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Abstract. We prove Koebe’s conjecture and a version of Schramm’s
cofat uniformization theorem for domains Ω ⊂ Ĉ satisfying conditions
involving quasitripods, i.e., quasisymmetric images of the standard tri-
pod. If the non-point complementary components of Ω contain uniform
quasitripods with large diameters and satisfy a packing condition, then
there exists a conformal map f : Ω → D onto a circle domain D. More-
over, f preserves the classes of point-components and non-point com-
ponents. The packing condition is satisfied if Ω is cospread, i.e., if the
complementary components contain uniform quasitripods in all scales.

1. Introduction

The Riemann mapping theorem asserts that every simply connected proper
subdomain Ω ⊊ C can be conformally mapped onto the unit disk. Koebe
provided one of the earliest complete proofs of the theorem and explored its
extensions to multiply connected domains.

In [Koe08], he conjectured that every domain in the Riemann sphere Ĉ
is conformally equivalent to a circle domain, i.e., a domain whose boundary
components are either points or circles. In [Koe20], he proved the conjecture
for all finitely connected domains. One remarkable feature of Koebe’s theo-
rem and his conjecture is that they impose no regularity assumptions on the
geometry of the complementary components.

In their breakthrough work, He and Schramm [HS93] proved Koebe’s con-
jecture for countably connected domains. Shortly thereafter, Schramm [Sch95]
extended the result to uncountably connected domains whose complemen-
tary components are uniformly fat (i.e., Ahlfors 2-regular).

In this paper we prove Koebe’s conjecture for domains whose complemen-
tary components are spread and satisfy a packing condition. Let us fix some
notation before stating our main results.
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Given a domain G ⊂ Ĉ, we call a connected component p of Ĉ \ G non-
trivial and denote p ∈ CN (G) if diam(p ∩ C) > 01. Otherwise we call p a
point-component and denote p ∈ CP (G). Let Ĝ = Ĉ/ ∼, where

z ∼ w if either z = w ∈ G or z, w ∈ p for some p ∈ C(G) := CN (G)∪CP (G).

We equip Ĝ with the quotient topology. The quotient map is πG : Ĉ → Ĝ.
By Moore’s theorem (see [Dav86, page 3]), Ĝ is homeomorphic to Ĉ.

Every homeomorphism f : G→ G′ has a unique homeomorphic extension
f̂ : Ĝ → Ĝ′. By abuse of notation, we do not make a distinction between
p ∈ C(G) and πG(p) ∈ Ĝ.

Recall that A ⊂ Ĉ is τ -fat if for every z0 ∈ A ∩ C and every disk D(z0, r)
that does not contain A we have Area(A∩D(z0, r)) ≥ τr2. A domain Ω ⊂ Ĉ
is cofat if there is τ > 0 so that every p ∈ CN (Ω) is τ -fat.

Theorem 1.1 ([Sch95]). Let Ω ⊂ Ĉ be a cofat domain. Then there is a
conformal map f : Ω → D onto a circle domain D. Moreover, f̂(CN (Ω)) =
CN (D) and f̂(CP (Ω)) = CP (D).

Theorem 1.1 and its proof involving Schramm’s transboundary modulus
have been applied to solve a variety of uniformization problems in Euclidean
and metric spaces, see e.g. [Bon11, Mer12, BM13, Nta23a]. Towards further
applications, it is desirable to find minimal assumptions under which the con-
clusions of Theorem 1.1 hold. In this paper we consider conditions involving
tripods and quasisymmetries. Recall that a homeomorphism ϕ : E → F be-
tween subsets of C is weakly H-quasisymmetric, where H is a constant, if
for all z1, z2, z3 ∈ E satisfying |z2 − z1| ≤ |z3 − z1|, we have

|ϕ(z2)− ϕ(z1)| ≤ H|ϕ(z3)− ϕ(z1)|.
The standard tripod T0 ⊂ C is the union of segments [0, ei·2jπ/3], j = 0, 1, 2.

Definition 1.2. We call T ⊂ C an H-quasitripod if there is a weakly H-
quasisymmetric homeomorphism ϕ : T0 → T .

Our main result reads as follows.

Theorem 1.3. Let Ω ⊂ Ĉ be a domain containing ∞. Suppose that there
are H,N ≥ 1 so that

(i) every p ∈ CN (Ω) contains an H-quasitripod T with

diam(T ) ≥ diam(p)/H,

(ii) card{p ∈ CN (Ω) : diam(p) ≥ r, p ∩ D(z0, r) ̸= ∅} ≤ N for every
z0 ∈ C and r > 0.

Then there exists a conformal homeomorphism f : Ω → D onto a circle do-
main D. Moreover,

(1) f̂(CN (Ω)) = CN (D) and f̂(CP (Ω)) = CP (D).

1We denote by diam(A) and Area(A) the Euclidean diameter and Lebesgue measure
of A ⊂ C, resp.
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The first conclusion of Theorem 1.3 shows that Koebe’s conjecture holds
for the class of domains Ω satisfying Conditions (i) and (ii). Although the
collection CN (Ω) is countable for every such Ω, the conclusion does not fol-
low from the He-Schramm theorem [HS93], which crucially depends on the
assumption that the set of components that arise as limits of sequences in
CN (Ω) is also countable.

The conclusions in (1) do not hold even for all countably connected do-
mains; see [Nta23b, Raj23, LR25] and Proposition 6.1. Thus, assumptions
such as cofatness or Conditions (i) and (ii) are required for the stronger form
of Koebe’s conjecture that includes (1).

The proof of Theorem 1.3 relies on transboundary modulus estimates
which are significantly more involved than the estimates on cofat domains.
The difficulty is that, unlike cofatness, Conditions (i) and (ii) do not imply
ℓ2-bounds for the diameters of the elements in CN (Ω) (see Example 6.3).
Neither Condition (i) nor Condition (ii) alone guarantees (1); see Section 6.

We now introduce a local version of Condition (i) which leads to a Möbius
invariant class of domains that satisfy the conclusions of Theorem 1.3.

Definition 1.4. We say that A ⊂ Ĉ is H-spread if for every z0 ∈ A ∩ C
and every 0 < r < diam(A ∩ C) there is an H-quasitripod T ⊂ A ∩ D(z0, r)
with diam(T ) ≥ r/H. A domain Ω ⊂ Ĉ is H-cospread if every p ∈ CN (Ω) is
H-spread, and cospread if Ω is H-cospread for some H.

The class of cospread domains includes the continuum self-similar trees
and uniformly branching trees considered by Bonk-Tran [BT21] and Bonk-
Meyer [BM22], respectively.

Proposition 1.5. Let Ω ⊂ Ĉ be an H-cospread domain. Then Conditions
(i) and (ii) in Theorem 1.3 hold with H and N = N(H). Moreover, if
ϕ : Ĉ → Ĉ is α-quasi-Möbius then ϕ(Ω) is H ′-cospread, where H ′ depends
only on H and α.

In other words, requiring Condition (i) of Theorem 1.3 at all scales implies
Condition (ii). The class of quasi-Möbius maps, which we recall in Section 7,
contains all Möbius transformations. By Theorem 1.3 and Proposition 1.5,
cospread domains admit conformal maps onto circle domains.

Corollary 1.6. If Ω ⊂ Ĉ is a cospread domain, then there is a conformal
homeomorphism f : Ω → D onto a circle domain D. Moreover, f̂(CN (Ω)) =
CN (D) and f̂(CP (Ω)) = CP (D).

In addition to the previously mentioned results, the works of He and
Schramm on Koebe’s conjecture and the associated rigidity problem [HS94]
have inspired several recent developments. Koebe’s conjecture has been es-
tablished for Gromov-hyperbolic domains in [KN24], and an approach using
exhaustions has been explored in [Raj23, NR23]. Further rigidity results
have been developed in [You16, NY20, Nta23b, Raj24].
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We finish the introduction by discussing possible extensions. First, our
methods can be adapted to show that if every p ∈ CN (Ω) in Theorem 1.3 or
Corollary 1.6 is the closure of a Jordan domain, then f admits a homeomor-
phic extension f̄ : Ω → D.

Another extension concerns versions of the Brandt-Harrington theorem
for infinitely connected domains, see [Bra80, Har82, Sch95, Sch96]. Although
our results only concern circle domain targets, the estimates below and in the
proof of [Sch95, Theorem 4.2] suggest that they can be replaced in Theorem
1.3 and Corollary 1.6 with targets D so that if p ∈ CN (Ω) then f̂(p) ∈ C(D)
is homothetic to a predetermined fat or spread set qp.

There are cofat domains that are not cospread and do not satisfy the
Quasitripod Condition (i) in Theorem 1.3. The proof given below can be
modified to show that Condition (i) in Theorem 1.3 can be replaced with
the requirement that “every p ∈ CN (Ω) is uniformly fat or satisfies Condition
(i)”; see Remark 4.15. It would be interesting to identify natural conditions
that define a class of domains encompassing both cofat domains and the
domains described in Theorem 1.3.

This paper is organized as follows. In Section 2 we recall the definition of
Schramm’s transboundary modulus. In Section 3 we state our main mod-
ulus estimate, Theorem 3.1, for finitely connected domains satisfying the
conditions of Theorem 1.3. We proceed to give the proof of Theorem 1.3,
assuming Theorem 3.1 as well as the necessary modulus estimates on circle
domains (Proposition 3.2).

We prove Theorem 1.3 by approximating Ω with a decreasing sequence
of finitely connected domains Ωj ⊃ Ω satisfying C(Ωj) ⊂ CN (Ω). Such
an approach is standard and was also used by Schramm [Sch95]. Our new
innovation and the main difficulty in the proof of Theorem 1.3 is establishing
Theorem 3.1. The proof is given in Section 4.

Section 5 contains the proof of Proposition 3.2, the modulus estimates
on circle domains. See e.g. [Sch95, Bon11, Raj23] for similar estimates. In
Section 6, we construct examples that illustrate the need for both conditions
in Theorem 1.3. We prove Proposition 1.5 in Section 7.

Acknowledgments

We are grateful to Hrant Hakobyan and Pietro Poggi-Corradini for valu-
able discussions, and to Chengxi Li and the anonymous referees for their
insightful comments, which helped improve the presentation of this work.

2. Transboundary modulus

Koebe’s conjecture concerns conformal equivalence of domains, so it is
natural to seek conformally invariant objects. The modulus of path families
is one such invariant. The classical definition (see e.g. [Hei01, Ch. 7])
concerns only paths within the domain, meaning it has no discrete part.
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Schramm [Sch95] made the ingenious observation that one may allow
paths to “pass through” the complementary components and, by a natural
modification, obtain a modulus that is invariant under conformal homeo-
morphisms. We now define this modulus and recall its main properties, as
it will be our main tool throughout.

Recall that every (continuous) rectifiable path γ defined from a compact
interval into C has an arclength re-parameterization γs : [0, ℓ] → C. Given a
Borel function ρ : C → [0,∞] and a continuous path γ, we define

ˆ
γ
ρ ds :=

ˆ ℓ

0
ρ(γs(t)) dt

if γ is rectifiable, and
´
γ ρ ds = ∞ otherwise.

For a path defined on an open interval, we define
´
γ ρ ds to be the supre-

mum of
´
γ′ ρ ds over all subpaths γ′ that are defined on compact intervals.

An elementary fact that we will use repeatedly is that if γ : [a, b] → C is
a path and M > 0 a real number, thenˆ

γ
M ds ≥M |γ(a)− γ(b)|.

Fix a domain G ⊂ Ĉ. The transboundary modulus mod(Γ) of a family Γ

of paths in Ĝ is defined by

mod(Γ) = inf
ρ∈X(Γ)

ˆ
G∩C

ρ2 dA+
∑

p∈C(G)

ρ(p)2,

where X(Γ) is the collection of admissible functions for Γ, i.e., Borel func-
tions ρ : Ĝ→ [0,∞] for which

1 ≤
ˆ
γ
ρ ds+

∑
p∈C(G)∩|γ|

ρ(p) for all γ ∈ Γ.

Here |γ| denotes the image of the path γ and
´
γ ρ ds is the path integral of

the restriction of γ to G. More precisely, the restriction is a countable union
of disjoint paths γj , each of which maps onto a component of |γ| \ C(G), and
we define ˆ

γ
ρ ds =

∑
j

ˆ
γj

ρ ds.

Technically, Schramm worked with transboundary extremal length of Γ,
which equals 1

mod(Γ) , and noticed that the proof of the conformal invariance
of classical conformal modulus can be generalized to transboundary modulus
in a straightforward manner.

Lemma 2.1 ([Sch95], Lemma 1.1). Suppose that f : G → G′ is conformal.
Then for every path family Γ in Ĝ, we have mod(Γ) = mod(f̂(Γ)). Here
f̂(Γ) := {f̂ ◦ γ : γ ∈ Γ}.
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We will apply the following characterization of path families of non-zero
modulus in Section 6. The proof follows directly from the definitions and
appropriate scalar multiplications of the admissible functions ρ.

Lemma 2.2. A family Γ of paths in Ĝ satisfies mod(Γ) > 0 if and only if
there exists an M > 0 such that for every admissible function ρ for Γ that
satisfies ˆ

G∩C
ρ2 dA+

∑
p∈C(G)

ρ(p)2 = 1,

we have ˆ
γ
ρ ds+

∑
p∈C(G)∩|γ|

ρ(p) ≤M for some γ ∈ Γ.

We will also apply the following basic properties of the transboundary
modulus. The proof can be carried out in the same way as for the classical
modulus, see [HL23, Proposition 3.1] for properties (1)-(3) and [Hei01, Cor.
7.20] for property (4). Given path families Γ1 and Γ2 in Ĝ, we say that Γ1

minorizes Γ2 if every γ2 ∈ Γ2 contains a subpath γ1 ∈ Γ1.

Proposition 2.3. Let Γ1,Γ2, . . . be path families in Ĝ. The following prop-
erties hold:

(1) If Γ1 ⊂ Γ2, then mod(Γ1) ≤ mod(Γ2).
(2) If Γ = ∪jΓj, then mod(Γ) ≤

∑
j mod(Γj).

(3) If Γ1 minorizes Γ2, then mod(Γ1) ≥ mod(Γ2).
(4) If p ∈ G or if p is an isolated point-component of Ĝ, then the modulus

of all the paths γ in Ĝ satisfying p ∈ |γ| is zero.

3. Proof of the main result, Theorem 1.3

The proof of our main result, Theorem 1.3, is based on the following
estimate. We denote the open Euclidean disk with center a ∈ C and radius
r > 0 by D(a, r), and its boundary circle by S(a, r). Moreover, A(a, r) is the
annulus D(a, 4r) \ D(a, r/2).

Theorem 3.1. Let Ω ⊂ Ĉ be a finitely connected domain that satisfies Con-
ditions (i) and (ii) in Theorem 1.3 with some constants H and N . Then,
there is an M > 0, depending only on H and N , so that if a ∈ C and R > 0,
then modΓ ≤M , where

Γ = {paths in πΩ(A(a,R)) joining πΩ(S(a, 4R)) and πΩ(S(a,R/2))}.

We postpone the proof of Theorem 3.1 until Section 4, and first show how
it can be applied to prove Theorem 1.3. We may assume that card CN (Ω) =
∞, since otherwise Theorem 1.3 follows from Koebe’s theorem, see e.g.
[Bon11, Theorem 9.5]. We enumerate the elements and denote CN (Ω) =
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f̂j

f̂j(pℓ)

pℓ

Figure 1. Ωj is the complement of the union of the solid
quasitripods, conformally mapped by fj onto a circle domain.
More components will be included in CN (Ωk) as k increases.

{p0, p1, . . .}. It follows directly from the definitions that if Theorem 1.3
holds for

Ω′ = Ĉ \
⋃

p∈CN (Ω)

p,

then the theorem also holds for Ω. Indeed, notice that Ω ⊂ Ω′, so, if f maps
Ω′ onto a circle domain that satisfies (1), then (the restriction of) f maps Ω
onto a circle domain that satisfies (1), because it maps the point-components
of Ω to point-components. Therefore, we may assume that Ω′ = Ω.

Recall that if G ⊂ Ĉ is a domain and p ∈ C(G), we do not make a
distinction between p and πG(p). In particular, if p ⊂ C then diam(πG(p))
is the Euclidean diameter of p.

Given k ∈ N, let Ω̃k = Ĉ \ (p0 ∪ p1 ∪ · · · ∪ pk). By Koebe’s theorem
there is a conformal homeomorphism gk : Ω̃k → D̃k so that qk,ℓ := ĝk(pℓ) is
a disk (with positive radius) for all ℓ = 0, 1, . . . , k. By postcomposing with
a Möbius transformation, we may assume that

(2) qk,0 = Ĉ \ D(0, 1) for all k = 1, 2, . . . .

For every ℓ ∈ N, any subsequence of (qk,ℓ)k has a further subsequence
Hausdorff converging to a limit disk or a point. Therefore we can choose
a diagonal subsequence (gkj )j , converging locally uniformly in Ω, so that
qkj ,ℓ → qℓ in the Hausdorff topology for each ℓ. By normalization (2), the
limit map f is non-constant and therefore a conformal homeomorphism from
Ω onto a domain D. Each qℓ, ℓ ∈ N, is a disk or a point, and q0 = Ĉ\D(0, 1).

Theorem 1.3 follows once we have established the following properties:

diam(f̂(p)) = 0 for all p ∈ CP (Ω),(3)

qℓ = f̂(pℓ) and diam(qℓ) > 0 for all ℓ = 0, 1, 2, . . . .(4)

We denote gkj by fj , Ω̃kj by Ωj , and D̃kj by Dj . Moreover,

we fix p̄ ∈ C(Ω) and any Jordan curve J ⊂ Ω.
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Next let b ∈ Ω ∩ NR(p̄), where 0 < R = dist(p̄, J) and Nδ(A) is the δ-
neighborhood of A in C. Here and in what follows, all distances are Euclidean
unless stated otherwise. We choose a point a ∈ ∂p̄ closest to b and denote
by I the segment in C with endpoints a and b. Given j ≥ 1, let

Γj = {paths in Ω̂j \ {πΩj (p̄)} that join πΩj (J) and πΩj (I)},

Λj = {paths in Ω̂j \ {πΩj (p̄)} that separate πΩj (J) and πΩj (p̄)}.
In summary, here is how the proofs of (3) and (4) proceed. We use Theo-

rem 3.1 to prove upper bounds on modΓj and modΛj . On the other hand,
estimates on circle domains Dj provide lower bounds on mod f̂j(Γj) and
mod f̂j(Λj). Combined with the conformal invariance of the transboundary
modulus, these yield (3) and (4).

We now state the circle domain estimates; we will prove them later in
Section 5.

Proposition 3.2. Let fj : Ωj → Dj be the conformal maps defined above,
such that each Dj is a circle domain. The following estimates hold:

(1) There is a homeomorphism φp̄ : [0,∞) → [0,∞) so that

lim sup
j→∞

mod f̂j(Γj) ≥ lim sup
j→∞

φp̄(dist(fj(b), f̂j(p̄))).

(2) If diam(f̂(p̄)) = 0 then limj→∞mod f̂j(Λj) = ∞.

We now apply Theorem 3.1 to establish modulus estimates on Γj , Λj . We
first show that

(5) modΓj ≤ θa(|b− a|),
where θa does not depend on j and θa(ϵ) → 0 as ϵ→ 0.

To prove (5), we notice that every γ ∈ Γj intersects πΩj (S(a,R)) and
πΩj (S(a, |b − a|)) but avoids πΩj (p̄). Therefore, by the monotonicity of the
transboundary modulus (Proposition 2.3 (1)), it suffices to show that

modΓj(r,R) ≤ θ(r), θ(r) → 0 as r → 0, θ does not depend on j,

where

Γj(r,R) = {paths in Ω̂j \ {πΩj (p̄)} that join πΩj (S(a,R)) and πΩj (S(a, r))}.
We choose a decreasing sequence of radii Rn as follows: Let R1 := R/10.

Then, assuming R1, . . . , Rn−1 are defined let

Rn =
R′
n

10
,

where R′
n ≤ Rn−1/2 is the smallest radius for which some p ∈ CN (Ω) \ {p̄}

intersects both S(a,Rn−1/2) and S(a,R′
n). If no p ∈ CN (Ω) \ {p̄} intersects

S(a,Rn−1/2), we set R′
n = Rn−1/2. Then Rn does not depend on j, Rn → 0

as n→ ∞, and both the annuli

An = D(a, 4Rn) \ D(a,Rn/2), n = 1, 2, . . . ,
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and their projections πΩj (An) under any given j are pairwise disjoint. Let
Γj(n) be the family of paths γ in πΩj (An) \ {πΩj (p̄)} such that

γ joins πΩj (S(a, 4Rn)) and πΩj (S(a,Rn/2)).

Notice that if Ω satisfies Conditions (i) and (ii) in Theorem 1.3 with some H
and N , then every Ωj satisfies the same conditions. Therefore, by Theorem
3.1 and the monotonicity of the transboundary modulus (Proposition 2.3
(1)), we have modΓj(n) ≤M , where M does not depend on j or n.

We fix N ∈ N and choose for every 1 ≤ n ≤ N an admissible function ρn
for Γj(n) such thatˆ

Ωj∩An
ρ2n dA+

∑
p∈C(Ωj)∩πΩj (An)

ρn(p)
2 ≤ 2M

and such that ρn(x) = 0 if x ∈ Ωj \ An or x ∈ C(Ωj) \ πΩj (An). Now
ρ := 1

N

∑N
n=1 ρn is admissible for Γj(RN+1, R). Moreover, since the sets

πΩj (An) are pairwise disjoint we haveˆ
Ωj

ρ2 dA+
∑

p∈C(Ωj)

ρ(p)2 ≤ 2MN

N2
=

2M

N
→ 0 as N → ∞.

Estimate (5) follows.
We can now prove (3): assume p̄ = {a} ∈ CP (Ω) and suppose towards a

contradiction that f̂(p̄) ∈ CN (D). Then there are c > 0 and a sequence (bm)
of points in Ω converging to a so that for every m ∈ N we have

(6) lim sup
j→∞

dist(fj(bm), f̂j(p̄)) ≥ c > 0.

Combining (5) and the first part of Proposition 3.2 with Lemma 2.1 (con-
formal invariance of modulus) gives a contradiction, proving (3).

Towards (4), let p̄ = pℓ for some ℓ ∈ N ∪ {0}, and let jℓ be the smallest
index for which pℓ ∈ CN (Ωjℓ). We claim that

(7) modΛj ≤Mℓ <∞ for all j ≥ jℓ,

where Mℓ does not depend on j. To start the proof of (7), we fix c ∈ ∂pℓ and
d ∈ J∩C so that |c−d| = dist(pℓ, J), and let ξ be the segment with endpoints
c and d. We cover ξ with N1 <∞ disks D(zn, r), where r = diam(pℓ)/20.

Since every λ ∈ Λj separates πΩj (p̄) and πΩj (J), λ has to pass through
πΩj (ξ) and, consequently, through at least one πΩj (D(zn, r)). Furthermore,
we have

diam(π−1
Ωj

(|λ|)) ≥ diam(pℓ),

which implies that if λ passes through πΩj (D(zn, r)) then it also passes
through πΩj (S(zn, 8r)). Therefore,

(8) Λj ⊂
N1⋃
n=1

Γj(n),
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where

Γj(n) = {paths in Ω̂j joining πΩj (S(zn, 8r)) and πΩj (S(zn, r))}.
By Theorem 3.1, modΓj(n) ≤ M for every 1 ≤ n ≤ N1. Thus, by

(8) and the monotonicity and subadditivity of the transboundary modulus
(Proposition 2.3 (1) and (2)), we have

modΛj ≤
N1∑
n=1

modΓj(n) ≤MN1,

which proves (7).
We can now prove (4). The proof of the first part is similar to the proof of

(3). We have qℓ ⊂ f̂(pℓ) by Carathéodory’s kernel convergence theorem; see
[Gol69, Theorem V.5.1, p. 228]. Suppose towards a contradiction that qℓ ⊊
f̂(pℓ). Then there are c > 0 and a sequence (bm) in Ω so that dist(bm, pℓ) → 0
as m → ∞ and (6) holds with p̄ = pℓ. Combining (5) and the first part of
Proposition 3.2 with Lemma 2.1 (conformal invariance of modulus) gives a
contradiction. For the second part of (4) it suffices to combine (7) and the
second part of Proposition 3.2 with Lemma 2.1.

We have proved that Theorem 1.3 follows from Theorem 3.1 and Propo-
sition 3.2.

4. Proof of Theorem 3.1

In this section we assume that Ω ⊂ Ĉ is as in Theorem 3.1: a finitely
connected domain satisfying Conditions (i) and (ii) in Theorem 1.3 with
some H and N . To prove Theorem 3.1, we must find a uniform bound for
modΓ, where (see Figure 2).

Γ = {paths in πΩ(A(a,R)) joining πΩ(S(a, 4R)) and πΩ(S(a,R/2))}.
We begin by discussing the core ideas of the proof of Theorem 3.1. We

need to find a Borel function ρ : Ω̂ → [0,∞] such that

(9) 1 ≤
ˆ
γ
ρ ds+

∑
p∈C(Ω)∩|γ|

ρ(p) for all γ ∈ Γ

while maintaining a uniform bound, independent of the center of the annulus
and the number of complementary components of Ω, on

(10)
ˆ
Ω∩C

ρ2 dA+
∑

p∈C(Ω)

ρ(p)2.

First, let ρ̃(x) = R−1 when x ∈ Ω ∩ A(a,R), and ρ̃(x) = 0 elsewhere.
Then ρ̃ is admissible for the subfamily of Γ consisting of the paths which
stay within the domain Ω. Moreover, the energy (10) of ρ̃ is bounded from
above by 16π. It is therefore natural to define ρ = ρ̃ on Ω.

The first attempt towards completing the definition of ρ is setting ρ(p) =
diam(p)/R for all p ∈ C(Ω). The triangle inequality shows that such a ρ
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Figure 2. The annulus A(a,R) and some of the comple-
mentary components of Ω, as in Theorem 3.1. Paths can
use complementary components as shortcuts to join the two
boundary circles of the annulus.

satisfies the admissibility condition (9). Moreover, if Ω is a circle domain or
a cofat domain, then the energy (10) is uniformly bounded from above.

However, our assumptions are not restrictive enough to guarantee uniform
bounds for the energy (10) of such a ρ, see Example 6.3. This is a serious
obstacle, which we overcome by finding an intricate definition of ρ on C(Ω).

To this end, the first step is to notice that the packing Condition (ii) in
Theorem 1.3 gives a uniform bound for the number of complementary com-
ponents intersecting A(a,R) whose diameters are larger than or comparable
to R. Thus, we can assign the value ρ(p) = 1 for each such component p.

To complete the definition of ρ, we apply the quasitripod Condition (i) in
Theorem 1.3 to show that the elements of a substantial subset B of C(Ω) are
“overshadowed” by larger components which are not in B. We set ρ(p) = 0
on B and ρ(p) = diam(p)/R for the remaining components p.

The most technical part of the proof of Theorem 3.1 is proving that our
definition yields an admissible function ρ for Γ. The proof goes roughly as
follows: given a path γ ∈ Γ passing through some elements of B, we need to
compensate for the fact that ρ = 0 on B. We apply the following strategy:
let p ∈ B be a component which is overshadowed by a component p′. The
quasitripod condition implies that there are two options:

(1) If γ passes through p′, the weight ρ(p′) is sufficient to compensate
for ρ(p) = 0.

(2) If γ passes through p but not through p′, then it must “go around”
p′ and pick up “extra weight” which is sufficient to compensate for
ρ(p) = 0; see Proposition 4.1.
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The main estimate in the proof of the admissibility of ρ is Proposition 4.4,
whose proof occupies the last subsections of this section.

4.1. Costs of detours around quasitripods. We now start the proof of
Theorem 3.1. We lose no generality by assuming that C(Ω) = CN (Ω). Indeed,
since Ω is finitely connected, the point-components p ∈ CP (Ω) are isolated
and we can apply Proposition 2.3 (4).

Our main application of the Quasitripod Condition (i) in Theorem 1.3
is the following proposition, which states that there is a relatively large
neighborhood near every p ∈ C(Ω) which is “overshadowed” by p.

Given p ∈ C(Ω) and 0 < τ < 1/4 we will repeatedly use the shorthand

(11) rp = rp(τ) = τ diam(p) > 0.

Let ap, bp ∈ C (soon to be specified) and assume that D(ap, 4τrp) ⊂ D(bp, rp).
Let Γ(ap, bp, τ) be the family of paths

(12) α : I → Ω̂, I = [s1, t1] = [s1(α), t1(α)],

for which there are s1 < s2 ≤ t2 < t1 with the following properties:
(i) α(s2) ∪ α(t2) ⊂ D(ap, 4τrp),
(ii) α(t) ∩ S(bp, rp) ̸= ∅ for t = s1 and t = t1,
(iii) diam(α(t)) ≤ τrp for t = s1 and t = t1,
(iv) α(t) ⊂ D(bp, rp) for all s1 < t < s2 and t2 < t < t1.

Observe that the subpaths of α on [s1, s2] and then on [t2, t1] each join
πΩ(S(bp, rp)) to πΩ(D(ap, 4τrp)) within πΩ(D(bp, rp)).

Recall that we assume that every p ∈ C(Ω) contains an H-quasitripod T
with diam(T ) ≥ diam(p)/H.

Proposition 4.1. There is a number 0 < τ < 1
1000 , depending only on H,

so that the following holds: for every p ∈ C(Ω) there exist bp ∈ p and ap ∈ C,
such that

(13) D(ap, 4τrp) ⊂ D(bp, τ1/2rp),

and such that for every α ∈ Γ(ap, bp, τ) for which p /∈ |α| we have

(14) dist(α(s1), α(t1)) ≤ dist(α(s1), α(s2)) + dist(α(t1), α(t2))−
1

10
rp.

Here s2 and t2 are the numbers defined after (12).

Proposition 4.1 implies that if α ∈ Γ(ap, bp, τ) does not pass through p
then it is uniformly far from being a “geodesic”, see Figure 3. Notice that
the right side of (14) does not include the term dist(α(s2), α(t2)).

Proof. We denote the vertices of the standard tripod T0 by z0, z1, z2. By
assumption there is a weakly H-quasisymmetric homeomorphism ϕ : T0 →
T ⊂ p with diam(T ) ≥ H−1 diam(p). By Väisälä’s theorem [Hei01, Corollary
10.22], ϕ is in fact (strongly) quasisymmetric: there is a homeomorphism
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p

α
α

α(t1)

α(s1)

Figure 3. The dotted path shows a sample α ∈ Γ(ap, bp, τ).
It has two subpaths that each join S(bp, rp) to D(ap, 4τrp).

η : [0,∞) → [0,∞) depending only on H so that for every t > 0 and every
triple of points w0, w1, w2,

|w1 − w0| ≤ t|w2 − w0| implies |ϕ(w1)− ϕ(w0)| ≤ η(t)|ϕ(w2)− ϕ(w0)|.

We set bp := ϕ(0) ∈ p. A standard quasisymmetric distortion estimate
shows that if τ > 0 is small enough depending on H then each of the three
components of T \ {bp} intersect S(bp, rp). Thus, we can define the points

kn = min{0 < s < 1 : ϕ(szn) ∈ S(bp, rp)}, n ∈ {0, 1, 2},

and the curves
Jn = ϕ([0, knzn]), n ∈ {0, 1, 2}.

Then D(bp, rp) \
⋃2
n=0 Jn is the union of pairwise disjoint connected sets

V0, V1, V2 which are labeled so that Vn ∩ Jn = {bp}. That is, Vn is bounded
by the other two curves Jn′ ̸= Jn and a subarc Sn of S(bp, rp).

The arcs Sn are pairwise disjoint. Thus, by changing the labeling if nec-
essary, we may assume that

(15) diam(S0) ≤
√
3rp < 2rp.

Next, another standard quasisymmetric distortion estimate shows that
there are a point ap ∈ V0, satisfying |ap − bp| = τ3/4rp, and a constant
0 < C < 1 depending only on H, so that

(16) D(ap, Cτ3/4rp) ⊂ V0.

We require that τ3/4 + 4τ ≤ τ1/2 and 4τ ≤ Cτ3/4. Then (16) shows that

(17) D(ap, 4τrp) ⊂ D(ap, Cτ3/4rp) ⊂ V0.
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Moreover, (13) holds by the triangle inequality.
Proposition 4.1 now follows once we establish (14). Fix α ∈ Γ(ap, bp, τ)

as in the proposition. In particular, p /∈ |α|. Since α(t) ⊂ D(bp, rp) for every
s1 < t < s2, we conclude using (17) and the assumption |α|∩D(ap, 4τrp) ̸= ∅
that

α(t) ⊂ V0 for every s1 < t < s2.

It follows that α(s1) intersects the arc S0. An analogous argument on [t2, t1]
shows that α(t1) intersects S0 as well. Thus, by (15) we have

(18) dist(α(s1), α(t1)) ≤ diam(S0) ≤
√
3rp.

On the other hand, since diam(α(s1)) ≤ τrp and α(s2) ⊂ D(bp, τ1/2rp), by
our assumption and (13), the triangle inequality yields

dist(α(s1), α(s2)) ≥ rp − (τrp + τ1/2rp) ≥
99

100
rp

if τ is required to be small enough so that the last inequality holds. The same
argument shows that s1 and s2 may be replaced with t1 and t2. Combining
the two estimates with (18) shows that (14) holds. The proof is complete. □

4.2. Good, bad, and large components. We now describe the procedure
of grouping the complementary components. We will be able to construct
an admissible function with bounded energy (10) that assigns ρ(p) = 0 for
the “bad” components.

We fix a point a ∈ C and a radius R > 0, and recall that A(a,R) denotes
the annulus D(a, 4R)\D(a,R/2). Our goal is to find an upper bound for the
transboundary modulus of

Γ =
{
paths in πΩ(A(a,R)) joining πΩ(S(a, 4R)) and πΩ(S(a,R/2))

}
.

Both the transboundary modulus and the number τ in Proposition 4.1 are
invariant under translations and dilations, so we may assume a = 0 and
R = 1.

Let P ⊂ C(Ω) be the collection of complementary components p inter-
secting A := D(0, 4) \ D(0, 1/2), and let 0 < τ < 1

1000 be the constant in
Proposition 4.1. We denote

(19) PL = {p ∈ P : diam(p) ≥ τ} and PS = P \ PL.
Recall that H and N are the constants in the Quasitripod and Packing

Conditions (i) and (ii) of Theorem 1.3, respectively.

Lemma 4.2. We have mod(ΓL) ≤ 100Nτ−2, where

ΓL := {γ ∈ Γ : γ passes through some p ∈ PL}.
In particular, the upper bound depends only on H and N .

Proof. Observe that ρ : Ω̂ → [0,∞], ρ = χPL is admissible for ΓL (notice
that Γ may include constant paths which happens if p intersects both S(0, 4)
and S(0, 1/2)). We cover D(0, 4) with 100τ−2 disks of radius τ and apply
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Packing Condition (ii) in Theorem 1.3 (with constant N) to see that the
cardinality of PL is bounded from above by 100Nτ−2. Therefore,

mod(ΓL) ≤
∑

p∈C(Ω)

ρ(p)2 ≤ 100Nτ−2.

Since τ (from Proposition 4.1) depends only on H, the proof is complete. □

Applying the subadditivity of the transboundary modulus (Proposition
2.3 (2)), we conclude from Lemma 4.2 that in order to prove Theorem 3.1 it
remains to consider

(20) ΓS := {γ ∈ Γ : γ does not pass through any p ∈ PL}.
We apply Proposition 4.1 to find a suitable partition of PS into “good”

and “bad” components. Given p ∈ PS , let rp = τ diam(p) and ap ∈ C, bp ∈ p,
be as in Proposition 4.1. We start by choosing p1 ∈ PS so that

(21) diam(p1) = max
p∈PS

diam(p).

Denote r1 := rp1 , a1 := ap1 and b1 := bp1 , and let

G1 :=
{
p ∈ PS : diam(p) ≥ τr1, dist(p, p1) ≤ τ−2r1 = τ−1 diam(p1)

}
, and

B1 :=
{
p ∈ PS : diam(p) < τr1, ap ∈ D(a1, 2τr1)

}
.

Then G1 consists of the “small” boundary components p ∈ PS that are not
too small relative to p1 and not too far from p1, while B1 consists of the
components p ∈ PS that are very small relative to p1 and are located close
to the “center” of the (fixed) quasitripod contained in p1.

Suppose then that pℓ ∈ PS and Gℓ, Bℓ ⊂ PS are chosen for 1 ≤ ℓ ≤ k.
We stop the process if PS \

⋃k
ℓ=1(Gℓ ∪ Bℓ) = ∅. Otherwise, we choose

pk+1 ∈ PS \
⋃k
ℓ=1(Gℓ ∪Bℓ) so that

diam(pk+1) = max
p∈PS\

⋃k
ℓ=1(Gℓ∪Bℓ)

diam(p).

We denote rk+1 := rpk+1
, ak+1 := apk+1

and bk+1 := bpk+1
, and let

Gk+1 :=

{
p ∈ PS \

k⋃
ℓ=1

(Gℓ ∪Bℓ) : diam(p) ≥ τrk+1, dist(p, pk+1) ≤ τ−2rk+1

}
,

and

Bk+1 :=

{
p ∈ PS \

k⋃
ℓ=1

(Gℓ ∪Bℓ) : diam(p) < τrk+1, ap ∈ D(ak+1, 2τrk+1)

}
.

Since pk+1 ∈ Gk+1 and Ω is finitely connected, the process stops after
L < ∞ steps and we have a partition of PS into disjoint sets Gk and Bk,
k = 1, . . . , L, so,

(22) PS = G ∪B, where G :=
L⋃
k=1

Gk, B :=
L⋃
k=1

Bk.
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It is worth emphasizing the fact that, by construction, each Gk comes with
a distinguished element pk and its associated ak, bk and rk.

We now make precise the notion that bad components are “overshadowed”
by the good ones. If p ∈ Bk, for some k = 1, . . . , L, then

ap ∈ D(ak, 2τrk) ∩ D(bp, τ1/2rp) ⊂ D(ak, 2τrk) ∩ D(bp, τ5/2rk)

by (13) and since rp < τ2rk. Since bp ∈ p, it follows that

dist(ak, p) ≤ |ak − ap|+ dist(ap, p) ≤ 2τrk + τ5/2rk < 3τrk.

Since diam(p) < τrk, we conclude that

(23) p ⊂ D(ak, 4τrk) for every p ∈ Bk.

We will construct a suitable admissible function ρ for ΓS which equals zero
in B. As mentioned already, this will be compensated by the weights on the
elements p ∈ G and/or the costs of avoiding such elements. The following
lemma provides a bound on the number of good components at a given scale,
and hence will be useful in later modulus estimates.

Lemma 4.3. The disks D(ak, τrk), 1 ≤ k ≤ L, are pairwise disjoint. More-
over, if 1 ≤ m < k ≤ L and

(24) D(am, 2rm) ∩ D(ak, 2rk) ̸= ∅,

then rk < diam(pk) < τrm.

Proof. We start with the second claim. The triangle inequality shows that

(25) dist(pm, pk) ≤ dist(ak, pk) + dist(pm, am) + |am − ak|.

By (13) and (24), we have

(26) dist(ak, pk) ≤ rk, dist(am, pm) ≤ rm and |am − ak| ≤ 2(rk + rm).

From m < k it follows that rk ≤ rm. Therefore, combining (25) and (26) we
have

(27) dist(pm, pk) ≤ 3(rk + rm) ≤ 6rm.

Since pk /∈
⋃m
ℓ=1(Gℓ ∪ Bℓ), by the definition of Gm and (27) we have rk <

diam(pk) < τrm.
To prove the first claim, we assume towards a contradiction that there are

numbers 1 ≤ m < k ≤ L so that

(28) D(am, τrm) ∩ D(ak, τrk) ̸= ∅.

Then (24) holds, and so diam(pk) < τrm by the second claim. Thus, since
pk /∈ Bm, we have ak /∈ D(am, 2τrm) by the definition of Bm. We conclude
using the triangle inequality that if z ∈ D(ak, τrk), then

|z − am| ≥ |ak − am| − τrk ≥ 2τrm − τrk > τrm,

which contradicts (28). The proof is complete. □
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4.3. Modulus bound and the proof of Theorem 3.1. Our goal is to
give an upper bound for modΓS , where ΓS is defined in (20). Recall the
“good” and “bad” sets G and B in (22). Note that if a non-negative Borel
function ρ is admissible for the family of injective paths in ΓS , then ρ is
admissible for ΓS . Indeed, for every rectifiable γ2 ∈ ΓS there is an injective
γ1 ∈ ΓS so that |γ1| ⊂ |γ2|, see e.g. [Sem96, Proposition 15.1]. Then, if ρ is
admissible for injective paths, we haveˆ

γ2

ρ ds ≥
ˆ
γ1

ρ ds ≥ 1,

so ρ is admissible for ΓS .
We fix an injective γ1 ∈ ΓS . After reparameterization and recalling that

γ1 does not pass through any p ∈ P with diameter greater than τ < 1
1000 ,

we may assume, without loss of generality, that the domain of γ1 contains
[0, 1], γ1([0, 1]) ⊂ πΩ(D(0, 3)), and

γ1(0) ∈ Ω ∩ D(0, 3) \ D(0, 5/2), γ1(1) ∈ Ω ∩ D(0, 3/4).

Given a path α : I → Ω̂, we denote

(29) G(α) := {p : p ∈ G ∩ |α|}.

Proposition 4.4. Let γ := γ1|[0, 1]. Then there exist intervals [cν , dν ] ⊂
[0, 1], ν = 1, 2, . . . , µ, with non-empty and pairwise disjoint interiors so that
γ(t) /∈ B for every t ∈

⋃µ
ν=1(cν , dν) and

(30) 1 ≤
µ∑
ν=1

dist(γ(cν), γ(dν)) +
11

τ

∑
p∈G(γ)

diam(p).

Here we have applied the notation G(α) introduced in (29). We postpone
the proof of Proposition 4.4 and first show how it completes the proof of
Theorem 3.1. As discussed after Lemma 4.2, it remains to prove an upper
bound for mod(ΓS) that depends only on H and N .

Let M = 11
τ be the number which appears in (30). Define ρ : Ω̂ → [0,∞],

ρ(p) =

 1, p ∈ Ω ∩ D(0, 3),
(M + 1) diam(p), p ∈ G,
0, otherwise.

(31)

Remark 4.5. The admissibility of ρ for ΓS , which is proved below, is the
key to Theorem 1.3 (see e.g. [HL23, MTW13] for similar constructions). The
difficulty is that a given path γ ∈ ΓS may pass through components p ∈ B
where ρ(p) = 0 and thus use them as “shortcuts”. However, Proposition
4.4 allows us to sacrifice the “bad parts” of γ which may intersect B, and
conclude the admissibility of ρ by only considering the “good parts”.

We now apply Proposition 4.4 to prove the admissibility of ρ for ΓS . Let
the path γ and the intervals [cν , dν ] be as in the proposition. Since γ(t) /∈ B
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for every cν < t < dν and since |γ| ⊂ D(0, 3), the triangle inequality gives

(32) dist(γ(cν), γ(dν)) ≤
ˆ
γ|[cν ,dν ]

ρ ds+
∑

p∈G(γ|(cν ,dν))

diam(p)

for every 1 ≤ ν ≤ µ. Recall that the integral in (32) is over the subpaths of
γ|[cν , dν ] whose images are in Ω. Since γ is injective and the intervals [cν , dν ]
have disjoint interiors, summing (32) over ν gives

(33)
µ∑
ν=1

dist(γ(cν), γ(dν)) ≤
ˆ
γ
ρ ds+

∑
p∈G(γ)

diam(p).

Combining (33) and Proposition 4.4 shows that ρ is admissible for ΓS .
We estimate the energy

´
Ω ρ

2 dA+
∑

p∈C(Ω) ρ(p)
2. Given 1 ≤ k ≤ L, recall

that every p ∈ Gk satisfies

(34) τrk ≤ diam(p) ≤ diam(pk) = τ−1rk.

We claim that

(35) p ⊂ D(ak, τ−3rk) for all p ∈ Gk.

Indeed, by (34) it suffices to show that dist(ak, p) ≤ 2τ−2rk.
We have bk ∈ pk and |ak − bk| ≤ τ1/2rk by (13), and dist(p, pk) ≤ τ−2rk

by the definition of Gk. Thus, applying (34) and the triangle inequality, we
conclude that

dist(ak, p) ≤ |ak − bk|+ diam(pk) + dist(pk, p)

≤ τ1/2rk + τ−1rk + τ−2rk ≤ 2τ−2rk.

We have proved (35).
We cover D(ak, τ−3rk) with disks Dm,n of radius τrk and centers

ak +mτrk + i(nτrk), −τ−4 ≤ m,n ≤ τ−4.

Notice that there are fewer than 10τ−8 of such disks.
Applying the first inequality in (34), (35), and Packing Condition (ii) in

Theorem 1.3 (with constant N) to each of the disks Dm,n, shows that

(36) cardGk ≤ 10Nτ−8 for every 1 ≤ k ≤ L.

We now estimate the energy of ρ. Since
´
Ω ρ

2 dA ≤ |D(0, 3)| = 9π, it
suffices to estimate the sum of ρ2 over C(Ω). By (34) and (36) we have∑

p∈Gk

ρ(p)2 = (M + 1)2
∑
p∈Gk

diam(p)2(37)

≤ 2M2(cardGk) diam(pk)
2 ≤ 20M2Nτ−10r2k

for every 1 ≤ k ≤ L (notice that since M ≥ 10, we have (M + 1)2 ≤ 2M2).
On the other hand, the disks D(ak, τrk), 1 ≤ k ≤ L, are pairwise disjoint
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subsets of D(0, 5) by Lemma 4.3. Thus,

(38) πτ2
L∑
k=1

r2k =
L∑
k=1

|D(ak, τrk)| ≤ |D(0, 5)| = 25π.

Combining (37) and (38) yields∑
p∈G

ρ(p)2 ≤ 500M2Nτ−12.

In conclusion,
´
Ω ρ

2 dA+
∑

p∈C(Ω) ρ(p)
2 is bounded from above by a constant

that depends only on N and H.
We have proved that Theorem 3.1 follows from Proposition 4.4.

4.4. Proof of Proposition 4.4: Finding good subpaths. Recall that
γ : [0, 1] → Ω̂ is an injective path which does not pass through any large
component p ∈ PL. Moreover, γ([0, 1]) ⊂ πΩ(D(0, 3)), and

γ(0) ∈ Ω ∩ D(0, 3) \ D(0, 5/2), γ(1) ∈ Ω ∩ D(0, 3/4).
To prove Proposition 4.4, we need to find the segments [cν , dν ] as in the
proposition such that γ(t) /∈ B for every cν < t < dν and with M = 11

τ

(39) 1 ≤
µ∑
ν=1

dist(γ(cν), γ(dν)) +M
∑

p∈G(γ)

diam(p).

We may assume that γ(t) ∈ B for some 0 < t < 1, since otherwise Proposi-
tion 4.4 follows by choosing µ = 1 and [c1, d1] = [0, 1].

We construct the collection of segments

IL = {[cν , dν ], 1 ≤ ν ≤ µ},
inductively by starting with I0 = {[0, 1]}. At step 1 ≤ k ≤ L, we choose
a collection of subsegments Ik of the segments Ik−1 ∈ Ik−1 by suitably
removing any overlap of γ(Ik−1) and Bk, so that we can eventually apply
Proposition 4.1 to compensate for the “loss” of the elements p ∈ Bk and
establish (39).

For the construction, it is useful to recall that if p ∈ Bk then

p ⊂ D(bk, τ1/2rk) ⊂ D(bk, rk/30) ⊂ D(bk, rk).
Suppose that the collections Iℓ are defined for 0 ≤ ℓ ≤ k − 1. Fix [s0, t0] ∈
Ik−1 and denote α = γ|[s0, t0]. We consider the following cases:

(1) If α(t) /∈ Bk for all s0 < t < t0, then we include [s0, t0] in Ik.
(2) Otherwise, let (Bk is a finite set and so s0 < s2 ≤ t2 < t0 below)

A = {s0 < t < t0 : α(t) ∈ Bk}, s2 = minA and t2 = maxA,

A2 = {s0 < t < s2 : α(t) ∩ S(bk, rk) ̸= ∅}, and
A3 = {t2 < t < t0 : α(t) ∩ S(bk, rk) ̸= ∅}.

Then A2 = ∅ if α “meets” Bk before S(bk, rk), and A3 = ∅ if α “exits” Bk
after S(bk, rk).
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(a1) If A2 ∪A3 = ∅, we do not include any subinterval of [s0, t0] in Ik. In
this case we have

(40) α(s0) ∪ α(t0) ⊂ D(bk, rk).

(a2) If A2 ̸= ∅ and A3 = ∅, we include [s0, s2] in Ik. In this case we have

(41) α(t0) ⊂ D(bk, rk).

(a3) If A2 = ∅ and A3 ̸= ∅, we include [t2, t0] in Ik. In this case we have

(42) α(s0) ⊂ D(bk, rk).

(b) If A2 ̸= ∅ and A3 ̸= ∅, let s1 = maxA2 and t1 = minA3. Notice that
s0 < s1 < s2 ≤ t2 < t1 < t0.
(b1) if max{diam(α(s1)),diam(α(t1))} ≥ τrk, we include [s0, s1] and

[t1, t0] in Ik.
(b2) Otherwise we include [s0, s1], [s1, s2], [t2, t1] and [t1, t0] in Ik.

Let Ik([s0, t0]) be the family of subsegments of [s0, t0] ∈ Ik−1 included in
Ik using the above algorithm, and set

Ik =
⋃

[s0,t0]∈Ik−1

Ik([s0, t0]), 1 ≤ k ≤ L.

The above construction and a simple induction argument show that

(43) γ((c, d)) ∩
( k⋃
ℓ=1

Bℓ

)
= ∅ for all [c, d] ∈ Ik, 1 ≤ k ≤ L.

In particular, γ(t) /∈ B for all t ∈
⋃

[c,d]∈IL(c, d). The interiors of distinct
segments in IL are non-empty and pairwise disjoint. Thus, in order to prove
Proposition 4.4 it suffices to show that the segments in IL satisfy (39).

Given 1 ≤ k ≤ L, let Jk−1(e) ⊂ Ik−1 denote the family of intervals in
Ik−1 for which case

e ∈ {(1), (a1), (a2), (a3), (b1), (b2)}

applies in the algorithm above. Similarly, set

Jk−1(a) = Jk−1(a1) ∪ Jk−1(a2) ∪ Jk−1(a3),

Jk−1(b) = Jk−1(b1) ∪ Jk−1(b2), and J (e) =
L⋃
k=1

Jk−1(e).

We next claim that

11

10
≤

∑
I∈IL

T (I) +

L∑
k=1

(
2(cardJk−1(a))−

1

9
(cardJk−1(b2))

)
· rk

+
3

τ

∑
p∈G(γ)

diam(p),(44)
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where we use the notation

T (I) = dist(γ(c), γ(d)), I = [c, d].

4.5. Proof of Proposition 4.4: Preliminary estimates. The goal of
this subsection is to establish (44).

Lemma 4.6. Let 1 ≤ k ≤ L and [s0, t0] ∈ Jk−1(a). Then

dist(γ(s0), γ(t0)) ≤ Q([s0, t0]) + 2rk,

where

Q([s0, t0]) =

 0 in Case (a1),
dist(γ(s0), γ(s2)) in Case (a2),
dist(γ(t2), γ(t0)) in Case (a3).

Proof. Case (a1) follows from (40) and the triangle inequality. In Case (a2),
since γ(s2) ∈ Bk, we have

γ(s2) ⊂ D(ak, 4τrk) ⊂ D(bk, τ1/2rk)

by (13) and (23), and diam(γ(s2)) < τrk. Therefore, applying (41) yields

dist(γ(s0), γ(t0)) ≤ dist(γ(s0), γ(s2)) + dist(γ(s2), γ(t0)) + diam(γ(s2))

≤ dist(γ(s0), γ(s2)) + (1 + τ1/2)rk + τrk

≤ dist(γ(s0), γ(s2)) + 2rk

by the triangle inequality and since τ1/2 + τ ≤ 1. Case (a3) follows in the
same way by applying (42). □

Lemma 4.7. Let 1 ≤ k ≤ L and [s0, t0] ∈ Jk−1(b1). Then

(45) diam(γ(c)) ≥ τrk and γ(c) ∈
k⋃
ℓ=1

Gℓ, for c = s1 or c = t1.

Moreover,

(46) dist(γ(s0), γ(t0)) ≤ dist(γ(s0), γ(s1))+dist(γ(t1), γ(t0))+
3

τ
D([s0, t0]),

where
D([s0, t0]) =

∑
diam(p),

and the sum is over those p ∈ {γ(s1), γ(t1)} which satisfy (45).

Proof. Recall that both γ(s1), γ(t1) intersect S(bk, rk) and

(47) diam(γ(c)) ≥ τrk for c = s1 or t1.

Also, recall from (43) that s0 < s1 < t1 < t0 and

γ(t) /∈
k−1⋃
ℓ=1

Bℓ for all s0 < t < t0.
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Thus, the definition of Gk shows that if c satisfies (47) then γ(c) ∈
⋃k
ℓ=1Gℓ.

By the triangle inequality we have

dist(γ(s0), γ(t0)) ≤ dist(γ(s0), γ(s1)) + dist(γ(t1), γ(t0))

+ dist(γ(s1), γ(t1)) + diam(γ(s1)) + diam(γ(t1)).

The last distance is bounded from above by 2rk ≤ 2τ−1D([s0, t0]), and the
sum of the diameters is bounded from above by τrk +D([s0, t0]) which is at
most 2D([s0, t0]) ≤ τ−1D([s0, t0]). The inequality (46) follows. □

Lemma 4.8. Let 1 ≤ k ≤ L and [s0, t0] ∈ Jk−1(b2). Then

dist(γ(s0), γ(t0)) ≤
1∑

m=0

[
dist(γ(sm), γ(sm+1))+dist(γ(tm), γ(tm+1))

]
− 1

9
rk.

Proof. Recall that p ⊂ D(ak, 4τrk) for every p ∈ Bk by (23). Therefore,
the path α = γ|[s1, t1] satisfies conditions (i)-(iv) preceding Proposition 4.1,
allowing us to apply the proposition to show that

dist(γ(s1), γ(t1)) ≤ dist(γ(s1), γ(s2)) + dist(γ(t1), γ(t2))−
1

10
rk.

We also have diam(γ(s1)) + diam(γ(t1)) ≤ 2τrk < rk by assumption. The
claim follows by combining the estimates with the triangle inequality. □

We are ready to prove (44). We apply Lemmas 4.6, 4.7 and 4.8 to see that
if 1 ≤ k ≤ L then (recall the notation T (I) = dist(γ(a), γ(b)) for I = [a, b])∑
I′∈Ik−1

T (I ′) ≤
∑
I∈Ik

T (I) +
(
2(cardJk−1(a))−

1

9
(cardJk−1(b2))

)
· rk

+
3

τ

∑
I∈Jk−1(b1)

D(I).(48)

Recalling that T ([0, 1]) ≥ dist(γ(0), γ(1)) ≥ 5/2 − 3/4 > 11
10 and applying

induction together with (48) yields

11

10
≤

∑
I∈IL

T (I) +
L∑
k=1

(
2(cardJk−1(a))−

1

9
(cardJk−1(b2))

)
· rk

+
3

τ

L∑
k=1

∑
I∈Jk−1(b1)

D(I).(49)

Finally, it follows from the construction that each p ∈ G satisfies (45) in
Lemma 4.7 for at most one interval [s0, t0] ∈ J (b1). Therefore

(50)
L∑
k=1

∑
I∈Jk−1(b1)

D(I) =
∑

I∈J (b1)

D(I) ≤
∑

p∈G(γ)

diam(p);

recall that G(γ) = {p : p ∈ G ∩ |γ|}. Combining (49) and (50) proves (44).
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4.6. Proof of Proposition 4.4: Estimates for consecutive segments.
Estimate (30), which is the remaining claim in Proposition 4.4, follows from
combining (44) with

L∑
k=1

(cardJk−1(a)) · rk ≤ 1

20
+

4

τ

∑
p∈G(γ)

diam(p)

+ 12τ

L∑
k=1

(cardJk−1(b2)) · rk.(51)

The rest of Section 4 is devoted to the proof of (51). The sum on the left
represents the “loss” incurred by removing the “bad” subsegments from the
path γ in Section 4.4; these are the subsegments which are removed without
getting any “direct compensation” (Cases (a) in Section 4.4). The right
side of the inequality represents the (indirect) “compensation”, which will be
obtained by associating to every I ∈ J (a) a “good” I ′ ∈ J (b) (or [0, 1], which
yields the constant 20−1) from an earlier “generation”. To such intervals I ′
we can apply the good components p ∈ G (case (b1) in Section 4.4), or the
“detour” Proposition 4.1 (case (b2)).

We find the intervals I ′ by analyzing certain sequences of consecutive
subintervals in the construction of IL. We now give precise definitions. We
say that J ∈ Ik is a child of I ∈ Ik−1, and I the parent of J , if J ⊂ I. The
definitions of grandchildren and grandparents are then obvious. An interval
I may be its own child and parent. That is, I may be an element of both Ik
and Ik′ for k ̸= k′.

We recall the cases in Section 4.4. Let 1 ≤ k ≤ L. Then any [s0, t0] in

(1) Jk−1(1) has one child, namely itself; [s0, t0] ∈ Ik.
(a1) Jk−1(a1) does not have any children.
(a2) Jk−1(a2) has one child [s0, s2] ∈ Ik.
(a3) Jk−1(a3) has one child [t2, t0] ∈ Ik.
(b1) Jk−1(b1) has two children [s0, s1], [t1, t0] ∈ Ik.
(b2) Jk−1(b2) has four children [s0, s1], [s1, s2], [t2, t1], [t1, t0] ∈ Ik.

In summary, the segments in J (a1) do not have children, while all other
segments in

⋃L
k=1 Ik−1 have at least one child.

To start the proof of (51), we notice that [0, 1] /∈ J (a1). Indeed, we
assume (before Proposition 4.4) that dist(γ(0), γ(1)) ≥ 1. On the other
hand, by the definition of the “small” components PS in (19) and the radius
r1 in (11) and after (21), we have

(52) r1 ≤ τ2 <
1

1000000
.

Thus (40) cannot hold, so case (a1) cannot happen.
Moreover, if L = 1 then (51) holds since [0, 1] is the only element of I0

and the sum on the left of (51) is at most r1, which is at most 20−1 by (52).
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We assume from now on that L ≥ 2. We next define a finite sequence
S(I) for every segment I ∈ Iℓ which is of one of the following two types:

(ℓ = 1) I is any child of [0, 1].

(ℓ ≥ 2) The parent J of I is in Jℓ−1(b). Moreover, J and I have different
left endpoints.

Recall that a segment I may be an element of two different collections Ik
and Ik′ , k ̸= k′. However,

below we will treat I ∈ Ik and I ∈ Ik′ as two different elements.

We now fix an I ∈ Iℓ which satisfies (ℓ = 1) or (ℓ ≥ 2) (or both), and
define S(I). First, we include I =: Ĩ(0) in S(I). Next, suppose that m ≥ 0

and that Ĩ(m) ∈ Iℓ+m has been included in S(I).
If ℓ +m = L, or if Ĩ(m) ∈ J (a1), then we stop the process. Otherwise

Ĩ(m) has at least one child.
(i) If Ĩ(m) ∈ J (1)∪J (a2)∪J (a3), we include the only child Ĩ(m+ 1)

of Ĩ(m) in S(I).
(ii) If Ĩ(m) = [s0, t0] ∈ J (b), then we include the child Ĩ(m+1) of Ĩ(m)

with the same left endpoint s0 in S(I).
The process stops after 0 ≤ n ≤ L− ℓ steps, and we let

(53) S(I) = {I = Ĩ(0), Ĩ(1), . . . , Ĩ(n)}, 0 ≤ n ≤ L− ℓ.

The collection S(I) contains I and one grandchild of I from each “generation”
following I, continuing either until the last generation L, or until the chosen
grandchild is in J (a1).

Lemma 4.9. Every segment J ∈ J (a) \ {[0, 1]} belongs to exactly one S(I).

Proof. Fix J ∈ Jk′(a), k′ ≥ 1. If k′ = 1, then J ∈ S(J). Otherwise, let
0 ≤ k ≤ k′ − 1 be the largest integer so that

(1) the grandparent I ′ ∈ Ik of J belongs to J (b), and
(2) the left endpoint of I ′ is different from the left endpoint of I ∈ Ik+1,

where I is J if k = k′−1, and the grandparent of J in Ik+1 otherwise.
If such a k does not exist, or if k = 0, then J ∈ S(I), where I is the

grandparent of J which is a child of [0, 1].
If k ≥ 1, then J is I or has a grandparent I, which is a child of the segment

I ′ ∈ J (b) above with a different left endpoint. Then J ∈ S(I). We conclude
that J belongs to some S(I) in all of the above cases.

To prove uniqueness, assume that J ∈ S(I), I ∈ Iℓ, and notice that no
element of S(I) other than I is of type (ℓ = 1) or (ℓ ≥ 2) above. On the
other hand, the construction of S(I) shows that no grandparent I ′′ ∈ Ik′′ of
J satisfies J ∈ S(I ′′) when k′′ < ℓ. Since J can belong to S(I ′′) only when
I ′′ is J or a grandparent of J , we conclude the uniqueness of the I for which
J ∈ S(I). □
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We fix S(I) = {I = Ĩ(0), Ĩ(1), . . . , Ĩ(n)} as in (53). Our next goal is to
estimate the “loss” incurred by removing subsegments from the segments

Ĩ(m) ∈ S(I) ∩
(
J (a1) ∪ J (a3)

)
by analyzing the properties of the left endpoints of the segments Ĩ(m) as m
increases. We denote by 0 ≤ m1 < m2 < · · · < mω ≤ n the indices mψ for
which

(54) Ĩ(mψ) ∈ S(I) ∩
(
Jℓ+mψ(a1) ∪ Jℓ+mψ(a3)

)
,

i.e., for which Ĩ(mψ) has no children or has exactly one child whose left
endpoint is different from the endpoint of Ĩ(mψ). Notice that

Ĩ(mψ) ∈ Jℓ+mψ(a1) can only happen when ψ = ω and mψ = n.

We assume that there is at least one index mψ that satisfies (54). We denote

Ĩ(m) = [cm, dm].

We will apply the following properties of the left endpoints cm.

Lemma 4.10. Suppose that 0 ≤ m ≤ n and Ĩ(m) ∈ J (a1) ∪ J (a3). Then

(55) γ(cm) ⊂ D(bℓ+m+1, rℓ+m+1).

Moreover, if Ĩ(m) ∈ J (a3), then γ(cm+1) ∈ Bℓ+m+1 and

(56) γ(cm+1) ⊂ D(aℓ+m+1, 4τrℓ+m+1).

Proof. The first claim follows from (40) and (42). The last claims follow
from the definition of J (a3) and (23). □

Next, we consider a case where the left endpoints of the segments Ĩ(m)
do not change when m increases.

Lemma 4.11. Let 0 ≤ m′ < m ≤ n so that Ĩ(m′′) /∈ J (a3) for every
m′ ≤ m′′ ≤ m− 1. Then cm′ = cm.

Proof. This follows directly from the construction of S(I), since the left
endpoint of Ĩ(m′′ + 1) is different from the left endpoint of Ĩ(m′′) only if
Ĩ(m′′) ∈ J (a3). □

We will apply the following lemmas to show that the radii rℓ+m associated
to the indices m of the segments Ĩ(m) can be controlled by a geometric sum.

Lemma 4.12. Assume the following conditions for 0 ≤ m′ < m ≤ n:
(1) Ĩ(m′) ∈ J (a3) and Ĩ(m) ∈ J (a1) ∪ J (a3),
(2) If m′ < m− 1, then Ĩ(m′′) /∈ J (a3) for every m′ < m′′ < m.

Then

(57) rℓ+m+1 ≤ τrℓ+m′+1.
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Proof. We claim that

(58) D(aℓ+m′+1, 2rℓ+m′+1) ∩ D(aℓ+m+1, 2rℓ+m+1) ̸= ∅.

By Condition (1) and (56), we have

(59) γ(cm′+1) ⊂ D(aℓ+m′+1, 4τrℓ+m′+1) ⊂ D(aℓ+m′+1, 2rℓ+m′+1),

where the last inclusion holds since τ < 1000−1.
By Lemma 4.11 and Condition (2), we have cm′+1 = cm. Moreover, Con-

dition (1) and (55) yield

(60) γ(cm′+1) = γ(cm) ⊂ D(bℓ+m+1, rℓ+m+1) ⊂ D(aℓ+m+1, 2rℓ+m+1),

where the last inclusion holds by (13). Now (58) follows by combining (59)
and (60). Moreover, (57) follows by combining (58) and Lemma 4.3. □

The next lemma can be applied to the first terms of the sequence S(I),
assuming that they are “good”.

Lemma 4.13. Suppose that m1 ≥ 1. Then cm1 = c0. Moreover, if I = Ĩ(0)
is of type (ℓ ≥ 2) above and

(61) diam(γ(c0)) < τrℓ,

then

(62) rℓ+m1+1 ≤ τrℓ.

Proof. The first claim follows from Lemma 4.11. For the second claim, we
recall from Condition (ℓ ≥ 2) that c0 is different from the left endpoint of
the parent J ∈ J (b) of I. Thus, the construction of J (b) yields

γ(c0) ∩ D(bℓ, rℓ) ̸= ∅.

Combining with (61), we conclude that

γ(c0) ⊂ D(bℓ, (1 + τrℓ)) ⊂ D(aℓ, 2rℓ),

where the last inclusion follows from (13). On the other hand, Ĩ(m1) ∈
J (a1) ∪ J (a3) by the definition of m1, and thus (55) yields

γ(c0) = γ(cm1) ⊂ D(bℓ+m1+1, rℓ+m1+1) ⊂ D(aℓ+m1+1, 2rℓ+m1+1),

where the last inclusion again follows from (13). Combining the inclusions,
we have

γ(c0) = γ(cm1) ⊂ D(aℓ, 2rℓ) ∩ D(aℓ+m1+1, 2rℓ+m1+1).

Now (62) follows from Lemma 4.3. □
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4.7. Proof of Proposition 4.4: Completion of the proof. Recall that
our goal is to prove (51), i.e.,

L∑
k=1

(cardJk−1(a)) · rk ≤ 1

20
+

4

τ

∑
p∈G(γ)

diam(p)

+ 12τ

L∑
k=1

(cardJk−1(b2)) · rk,(63)

the final missing piece in the proof of Proposition 4.4. As we noticed in
Section 4.6, we may assume that L ≥ 2. We now combine the estimates ob-
tained in Section 4.6 to control the “loss” incurred by removing subsegments
from the segments

Ĩ(mψ) ∈ S(I)∩
(
Jℓ+mψ(a1)∪Jℓ+mψ(a3)

)
, 0 ≤ m1 < m2 < · · · < mω ≤ n,

defined in (54). Recall that I = [c0, d0] ∈ Iℓ for some 1 ≤ ℓ ≤ L,

S(I) = {I = Ĩ(0), Ĩ(1), . . . , Ĩ(n)}, 0 ≤ n ≤ L− ℓ,

and Ĩ(m) = [cm, dm].

Lemma 4.14. If we denote d(ℓ) := diam(γ(c0)), then

ω∑
ψ=1

rℓ+mψ+1 ≤


1

200 if ℓ = 1,
2τrℓ if ℓ ≥ 2 and d(ℓ) < τrℓ,
2τ−1d(ℓ) if ℓ ≥ 2 and d(ℓ) ≥ τrℓ.

(64)

Proof. We recall that Ĩ(mψ) can belong to J (a1) only when ψ = ω. Thus,
by Lemma 4.12 we have

(65) rℓ+mψ+1+1 ≤ τrℓ+mψ+1 for every 1 ≤ ψ ≤ ω − 1.

Iterating (65) and recalling that 0 < τ < 1
1000 yields

(66)
ω∑

ψ=1

rℓ+mψ+1 ≤
ω∑

ψ=1

τψ−1rℓ+m1+1 ≤ 2rℓ+m1+1.

We are now ready to prove (64). Suppose first that ℓ = 1. By (52),

rℓ+m1+1 ≤ r1 ≤ τ2 <
1

1000000
,

which together with (66) proves the first part of (64).
Suppose next that ℓ ≥ 2 and d(ℓ) = diam(γ(c0)) < τrℓ. Then Lemma

4.13 shows that
rℓ+m1+1 ≤ τrℓ,

which combined with (66) gives the second part of (64).
Finally, suppose that ℓ ≥ 2 and d(ℓ) ≥ τrℓ. Then

rℓ+m1+1 ≤ rℓ ≤ τ−1d(ℓ),

which combined with (66) gives (64). □
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Proof of Proposition 4.4. Recall that the proposition follows once we have
proved (63). We first bound the sum

(67)
L∑
k=1

(card(Jk−1(a1) ∪ Jk−1(a3))) · rk

from above. By Lemma 4.9, each

(68) Ĩ ∈ J (a1) ∪ J (a3)) \ {[0, 1]} =: K

belongs to S(I) for exactly one segment I.
Suppose that I ∈ Iℓ and Ĩ ∈ S(I) ∩ K. We denote Ĩ ∈ K(ℓ = 1) if ℓ = 1,

i.e., if I is a child of [0, 1]. If ℓ ≥ 2, then the parent J of I belongs to J (b1) or
to J (b2), according to the type (ℓ ≥ 2) in Section 4.6. We denote Ĩ ∈ K(b1)

if J ∈ J (b1), and Ĩ ∈ K(b2) if J ∈ J (b2). Then K is the union

(69) K = K(ℓ = 1) ∪ K(b1) ∪ K(b2).

Moreover, each set on the right is the union of disjoint sets of the form
S(I) ∩ K. We denote Km(ℓ = 1) = K(ℓ = 1) ∩ Im, and apply similar
notation for the other three sets in (69). Then

L∑
k=1

(card(Jk−1(a1) ∪ Jk−1(a3))) · rk =
L∑
k=2

(card(Kk−1(ℓ = 1))) · rk(70)

+
L∑
k=2

(card(Kk−1(b1))) · rk +
L∑
k=2

(card(Kk−1(b2))) · rk + χr1,

where χ = 1 if [0, 1] ∈ J (a3) and χ = 0 otherwise (recall that [0, 1] /∈ J (a1)).
We now estimate the part of (70) involving K(ℓ = 1). We notice that

since [0, 1] ∈ I0 has at most four children, there are at most four segments
I ∈ I1. For each such I, Lemma 4.14 shows that

L∑
k=2

(card(Kk−1(ℓ = 1) ∩ S(I))) · rk ≤
1

200
.

Summing over I ∈ I1 then gives

(71)
L∑
k=2

(card(Kk−1(ℓ = 1))) · rk ≤
1

50
.

We next estimate the sum in (70) involving K(b1). Suppose that S(I) ∩
K ⊂ K(b1). Then the parent J = [s0, t0] of I belongs to Jℓ−1(b1) for some
2 ≤ ℓ ≤ L. By the constructions of J (b1) in Section 4.4 and type (ℓ ≥ 2)
in Section 4.6, the segment J = [s0, t0] has two children, namely [c′0, d

′
0] and

[c0, d0] = I. Moreover, by Lemma 4.7 we have

(72) diam(γ(t)) ≥ τrℓ and γ(t) ∈
ℓ⋃

j=1

Gj for t = d′0 or t = c0.
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Thus, combining the last two cases of (64) in Lemma 4.14 shows that

(73)
L∑
k=2

(card(Kk−1(b1) ∩ S(I))) · rk ≤
2

τ
diam(γ(t))

for t = d′0 or t = c0 (or both).
Since neither of such points t is an endpoint of J , an element p ∈ G(γ) can

appear as a γ(t) in (72) for at most one segment J ∈ J (b1). Thus, summing
(73) over all the segments I for which S(I) ∩ K ⊂ K(b1), we have

(74)
L∑
k=2

(card(Kk−1(b1))) · rk ≤
2

τ

∑
p∈G(γ)

diam(p).

Finally, we estimate the sum in (70) involving K(b2). Suppose that S(I)∩
K ⊂ K(b2). Then the parent J of I = [c0, d0] belongs to Jℓ−1(b2) for some
2 ≤ ℓ ≤ L. By the construction of J (b2) it follows that diam(γ(c0)) < τrℓ.
Thus, by Lemma 4.14 we have

(75)
L∑
k=2

(card(Kk−1(b2) ∩ S(I))) · rk ≤ 2τrℓ.

Every J ∈ J (b2) has at most three children I for which there is a sequence
S(I), i.e., which are of the type (ℓ ≥ 2) in Section 4.6. Therefore, summing
(75) over all the segments I for which S(I) ∩ K ⊂ K(b2), we have

(76)
L∑
k=2

(card(Kk−1(b2))) · rk ≤ 6τ
L∑
k=1

(cardJk−1(b2)) · rk.

We now combine (70), (71), (74) and (76), and recall that r1 ≤ 1
1000000 by

(52), to obtain
L∑
k=1

(card(Jk−1(a1) ∪ Jk−1(a3))) · rk ≤
1

40
+

2

τ

∑
p∈G(γ)

diam(p)

+6τ

L∑
k=1

(cardJk−1(b2)) · rk.

We can replace J (a3) by J (a2), and run the argument above, but now
considering the right endpoints instead of the left endpoints, to show that

L∑
k=1

(card(Jk−1(a1) ∪ Jk−1(a2))) · rk ≤
1

40
+

2

τ

∑
p∈G(γ)

diam(p)

+6τ

L∑
k=1

(cardJk−1(b2)) · rk.

Since J (a) = J (a1) ∪ J (a2) ∪ J (a3), combining the two estimates gives
(63). The proofs of Proposition 4.4 and Theorem 1.3 are complete. □
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Remark 4.15. Theorem 1.3 admits the following generalization: Let Ω ⊂ Ĉ
be a domain containing ∞, and suppose that CN (Ω) = T ∪ F , where

(1) the elements of T satisfy Conditions (i) and (ii) of Theorem 1.3, and
(2) there is a C > 0 so that every p ∈ F is C-fat.

Then the conclusions of Theorem 1.3 hold.
We give a brief outline of how the proof of Theorem 1.3 should be mod-

ified to establish such a generalization. First, by the arguments in Section
3, it suffices to prove Theorem 3.1 for finitely connected domains whose
complementary components are elements of T ∪ F .

To prove Theorem 3.1, we notice that Proposition 4.1 remains true for
every p ∈ T . As in Section 4.2 and using the fatness condition, we see that it
suffices to consider paths γ that do not pass through the “large” elements of
T ∪F . Let TS and FS be the sets of the “small” components, whose diameters
are smaller than τ , in T and F , respectively.

We partition TS into good and bad sets as in Section 4.2, so that TS =
G ∪ B. Moreover, we define the function ρ as in (31) on Ω and TS , and
complete the definition by setting ρ(p) = (M + 1) diam(p) if p ∈ FS .

The fatness condition and the arguments after (31) guarantee that the
energy

´
Ω ρ

2 dA+
∑

p∈C(Ω) ρ(p)
2 is uniformly bounded from above. Therefore,

it suffices to prove that ρ is admissible in the current setting.
To prove the admissibility or ρ, we continue to apply the cases

(1), (a1), (a2), (a3), (b1), (b2)

in Section 4.4, and run the proof as above. In case (b1) and Lemma 4.7 the
α(s1) and α(t1) may now be elements of FS . As a result, the key estimate
(30) in Proposition 4.4 holds when the last sum is over the set G(γ)∪F (γ);
here

F (γ) = {p : p ∈ F ∩ |γ|}.
The estimate is strong enough to guarantee the admissibility of ρ, so Theorem
3.1 is true in our setting.

5. Proofs of modulus estimates on circle domains, Proposition
3.2

We fix a p̄ ∈ C(Ω), a Jordan curve J ⊂ Ω, and points b, a as in the
proposition. Let j ≥ 1 if p̄ ∈ CP (Ω) and j ≥ ℓ if p̄ = pℓ ∈ CN (Ω). Then f̂j(p̄)
is a generalized disk or a point in Ĉ. In the following proof it is convenient to
replace the normalization (2), which was applied to guarantee the injectivity
of limit map f , with a new normalization.

Namely, since transboundary modulus and generalized disks are invari-
ant under Möbius transformations, we lose no generality by replacing the
sequence (fj)j with (h ◦ fj)j , where h is any Möbius transformation. There-
fore, by choosing h suitably we may assume that

(77) f̂j(p̄)∪ fj(J) ⊂ D(0, 1), ∞ ∈ Dj , and fj(J) separates f̂j(p̄) and ∞.
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We start with the first estimate in Proposition 3.2, i.e.,

(78) lim sup
j→∞

mod f̂j(Γj) ≥ lim sup
j→∞

φp̄(dist(fj(b), f̂j(p̄))).

We denote dist(fj(b), f̂j(p̄)) by δj . Let w0 be the point in f̂j(p̄) closest
to fj(b). After a rotation about the origin, fj(b) = δji + w0. Since fj(J)
separates f̂j(p̄) and ∞, it follows that every line Ls = {t+ si+ w0 : t ∈ R},
0 < s < δj , has a subsegment Is ⊂ U ⊂ D(0, 1) so that πDj (Is) ∈ f̂j(Γj).
Here U is the bounded component of C \ fj(J).

Recall that we are under the assumption that Ωj has no point boundary
components, so that C(Dj) consists of disks. Let ρ be admissible for f̂j(Γj).
Then

(79) 1 ≤
ˆ
Is∩Dj

ρ ds+
∑

q∈Cs(Dj)

ρ(q) for all 0 < s < δj ,

where Cs(Dj) = {q ∈ C(Dj) : Is ∩ q ̸= ∅}. Combining (79) with Fubini’s
theorem yields

(80) δj ≤
ˆ
Dj∩U

ρ dA+
∑
q∈CU

diam(q)ρ(q),

where CU = {q ∈ C(Dj) : q ⊂ U}. By the Cauchy-Schwarz inequality (since
U ⊂ D(0, 1)) we haveˆ

Dj∩U
ρ dA ≤ Area(U)1/2

(ˆ
Dj

ρ2 dA
)1/2

≤ π1/2
(ˆ

Dj

ρ2 dA
)1/2

,

and ∑
q∈CU

diam(q)ρ(q) ≤
( ∑
q∈CU

diam(q)2
)1/2( ∑

q∈C(Dj)

ρ(q)2
)1/2

≤ 2
( ∑
q∈C(Dj)

ρ(q)2
)1/2

.

Combining with (80), we obtain

δj ≤ π1/2
( ˆ

Dj

ρ2 dA
)1/2

+ 2
( ∑
q∈C(Dj)

ρ(q)2
)1/2

≤ (π + 4)1/2
(ˆ

Dj

ρ2 dA+
∑

q∈C(Dj)

ρ(q)2
)1/2

.

Taking infimum with respect to all admissible functions shows that

mod f̂j(Γj) ≥
δ2j

π + 4
.

In particular, (78) holds.
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We now consider the second estimate in Proposition 3.2, i.e.,

(81) if diam(f̂(p̄)) = 0 then lim
j→∞

mod f̂j(Λj) → ∞.

Notice that the first claim in (4) does not depend on (81), so by (78) and
the proof given in Section 3 we already know that f̂(pℓ) = qℓ for every
ℓ = 1, 2, . . .. In particular, the generalized disks qℓ are pairwise disjoint. By
our assumption and normalization (77) we have

f̂(p̄) = {w0} where w0 ∈ C.

We need a technical lemma.

Lemma 5.1. For every R > 0 there are jR ∈ N and 0 < r < R such that if
j ≥ jR and if q ∈ C(Dj) satisfies q ∩ S(w0, R) ̸= ∅, then q ∩ S(w0, r) = ∅.

Proof. Suppose towards a contradiction that there are R > 0, a subsequence
(fjk)k of (fj)j , and components p∗(k) ∈ C(Ωjk), so that

(a) every q∗(k) := f̂jk(p
∗(k)) intersects S(w0, R), and

(b) dist(q∗(k), w0) → 0 as k → ∞.
Notice that none of the sets p∗(k) are p̄. Taking a subsequence if necessary, we
may assume that the sets p∗(k) converge to some p∗ ∈ C(Ω) in the Hausdorff
sense. We denote q∗ := f̂(p∗). Then, by Carathéodory’s kernel convergence
theorem and the convergence of (fjk)k to f , for every ϵ > 0 there are δ > 0
and a k(ϵ) ∈ N such that if k ≥ k(ϵ) then the neighborhoods of the sets p∗
and q∗ satisfy

f̂jk(Nδ(p
∗)) ⊂ Nϵ(q

∗).

On the other hand, by the Hausdorff convergence there is a k′(δ) such that
if k ≥ k′(δ) then p∗(k) ⊂ Nδ(p

∗).
We conclude that q∗(k) ⊂ Nϵ(q

∗) for sufficiently large indices k. Letting
ϵ→ 0 and applying (b), we see that q∗ must be {w0}. In particular, the radii
of the disks q∗(k) converge to zero. But by (a) and (b), these radii cannot
converge to zero. We arrive at a contradiction. □

We construct a sequence of annuli as follows (compare to the proof of
(5)): Let r1 be the number satisfying dist(f(J), w0) = 10r1. Since fj → f
locally uniformly in Ω, we may assume that dist(fj(J), w0) ≥ 5r1 for all j.
Assuming r1, . . . , rn−1 are defined, we apply Lemma 5.1 with R = rn−1/2 to
obtain an index j′n ∈ N and a radius 0 < r′n < rn−1/2 such that if j ≥ j′n
and if q ∈ C(Dj) intersects S(w0, rn−1/2) then q does not intersect S(w0, r

′
n).

We then let

rn =
r′n
10
.

Here it is important that the radii rn do not depend on j. We let

An = D(w0, 4rn) \ D(w0, rn/2), n = 1, 2, . . . .
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Now fix an M ≥ 1, a Jordan curve J ′ ⊂ Ω surrounding p̄, and an index
j∗M ∈ N, so that

fj(J
′) ⊂ D(w0, rM/10) for all j ≥ j∗M ;

such choices are possible since f̂(p̄) = {w0}. By our choices of the radii rn
we also have

(82) πDj (An) ∩ πDj (Am) = ∅ for all 1 ≤ n < m ≤M and j ≥ jM ,

where jM = max{j∗M , j′1, j′2, . . . , j′M}.
Let 1 ≤ n ≤M . Given rn/2 < t < 4rn, we denote by γ̃t the circle S(w0, t)

parameterized by arclength, γt = πDj ◦ γ̃t, and

Φj(n) = {γt : rn/2 < t < 4rn}.

Then Φj(n) ⊂ f̂j(Λj). We next prove a lower bound for mod(Φj(n)). Let ρ
be admissible for Φj(n) and rn/2 < t < 4rn. Then

(83) 1 ≤
ˆ
S(w0,t)∩Dj

ρ ds+
∑

q∩|γt|̸=∅

ρ(q).

We divide both sides of (83) by t and integrate (in t) from rn/2 to 4rn to
conclude, upon using Fubini’s theorem, that

(84) log 8 ≤
ˆ
An∩Dj

ρ(z)

|z|
dA(z) +

2

rn

∑
q∩An ̸=∅

min{diam(q), 4rn}ρ(q).

We apply the Cauchy-Schwarz inequality to estimate the integral on the
right:ˆ

An∩Dj

ρ(z)

|z|
dA(z) ≤

(ˆ
An∩Dj

dA(z)

|z|2
)1/2(ˆ

An∩Dj
ρ(z)2 dA(z)

)1/2

≤ (2π log 8)1/2
(ˆ

An∩Dj
ρ(z)2 dA(z)

)1/2
.

To estimate the sum in (84), we denote

QL = {q ∈ C(Dj) : q ∩ An ̸= ∅, diam(q) ≥ rn},
QS = {q ∈ C(Dj) : q ∩ An ̸= ∅, diam(q) < rn}.

Then

(85) cardQL ≤ 100 and q ⊂ D(w0, 5rn) for all q ∈ QS ,

and
2

rn

∑
q∩An ̸=∅

min{diam(q), 4rn}ρ(q) ≤ 8
∑
q∈QL

ρ(q) +
2

rn

∑
q∈QS

diam(q)ρ(q).

By the Cauchy-Schwarz inequality and (85) we have∑
q∈QL

ρ(q) ≤ 10
( ∑
q∈QL

ρ(q)2
)1/2

.
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Since the disks q are pairwise disjoint, the Cauchy-Schwarz inequality and
(85) also yield∑

q∈QS

diam(q)ρ(q) ≤
( ∑
q∈QS

diam(q)2
)1/2( ∑

q∈QS

ρ(q)2
)1/2

≤
(4Area(D(w0, 5rn))

π

)1/2( ∑
q∈QS

ρ(q)2
)1/2

≤ 10rn

( ∑
q∈QS

ρ(q)2
)1/2

.

Combining the estimates with (84), applying the Cauchy-Schwarz inequal-
ity again, and taking infimum over all ρ shows that

(86) mod(Φj(n)) ≥
1

6400
for all j ≥ jM and 1 ≤ n ≤M.

Since Φj(n) ⊂ f̂j(Λj), combining (82) and (86) shows that

mod(f̂j(Λj)) ≥
1

6400
M

for all j ≥ jM . Letting M → ∞ proves (81). The proof of Proposition 3.2 is
complete.

6. Necessity of the packing condition in Theorem 1.3

In this section, we illustrate the need for both Conditions (i) and (ii) in
Theorem 1.3. We start with the need for Packing Condition (ii).

Proposition 6.1. There exists a countably connected domain Ω ⊂ Ĉ which
contains ∞ and satisfies Quasitripod Condition (i) (but not Packing Condi-
tion (ii)) in Theorem 1.3 so that {0} ∈ C(Ω) and diam(f̂({0})) > 0 for every
conformal homeomorphism f : Ω → D onto a circle domain D.

Proof. We construct the desired domain Ω by describing the elements of
C(Ω). First, {0} is the only element of CP (Ω). The collection CN (Ω) is
parameterized as follows: Given a k ∈ N, we denote by Wk the collection of
finite words w = w1 · · ·wk, where wj ∈ {0, 1} for every 1 ≤ j ≤ k. Moreover,
let W0 = {∅} and W =

⋃∞
k=0Wk. We then have

CN (Ω) = {pw : w ∈W}.
The words w ∈W are ordered so that 0 < 1 < 00 < 01 < 10 < 11 < 000 . . ..
We denote the order of w by ℓ(w). Notice that ℓ(w) is not word length, but
rather the order of w in this enumeration.

We set ℓ(∅) = 0, and let p∅ be the segment [12 , 1]. If ℓ(w) ≥ 1, each pw
is the union of radial segments Iw, Jw and subarcs Sw, Tw of circles centered
at the origin. If w = w̄wk, where ℓ(w̄) ≥ 0 and wk ∈ {0, 1}, then Iw is a
segment of length 2−ℓ−2 − ϵℓ, ℓ = ℓ(w̄), in the annulus

Aℓ = D(0, 2−ℓ) \ D(0, 2−ℓ−1),
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where ϵℓ > 0 is a small number. The segments Iw̄0 and Iw̄1 are subsets of
the same half-line starting at the origin.

The arc Sw is attached to the middle of Iw and has length 1
24 times the

length of the full circle. The arc Tw is roughly a half-circle, attached to an
end of Iw, and lies in S(0, 3 · 2−ℓ−2) if wk = 0 and in S(0, 2−ℓ−1) if wk = 1.
The segment Jw is attached to an end of Tw. The other end of Jw lies at
the circle S(0, 2−ℓ(w)−1). Recall that ℓ(w) is the ordering of w and not the
word length, so ℓ(w) tends to be much larger than ℓ. The distance between
Iw and Jw̄ is less than ϵℓ.

Figure 4 shows the segments I00, J00, arcs S00, T00, components p00, p01,
p10, p11, p000, p001, and parts of components p0, p1. The sequence (ϵℓ)ℓ can
be chosen so that the elements pw have the following properties:

(1) For every w ∈ W there is a cw > 0 so that pw is the image of
cwT0 = {cwz : z ∈ T0} under a 106-biLipschitz map. In particular,
each pw is a 1012-quasitripod.

(2) For every ϵ > 0 there is a kϵ ≥ 1 so that if the word length |w| =
k ≥ kϵ then pw ⊂ D(0, ϵ).

(3) For every w = w̄wk, wk ∈ {0, 1}, there is a family Γw of paths
connecting pw̄ and pw in Ω so that mod(Γw) > 4k. More precisely,
Γw consists of short subarcs of circles in Aℓ centered at the origin.

Since Ω is countably connected, the He-Schramm theorem [HS93] guaran-
tees the existence of a conformal homeomorphism f : Ω → D onto a circle
domain D. Moreover, f is unique up to postcomposition by a Möbius trans-
formation. To show that f̂({0}) ∈ CN (D), we denote by Γ the family of
paths in Ω̂ joining p∅ and {0}.

Towards a contradiction, assume that f̂({0}) is a point-component. Then
we have mod(f̂(Γ)) = 0, which can be proved by applying [Sch95, Theorem
6.1(2)] to a sequence of annuli (or by modifying the proof of (5) in the special
case of circle domains). Since the transboundary modulus is conformally
invariant (Lemma 2.1), the desired contradiction will follow once we prove
that

(87) mod(Γ) > 0.

We denote by W∞ the collection of infinite words w1w2 · · · , where wj ∈
{0, 1}. We equip W∞ with the unique probability measure µ satisfying
µ(Aw) = 2−k for all k ≥ 1 and w ∈Wk. Here

Aw = {w∞ ∈W∞ : w∞ = wwk+1wk+2 · · · }.

Let ρ : Ω̂ → [0,∞] be an arbitrary Borel function satisfying

(88)
ˆ
Ω
ρ2 dA+

∑
w∈W

ρ(w)2 = 1.
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p0

p1

p00

p01

p10

p11

p000

p001

I00

S00

T00

J00

Figure 4. Some complementary components of the domain
Ω constructed in the proof of Proposition 6.1.

We will find a v∞ = v1v2 · · · ∈W∞ so that

(89)
∞∑
k=1

ρ(pv̄k) ≤ 1.

Here v̄k = v1v2 · · · vk. We first notice that
ˆ
W∞

∞∑
k=1

ρ(pw̄k) dµ(w∞) =

∞∑
k=1

∑
w∈Wk

µ(Aw)ρ(pw) =
∞∑
k=1

2−k
∑
w∈Wk

ρ(pw) =: S.

The Cauchy-Schwarz inequality yields (notice that cardWk = 2k)

S ≤
∞∑
k=1

2−k/2
( ∑
w∈Wk

ρ(pw)
2
)1/2

≤
( ∞∑
k=1

2−k
)1/2( ∑

w∈W
ρ(pw)

2
)1/2

≤ 1,
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where the last inequality follows from (88). Combining the estimates shows
that there indeed exists a v∞ = v1v2 · · · ∈W∞ satisfying (89).

Recall that for each v̄k = v1v2 · · · vk, k = 1, 2, . . ., there is a family Γv̄k
of paths connecting pv̄k−1

and pv̄k in Ω so that mod(Γv̄k) > 4k. Now (88)
implies that for every k there is an γk ∈ Γv̄k so that

(90)
ˆ
γk

ρ ds < 2−k.

Indeed, otherwise 2kρ would be admissible for Γv̄k and thus mod(Γv̄k) ≤ 4k

by (88), which is a contradiction. Concatenating the paths πΩ ◦ γk, k =
1, 2, . . ., yields a path γ ∈ Γ so that |γ| ∩ C(Ω) only contains {0}, p∅, and the
elements pv̄k , k = 1, 2, . . .. Combining (89) and (90) gives

(91)
ˆ
γ∩Ω

ρ ds+

∞∑
k=1

ρ(pv̄k) ≤ 2.

We have proved that for every ρ satisfying (88) there is an γ ∈ Γ which
satisfies (91). Lemma 2.2 now shows that (87) holds. We conclude that Ω
has all the desired properties. □

Remark 6.2. It is also possible to construct a countably connected domain
Ω ⊂ Ĉ which satisfies Packing Condition (ii) (but not Quasitripod Condition
(i)) in Theorem 1.3, so that {0} ∈ C(Ω) and diam(f̂({0})) > 0 for every
conformal homeomorphism f : Ω → D onto a circle domain D. Namely,
one can modify the dyadic slit domain construction of Hakobyan and Li
[HL23] on unions of squares to get a domain Ω̃ ⊂ Ĉ whose complementary
components are ∞ and vertical segments contained in an infinite strip, and
define Ω as the image of Ω̃ under the inversion z 7→ z−1.

The construction can be carried out so that Ω satisfies Condition (ii) in
Theorem 1.3, and so that if J ⊂ Ω is a Jordan curve then mod(Γ) > 0

for the family Γ of paths in Ω̂ that connect πΩ(J) and πΩ({0}); see [HL23,
Lemma 7.1]. On the other hand, if f : Ω → D is a conformal homeomorphism
onto a (countably connected) circle domain such that f̂(πΩ({0})) is a point-
component, then it follows as in the proof of Proposition 6.1 that mod f̂(Γ) =

0. This contradicts Lemma 2.1, and so f̂(πΩ({0})) must be a disk. We leave
the details to the interested reader.

Example 6.3. We describe a domain Ω ⊂ Ĉ for which the assumptions of
Theorem 1.3 are satisfied but

(92)
∑

p∈CN (Ω)

diam(p)2 = ∞.

We apply a well-known construction of a Cantor set K ⊂ C with positive
area; see e.g. [HK14, Proof of Theorem 4.10]. Start by dividing the square
[−1, 1]2 into four congruent subsquares Q′

j = Q(zj ,
1
2), j ∈ {1, 2, 3, 4}, with
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disjoint interiors; here Q(z, r) is the closed square with center z, side length
2r, and sides parallel to the coordinate axes. Set Qj = Q(zj ,

1
2 − ϵ1).

Proceeding by induction, suppose that we have constructed 4k disjoint
squares Qv = Q(zv, rk), v ∈ {1, 2, 3, 4}k. We divide each Qv into four
congruent subsquares Q′

vj = Q(zvj ,
rk
2 ), j ∈ {1, 2, 3, 4}, and set Qvj =

Q(zvj ,
rk
2 − ϵk+1). The Cantor set K is

(93) K =

∞⋂
k=1

⋃
v∈{1,2,3,4}k

Qv.

The parameters ϵk > 0 can be chosen so that Area(K) > 0.

Figure 5. Example of a domain whose non-trivial comple-
mentary components (the “plus” signs) satisfy the conditions
of Theorem 1.3 and their diameters are not ℓ2-summable.

In order to define Ω, we fix v in (93) and let pv be the largest “plus sign”
in Qv. That is, pv is the union of two horizontal and two vertical segments
of equal length, each connecting zv to one side of Qv. The continua pv are
pairwise disjoint and do not intersect K.

Let Ω ⊂ Ĉ be the domain whose complement is the union of K and all
the continua pv. The union of any three of the four segments which define
the plus sign is the image of a quasisymmetric (in fact, bi-Lipschitz) map
from the standard tripod. Thus, Ω satisfies Condition (i) in Theorem 1.3.
In order to prove (92), we notice that diam(pv)

2 = Area(Qv) for every v.
Therefore, we have∑

v∈{1,2,3,4}k
diam(pv)

2 ≥
∑

v∈{1,2,3,4}k
Area(Qv) ≥ Area(K) > 0

for every k ∈ N. Summing over k implies (92).
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It remains to prove the Packing Condition (ii) in Theorem 1.3. We fix a
point z0 ∈ C and a radius r > 0. By covering D(z0, r) with a collection of
disks Dα := D(zα, r

100) so that the disks D(zα, r
200) are pairwise disjoint, it

suffices to prove the cardinality bound

(94) card Cα = card{pv ∈ CN (Ω) : diam(pv) ≥ r, pv ∩ Dα ̸= ∅} ≤ 6

for every α. Estimate (94) follows from two geometric properties which are
straightforward to verify:

(1) At most two disjoint squares Qv satisfy pv ∈ Cα.
(2) If pv ∈ Cα, then there are at most two squares Qv′ ⊊ Qv such that

pv′ ∈ Cα.
We have established the desired properties of Ω.

7. Cospread domains, Proof of Proposition 1.5

To start the proof of Proposition 1.5, we notice that the definition of
cospread domains already contains Quasitripod Condition (i) in Theorem
1.3. We state the remaining claims of Proposition 1.5 as the following two
propositions.

Proposition 7.1. Let Ω ⊂ Ĉ be an H-cospread domain. There is an N
which depends only on H so that for every z0 ∈ C and r > 0,

(95) card{p ∈ CN (Ω) : diam(p) ≥ r, p ∩ D(z0, r) ̸= ∅} ≤ N.

Proposition 7.2. Let Ω ⊂ Ĉ be an H-cospread domain and ϕ : Ĉ → Ĉ an
α-quasi-Möbius map. Then ϕ(Ω) is H ′-cospread, where H ′ depends only on
H and α.

We recall the definition of quasi-Möbius maps. The cross-ratio of distinct

points z1, z2, z3, z4 ∈ Ĉ is [z1, z2, z3, z4] :=
q(z1, z2)q(z3, z4)

q(z1, z3)q(z2, z4)
, where q is the

chordal distance defined by

q(z, w) =
|z − w|√

1 + |z|2
√

1 + |w|2
and q(z,∞) =

1√
1 + |z|2

, z, w ∈ C.

A homeomorphism ϕ : Ĉ → Ĉ is quasi-Möbius if there is a homeomorphism
α : [0,∞) → [0,∞) so that

(96) [ϕ(z1), ϕ(z2), ϕ(z3), ϕ(z4)] ≤ α([z1, z2, z3, z4])

for all distinct z1, z2, z3, z4 ∈ Ĉ. To emphasize the role of α, we use the term
α-quasi-Möbius. Notice that Möbius transformations are quasi-Möbius maps
with α(t) = t.

Recall that a homeomorphism ϕ : E → F between subsets of C is (strongly)
η-quasisymmetric if there is a homeomorphism η : [0,∞) → [0,∞) so that
for all z1, z2, z3 ∈ E satisfying |z2 − z1| ≤ t|z3 − z1|, 0 < t <∞, we have

|ϕ(z2)− ϕ(z1)| ≤ η(t)|ϕ(z3)− ϕ(z1)|.
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It follows from the definitions that compositions and inverses ϕ of quasi-
Möbius (resp., quasisymmetric) maps ϕ1 and/or ϕ2 are quasi-Möbius (resp.,
quasisymmetric). Moreover, the control function α (resp., η) of ϕ depends
only on the control functions of ϕ1 and/or ϕ2 (see [Hei01, Prop. 10.6]). If
E ⊂ C is connected, then by Väisälä’s theorem (which was already applied
in the proof of Proposition 4.1), weakly H-quasisymmetric maps ϕ : E → F
are η-quasisymmetric with η depending only on H.

7.1. Proof of the packing condition, Proposition 7.1. We fix a point
z0 ∈ C and a radius r > 0, and denote

P := {p ∈ CN (Ω) : diam(p) ≥ r, p ∩ D(z0, r) ̸= ∅} .
Given p ∈ P, we choose a point zp ∈ p∩D(z0, r). Since r ≤ diam(p) and p is
H-spread, there is an H-quasitripod Tp ⊂ p∩D(zp, r) with diam(Tp) ≥ r/H.
Clearly Tp ⊂ D(z0, 2r). Since the quasitripods Tp are pairwise disjoint, claim
(95) is an immediate consequence of the next lemma.

Lemma 7.3. Let M,H ≥ 1 and suppose that T is a collection of pair-
wise disjoint H-quasitripods T ⊂ D(z0,Mr) satisfying diam(T ) ≥ r. Then
card T ≤ N , where N depends only on M and H.

Proof. Given T ∈ T , recall that there is an η-quasisymmetric homeomor-
phism ϕT : T0 → T ; here T0 is the standard tripod. We call ϕT (0) the center
0T of T and the components of T \ 0T the branches of T .

We fix 0 < δ < 1 to be chosen later and cover D(z0,Mr) with disks
D1, . . . , Dn of radius δr so that n ≤ 100(Mδ−1)2. Given 1 ≤ k ≤ n, we
denote by Tk the collection of elements T ∈ T for which 0T ∈ Dk. Since
T =

⋃
k Tk, the lemma follows if we can choose δ depending only on H so

that for some N = N(H),

(97) card Tk ≤ N for all 1 ≤ k ≤ n.

Towards (97), a straightforward application of quasisymmetry shows that
if T ∈ Tk and if δ is small enough, depending on H, then each of the branches
J1(T ), J2(T ), J3(T ) of T must leave Bk = 2Dk, since diam(T ) ≥ r. Here
2Dk is the disk with the center of Dk and twice the radius. For s ∈ {1, 2, 3},
let αTs (t), 0 ≤ t ≤ 1, be a homeomorphic parameterization of Js(T ) with
αTs (0) = 0T . We denote aTs = αTs (ts), where

ts := inf{t : αTs (t) ∈ ∂Bk}.
The points aT1 , aT2 , aT3 partition ∂Bk into subarcs S1(T ), S2(T ), S3(T ). An-
other straightforward application of quasisymmetry shows that their lengths
satisfy

(98) ℓ(Ss(T )) ≥ θr for all s ∈ {1, 2, 3},
where θ > 0 depends only on H.

We fix ST ∈ {S1(T ), S2(T ), S3(T )} so that ℓ(ST ) ≤ ℓ(Ss(T )) for s ∈
{1, 2, 3}. Fix a finite subcollection {T1, T2, . . . , TL} of Tk so that ℓ(ST1) ≤
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ℓ(ST2) ≤ · · · ≤ ℓ(STL). We denote STm and ℓ(STm) by Sm and ℓm, respec-
tively.

T2 T2
T1

T1

Figure 6. The possible relations between a pair of qua-
sitripods with centers close to each other and large diameters.

Next, notice that there is an s ∈ {1, 2, 3} so that aT1s′ ∈ Ss(T2) for every
s′ = 1, 2, 3. In particular, by our choice of the subarcs ST and the enumera-
tion of the quasitripods Tj , either (Figure 6)

(1) S1 ∩ S2 = ∅ (if Ss(T2) ̸= S2), or
(2) S2 contains S1 and another subarc Ss′(T1) (if Ss(T2) = S2).

Using (98) we see that in both cases ℓ(S1 ∪ S2) ≥ θr + ℓ(S1). An inductive
argument shows that if 2 ≤ m ≤ L then there are 1 ≤ m′ ≤ m and s ∈
{1, 2, 3} so that

(99) Ss(Tm′) ⊂ Sm \
(m−1⋃
l=1

Sl

)
and so ℓ

( m⋃
l=1

Sl

)
≥ θr + ℓ

(m−1⋃
l=1

Sl

)
.

Applying (99) and induction yields

(100) Lθr ≤ ℓ
( L⋃
l=1

Sl

)
≤ ℓ(∂Bk) = 4δπr.

Since (100) holds for all finite subcollections of Tk and θ depends only on H,
the desired bound (97) holds. The proof is complete. □

7.2. Proof of quasi-Möbius invariance, Proposition 7.2. We will apply
the following well-known estimate, see e.g. [Hei01, Proposition 10.8].

Lemma 7.4. Let ν : D(z0, r) → ν(D(z0, r)) be η-quasisymmetric and let
A ⊂ D(z0, r) satisfy

diam(ν(A)) ≥ δ min
z∈S(z0,r)

|ν(z)− ν(z0)|.

Then diam(A) ≥ δ′r, where δ′ depends only on δ and η.
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Let Ω ⊂ Ĉ be H-cospread and ϕ : Ĉ → Ĉ an α-quasi-Möbius map. Let
φ : Ĉ → Ĉ be a Möbius transformation so that g = φ ◦ ϕ fixes infinity.
Testing quasi-Möbius condition (96) with the quadruple z1, z2, z3,∞ shows
that g|C is α-quasisymmetric. Therefore, since ϕ = φ−1 ◦ g it suffices to
prove the claim of Proposition 7.2 for quasisymmetric maps and Möbius
transformations.

We fix p ∈ CN (ϕ(Ω)), z0 ∈ p ∩ C, and r ≤ diam(p). Our goal is to show
that p∩D(z0, r) contains a quasitripod with diameter comparable to r, under
the assumption that ϕ is a quasisymmetric map or a Möbius transformation.

First, let ϕ be η-quasisymmetric and let ℓ = minz∈S(z0,r) |ν(z) − ν(z0)|,
where ν = ϕ−1. Since ν(p) is H-spread by assumption, there is an H-
quasitripod T ⊂ D(ν(z0), ℓ) ∩ ν(p) with diam(T ) ≥ ℓ/H. Then, since com-
positions of quasisymmetric maps are quasisymmetric, ϕ(T ) ⊂ p∩D(z0, r) is
anH1-quasitripod, whereH1 depends only onH and η. The inverse of a qua-
sisymmetric map is a quasisymmetric map, and the control functions depend
only on each other. Thus, Lemma 7.4 shows that diam(ϕ(T )) ≥ r/H2, where
H2 depends only on H and η. We conclude that ϕ(Ω) is (max{H1, H2})-
cospread.

We now show that ϕ(Ω) is cospread when ϕ is a Möbius transformation.
If ϕ fixes infinity then the claim is obvious. It therefore suffices to prove the
claim for the inversion ϕ(z) = z−1. The following lemma follows directly
from the definition of quasisymmetry.

Lemma 7.5. Let ϕ(z) = z−1 and suppose that s > 0 and w0 ∈ C satisfy
|w0| ≥ 2s. Then ϕ|D(w0,s)

is η-quasisymmetric with η(t) = 3t.

Now, if the point z0 ∈ p ∩ C above satisfies |z0| ≥ r/10 then ϕ−1 = ϕ
is quasisymmetric on D(z0, r/20) by Lemma 7.5. On the other hand, if
|z0| ≤ r/10 then we choose any w0 ∈ p ∩ S(z0, r/2) (such a w0 exists since
diam(p) ≥ r) and notice that |w0| ≥ r/10. Lemma 7.5 then shows that h is
quasisymmetric on D(w0, r/20) ⊂ D(z0, r).

Let k0 = z0 if |z0| ≥ r/10 and k0 = w0 otherwise. Since ϕ−1(p) is spread
by assumption, applying quasisymmetry and Lemma 7.4 as above shows that

p ∩ D(k0, r/20) ⊂ p ∩ D(z0, r),

and p contains an H ′-quasitripod with diameter bounded from below by
r/H ′, where H ′ depends only on H. It follows that p is H ′-spread. The
proofs of Propositions 7.2 and 1.5 are complete.
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