(A) = .
mod(A) log &

3.2. Neighboring disks. We say that w = (m,nng) € Wy, is a bottom if
nkzlornk:%qtl, and a top ifnk:% or ng = Ni. Given [ = 1, we
denote

w+ 1= (m,n(ng +1)).

We fix z € E x F and k € N, and let w = (m, iny) be the element of W
for which z € R¥. The ordered collection of the k:th level neighbors of z is
(3.1)

MNi(2) = {DY"(Ri), D¥(Ri), DT (Ri), D (Le), D¥(Le), DV (Le)}
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if w is not a top or a bottom,
(3.2) Mi(2) = {DY(Ri), DYTH(Ri), DT (Le), D¥(Le)}
if w is a bottom, and
Mi(2) = {DY"!(Ri), D¥(Ri), D¥(Le), DY !(Le)}
if w is a top. We determine a cyclic ordering: if My (z) = {D1,..., Dy}, then
(3.3) D; < Djiq for je{l,...,4 -1}, and Dy < Dy.
We use the notation 7D := D(zg, 77) for a disk D = D(zq,r) and 7 > 0.

Lemma 3.3. If D € My(z), then z € 4D.

Proof. Recall that the height of R* and radius of each D € 91, (2) are 2rj and
1, respectively. We assume that w is not a bottom and D = D%~ !(Le); the
other cases are proved similarly. The width of R¥~! (and R¥) and distance
between D and R¥~! are 2t;, and t;, respectively. Thus, if the center of D is
z0, then the distance between zy and the center pgy of the right vertical edge
I*~Y(Ri) of R¥~! is 74 + 3t;. The distance between py and the top right
corner qog of R is 3ry, + %’“. Since max{tx,or} < 155 by (2.9), we conclude
from the Pythagorean theorem that

1) 1/2
20 = 21 < |20 — o] < (i +3t)% + (Bric + 2)2) < arg.

The proof is complete. O

3.3. Surrounding path families on Q. If A;, 4> C C and if U C C is
a domain, we say that a path v : [o, 8] — U connects Ay and As in U, if
v(a) € Ay, y(B) € A9, and v(t) € U for all & < t < 5. In the following,
|7| refers to the image of v. We apply the notation of Section 3.2 for the
collection N (z) of k:th level neighbors.

Proposition 3.4. For every z € £ x F' and k € N there are families I';,
Jj€{1,...,¢}, of paths connecting D; and Djy1 € MNy(z) in Q\ {oco} so that
(i) mod(I'j) > 1 for every j € {1,...,(}, and
(ii) if v; € I then U?Zl(\’yj] U Dj) separates z from oo.

Proof. Fix z € R", where w = (m,n) € Wy. Suppose first that w is not a top
or a bottom, and recall the cyclic order (3.3) of elements in My (z) (defined
in (3.1)). See Figure 3 for an illustration of the path families defined below.
By (2.9), the distance & between D“~!(Ri) and D" (Ri) is less than 1%,
where ry, is their radius. By (2.3), the centers of these disks have the same
x-coordinate ™ + 2t + 1, while the y-coordinates are y™ — 2r;, — §;, and
y", respectively. We thus conclude that every vertical segment connecting
the horizontal sides of the square

. I - 117 = 1lrg +50r -  9rp + 50k
(”5+’“L10$+’ng 10 /) w0 Y 10
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FiGURE 3. The neighboring disks when w is not a bottom
or a top. The figure is rotated by 90 degrees to improve
the layout, and the surrounding “chain” consisting of the
neighboring disks and segments v; € I'; is illustrated by a
dashed rectangle.

contains a subsegment joining D*~!(Ri) and D¥(Ri) in  \ {oco}. For the
family T’y of such subsegments, Proposition 3.2 (ii) and (iii) yield
1

(3.4) mod(I'1) > 1> o
We define families I'y, I'y and I's of vertical segments in a similar manner,
and apply the argument above to show that (3.4) also holds for such families.

We next define family I's of horizontal segments connecting D*+1(Ri) and
D¥*1(Le). We recall from (2.3) that the points minimizing the distance of
these disks are

2™+ 2ty +i(y" + 2 + Op) = 2™ &+ 2ty + iy T

In particular, by (2.9) we have that
dist(D* 1 (Ri), DY (Le)) = 4t), < %
Recalling that the set
T = {x+iy: y+—5—;<y<y++%}
does not intersect EF x F', we conclude that every horizontal segment con-

necting the vertical sides of the square
(™ — 10ty, 2™ + 10t;,) x (y™ — 10tg, y™ + 10t) € T

contains a subsegment connecting D**1(Ri) and D¥T!(Le) in Q \ {oo}.
Applying Proposition 3.2 (ii) and (iii), we see that (3.4) holds for the family
I'3 of all such subsegments. The same argument applies to I's. We conclude
that the desired modulus bounds (i) hold. Condition (ii) follows directly
from the definitions of families I';. We have established the proposition
when w is not a top or a bottom.
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FI1GURE 4. The neighboring disks when w is a bottom. The
figure is rotated by 90 degrees to improve the layout, and the
surrounding “chain” consisting of the neighboring disks and
paths ~; € I'; is illustrated by a dashed loop.

We now assume that w is a bottom, and recall the cyclic order (3.3) of
elements in 9 (2) (defined in (3.2)). We can define families I'1, 'y of vertical
segments and I's of horizontal segments as above so that (3.4) holds. See
Figure 4 for an illustration.

We define the final family I'y of circular arcs as follows: Since 100t <
r by (2.9), for every circle S,, with radius % <r < 3% centered at
2™ +4(y™ — 1), there is a connected component of S, \ (D*(Le) U D¥(Ri))
whose closure 7(r) contains the lower semicircle of S, and connects D" (Le)
and D" (Ri). Moreover, since w is a bottom and 1007, < dx—1 by (2.10),
n(r) does not intersect any other complementary components of €.

We conclude that each n(r) connects D*(Le) and D" (Ri) in Q \ {oo}.
Applying Proposition 3.2 (ii) and (iv) shows that the family I'y of such arcs
satisfies
log 2 1

27 > 10°
We have proved the desired modulus bounds (i) for bottoms. Tops are

mod(Ty) >

treated similarly. Condition (ii) follows again from the definitions of families
I';. The proof is complete. U

3.4. Distortion estimate. Given a domain G C C, we denote by C(G) the
collection of connected components of C \ G and by G the quotient space
(equipped with the quotient topology) C/ ~, where

x ~ gy if either x =y € G or x,y € p for some p € C(G).

The corresponding quotient map is mg : C - G. Identifying each =z € G
and p € C(G) with mg(z) and mg(p), respectively, we have G = G U C(G).
A homeomorphism f : G — G’ has a homeomorphic extension f GG ;
see [NY20, Section 3] for a detailed discussion.
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Let f: © — Q' be a conformal map onto a circle domain 2'. We eventually
want to conclude that f is a Mobius transformation. Post-composing f with
another Mobius transformation does not affect the conclusion, so we may
assume that f(oo) = oco. Recall the notation 7D := D(zp,7r) for a disk
D =D(zp,7) and 7 > 0. We denote the radius of a disk D by r(D).

We continue to apply the notation of Section 3.2 for the collection 9 (2)
of k:th level neighbors. In the following we abuse the notation and denote
the disk 75! (f(ma(D))), D € C(), by f(D).

Proposition 3.5. For every z € E X F and k € N there s
(3.5) DF e My(2) so that ze4DF and f({z}) c 103 f(DM).

Proof. Suppose that z € R*, where w = (m,n) € Wy. We recall that the
first inclusion in (3.5) holds for all D; € M (2) by Lemma 3.3.

Given j € {1,...,£}, we denote D) = f(D;) and I'; = f(T;). Here I';
is the path family in Proposition 3.4, which together with the conformal
invariance of modulus (Proposition 3.2 (i)) yields

1
(3.6) mod(F’) Z 10 for every 7 € {1,...,/}.
We now claim that for every j € {1,...,/¢} there is a 'y]’~ € F;- for which

(3.7) diam(|}]) < 2 - (exp(20m) 4 1)r(D) < 2 - (exp(20m) + 1)r’

where 1’ = max {r(D;) cjed{l,... ,6}}. The second inequality is trivial.
To prove the first inequality, recall that every ~ € F} intersects D; by the
definition of I';. If the first inequality in (3.7) fails then every v € I
also intersects the boundary of (exp(20m) + 1)D}. Combining (3.6) with
Proposition 3.2 (ii) and (v), we see that

2

1 /
70 S mod(l) < log(exp(207) + 1)’

10

which is a contradiction. We have proved (3.7).
Let 77, j € {1,...,£}, be the paths in (3.7). Part (ii) of Proposition 3.4
shows that
T := U§=1(D3‘ Uil) separates f({z}) from infinity.

In particular, the distance between D;- and any point 2’ € f ({z}) is bounded
from above by the diameter of T (we will soon show that 2’ is unique).
Applying (3.7) and the triangle inequality, we conclude that if D € D (2)
is one of the neighbors satisfying r(D’) = 1/, where D’ = f(D), then

L
dist(D',2') < diam(T) <) (2r(D}) + diam(|7}]))
7=1

< 12+ (2 + exp(207))r’ < 10%97;
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recall that the cardinality ¢ of 91;(z) is at most 6. We conclude that also
the second inclusion in (3.5) holds if D¥ = D’. The proof is complete. [0

3.5. Global extension of f. We continue to investigate a conformal map
f:Q — @ onto a circle domain ' satisfying f(oco) = co. We first prove
that f extends to a homeomorphism between the closures of  and €.

Lemma 3.6. The map f extends to a homeomorphism f : Q0 — V.

Proof. Since the disk components D of C\ Q are isolated in 7q(C(f2)), Ca-
rathéodory’s theorem shows that f has a homeomorphic extension D —
df (D). Hence it suffices to show that diam(f({z})) = 0 for every z € Ex F.

Notice that the preimage of f(C(€2)) under 7o is bounded in C since
oo € . Consequently, the sequence of disks D¥ in Proposition 3.5 satisfies
r(f(D¥)) = 0 as z — co. Combining with (3.5), we have

diam(f({z})) < 2-10% Jim r(f(DF)) =o0.
—00
The proof is complete. U

We next apply Lemma 3.6 and repeated reflections across the boundary
circles of © and €' to extend f to all of C. The method has been applied to
prove rigidity of circle domains and Schottky sets e.g. in [HS94], [BKMO09],
[Youl6], [NY20], [NR23]. We refer to [NY20, Section 7.1] for the details of
the following construction and the proof of Proposition 3.7 below.

As before, we assume that f(oo) = co. We denote the collection of non-
degenerate elements (i.e., disks) of C(2) by D. Given D € D, let Rp be the
reflection across the circle D. The Schottky group S(2) is the free discrete
group generated by {Rp : D € D}. Every non-identity element g of S(12)
can be uniquely written as

(3.8) g=Rp,o0---0oRp,, where Djy1# Djforall1<j<l—1.

Denoting D' = f (D), the map f admits a conformal extension

fo: QU | (Rp(Q)UAD) » QU | (Rp/(Q)UdD) -
DeD DeD

we set fx(z) = (Rpro foRp)(z) for z € Rp(Q2) and apply Lemma 3.6 and
the Schwarz reflection principle to extend f, across the boundary circle 9D.
Continuing inductively, we see that f, can be further extended to the union
Q, of sets g(Q) U g(dDy), g € S(Q2). Here Dy is the disk in (3.8).

Thus, we have a conformal homeomorphism f, : Q, — Q., where €, is

defined as €2, but using elements ¢ = S(') instead of elements g = S(Q).
The boundary satisfies 9, = C\ Q. = X UY, where

(3.9) X= |J g(ExP),

geS(Q)
and for every z € Y there are disks D; € D so that if By = Dg then
(310) {Z} = ﬂ;-";OBj, where Bj+1 = RDl o--:0 RDj (Dj—i-l) C Bj.
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Given z € Y, the intersection of the disks B;- bounded by circles f.(0B;)
is a point 2z’ € 9. Applying Lemma 3.6 to X and setting f.(z) = 2’ for
z € Y shows that f, has a homeomorphic extension to (@, see [NY20, Lemma
7.5]. The following proposition summarizes our discussion.

Proposition 3.7. The map fi : C—Cisa homeomorphism, and conformal
on Q, =C\ (XUY). Here X and Y satisfy (3.9) and (3.10), respectively.

3.6. Eccentric distortion and conformality. The final step in the proof
of the rigidity of ) is showing that the homeomorphic extension f, : C—
C of f (see Proposition 3.7) is conformal on @, and therefore a Mo6bius
transformation. We now show how conformality follows from Proposition 3.5
and a recent characterization of conformal maps by Ntalampekos [Nta24b].

Recall that a sense-preserving homemorphism h : G — G’ between subdo-
mains of C is K-quasiconformal, K > 1, if the conformal modulus of every
path family I" in G N C satisfies

(3.11) %mod(l“) < mod(hT') < K mod(T).

By Proposition 3.2 (i), 1-quasiconformality is equivalent with conformality.

The classical metric definition of quasiconformality (see e.g. [V&i7l, Ch.
4]) is given in terms of the metric distortion, which at a point zp measures
the distortion of images under h of small disks centered at zy. We apply a
more flexible notion of metric distortion which was recently introduced by
Ntalampekos: We say that the eccentricity of a bounded open set A C C is

E(A) =inf{M >1: there exists an open disk B such that B C A C M B}.

The eccentric distortion of a topological embedding h : G — C of an open
G cCatzeG\ ({oo,h 1(c0)}) is

Ep(z9) = inf{M > 1: there exists a sequence of open sets A C G,
ke N, with zp € A, k € N, and diam(Ag) — 0 as k — oo
such that F(Ax) < M and E(h(Ag)) < M for all k € N}.
The definition can be extended to {oo, h~!(c0)} by composing h with Mébius

transformations.

THEOREM 3.8. Let G C C be open and h : G — Ca Sense-preserving
topological embedding. If there is H > 1 so that

(3.12) En(z0) < H forall 29 € G,

then h is quasiconformal on G. If in addition to (3.12) also Ex(z9) =1 for
almost every zg € G, then h is conformal on G.

Proof. The first claim is [Nta24b, Theorem 1.2], and the second claim is
[Nta23, Lemma 2.5]. O

We can now finish the proof of Theorem 3.1. We need to prove that the
map f. in Proposition 3.7 is conformal on C. Conformality of f, in .
shows that Ey, (29) = 1 for every zg € Q.. We also have Ef, (29) = 1 for



16 KAI RAJALA

every zyp € Y, since we can apply the interiors of the disks Bj; in (3.10) to
test the definition of the eccentric distortion.
Finally, we claim that

(3.13) E;.(20) <10%  for every z € X.

If zo € E x F, we can test the definition of eccentric distortion with arbi-
trarily small open neighborhoods of the unions of zy and the neighbors D];
in Proposition 3.5 to prove (3.13).

If g € S(Q) is a non-identity element, then every zy € g(E x F') has an
open neighborhood U so that

fo(2) = (¢’ o feog 1) (z) forall z €U,

where ¢’ € S(€'). The eccentric distortion is not affected by compositions
with ¢’ and g~!, because they are (anti)conformal. Since Ef, (g7'(20)) <
103 by the previous paragraph, we conclude that (3.13) holds for all 2z € X

We have proved that the eccentric distortion of f, is bounded everywhere
and equal to one on C \ X. The Lebesgue measure of X is zero by Lemma
2.3. Thus, we can apply Theorem 3.8 to conclude that f, is conformal. The
proofs of Theorem 3.1 and Theorem 1.1 are complete.
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