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Section 1

Introduction
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Stages of ultrarelativistic heavy-ion collisions

Initial particle production τ � 1 fm/c:
Two (Lorentz-contracted) nuclei go
through each other, leaving highly exited
matter between

Non-equilibrium evolution of the produced
matter (aka thermalization) τ . 1 fm/c

(Fluid dynamical) evolution of the QGP
τ ∼ 5 fm/c
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Stages of ultrarelativistic heavy-ion collisions

Transition back to hadronic matter
(QCD phase transition)

Hadronic evolution
(interacting hadron gas)

Transition to free particles (Freeze-out)

The macroscopic properties of QCD matter
(like Equation of State, viscosity) are a direct

input to the fluid dynamics. −→ Relatively
straightforward to test different assumptions.
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QGP, QCD transition region, Hadronic matter
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Units

Natural units:

~ = c = kB = 1. Select GeV or fm as a unit.

~c = 1 ≈ 0.1973 GeV fm −→ Can be used to convert GeV to fm, and vice versa.

e.g. t = 1 fm = 1 fm
1

= 1 fm
0.1973 GeV fm

= 5.07 GeV−1

Conversion to “non-natural” units:

t = 1 fm = 1 fm/c =︸︷︷︸
c∼3·109 m/s=3·1024 fm/s

3.33 · 10−23 s ∼ Typical time scale in HI-collisions

T = 100 MeV = 100 MeV/kB =︸︷︷︸
kB=1.381·10−23 J/K=8.620·10−5 eV/K

1.16 · 1012 K
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Lorentz transformations

Relativistic fluid dynamics is build out of Lorentz 4-vectors that transform according to Lorentz
transformations. Basic building blocks: scalas, vectors and tensors: A, Aµ, Aµν , ...
Particle (or fluid element) position given by 4-vector:

xµ = (t, x , y , z) .

Lorentz transformations leave the proper time dτ invariant

dτ2 = dt2 − dx2 = gµνdx
µdxν , (1)

where gµν = diag (1,−1,−1,−1) is metric tensor. Note that

dτ2 = (1−
dx

dt

2

)dt2 = (1− v2)dt2 = γ−2dt2 (2)

Proper time is a time measured in the frame moving with particle/fluid. dτ = dτ ′ if

x ′µ = Λµνx
ν ,

where Λµν satisfies
ΛµαΛνβgµν = gαβ (3)

Boost by velocity vz :
t′ = γ (t − vzz)
z ′ = γ (z − vz t)

(4)
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In general Aµ is a 4-vector if it transforms in Lorentz transformation as

A′µ = ΛµνA
ν (5)

and for higher rank tensors
A′µν = ΛµαΛµβA

αβ (6)

From each Aµ it is possible to construct a vector

Aµ = gµνA
ν (7)

that transforms as
A′µ = Λ ν

µ Aν (8)

Aµ contravariant vector

Aµ covariant vector

Metric tensor can be used to lower and rise the indices.
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Divergence operator is a covariant vector

∂µ =
∂

∂xµ
=
∂x ′ν

∂xµ
∂

∂x ′ν
= Λ ν

µ ∂
′
ν (9)

When x ′ν = Λνµx
µ then ∂µ transforms as

∂′µ = Λ ν
µ ∂ν (10)

Note. In general curvilinear coordinates divergence of vector or higher rank tensors is not a
tensor! Replace by covariant derivative

For a four-vector Aµ the covariant derivative is

Aµ;α ≡ ∂αA
µ + ΓµαβA

β , (11)

where the Christoffel symbol is

Γµαβ ≡
1

2
gµν

(
∂βgαν + ∂αgνβ − ∂νgαβ

)
(12)

Similarly, the covariant derivative of covariant vectors is given by

Aµ;α ≡ ∂αAµ − ΓβµαAβ (13)

For scalars the covariant derivative reduces to the ordinary divergence.
The covariant derivative of second-rank tensors is

Aµν;α ≡ ∂αA
µν + ΓµαβA

βν + ΓναβA
µβ . (14)
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4-velocity (note dxµ/dt is not 4-vector)

uµ =
d

dτ
xµ(τ) =

(
dt

dτ
,
dx

dτ

)
= γ (1, v) ,

where τ is the time measure in coordinate system moving with the particle/fluid element.
We can write co-moving time derivative for any tensor

d

dτ
Aµ = uα∂αA

µ. (15)

Check that uα∂αxµ = uµ

For a general coordinate transformation:

Λµν =
∂x ′µ

∂xν
(16)

Λ ν
µ =

∂xν

∂x ′µ
(17)
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Why tensors?
If two tensors are equal in one frame

Aµ = Bµ, (18)

they remain equal in any other frame. Thus, if we build our theory using only tensors, the
equations are automatically frame independent.
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Thermodynamics

In statistical physics all thermodynamical quantities are derived from the partition function. A
convenient framework for this is the grand canonical ensemble, where the external restrictions are
given by the temperature T , volume V and chemical potential µ. The grand canonical partition
function ZG is defined as

ZG =
∑
{Nr}

expβ(µN − ENr ), (19)

where β = 1/T . The sum is taken over all possible microstates {Nr} of the system, where N is
the number of particles in the microstate r and ENr is the energy of the microstate. The partition
function gives the probability p{Nr} of the microstate when temperature, volume and chemical
potentials are fixed,

p{Nr} =
1

ZG
exp [β(µN − ENr )] . (20)
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The grand canonical potential is defined as

ΩG (T ,V , µ) = −T lnZG . (21)

All thermodynamic quantities can be calculated once ΩG (T ,V , µ) or ZG is known. From the
thermodynamical identities one obtains

ΩG (T ,V , µ) = −pV , (22)

i.e. if the pressure of the system is known as a function of T , V and µ, the complete
thermodynamics of the system is known.
Entropy density s, pressure p and particle density ni can be obtained by partial differentiation of
the partition function:

s =
1

V

∂T lnZG

∂T
, (23)

p = T
∂ lnZG

∂V
, (24)

n =
T

V

∂ lnZG

∂µ
. (25)
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For a mixture of noninteracting particles the logarithm of the partition function can be written as
a sum of logarithms of the single-particle partition functions:

lnZG =
∑
i

lnZi , (26)

where Zi is the partition function of particle type i . For noninteracting fermions and bosons the
logarithm of the single-particle partition function can be calculated from the definition (19), by

replacing the sum with an integral,
∑

Nr →
∑

N

∫ d3p
(2π)3 . This gives the well-known result

lnZi =
giV

T

∫
d3p

(2π)3

1

eβ(Ei−µi ) ± 1
, (27)

where gi is the degeneracy factor and µi the chemical potential of the particle. The energy of the

particle is Ei =
√

p2 + m2
i , when the interactions between the particles can be neglected. The

plus sign is for fermions and the minus sign for bosons. From the above results we obtain:

p(T , {µi}) =
∑
i

gi

∫
d3p

(2π)3

p2

3Ei

1

eβ(Ei−µi ) ± 1
, (28)

n(T , {µi}) =
∑
i

gi

∫
d3p

(2π)3

1

eβ(Ei−µi ) ± 1
, (29)

e(T , {µi}) =
∑
i

gi

∫
d3p

(2π)3

Ei

eβ(Ei−µi ) ± 1
, (30)

where the sums are over all particle species included in the EoS.
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Useful thermodynamical identities

First law of thermodynamics

dE = TdS − pdV +
∑
i

µidNi , (31)

Another useful identity is

sT = e + p −
∑
i

µini , (32)

Combining these two gives 1st law of thermodynamics in the form

de = Tds +
∑
i

µidni , (33)

and
dp = sdT +

∑
i

nidµi (34)
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Section 2

Energy-momentum tensor and conservation laws
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Energy-momentum tensor

The basic quantity in fluid dynamics (hydrodynamics): Energy momentum tensor Tµν

T 00 = energy density

T 0i = momentum density into direction i

T i0 = energy flux into direction i

T ij = flux of i-momentum into the direction j

For conserved charges/particle numbers, charge/particle 4-current:

N0 = particle/charge density

N i = particle/charge flux into direction i

In hydrodynamical limit:

the state of the matter is completely determined by Tµν and Nµ.

The dynamics (spacetime evolution) can be described in terms of Tµν and Nµ alone (+
properties of the matter: EoS, transport coefficients)
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Conservation laws

Let Σ be a 4-dimensional spacetime volume.
Net number of particles flowing through dΣ :

dΣµN
µ

Net energy and momentum flowing through dΣ:

dΣµT
µν

∫
∂V4

dΣµ(x)Nµ(x) =
∫
∂V4

dΣµ(x)Tµν(x) = 0

Global conservation laws.
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Gauss theorem states that surface integrals over closed surface can be converted into volume
integrals:

0 =
∫
∂V4

dΣµ(x)Nµ(x) =

∫
V4

d4x ∂µN
µ(x)

0 =
∫
∂V4

dΣµ(x)Tµν(x) =

∫
V4

d4x ∂µT
µν(x)

These must hold for an abritrary spacetime volume V4 −→ Local conservation of energy,
momentum and charge:

∂µT
µν = 0 ∂µN

µ = 0 (35)

�� ��These are the basic equations of fluid dynamics

In general Tµν and Nµ contain 14 independent components, but the conservation laws
provide only 5 equations.

Hydrodynamics in heavy-ion collisions Jyväskylä Summer School 2016 August 11, 2016 20 / 173



Kinetic definition of Tµν

Consider a system where the state of the matter is characterized by a single particle momentum
distribution function f (x , p). This distribution is a scalar function that gives a probability density
of observing particle with momentum p at position x .
The expectation or average values of the components of Tµν and Nµ can be calculated as the
moments of f (x , p)

T 00 =

∫
d3p

(2π)3
p0f (x , p) (36)

T 0i =

∫
d3p

(2π)3
pi f (x , p) (37)

T i0 =

∫
d3p

(2π)3

pi

p0
p0f (x , p) (38)

T ij =

∫
d3p

(2π)3

pi

p0
pj f (x , p) (39)

and

N0 =

∫
d3p

(2π)3
f (x , p) (40)

N i =

∫
d3p

(2π)3
pi f (x , p) (41)
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These definitions can be written in a tensor form:

Tµν =

∫
d3p

(2π)3p0
pµpν f (x , p) (42)

Nµ =

∫
d3p

(2π)3p0
pµf (x , p) (43)

d3p
p0 = Lorentz scalar

f (x , p) = Lorentz scalar
pµ = Lorentz vector

 −→ Tµν = Second rank tensor
Nµ = 4-vector

(44)

Hydrodynamics in heavy-ion collisions Jyväskylä Summer School 2016 August 11, 2016 22 / 173



Section 3

Ideal fluid dynamics
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Local thermal equilibrium

What greatly simplifies the system is an assumption of thermal equilibrium. In this case the state
of the matter is determined by two parameters, temperature T and chemical potential µ, and the
single particle distribution is given by the usual Fermi-Dirac or Bose-Einstein form:

feq(p;T , µ) =
1

exp ((E − µ)/T )± 1
, (45)

If the system is in local thermal equilibrium, the distribution is still given the form above, but T ,
and µ can depend on x, i.e. (T , µ) −→ (T (x), µ(x)).
Note that the distribution above is not Lorentz-invariant as such, but rather written in frame
where matter is at rest. The Lorentz invariance can be made explicitly by replacing

E −→ ELR = uµpµ = u · p (46)

Because u · p = E in the local rest frame where uµ = (1, 0, 0, 0), and because u · p is scalar it is
the same regardless of the frame where it is calculated. The distribution is now:

feq (T (x), µ(x), u(x)) =
1

exp ((u · p − µ)/T )± 1
(47)
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Decomposition of Tµν in local thermal equilibrium

Tµν =

∫
d3p

(2π)3 p0
pµpν

1

exp ((u · p − µ)/T )± 1
(48)

Can depend only on vector/tensor quantities uµ gµν

Tµν = A′uµuν + B′gµν (49)

∆µν = gµν − uµuν (50)

Tµν = Auµuν + B∆µν (51)

A = uµuνT
µν (52)

B = −
1

3
∆µνT

µν (53)

(54)
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Decomposition of Tµν in local thermal equilibrium

uµuνT
µν =

∫
d3p

(2π)3 p0
(uµp

µ)2feq(p) = e0 (55)

−
1

3
∆µνT

µν =
1

3

∫
d3p

(2π)3 p0

(
(uµp

µ)2 − gµνp
µpν

)
feq(p) (56)

=
1

3

∫
d3p

(2π)3 p0
p2feq(p) = p0 (57)

e0 energy density in LRF, p0 = kinetic pressure

Tµν = e0u
µuν − p0∆µν (58)

5 independent variables (e0, p0, uµ), but in equilibrium pressure given by the equation of state
(EoS): p0 = p0(e0, n0)
−→ 4 independent variables (e0, uµ) −→ The conservation laws ∂µTµν = 0 and ∂µNµ = 0 can
be solved!
This is the ideal/perfect hydrodynamics. Follows from the strong assumption of Local thermal
equilibrium!
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Equations of motion

∂µN
µ = 0 & Nµ = n0u

µ (59)

∂µN
µ = ∂µ(n0u

µ) = uµ∂µn0 + n0∂µu
µ (60)

uµ∂µA = Ȧ ∂µu
µ = θ (61)

ṅ0 + n0θ = 0 (62)

∂µT
µν = 0 & Tµν = e0u

µuν − p0∆µν (63)

∂µT
µν = ∂µ(e0u

µuν − p0∆µν) (64)

= (ė0 + ṗ0) uν + (e0 + p0) θuν + (e0 + p0) u̇ν − ∂νp0 = 0 (65)

Contractions

uν∂µT
µν = (ė0 + ṗ0) + (e0 + p0) θ + (e0 + p0) uν u̇

ν︸ ︷︷ ︸
=0

− uν∂
νp0︸ ︷︷ ︸

=ṗ0

= 0 (66)

−→ ė0 = −(e0 + p0)θ (67)

∆α
ν ∂µT

µν = (e0 + p0) ∆α
ν u̇

ν︸ ︷︷ ︸
u̇α

−∆α
ν ∂

νp0︸ ︷︷ ︸
≡∇αp0

= 0 (68)

−→ (e0 + p0)u̇α = ∇αp0 (69)
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What is θ = ∂µuµ?
Start from the particle number conservation:

∂µ (n0u
µ) = 0 =⇒ ∂µ

(
N

V
uµ
)

= 0 (70)

∂µ

(
N

V
uµ
)

= uµ∂µ

(
N

V

)
+

N

V
∂µu

µ (71)

Define volume element so that N =const. within the volume V =⇒ particle density changes due
to the volume changes =⇒

uµ∂µ

(
N

V

)
+

N

V
∂µu

µ = 0 (72)

uµ∂µ

(
1

V

)
︸ ︷︷ ︸

=− V̇
V 2

+
1

V
∂µu

µ = 0 (73)

=⇒
V̇

V
= ∂µu

µ = θ = volume expansion rate in LRF (74)
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How about energy density:

ė0 =
de

dτ
= −(e0 + p0)θ =⇒ de = −e0 θdτ︸︷︷︸

= dV
V

−p0 θdτ︸︷︷︸
= dV

V

(75)

=⇒ Vde0 = −e0dV − p0dV (76)

=⇒ d(Ve0) = −p0dV (77)

=⇒ d(E) = −p0dV (78)

The p0θ term represents the work done by the pressure as the system expands.

The final equation u̇µ = ∇αp0
e0+p0

gives the accelaration of the fluid element due to the pressure

gradient.
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The final equations of motion now read:

ṅ0 = −n0θ (79)

ė0 = −(e0 + p0)θ (80)

u̇µ =
∇αp0

e0 + p0
(81)

Contain 6 unknowns and 5 equations. Equation of state in the form p0 = p0(e0, n0) sufficient to
close the system!

Ideal fluid dynamics

For given initial conditions n0(t0, x), e0(t0, x), uµ(t0, x), the equations of motion can be solved
=⇒ space-time evolution of n0, e0, uµ.
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Some results for ideal fluids: entropy conservation

In ideal fluids the entropy is conserved. This can be shown as:

∂µS
µ
0 = ∂µ (s0u

µ) = ṡ0 + s0θ (82)

Laws of thermodynamics say that

s0 =
e0 + p0 − µn0

T
, (83)

=⇒ ∂µS
µ
0 =

(
e0 + p0 − µn0

T

)
θ + ṡ0 (84)

Furthermore thermodynamics relates change of entropy to change in energy and number density,
i.e.

Tds0 = de0 − µdn0 (85)

It then follows that

ṡ0 =
1

T
(ė0 − µṅ0) = −

1

T
(e0 + p0 − µn0) θ (86)

The last step follows from the conservation laws ė0 = −(e0 + p0)θ and ṅ0 = −n0θ. It then
follows that

∂µS
µ
0 =

(
e0 + p0 − µn0

T

)
θ −

1

T
(e0 + p0 − µn0) θ = 0 (87)
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Some further results for ideal fluids: speed of sound

Consider small perturbations around hydrostatic equilibrium state with constant e0, n0 at rest
uµ = (1, 0, 0, 0):

n = n0 + δn e = e0 + δe uµ = uµ0 + δuµ = γ (1, δvx , 0, 0) (88)

Substitute these into eom’s, and neglect powers O(δ2) and higher.

ṅ = ṅ0 + δ̇n = −(n0 + δn)∂µu
µ = −n0∂µδu

µ − δn∂µδuµ = −n0∂xδvx (89)

ė = ė0 + δ̇e = −(e0 + δe + p0 + δp)∂µu
µ = − (e0 + p0) ∂xδvx (90)

(e0 + δe + p0 + δp)u̇µ = −δxp(e, n) (91)

(e0 + p0) ˙δvx = −∂xp(e0 + δe, n0 + δn) (92)

(e0 + p0) ˙δvx = −∂xp(e0 + δe, n0 + δn) (93)

p(e0 + δe, n0 + δn) = p0(e0, n0) +
∂p(e, n)

∂e
δe +

∂p(e, n)

∂n
δn (94)

(e0 + p0) ˙δvx =
∂p(e, n)

∂e
∂xδe +

∂p(e, n)

∂n
∂xδn (95)
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Equations of motion for small perturbations:

δ̇n = −n0∂xδvx (96)

δ̇e = − (e0 + p0) ∂xδvx (97)

(e0 + p0) ˙δvx =
∂p(e, n)

∂e
∂xδe +

∂p(e, n)

∂n
∂xδn (98)

=⇒ δ̈e = − (e0 + p0) ∂x ˙δvx (99)

=⇒ δ̈e = −
∂p(e, n)

∂e
∂2
x δe −

∂p(e, n)

∂n
∂2
x δn (100)

Thermodynamics:

Tds = de − µdn
e + p = Ts + µn

}
−→ Td

( s
n

)
=

1

n
de −

e + p

n

dn

n
(101)

But in ideal fluid both N and S conserved −→ d
(
s
n

)
= 0

=⇒ de =
e + p

n
dn (102)
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=⇒ δ̈e = −
∂p(e, n)

∂e
∂2
x δe −

∂p(e, n)

∂n
∂2
x δn (103)

and using

de =
e + p

n
dn (104)

=⇒ δ̈e = −
∂p(e, n)

∂e
∂2
x δe −

n

e + p

∂p(e, n)

∂n
∂2
x δe (105)

But this is just wave equation:

=⇒ δ̈e = −c2
s ∂

2
x δe (106)

with wave propagation speed cs :

c2
s =

∂p(e, n)

∂e
+

n

e + p

∂p(e, n)

∂n
(107)
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Section 4

Ideal fluids in HI-collisions
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Kinematics:
particle 4-momentum:

pµ = (E , p) = (E , px , py , pz ) (108)

E =
√

p2 + m2

rapidity:

y =
1

2
ln

(
E + pz

E − pz

)
(109)

Show that

pµ = (mT cosh y , pT ,mT sinh y) , (110)

where pT = (px , py) and mT =
√

m2 + p2
T

Pseudo-rapidity ηp

ηp =
1

2
ln

(
p + pz

p − pz

)
(111)

where p = |p|
Show that

ηp = − ln

[
tan

(
θ

2

)]
(112)

where θ is the scattering angle of the particle, measured w.r.t positive direction of the beam axis.
θ = 90o = ηp = 0
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Bjorken estimate for the initial energy density in HI collisions

Spacetime rapidity:

ηs =
1

2
ln

(
t + z

t − z

)
=

1

2
ln

(
1 + z/t

1− z/t

)
Longitudinal proper time

τ =
√

t2 − z2 =

√
1− (z/t)2

τ is the time in the frame that moves with a
velocity vz = z

t
w.r.t. to the LAB frame.

Particles produced at z = t = 0

Free streaming particles: v =const.

−→ particle at (t, z) has vz = z/t

−→
dE

dηs
= const.

Spacetime rapidity cannot be measured, but
rapidity y can.

y =
1

2
ln

(
E + pz

E − pz

)
=

1

2
ln

(
1 + pz/E

1− pz/E

)
=

1

2
ln

(
1 + vz

1− vz

)

−→
dE

dy
=

dE

dηs
= const.
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Bjorken estimate for the initial energy density in HI collisions

At y ∼ 0
dET

dy
∼

dE

dy
∼

dE

dηs
(113)

If we have a measured dET /dy we can estimate the energy density at τ0

Volume at τ0 (assume homogeneous matter in (x , y)-direction.

∆V = A∆z = πR2
Aτ0∆ηs (114)

Energy density:

e (τ = τ0) =
∆E

∆V
=

1

πR2
Aτ0

∆E

∆ηs
∼

1

πR2
Aτ0

dET

dy
(115)

Note that in this case (Free streaming particles)

e(τ) = e (τ0)
τ0

τ
(116)

SPS: dET
dy
∼ 400GeV −→ e (τ0 = 1 fm) ∼ 3 GeV/fm3

RHIC: dET
dy
∼ 620GeV −→ e (τ0 = 1 fm) ∼ 5 GeV/fm3
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Bjorken fluid dynamics

Dense systems! Neglecting interactions might not be a good idea. . .
Scaling flow/Bjorken (0+1)-D fluid dynamics, assume

fluid velocity vz = z
t

vx = vy = 0

Transversaly homogeneous matter

initial conditions: e0(τ0, x , y , ηs) = e0(τ) and n(τ0, x , y , ηs) = n0(τ) (independent of ηs :
invariant under longitudinal boosts)

In this case

θ =
1

τ
, (117)

and the equations of motion take a simple form: Charge conservation:

dn

dτ
= −

n

τ
(118)

Energy conservation:
de

dτ
= −

e + p

τ
(119)

Momentum conservation
∂p

∂ηs
= 0 (120)

guarantees that if the initial conditions are boost invariant, so are the solutions.
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Bjorken fluid dynamics

If we assume a simple EoS: p = c2
s e the solutions are

n = n0

( τ0

τ

)
(121)

e = e0

( τ0

τ

)1+c2
s

(122)

Remember: In the free streaming case e = e0 (τ0/τ). Interacting system does work during the
expansion, and e drops faster.

dET /dηs is not conserved!

Ex: Assume that the system behaves as free streming particles after τ = 10 fm, and before that
according to fluid dynamics. Recalculate the estimates for e0(τ0 = 1 fm) for SPS and RHIC.
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So where does the energy go (it is conserved after all). Energy density profile at fixed t not τ .

e(t, z) = e(τ =
√

t2 − z2) (123)

1.5 1.0 0.5 0.0 0.5 1.0 1.5

z [fm]

101

102

103

e
[G

eV
/
fm

3
]

τ0 =1.0 fm

τ=1.2 fm

e0

c 2
s =1/3

FS

Energy pushed into the longitudinal direction −→ transverse energy decreases during the
evolution.
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Equation of state: simple model

Hadron gas: 3 massless pions

pHG = gHG

π2

90
T 4, gHG = 3

(
π±, π0

)
(124)

Quark-Gluon plasma: massless gluons and quarks

pQGP = gQGP

π2

90
T 4 − B (125)

gQGP = 16 +
21

2
Nf = 37 (126)

Gibbs phase coexistence condition (at a given temperature a phase with larger pressure is the
stable phase)

pHG(Tc ) = pQGP(Tc ) (127)

gHG

π2

90
T 4
c = gQGP

π2

90
T 4
c − B (128)

B = (gQGP − gHG)
π2

90
T 4
c (129)

Bag constant required to have HG as stable phase at low temperatures.
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First order phase transition: latent heat & discontinuity in ∂p/∂T

In mixed phase T = Tc and p constant. Energy density changes by changing volume fraction of
QGP, xQGP

e = xQGPeQGP(Tc ) + (1− xQGP) eHG(Tc ) (130)

Figs: Pasi Huovinen
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Equation of State

I. Hadron phase: approximate as non-interacting gas of hadrons & hadron resonance states: π, K,
n, p, ρ, ω, . . . Hadron resonance gas (HRG)

P(T , µ) =
∑
i

gi

∫
d3p

(2π)3

p2

3E

1

e(E−µi )/T ± 1

=
∑
i

gi

2π2
T 2m2

i

∞∑
n=1

(∓1)n+1

n2
en
µi
T K2

(
n
mi

T

)
II. QGP

Massless gas of quarks and gluons:

pQGP = gQGP

π2

90
T 4 − B (131)

Connect with the HRG using Maxwell construction as we did with pion gas.
−→ Still 1st order transition.

Connect HRG to the high-temperature lattice QCD results
−→ “smooth cross-over”
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Hadron gas: relative abundance of hadron species

0.0

0.2

0.4

0.6

0.8

1.0

 50  100  150  200  250

n
h
/n

to
t 
(µ

B
 =

 0
)

T [MeV]

π...N
π

K
N

Pions most abundant, but significant contribution from other hadrons.
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Hadron gas: hadron density vs entropy density

10
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π
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In boost-invariant ideal fluid: dS/ηs = constant

In hadron gas ntot ∼ Cs

−→ dN/ηs determined by the initial entropy dS/ηs
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Comparison of different EoS models

Figs: Pasi Huovinen
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More realistic fluid-dynamical model: transverse expansion

(0 + 1)D Bjorken model great for a simple estimates of the density evolution, but neglects
completely the transverse flow!

The most interesting and visible consequences of fluid-dynamical behaviour seen in effects of
transverse flow on the pT -spectra.

Let’s still assume boost invariance, i.e. vz = z/t and fluid dynamical variables independent
of ηs .

In this case more convenient to write the conservation laws directly in terms of Tµν

∂τT
ττ = −∂x (vxT

ττ )− ∂y (vyT
ττ )−

1

τ
(T ττ + p)− ∂x (vxp)− ∂y (vyp) ,

∂τT
τx = −∂x (vxT

τx )− ∂y (vyT
τx )−

1

τ
T τx − ∂xp,

∂τT
τy = −∂x (vxT

τy )− ∂y (vyT
τy )−

1

τ
T τy − ∂yp,

∂τN
τ = −∂x (vxN

τ )− ∂y (vyN
τ )−

1

τ
Nτ .

(132)

Initial conditions: e0(τ0, x , y), n0(τ0, x , y), vT (τ0, x , y)
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Example: spacetime evolution of temperature and velocity

 0

 5

 10

 15

 20

 0  2  4  6  8  10  12  14

τ 
[f
m

/c
]

r [fm]

QGP

MP

HRG

150 MeV

120 MeV

RHIC √sNN = 200 GeV
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Connecting fluid dynamics to the obervable hadron spectra

“Cooper-Frye decoupling procedure”1

Fluid dynamics:(uµ, e, p) – not directly observable.
Fluid dynamical evolution ends at some point and the particles fly to the detector. Condition:

e.g. when temperature drops below some Tdec

Find a decoupling surface σ from the spacetime evolution
−→ surface normal vector dσµ

Number of particles traveling through this surface

N =

∫
σ
Nµdσµ (133)

Kinetic theory:

Nµ =

∫
d3p

p0
pµf (x , p) (134)

=⇒

N =

∫
σ

d3p

p0
pµf (x , p)dσµ (135)

1F. Cooper and G. Frye, Phys.Rev. D10, 186 (1974)
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Cooper-Frye integral

E
dN

d3p
=

∫
σ
pµf (x , p)dσµ (136)

Needs to be calculated for all the particles included into HRG Equation of State.

Most hadrons unstable and decay before they can be detected: also decays need to be
calculated.

Calculates the net-flux of particles through the surface (not emission from the surface)

At some points of the surface with some values of p the net-flux can be inside the surface:
negative contributions.
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Cooper-Frye: Boost invariant flow

The freeze out hypersurface can be parametrized as τ = τ(x , y), so that surface is given by
σµ = (τ(x , y), x , y , 0). Because the system is boost-invariant the surface is the same in any
boosted frame, i.e. it is independent of η. However, we want the whole surface in the LAB frame.
Therefore, we need to boost the surface vector at non-zero η to LAB frame, and this results in

σµ = (σt , σx , σy , σz ) = (τ(x , y) cosh η, x , y , τ(x , y) sinh η) (137)

The surface element of the freeze out hypersurface can be generally given as:

dσµ = εµνλρ
∂σν

∂u

∂σλ

∂v

∂σρ

∂w
dudvdw , (138)

where εµνλρ is the antisymmetric fourth rank tensor i.e. permutation tensor, such that
ε0123 = −1, for and even permutation of the indices, and (u, v ,w) = (η, x , y), thus

dσµ = −[±](cosh η,−
∂τ

∂x
,−

∂τ

∂y
,− sinh η)τdηdxdy , (139)

where [±] = Sign(∂T/∂τ) guarantees that the surface normal points outside of the surface (with
dxdydη positive), i.e. towards smaller temperature.
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Cooper-Frye: Boost invariant flow
The Cooper-Frye formula for ideal fluid is:

E
dN

d3p
=

∫
σ
dσµ(x)pµfeq(x , p) (140)

where the distribution function is usually approximated by an equilibrium distribution,

f (x , p) =
1

(2π)3

1

exp
(

pµuµ−µ
T

)
± 1

. (141)

This can be simplified noting that the distribution function can be expanded (like 1/(1± x)),

1

ex ± 1
≡

e−x

1± e−x
= e−x

∞∑
n=0

(∓1)ne−nx =
∞∑
n=1

(∓1)n−1e−nx . (142)

pµ ≡ (mT cosh y , pT ,mT sinh y) = (mT cosh y , px , py ,mT sinh y) , (143)

uµ = (ut , ux , uy , uz ) = γT (cosh ηs , vT , sinh ηs) , (144)

=⇒

pµuµ = γT [mT cosh(y − ηs)− pT vT ] (145)

and

pµdσµ = −[±]

[
mT cosh(y − ηs)− px

∂τ

∂x
− py

∂τ

∂y

]
τdηsdxdy . (146)
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Cooper-Frye: Boost invariant flow

Using the above results we get,

E
dN

d3p
=

1

(2π)3

∞∑
n=1

(∓1)n−1
∫
σ
dσµp

µ exp

(
n µ− n pµuµ

T

)
. (147)

Thus,

E
dN

d3p
=

−1

(2π)3

∞∑
n=1

(∓1)n−1
∫
S

[±]τdxdy enµ/T exp
[
n

pT · vT
T

]
(148)

×
∫ ∞
−∞

dηs exp
[
−n

γTmT

T
cosh(y − ηs)

] [
mT cosh(y − ηs)− px

∂τ

∂x
− py

∂τ

∂y

]
The ηs integral can be done analytically:

E
dN

d3p
=

−1

(2π)3

∞∑
n=1

(∓1)n−1
∫
S

[±]τdxdy enµ/T exp
[
n

pT · vT
T

]
(149)

×
[
mTK1

(
n
γTmT

T

)
−
(
px
∂τ

∂x
+ py

∂τ

∂y

)
K0

(
n
γTmT

T

)]
.
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Cooper-Frye: Boost invariant flow

E
dN

d3p
=

dN

dyd2pT
=
−1

(2π)3

∞∑
n=1

(∓1)n−1
∫
S

[±]τdxdy enµ/T exp
[
n

pT · vT
T

]
(150)

×
∫ ∞
−∞

dηs exp
[
−n

γTmT

T
cosh(y − ηs)

] [
mT cosh(y − ηs)− px

∂τ

∂x
− py

∂τ

∂y

]
Some consequences of the boost invariance:

ηs and y dependence only through y − ηs
Spectrum is independent of y , i.e. dN/dy=const. (make a change of variable η′ = y − ηs)

We can change y ↔ ηs =⇒
dN

dηs
=

dN

dy
(151)

spectra at rapidity y is dominated by contribution from ηs ∼ y (other regions suppressed by
exp

[
−n γTmT

T
cosh(y − ηs)

]
−→ spectra at y ∼ 0 really probes the ηs ∼ 0 (or z ∼ 0) region.
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Effect of radial flow and temperature

high-pT behaviour: e−u·p/T = e−(Eγ−γvr ·pT )/T −→ e−pT /Teff

Teff = T
√

1+vr
1−vr

Increasing temperature and increasing flow velocity have similar effects on the pT -spectra.

Fluid dynamics gives a connection between vr and T

Hydrodynamics in heavy-ion collisions Jyväskylä Summer School 2016 August 11, 2016 56 / 173



Constraints for shear viscosity from (elliptic) flow

in non-central collisions pressure gradients
asymmetric in transverse plane

More particles flow into direction of larger
gradient

−→ azimuthally asymmetric particle spectra
dN/dφ

Quantify by Fourier coefficients (vn)

1

N

dN

dφ
= 1 + 2v1cos(φ−Ψ1) + 2v2cos(2(φ−Ψ2)) + 2v3cos(3(φ−Ψ3)) + · · ·

v2 = elliptic flow (Ψ2 is its direction)
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The vn coefficients can depend on rapidity and transverse momentum.

dN

dydp2
Tdφ

=
dN

dydp2
T

[1 + 2v1(y , pT ) cosφ+ 2v2(y , pT ) cos(2φ) + · · · ] . (152)

The rapidity and transverse momentum dependent Fourier coefficients are given by

vn(y , pT ) ≡
(

dN

dydp2
T

)−1 ∫ π

−π
dφ cos(nφ)

dN

dydp2
Tdφ

(153)

Similarly, the pT -integrated coefficients vn are given by

vn(y) ≡
(
dN

dy

)−1 ∫ π

−π
dφ cos(nφ)

dN(b)

dydφ
. (154)

In the boost-invariant approximation the coefficients vn are rapidity independent.
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Optical Glauber model and initial conditions

The optical Glauber model for nucleus-nucleus collisions is based on the assumption that each
nucleon travels along straight-line trajectories and it is also assumed that the cross section for
each nucleon-nucleon collision remains unchanged, even if the nucleons have already collided. In
the Glauber model, the total cross section for an A + B collisions is given by

σAB =

∫
d2b

(
1−

(
1−

σNNTAB(b)

AB

)AB
)
'
∫

d2b
(

1− e−σNNTAB (b)
)
, (155)

where σNN is the cross section for inelastic nucleon-nucleon collisions, b is the impact parameter
and TAB is the standard nuclear overlap function, defined as

TAB(b) =

∫
d2r TA(r + b/2)TB(r − b/2), (156)

with TA(r) denoting the nuclear thickness function, which is an integral over the longitudinal
coordinate z of the nuclear density function,

TA(r) =

∫
dz ρA(r, z). (157)

Hydrodynamics in heavy-ion collisions Jyväskylä Summer School 2016 August 11, 2016 59 / 173



The nuclear density can be parametrized with the Woods-Saxon profile

ρA(r, z) =
ρ0

exp
(

r−RA
d

)
+ 1

, (158)

In the Glauber model the transverse density of binary nucleon-nucleon collisions is given by

nBC (r, b) = σNNTA(r + b/2)TB(r − b/2). (159)

The number density of the nucleons participating in the nuclear collision, the wounded nucleon
transverse density, is given by

nWN(r, b) = TA(r + b/2)

[
1−

(
1− σNN

TB(r − b/2)

B

)B
]

+ TB(r − b/2)

[
1−

(
1− σNN

TA(r + b/2)

A

)A
]
.

(160)

The integrals of nWN(r, b) and nBC (r, b) over the transverse plane,
∫
d2r, give the number of

participants Npart(b) = NWN(b) and the number of binary collisions NBC (b), respectively.
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Glauber model can be used in several ways to initialize the fluid dynamical evolution.

e ∝ nBC (eBC)

e ∝ nWN (eWN)

s ∝ nBC (sBC)

s ∝ nWN (eWN)

Each of these initializations give a slightly different initial energy density profile.
One way to characterize the shape of the initial profile is to calculate eccentricity

εx ≡
〈y2 − x2〉
〈y2 + x2〉

≡
∫
dxdy ε(x , y , τ)(y2 − x2)∫
dxdy ε(x , y , τ)(y2 + x2)

, (161)

Non-zero initial eccentricity is converted by the fluid dynamical evolution to non-zero v2

(elliptic flow)
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Initial energy density and eccentricity from different Glauber initializations

P. Kolb et al., Nucl.Phys. A696, 197–215 (2001)
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centrality dependence of multiplicity and elliptic flow from different Glauber
initializations

P. Kolb et al., Nucl.Phys. A696, 197–215 (2001)
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Section 5

Some results from ideal fluid dynamics
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Results from ideal fluid dynamics

H. Niemi et al., Phys.Rev. C79, 024903 (2009)
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H. Niemi et al., Phys.Rev. C79, 024903 (2009)
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H. Niemi et al., Phys.Rev. C79, 024903 (2009)
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H. Niemi et al., Phys.Rev. C79, 024903 (2009)
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Pasi Huovinen: Effect of EoS lattice vs 1st order transition
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Section 6

Dissipative fluid dynamics
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Dissipative fluid dynamics: general structure of Tµν and Nµ

In ideal fluid:
Tµν0 = e0u

µuν − p0∆µν Nµ0 = n0u
µ (162)

This required that the system is in local thermal equilibrium, or (in kinetic theory) f (x , p) is
locally isotropic equilibrium distribution function. In this case, full Tµν and Nµ could be
described by 5 independent variables (e0, n0, uµ). However, in general Tµν contains 10
independent, and Nµ 4 independent components.

General case: decomposition of Tµν and Nµ w.r.t. uµ:

At this stage uµ is an arbitrary, normalized (uµuµ = 1), 4-vector. Later it will take the meaning of
fluid velocity, but as we will see later, in dissipative fluid dynamics it is not uniquely determined.
Charge/particle 4-current Nµ can be written as

Nµ = nuµ + Vµ = (n0 + δn)uµ + Vµ, (163)

where n = uµNµ, and Vµ = ∆µ
νN

ν . Note that Vµ is orthogonal to the fluid velocity:
uµVµ = 0. It can also be further divided into equilibrium and off-equilibrium parts.
⇒ Two ways of transporting charge: by fluid flow (convection) nui or by diffusion Vµ.
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Tµν can be divided in a similar fashion into equilibrium and off-equilibrium parts:

Tµν = Tµν0 + δTµν = e0u
µuν − p0∆µν + δTµν . (164)

The off-equilibrium part can be further decomposed into scalar, vector, and tensor parts:

δTµν = δeuµuν − δp∆µν + 2W (µ u ν) + πµν , (165)

where

e0 + δe = uµuνT
µν p0 + δp = −

1

3
∆µνT

µν

Wµ = ∆µ
νT

ναuα

πµν = T 〈µν〉 =

[
1

2

(
∆µ
α∆ν

β + ∆ν
α∆µ

β

)
−

1

3
∆µν∆αβ

]
Tαβ

(166)

These have properties: uµWµ = uµπµν = uνπµν = πµµ = 0

Wµ = energy diffusion current (Energy flux orthogonal to the fluid velocity)

πµν = Symmetric, traceless part of Tµν that is orthogonal to the fluid velocity. =
shear-stress tensor “Momentum diffusion currents”

δe and δp are the off-equilibrium contributions to the energy density and isotropic pressure.
(δp is the trace we substracted in the definition of πµν)
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Dissipative fluid dynamics: Landau matching conditions

Nµ = (n0 + δn)uµ + Vµ

Tµν = (e0 + δe)uµuν − (p0 + δp)∆µν + 2W (µ u ν) + πµν
(167)

These contain

6 scalars (e0, δe, n0, δn, p0, δp) (6 components)

3 vectors (uµ,Vµ,Wµ) (9 components)

1 2-rank tensor πµν (5 components)

These are 20 components in total, but Nµ and Tµν together have only 14 independent
components?

For a general (off-equilibrium) state, the corresponding equilibrium state (e0, n0, p0(e0, n0)) is
an arbitrary choice.

Without loss of generality we can choose the equilibrium state such that its energy and
number density are the same as those of the actual state itself (Landau matching conditions)

e = e0 = uµuνTµν , i.e. δe = 0
n = n0 = uµNµ, i.e. δn = 0

(168)
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Landau matching conditions −→ p = p(e0, n0) = p(e, n). Note that EoS gives a relation
between equilibrium quantities.

It also follows that
T = T (e0, n0)
µ = µ(e0, n0)

(169)

Landau matching gives definitions of temperature and chemical potential for an arbitray
off-equilibrium state!

Once we have defined p0 as p0 = p0(e, n), δp can be identified as bulk viscous pressure

δp = Π = bulk viscous pressure (170)

Π = off-equilibrium correction to the isotropic pressure

We still have 3 scalars, 3 vectors and 1 tensor = 17 components:

Nµ = (n)uµ + Vµ

Tµν = euµuν − (p0(e, n) + Π)∆µν + 2W (µ u ν) + πµν
(171)
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Dissipative fluid dynamics: Choise of fluid velocity

Remember: so far uµ was an arbitrary 4-vector

To give uµ a physical meaning as a fluid velocity, we must tie it to some physical current in
the system.

2 common choises are Eckart and Landau definitions:

1 Eckart definition: uµ defined such that it follows the particle/charge current

uE =
Nµ√
NµNµ

(172)

I In this case the particle/charge diffusion current vanishes: Vµ ≡ 0

2 Landau definition: uµ defined as the velocity of energy current

uµL =
TµνuL ν√

uLαTαβTβγu
γ
L

, or equivalently TµνuL ν = euµL (173)

I In this case the energy diffusion current vanishes: Wµ ≡ 0

uµ can be chosen to replace the particle diffusion current Vµ, or the energy diffusion current
Wµ as an independent variable.
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If no conserved charges: Only Landau choise is possible

If more than one conserved charges: Only one of the diffusion currents Vµi can be made to
vanish (or any linear combination of them)

In Landau frame:

Nµ = nuµ + Vµ

Tµν = euµuν − (p0(e, n) + Π)∆µν + πµν

}
14 variables (174)

∂µNµ = 0
∂µTµν = 0

}
5 equations (175)

9 more constraints needed in order to close the system of equations ←− These constraints
define the dissipative fluid dynamics

Similarly to the ideal case eom’s can also be written as:

Dn = −nθ − ∂µVµ

De = −(e + p0 + Π)θ − πµν∂µuν
(e + P + Π)Duµ = ∇µ(p0 + Π)−∆µν∂λπ

λ
ν

where
D = uµ∂µ, and ∇µ = ∆µν∂ν .
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Covariant thermodynamics

In general dissipative fluids deviate from the local thermal equilibrium
−→ Entropy is no longer conserved, but should increase during the evolution.

Thermodynamical relations:

e + p = Ts + µn
ds = βde − αdn
dp = sdT + ndµ

(176)

where β = 1/T and α = µ/T .

Let’s write these in more suitable form for us (use βµ = βuµ):

Sµ0 = pβµ + Tµν0 βν − αNµ0
dSµ0 = βνdT

µν
0 − αdNµ0

d(pβµ) = Nµ0 dα− Tµν0 dβν

(177)

Contracting these with uµ gives back the usual relations.
Note: Here Tµν0 and Nµ0 are the equilibrium parts of the energy-momentum tensor and particle
4-current.
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Now we can write for the equilibrium entropy current Sµ0

∂µS
µ
0 = βν∂µT

µν
0 − α∂µNµ0 (178)

For ideal fluids
∂µT

µν
0 = 0 ∂µN

µ
0 = 0 (179)

and one gets the usual result ∂µS
µ
0 = 0.

However in dissipative fluids:

∂µT
µν
0 = ∂µ [Π∆µν − πµν ] 6= 0

∂µN
µ
0 = −∂µVµ 6= 0

(180)

Now
∂µS

µ
0 = βν [∂µ (Π∆µν − πµν)]− α∂µVµ

= ∂µ(αVµ)− Vµ∂µα− βΠ∆µν∂µuν + βπµν∂µuν
(181)

Define Sµ = Sµ0 − αVµ as the non-equilibrium entropy.

∂µS
µ = −Vµ∂µα− βΠ∆µν∂µuν + βπµν∂µuν (182)
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The derivative of the four-velocity can be generally decomposed as

∂µuν = uµDuν + σµν +
1

3
∆µνθ − ωµν , (183)

where the shear tensor σµν , and the vorticity tensor ωµν are defined as

σµν ≡ ∇<µuν> =
1

2
(∇µuν +∇νuµ)−

1

3
∆µνθ (184)

ωµν ≡
1

2
∆α
µ∆β

ν

(
∂βuα − ∂αuβ

)
where σµνuν = σµµ = 0 and ωµνuν = ωµµ = 0. The entropy production can be written as

∂µS
µ = −Vµ∂µα− βΠ∆µν∂µuν + βπµν∂µuν (185)

=⇒
∂µS

µ = −Vµ∂µα− βΠ∆µνθ + βπµνσµν = Q (186)

Q is the entropy production rate.
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Entropy production rate must be positive

Q = −Vµ∂µα− βΠ∆µνθ + βπµνσµν > 0 (187)

In general this can be satisfied only if

Vµ = κ∇µα
Π = −ζθ
πµν = 2ησµν

(188)

where κ, ζ and η are positive.

κ = particle diffusion or heat conductivity
ζ = bulk viscosity
η = shear viscosity

(189)

These are properties of the matter similarly to the Equation of state, and in general depend on T
and µ, or e and n
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Relativistic Navier-Stokes equations

The set of equations
∂µNµ = 0
∂µTµν = 0
Vµ = κ∇µα
Π = −ζθ
πµν = 2ησµν

(190)

with p0 = p0(e, n), κ = κ(e, n), ζ = ζ(e, n), η = η(e, n) form a closed set of equations.
Physical interpretation of different terms:

κ∇µα: drives the diffusion current

-ζθ: resistance to the volume changes of the fluid element

2ησµν : resistace to the deformations of the fluid element

This theory has, however, some problems.

The equations of motion are parabolic: support infinite signal propagation speed (fluid
velocity is still bounded |v| < 1)

As a consequence: Even hydrostatic equilibrium state is unstable (small perturbations grow
exponentially).

This theory is not good for relativistic fluids!
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Second-order fluid dynamics

In order to cure the problems with relativistic Navier-Stokes, need to go step further in
approximations.
Add terms second order in dissipative currents to the entropy current

Sµ = Sµ0 +
µ

T

qµ

h
−
(
β0Π2 − β1VνV

ν + β2πλνπ
λν
) uµ

2T
−
α0VµΠ

T
+
α1Vνπνµ

T

Essentially the same steps as below (requiring positive definite entropy production) lead to the
equations of motion for the dissipative quantities that are of the form

DΠ = −
1

τΠ
(Π + ζ∇µuµ) + · · · (191)

DVµ = −
1

τV

[
Vµ − κ∇µ

( µ
T

)]
+ · · · (192)

Dπµν = −
1

τπ

(
πµν − 2η∇〈µuν〉

)
+ · · · (193)

Israel-Stewart equations for dissipative quantities.
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The Israel-Stewart equations describe exponential decay of dissipative quantities into
NS-values. e.g. πµν −→ 2ησµν within timescale τπ

Note that in the absence of spatial gradients, the dissipative currents vanish exponentially

τΠDΠ + Π = 0 =⇒ Π = Π0e
−t/τΠ (194)

Π = Vµ = πµν = 0⇐⇒ equilibrium

−→ τi are thermalization time scales, i.e. timescales of the microscopic processes that
thermalize the system.

In IS theory signal propagation speeds are finite and theory is stable and causal.
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Second-order fluid dynamics

DΠ = −
1

τΠ
(Π + ζ∇µuµ)−

1

2
Π

(
∇µuµ + D ln

β0

T

)
(195)

+
α0

β0
∂µq

µ −
a′0
β0

qµDuµ ,

Dqµ = −
1

τq

[
qµ + κq

T 2n

e + p
∇µ

( µ
T

)]
− uµqνDuν (196)

−
1

2
qµ
(
∇λuλ + D ln

β1

T

)
− ωµλqλ −

α0

β1
∇µΠ

+
α1

β1
(∂λπ

λµ + uµπλν∂λuν) +
a0

β1
ΠDuµ −

a1

β1
πλµDuλ ,

Dπµν = −
1

τπ

(
πµν − 2η∇〈µuν〉

)
− (πλµuν + πλνuµ)Duλ (197)

−
1

2
πµν

(
∇λuλ + D ln

β2

T

)
− 2π

〈µ
λ ων〉λ −

α1

β2
∇〈µqν〉 +

a′1
β2

q〈µDuν〉 ,

qµ = Wµ −
e + p

n
Vµ (198)
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Section 7

Dissipative fluid dynamics from kinetic theory
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Boltzmann equation

kµ∂µfk = C [f ] , (199)

Evolution equation for single particle distribution function fk = f (x , k) Collision integral for elastic
two-to-two collisions with incoming momenta k, k ′, and outgoing momenta p, p′,

C [f ] =
1

ν

∫
dK ′dPdP′Wkk′→pp′ ×

(
fpfp′ f̃k f̃k′ − fkfk′ f̃p f̃p′

)
, (200)

The Lorentz-invariant phase volume:

dK ≡
gd3k

(2π)3k0
, (201)

with g the number of internal degrees of freedom, e.g. spin degeneracy.
The Lorentz-invariant transition rate Wkk′→pp′ is symmetric with respect to the exchange of the
outgoing momentum, as well as for time-reversed processes,

Wkk′→pp′ ≡Wkk′→p′p = Wpp′→kk′. (202)

Here we also take into account quantum statistics and introduced the notation f̃k ≡ 1− afk,
where a = 1 (a = −1) for fermions (bosons) and a = 0 in the limiting case of classical
Boltzmann-Gibbs statistics.
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Conservation laws

The particle four-flow and the energy-momentum tensor are defined as the first and second
moments of the single-particle distribution function,

Nµ = 〈kµ〉 , (203)

Tµν = 〈kµkν〉 , (204)

where we adopted the following notation for the averages

〈. . .〉 =

∫
dK (. . .) fk. (205)

If the microscopic scatterings conserve energy and momentum it follows that the particle
four-flow and the energy-momentum tensor satisfy the conservation equations for any solution of
the Boltzmann equation,

∂µ 〈kµ〉 ≡
∫

dKC [f ] = 0, (206)

∂µ 〈kµkν〉 ≡
∫

dKkνC [f ] = 0. (207)
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Macroscopic variables (moments)

As before Nµ and Tµν can be decomposed w.r.t. uµ as before

Nµ = n0uµ + Vµ

Tµν = e0uµuν − (p0 + Π)∆µν + 2W (µ u ν) + πµν
(208)

where the coefficients of the decomposition can be expressed in terms of single particle
distribution function

n0 = 〈Ek〉 , e0 =
〈
E2

k

〉
, p0 + Π = −

1

3
〈∆µνkµkν〉 ,

Vµ =
〈
k〈µ〉

〉
, Wµ =

〈
Ekk
〈µ〉
〉
, πµν =

〈
k〈µ k ν〉

〉
. (209)

Here Ek = uµkµ, k〈µ〉 = ∆µ
ν k
ν , and k〈µ k ν〉 = ∆µν

αβk
αkβ

Note that kµ = Eku
µ + k〈µ〉

We can further define infinitely many macroscopic moments of fk:

〈kµ1 · · · kµ` 〉 (210)
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Equilibrium state

The local equilibrium distribution is

f0k(xµ, kµ) = [exp (β0Ek − α0) + a]−1 . (211)

For f0k the collision integral vanishes C [f0k] = 0, and it is a solution of the Boltzmann equation if
all the gradients vanish (but only then).
We can introduce the average with respect to the local equilibrium distribution function as

〈. . .〉0 =

∫
dK (. . .) f0k, (212)

Note that in kinetic theory the equation of state is not a choise, but for example

p0(α0, β0) = −
1

3
∆µν〈kµkν〉0 =LRF 1

3
〈k2〉0 (213)

In equilibrium all the dissipative quantities vanish:〈
k〈µ〉

〉
0

=
〈
Ekk
〈µ〉
〉

0
=
〈
k〈µ k ν〉

〉
0

= 0 (214)
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Expansion around equilibrium (method of moments)

Since we are interested in near-equilibrium solutions of the Boltzmann equation, we start by
expanding fk around a local equilibrium distribution function f0k:

fk ≡ f0k + δfk = f0k

(
1 + f̃0kφk

)
, (215)

where φk represents a general non-equilibrium correction.
As before the equilibrium state (α0, β0) is not unique, but needs to be determined through the
matching conditions.

e = e0(α0, β0) n = n0(α0, β0) (216)

Israel and Stewart: expansion of φk in basis:

1, kµ, kµkν , kµkνkλ, . . . (217)

Truncated expansion:

φk = ε+ εµkµ + εµνkµkν (218)

The coefficients ε, εµ, εµν can be determined by matching to Nµ and Tµν
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Dissipative fluid dynamics: 14-moment approximation

Shear-stress tensor πµν as an example:

πµν = T 〈µν〉 =

∫
dKk〈µkν〉f0(T , µ)

[
1 + ε+ εαk

α + εαβk
αkβ

]
=

∫
dKk〈µkν〉f0(T , µ)εαβk

αkβ

= εαβ∆µν
γδ

∫
dKkγkδkαkβ f0(T , µ)︸ ︷︷ ︸

=Iγδαβ

Iγδαβ = J40u
γuδuαuβ + 6J41u

(γuδ∆αβ) + 3J42∆γ(δ∆αβ) (219)

∆γδ∆αβ I
γδαβ = 3J42∆γδ∆αβ∆γ(δ∆αβ) = 15J42 (220)

=⇒ J42 =
1

15
∆γδ∆αβ I

γδαβ =
1

15

∫
dK
(

∆αβk
αkβ

)2
f0(T , µ) (221)
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πµν = εαβ∆µν
γδ

∫
dKkγkδkαkβ f0(T , µ)

= εαβ∆µν
γδ 3J42∆γ(δ∆αβ)

= 2J42εαβ∆µναβ

= 2J42ε
〈µν〉

f = f0(T , µ) + δf = f0(T , µ)

(
1 +

1

2J42
πµνpµpν

)
(222)
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expansion: orthogonal basis

More convenient to use irreducible tensors:

1, k〈µ〉, k〈µ k ν〉, k〈µ kνk λ〉, · · · (223)

These irreducible tensors are defined by using the symmetrized traceless projections as

k〈µ1 · · · k µm〉 = ∆µ1···µmν1···νmkν1 · · · kνm , (224)

Tensors k〈µ1 · · · k µm〉 satisfy the orthogonality condition:∫
dKFkk

〈µ1 · · · k µm〉k〈ν1 · · · k νn〉

=
m!δmn

(2m + 1)!!
∆µ1···µmν1···νm

∫
dKFk

(
∆αβkαkβ

)m
. (225)

Here m, n = 0, 1, 2, · · · , Fk is an arbitrary scalar function of Ek
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Using these tensors as the basis of the expansion, the non-equilibrium correction can be written as,

φk =
∞∑
`=0

λ
〈µ1···µ`〉
k k〈µ1

· · · kµ`〉, (226)

` is the rank of the tensor λ
〈µ1···µ`〉
k (` = 0 is scalar λ). The coefficients λ

〈µ1···µ`〉
k may still be

arbitrary functions of Ek, and can be further expanded with another orthogonal basis of functions

P
(`)
kn ,

λ
〈µ1···µ`〉
k =

N∑̀
n=0

c
〈µ1···µ`〉
n P

(`)
kn , (227)

where c
〈µ1···µ`〉
n are as of yet undetermined coefficients. The polynomial P

(`)
kn is a linear

combination of powers of Ek, while N` is the number of functions P
(`)
kn considered to describe the

`-th rank tensor λ
〈µ1···µ`〉
k .
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The functions P
(`)
kn are chosen to be polynomials of order n in energy,

P
(`)
kn =

n∑
r=0

a
(`)
nr E

r
k , (228)

and are constructed using the following orthonormality condition,∫
dK ω(`) P

(`)
kmP

(`)
kn = δmn, (229)

where the weight ω(`) is defined as

ω(`) =
N (`)

(2`+ 1)!!

(
∆αβkαkβ

)`
f0k f̃0k . (230)

The coefficients a
(`)
nr and the normalization constants N (`) can be found via Gram-Schmidt

orthogonalization using the orthonormality condition (229).
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Finally, the single-particle distribution can be expressed including all moments of the
non-equilibrium corrections,

fk = f0k

1 + f̃0k

∞∑
`=0

N∑̀
n=0

H(`)
kn ρ

µ1···µ`
n k〈µ1

· · · kµ`〉

 , (231)

where we introduced the following energy-dependent coefficients,

H(`)
kn =

N (`)

`!

N∑̀
m=n

a
(`)
mnP

(`)
km . (232)

The generalized irreducible moment of δfk is defined as

ρ
µ1···µ`
r =

〈
E r

k k〈µ1 · · · k µ`〉
〉
δ
, (233)

where

〈. . .〉δ =

∫
dK (. . .) δfk. (234)

Using this notation, the expansion coefficients in Eq. (227) can be immediately determined using
Eqs. (225) and (229). For n ≤ N` they are given by

c
〈µ1···µ`〉
n ≡

N (`)

`!

〈
P

(`)
kn k〈µ1 · · · k µ`〉

〉
δ

=
N (`)

`!

n∑
r=0

ρ
µ1···µ`
r a

(`)
nr . (235)
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So far we have written the single particle distribution function in terms of macroscopic moments

ρ
µ1···µ`
r =

〈
E r

k k〈µ1 · · · k µ`〉
〉
δ
, (236)

Some of these moments can be immediately recognized as dissipative quantities

ρ0 = −3Π/m2, (237)

ρµ0 = Vµ, (238)

ρµ1 = Wµ, (239)

ρµν0 = πµν . (240)

Furthermore, the Landau matching conditions e = e0 and n = n0 imply

ρ1 = ρ2 = 0. (241)

Note that, by definition Π = − 1
3

(
m2ρ0 − ρ2

)
, therefore to match ρ0 to Π we made use of the

above fitting conditions. The definition of the fluid velocity uµ via Landau’s choice (Wµ = 0)
implies

ρµ1 = 0, (242)

while Eckart’s definition (Vµ = 0) leads to

ρµ0 = 0. (243)
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Equations of motion

So far, the single-particle distribution function was expressed in terms of the irreducible tensors
ρ
µ1···µ`
n . The time-evolution equations for these tensors can be obtained directly from the

Boltzmann equation by applying the comoving derivative to Eq. (236), together with the
symmetrized traceless projection as,

ρ̇
〈µ1···µ`〉
r = ∆

µ1···µ`
ν1···ν`

d

dτ

∫
dKE r

kk
〈ν1 · · · k ν`〉δfk. (244)

Boltzmann equation kµ∂µfk = C [f ] can be written in the form

δḟk = −ḟ0k − E−1
k kν∇ν f0k − E−1

k kν∇νδfk + E−1
k C [f ] . (245)

using fk = f0k + δfk, kµ = Eku
µ + k〈µ〉, and ∂µ = uµ d

dτ
+∇µ.

Substituting into Eq. (244), we obtain the exact equations for ρ̇
〈µ1···µ`〉
r .
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Equations of motion: second rank tensors

ρ̇
〈µν〉
r = ∆µν

αβ

d

dτ

∫
dKE r

kk
〈α k β〉δfk. (246)

ρ̇
〈µν〉
r = ∆µν

αβ

d

dτ

∫
dKE r

kk
〈α k β〉δfk (247)

= ∆µν
αβ

∫
dK

d

dτ

(
E r

kk
〈α k β〉

)
δfk + ∆µν

αβ

∫
dKE r

kk
〈α k β〉δḟk

Substitute Boltzmann equation

= ∆µν
αβ

∫
dK

d

dτ

(
E r

kk
〈α k β〉

)
δfk (248)

+ ∆µν
αβ

∫
dKE r

kk
〈α k β〉

(
−ḟ0k − E−1

k kλ∇λf0k − E−1
k kλ∇λδfk + E−1

k C [f ]
)

(249)

First term

∆µν
αβ

∫
dKE r

kk
〈α k β〉 ḟ0k = 0 (250)
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Second term

∆µν
αβ

∫
dKE r

kk
〈α k β〉E−1

k kλ∇λf0k (251)

=∆µν
αβ∇

λ

∫
dKE r−1

k kαkβkλf0k − (r − 1)∆µν
αβ∇

λuρ

∫
dKE r−2

k kαkβkρkλf0k (252)

Decompose the moments of equilibrium distribution∫
dKE r−1

k kαkβkλf0k = Ir+2,0u
αuβuλ − 3Ir+2,1u

(α∆βλ) (253)

∫
dKE r−2

k kαkβkλkρf0k = Ir+2,0u
αuβuλuρ − 6Ir+2,1u

(αuρ∆βλ) + 3Ir+2,2∆α(β∆λρ) (254)

Only the last terms (with Ir+2,1 and Ir+2,2) survive the projection operator ∆µν
αβ .

∆µν
αβ∇λ

(
−Ir+2,1u

(α∆βλ)
)

= −2Ir+2,1∆µν
αβ∇λ

(
uα∆βλ

)
(255)

= −2Ir+2,1∆µν
αβ∇

βuα = −2Ir+2,1σ
µν (256)

(r − 1)∆µν
αβ∇λuρ

(
Ir+2,2∆α(β∆λρ)

)
= 2Ir+2,2(r − 1)σµν (257)

→ ∆µν
αβ

∫
dKE r

kk
〈α k β〉E−1

k kλ∇λf0k = −2 [Ir+2,1 + (r − 1)Ir+2,2]σµν (258)
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Collision integral

C
〈µν〉
r−1 = ∆µν

αβ

∫
dKE r

kk
〈α k β〉

(
E−1

k C [f ]
)

(259)

The first step is to linearize the collision operator,

C [f ] =
1

ν

∫
dK ′dPdP′Wkk′→pp′

(
fpfp′ f̃k f̃k′ − fkfk′ f̃p f̃p′

)
, (260)

in the deviations from the equilibrium. Keeping only terms of first order in φ:

fpfp′ = f0pf0p′

(
1 + f̃0p′φp′ + f̃0pφp

)
+O

(
φ2
)
, (261)

f̃p f̃p′ = f̃0p f̃0p′
(
1− af0p′φp′ − af0pφp

)
+O

(
φ2
)
. (262)

Substituting Eqs. (261) and (262) into Eq. (260), we obtain,

C [f ] =
1

ν

∫
dK ′dPdP′Wkk′→pp′f0kf0k′ f̃0p f̃0p′

(
φp + φp′ − φk − φk′

)
+O

(
φ2
)
, (263)

where following equalities were used:

f̃0p = f0p exp (β0Ep − α0) , (264)

f0pf0p′ f̃0k f̃0k′ = f0kf0k′ f̃0p f̃0p′ . (265)
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Irreducible collision term can be written as

C
〈µ1···µ`〉
r−1 =

1

ν

∫
dKdK ′dPdP′Wkk′→pp′f0kf0k′ f̃0p f̃0p′

×E r−1
k k〈µ1 · · · k µ`〉

(
φp + φp′ − φk − φk′

)
+O

(
φ2
)
. (266)

C
〈µ1···µ`〉
r−1 = −

N∑̀
n=0

A(`)
rn ρ

µ1···µ`
n . (267)

The coefficients A(`)
rn can be written as

A(`)
rn =

1

ν (2`+ 1)

∫
dKdK ′dPdP′Wkk′→pp′f0kf0k′ f̃0p f̃0p′E

r−1
k k〈µ1 · · · k µ`〉 (268)

×
(
H(`)

kn k〈µ1
· · · kµ`〉 +H(`)

k′n k
′
〈µ1
· · · k ′µ`〉 −H

(`)
pn p〈µ1

· · · pµ`〉 −H
(`)
p′n p

′
〈µ1
· · · p′µ`〉

)
All the information about the microscopic scattering are in the coefficients A(`)

rn .
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The equation of motion for the second rank tensor

ρ̇
〈µν〉
r = ∆µν

αβ

∫
dK

d

dτ

(
E r

kk
〈α k β〉

)
δfk (269)

+ ∆µν
αβ

∫
dKE r

kk
〈α k β〉

(
−ḟ0k − E−1

k kλ∇λf0k − E−1
k kλ∇λδfk + E−1

k C [f ]
)

(270)

can be written as

ρ̇
〈µν〉
r = 2 [Ir+2,1 + (r − 1)Ir+2,2]σµν −

N∑̀
n=0

A(2)
rn ρ

µν
n

+ ∆µν
αβ

∫
dK

d

dτ

(
E r

kk
〈α k β〉

)
δfk −∆µν

αβ

∫
dKE r

kk
〈α k β〉E−1

k kλ∇λδfk (271)

The rest of the integrals can be written similarly in terms of moment ρ
µ1···µ`
n , and lead to

non-linear terms, e.g. ρµνn θ, etc.
This already resembles the equation of motion for shear stress tensor

τππ̇
〈µν〉 + πµν = 2ησµν + (higher order terms), (272)

but is still an infinite set of coupled equations for the moments.

Hydrodynamics in heavy-ion collisions Jyväskylä Summer School 2016 August 11, 2016 103 / 173



In their full glory the equations of motion take the form: The equation for an arbitrary scalar
moment is

ρ̇r = Cr−1 + α
(0)
r θ +

(
rρµr−1 +

G2r

D20
Wµ

)
u̇µ −∇µρµr−1 +

G3r

D20
∂µV

µ −
G2r

D20
∂µW

µ

+
1

3

[
(r − 1)m2ρr−2 − (r + 2) ρr − 3

G2r

D20
Π

]
θ +

[
(r − 1) ρµνr−2 +

G2r

D20
πµν

]
σµν (273)

Similarly, the time-evolution equation for the vector moment is

ρ̇
〈µ〉
r = C

〈µ〉
r−1 + α

(1)
r ∇µα0 − αh

r Ẇ
µ + rρµνr−1u̇ν +

1

3

[
rm2ρr−1 − (r + 3) ρr+1 − 3αh

r Π
]
u̇µ

−
1

3
∇µ

(
m2ρr−1 − ρr+1

)
+ αh

r∇µΠ−∆µ
ν

(
∇λρνλr−1 + αh

r ∂λπ
νλ
)

+
1

3

[
(r − 1)m2ρµr−2 − (r + 3) ρµr − 4αh

rW
µ
]
θ

+
1

5

[
(2r − 2)m2ρνr−2 − (2r + 3) ρνr − 5αh

rW
ν
]
σµν

+
(
ρνr + αh

rW
ν
)
ωµν + (r − 1) ρµνλr−2 σνλ, (274)
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The equation for ρµνr is

ρ̇
〈µν〉
r = C

〈µν〉
r−1 + 2α

(2)
r σµν +

2

15

[
(r − 1)m4ρr−2 − (2r + 3)m2ρr + (r + 4)ρr+2

]
σµν

+
2

5

[
rm2ρ

〈µ
r−1 − (r + 5) ρ

〈µ
r+1

]
u̇ ν〉 + rρµνλr−1 u̇λ −

2

5
∇〈µ

(
m2ρ

ν〉
r−1 − ρ

ν〉
r+1

)
+

1

3

[
(r − 1)m2ρµνr−2 − (r + 4) ρµνr

]
θ +

2

7

[
(2r − 2)m2ρ

λ〈µ
r−2 − (2r + 5) ρ

λ〈µ
r

]
σ
ν〉
λ

+ 2ρ
λ〈µ
r ω

ν〉
λ −∆µν

αβ∇λρ
αβλ
r−1 + (r − 1)ρµνλκr−2 σλκ, (275)

All derivatives of α0 and β0 that appear in the above equations were replaced using the following
equations, obtained from the conservation laws,

α̇0 =
1

D20
[−J30 (n0θ + ∂µV

µ) + J20 (ε0 + P0 + Π) θ +J20 (∂µW
µ −Wµu̇µ − πµνσµν)] ,

(276)

β̇0 =
1

D20
[−J20 (n0θ + ∂µV

µ) + J10 (ε0 + P0 + Π) θ +J10 (∂µW
µ −Wµu̇µ − πµνσµν)] ,

(277)

u̇µ = β−1
0

(
h−1

0 ∇
µα0 −∇µβ0

)
−

h−1
0

n0
(Πu̇µ −∇µΠ)

−
h−1

0

n0

[
4

3
Wµθ + Wν (σµν − ωµν) + Ẇµ + ∆µ

ν∂λπ
νλ

]
, (278)

h0 = (ε0 + P0)/n0
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The coefficients αr are functions of thermodynamic variables,

α
(0)
r = (1− r) Ir1 − Ir0 −

n0

D20
(h0G2r − G3r ) , (279)

α
(1)
r = Jr+1,1 − h−1

0 Jr+2,1, (280)

α
(2)
r = Ir+2,1 + (r − 1) Ir+2,2, (281)

αh
r = −

β0

ε0 + P0
Jr+2,1, (282)

where we used the notation

Inq =
(−1)q

(2q + 1)!!

∫
dKEn−2q

k

(
∆αβkαkβ

)q
f0k, (283)

Jnq =
(−1)q

(2q + 1)!!

∫
dKEn−2q

k

(
∆αβkαkβ

)q
f0k f̃0k, (284)

Gnm = Jn0Jm0 − Jn−1,0Jm+1,0, (285)

Dnq = Jn+1,qJn−1,q − (Jnq)2 . (286)

Thus, we obtained an infinite set of coupled equations containing all moments of the distribution
function, but the derivation of these equations is independent of the form of the expansion we
introduced in the previous subsection.
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Section 8

Reduction of the degrees of freedom
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So far we have just written Boltzmann equation in terms of the moments of the distribution
function. In order to obtain fluid dynamical equations of motion, we must somehow reduce the
infinite (momentum-space) degrees of freedom into the fluid dynamical ones, i.e. n0, e0, uµ, Π,
Vµ, Wµ, and πµν .
Israel and Stewart: 14-moment approximation
This was already introduced before, but now in irreducible basis. The degrees of freedom can be
reduced into the 14 fluid dynamical ones by directly truncating the expansion of the distribution
function.

φk =
∞∑
`=0

λ
〈µ1···µ`〉
k k〈µ1

· · · kµ`〉, λ
〈µ1···µ`〉
k =

N∑̀
n=0

c
〈µ1···µ`〉
n P

(`)
kn , (287)

λk ≡
N0∑
n=0

cnP
(0)
kn ' c0P

(0)
k0 + c1P

(0)
k1 + c2P

(0)
k2 , (288)

λ
〈µ〉
k ≡

N1∑
n=0

c
〈µ〉
n P

(1)
kn ' c

〈µ〉
0 P

(1)
k0 + c

〈µ〉
1 P

(1)
k1 , (289)

λ
〈µν〉
k ≡

N2∑
n=0

c
〈µν〉
n P

(2)
kn ' c

〈µν〉
0 P

(2)
k0 , (290)

where the tensors c
〈µ1···µ`〉
n are given by Eq. (235), while those which do not appear in the above

equations are set to zero.
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According to Eq. (235) the scalars c0, c1, and c2 are proportional to the bulk viscous pressure,

c0 = −
3Π

m2
a

(0)
00 N

(0), (291)

c1 = −
3Π

m2
a

(0)
10 N

(0), (292)

c2 = −
3Π

m2
a

(0)
20 N

(0). (293)

The vectors c
〈µ〉
0 and c

〈µ〉
1 are given by a linear combination of particle and energy-momentum

diffusion currents,

c
〈µ〉
0 = Vµa

(1)
00 N

(1), (294)

c
〈µ〉
1 = Vµa

(1)
10 N

(1) + Wµa
(1)
11 N

(1), (295)

while c
〈µν〉
0 is proportional to the shear-stress tensor,

c
〈µν〉
0 = πµνa

(2)
00

N (2)

2
. (296)
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orthogonal polynomials
For any ` ≥ 0 we set

P
(`)
k0 ≡ a

(`)
00 = 1, (297)

while

P
(0)
k1 = a

(0)
11 Ek + a

(0)
10 , (298)

P
(1)
k1 = a

(1)
11 Ek + a

(1)
10 , (299)

P
(0)
k2 = a

(0)
22 E2

k + a
(0)
21 Ek + a

(0)
20 . (300)

The orthonormality condition (229) gives

N (`) =
(
J2`,`

)−1
, (301)

a
(0)
10

a
(0)
11

= −
J10

J00
,
(
a

(0)
11

)2
=

J2
00

D10
, (302)

a
(0)
21

a
(0)
22

=
G12

D10
,
a

(0)
20

a
(0)
22

=
D20

D10
, (303)

(
a

(0)
22

)2
=

J00D10

J20D20 + J30G12 + J40D10
, (304)

a
(1)
10

a
(1)
11

= −
J31

J21
,
(
a

(1)
11

)2
=

J2
21

D31
. (305)
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Using the orthogonality relation (225) together with Eqs. (226-228)

ρ
µ1···µ`
r = `!

N∑̀
n=0

n∑
m=0

c
〈µ1···µ`〉
n a

(`)
nm Jr+m+2`,`. (306)

Applying the truncation scheme we obtain that all scalar moments, ρr , become proportional to
the bulk viscous pressure Π,

ρr ≡
N0∑
n=0

n∑
m=0

cna
(0)
nm Jr+m,0 = γΠ

r Π. (307)

Similarly, all vector moments, ρµr , are proportional to a linear combination of Vµ and Wµ,

ρµr ≡
N1∑
n=0

n∑
m=0

c
〈µ〉
n a

(1)
nm Jr+m+2,1 = γVr Vµ + γWr Wµ, (308)

and, finally, ρµνr is proportional to πµν ,

ρµνr ≡
N2∑
n=0

n∑
m=0

c
〈µν〉
n a

(2)
nm Jr+m+4,2 = γπr π

µν . (309)
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The proportionality coefficients are

γΠ
r = AΠJr0 + BΠJr+1,0 + CΠJr+2,0, (310)

γVr = AV Jr+2,1 + BV Jr+3,1, (311)

γWr = AW Jr+2,1 + BW Jr+3,1, (312)

γπr = 2AπJr+4,2. (313)

where

AΠ = −
3

m2

D30

J20D20 + J30G12 + J40D10
, (314)

BΠ = −
3

m2

G23

J20D20 + J30G12 + J40D10
, (315)

CΠ = −
3

m2

D20

J20D20 + J30G12 + J40D10
, (316)

AV =
J41

D31
, AW = −

J31

D31
, (317)

BV = −
J31

D31
, BW =

J21

D31
, (318)

Aπ =
1

2J42
. (319)

The matching conditions ρ1 = ρ2 = 0 require that γΠ
1 = γΠ

2 = 0.
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Now we are ready to write down the fluid dynamical e.o.m. Recall

ρ̇
〈µν〉
r = C

〈µν〉
r−1 + 2α

(2)
r σµν +

2

15

[
(r − 1)m4ρr−2 − (2r + 3)m2ρr + (r + 4)ρr+2

]
σµν

+
2

5

[
rm2ρ

〈µ
r−1 − (r + 5) ρ

〈µ
r+1

]
u̇ ν〉 + rρµνλr−1 u̇λ −

2

5
∇〈µ

(
m2ρ

ν〉
r−1 − ρ

ν〉
r+1

)
+

1

3

[
(r − 1)m2ρµνr−2 − (r + 4) ρµνr

]
θ +

2

7

[
(2r − 2)m2ρ

λ〈µ
r−2 − (2r + 5) ρ

λ〈µ
r

]
σ
ν〉
λ

+ 2ρ
λ〈µ
r ω

ν〉
λ −∆µν

αβ∇λρ
αβλ
r−1 + (r − 1)ρµνλκr−2 σλκ, (320)

and plug in the 14-moment approximation

ρr ≡
N0∑
n=0

n∑
m=0

cna
(0)
nm Jr+m,0 = γΠ

r Π. (321)

ρµr ≡
N1∑
n=0

n∑
m=0

c
〈µ〉
n a

(1)
nm Jr+m+2,1 = γVr Vµ + γWr Wµ, (322)

ρµνr ≡
N2∑
n=0

n∑
m=0

c
〈µν〉
n a

(2)
nm Jr+m+4,2 = γπr π

µν . (323)

C
〈µν〉
r−1 = −τ−1

r πµν (324)
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Fluid dynamical equations of motion

d

dτ

(
γπr π

〈µν〉
)

= −τ−1
r πµν + 2α

(2)
r σµν + non-linear terms (325)

γπr τr
d

dτ

(
π〈µν〉

)
+ πµν = 2τrα

(2)
r σµν + non-linear terms (326)

These are the equations of motion for shear-stress tensor in 14-moment approximation, with

relaxation time τπ = γπr τr , and shear viscosity η = τrα
(2)
r .

Now the problem is that we can actually choose any value of r to derive the equations, and all of
them give different transport coefficients!
For example Israel and Stewart choose second moment of the Boltzmann equation to close the
system (corresponds r = 2), and in DKR the choise corresponds r = 1.
Obviously something is still missing from the derivation, i.e. when reducing the degrees of
freedom it is not sufficient to simply truncate the moment expansion.
Solution: resum all the moments (or the relevant ones)
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Section 9

Power counting and the reduction of dynamical variables
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So far, we have derived a general expansion of the distribution function in terms of the irreducible
moments of δfk, as well as exact equations of motion for these moments.
Fluid dynamical limit:

Evolution described by the conserved currents Nµ and Tµν alone.

Separation of microscopic and macroscopic scales, quantify by Knudsen numbers

Kn ≡
`micr

Lmacr
� 1 (327)

System close to local thermal equilibrium, quantify by inverse Reynolds numbers

R−1
Π ≡

|Π|
P0
� 1 , R−1

n ≡
|nµ|
n0
� 1, R−1

π ≡
|πµν |
P0

� 1 (328)

In transient fluid dynamics these are two independent quantities

14-moment approximation is not truncation in either of these

Microscopic scales: τΠ, τn, τπ
Macroscopic scales: θ, ∇µα0, ∇µe0, . . .
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A general structure of the equations of motion is (for second rank tensors)

ρ̇r = Cr−1 + α
(0)
r θ + higher-order terms

ρ̇
〈µ〉
r = C

〈µ〉
r−1 + α

(1)
r ∇µα0 + higher-order terms (329)

ρ̇
〈µν〉
r = C

〈µν〉
r−1 + 2α

(2)
r σµν + higher-order terms

Where the linearized collision terms C
〈µ1···µ`〉
r−1 are

C
〈µ1...µ`〉
r−1 = −

N∑̀
n=0

A(`)
rn ρ

µ1···µ`
n (330)

The coefficient A(`)
rn is the (rn) element of an (N` + 1)× (N` + 1) matrix A(`) and contains all

the information of the underlying microscopic theory.
These are not relaxation equations for ρ

µ1···µ`
r because the collision term couples all the different

r .
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Fluid dynamics is expected to emerge when the microscopic degrees of freedom are integrated
out, and the system can be described solely by the conserved currents. The exact equations of
motion contain infinitely many degrees of freedom, and also infinitely many microscopic time

scales, related to the coefficients A(`)
rn .

The slowest microscopic time scale should dominate the dynamics at long times.
For this purpose, we shall introduce the matrix Ω(`) which diagonalizes A(`),(

Ω−1
)(`)A(`)Ω(`) = diag

(
χ

(`)
0 , . . . , χ

(`)
j , . . .

)
, (331)

where χ
(`)
j are the eigenvalues of A(`). Above,

(
Ω−1

)(`)
is defined as the matrix inverse of Ω(`).

We further define the tensors X
µ1···µ`
i as

X
µ1···µ`
i ≡

N∑̀
j=0

(
Ω−1

)(`)

ij
ρ
µ1···µ`
j . (332)

These are eigenmodes of the linearized Boltzmann equation.
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Multiplying Eq. (330) with
(
Ω−1

)(`)
from the left and using Eqs. (331) and (332) we obtain

N∑̀
j=0

(
Ω−1

)(`)

ij
C
〈µ1···µ`〉
j−1 = −χ(`)

i X
µ1···µ`
i + (terms nonlinear in δf ) . (333)

where we do not sum over the index i on the right-hand side of the equation. Then we multiply

Eqs. (329) with
(
Ω−1

)(`)

ir
and sum over r . Using Eq. (333), we obtain the equations of motion

for the variables X
µ1···µ`
i ,

Ẋi + χ
(0)
i Xi = β

(0)
i θ + (higher-order terms) ,

Ẋ
〈µ〉
i + χ

(1)
i Xµi = β

(1)
i Iµ + (higher-order terms) ,

Ẋ
〈µν〉
i + χ

(2)
i Xµνi = β

(2)
i σµν + (higher-order terms) , (334)

where the coefficients are

β
(0)
i =

N0∑
j=0,6=1,2

(
Ω−1

)(0)

ij
α

(0)
j , β

(1)
i =

N1∑
j=0,6=1

(
Ω−1

)(1)

ij
α

(1)
j , β

(2)
i = 2

N2∑
j=0

(
Ω−1

)(2)

ij
α

(2)
j . (335)

The equations of motion for the tensors X
µ1···µ`
i decouple in the linear regime. We can order the

tensors X
µ1···µ`
r according to increasing χ

(`)
r , e.g., in such a way that χ

(`)
r < χ

(`)
r+1, ∀ `.
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By diagonalizing Eqs. (329)) we were able to identify the microscopic time scales of the

Boltzmann equation given by the inverse of the coefficients χ
(`)
r .

If the nonlinear terms in Eqs. (334) are small enough, each tensor X
µ1···µ`
r relaxes independently

to its respective asymptotic value, given by the first term on the right-hand sides of Eqs. (334)

(divided by the corresponding χ
(`)
r ), on a time scale ∼ 1/χ

(`)
r .

The asymptotic solutions ( “Navier-Stokes values”): Neglecting all the relaxation timescales, i.e.,

taking the limit χ
(`)
r →∞ with β

(`)
r /χ

(`)
r fixed, all irreducible moments ρ

µ1···µ`
r become

proportional to gradients of α0, β0, and uµ.
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Assuming that only the slowest modes with rank 2 and smaller, X0, Xµ0 , and Xµν0 , remain in the
transient regime and satisfy the partial differential equations (334),

Ẋ0 + χ
(0)
0 X0 = β

(0)
0 θ + (higher-order terms) ,

Ẋ
〈µ〉
0 + χ

(1)
0 Xµ0 = β

(1)
0 Iµ + (higher-order terms) ,

Ẋ
〈µν〉
0 + χ

(2)
0 Xµν0 = β

(2)
0 σµν + (higher-order terms) , (336)

The modes described by faster relaxation scales, i.e., Xr , Xµr , and Xµνr , for any r larger than 0,
will be approximated by their asymptotic solution,

Xr '
β

(0)
r

χ
(0)
r

θ + (higher-order terms) ,

Xµr '
β

(1)
r

χ
(1)
r

Iµ + (higher-order terms) ,

Xµνr '
β

(2)
r

χ
(2)
r

σµν + (higher-order terms) , (337)

This is the reduction of the degrees of freedom, but still need to express everything in terms of
fluid dynamical variables, Π, Vµ, πµν
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First invert Eq. (332),

ρ
µ1···µ`
i =

N∑̀
j=0

Ω
(`)
ij X

µ1···µ`
j , (338)

then, using Eqs. (337), we obtain

ρi ' Ω
(0)
i0 X0 +

N0∑
j=3

Ω
(0)
ij

β
(0)
j

χ
(0)
j

θ = Ω
(0)
i0 X0 +O(Kn) ,

ρµi ' Ω
(1)
i0 Xµ0 +

N1∑
j=2

Ω
(1)
ij

β
(1)
j

χ
(1)
j

Iµ = Ω
(1)
i0 Xµ0 +O(Kn) ,

ρµνi ' Ω
(2)
i0 Xµν0 +

N2∑
j=1

Ω
(2)
ij

β
(2)
j

χ
(2)
j

σµν = Ω
(2)
i0 Xµν0 +O(Kn) . (339)

The contribution from the modes Xr ,X
µ
r ,and Xµνr for r ≥ 1 is of order O(Kn).
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Taking i = 0, setting Ω
(`)
00 = 1, and remembering that ρ0 = − 3

m2 Π , ρµ0 = nµ , ρµν0 = πµν .
we obtain the relations

X0 ' −
3

m2
Π−

N0∑
j=3

Ω
(0)
0j

β
(0)
j

χ
(0)
j

θ ,

Xµ0 ' nµ −
N1∑
j=2

Ω
(1)
0j

β
(1)
j

χ
(1)
j

Iµ ,

Xµν0 ' πµν −
N2∑
j=1

Ω
(2)
0j

β
(2)
j

χ
(2)
j

σµν . (340)

Substituting Eqs. (340) into Eqs. (339),

m2

3
ρi ' −Ω

(0)
i0 Π−

(
ζi − Ω

(0)
i0 ζ0

)
θ = −Ω

(0)
i0 Π +O(Kn),

ρµi ' Ω
(1)
i0 nµ +

(
κn i − Ω

(1)
i0 κn 0

)
Iµ = Ω

(1)
i0 nµ +O(Kn) ,

ρµνi ' Ω
(2)
i0 π

µν + 2
(
ηi − Ω

(2)
i0 η0

)
σµν = Ω

(2)
i0 π

µν +O(Kn) , (341)
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The coefficients are defined as

ζi =
m2

3

N0∑
r=0, 6=1,2

τ
(0)
ir α

(0)
r , κn i =

N1∑
r=0,6=1

τ
(1)
ir α

(1)
r , ηi =

N2∑
r=0

τ
(2)
ir α

(2)
r , (342)

where τ (`) ≡
(
A−1

)(`)
and used the relation,

τ
(`)
in =

N∑̀
m=0

Ω
(`)
im

1

χ
(`)
m

(
Ω−1

)(`)

mn
.

We can identify the coefficients ζ0, κn 0, and η0 as the bulk-viscosity, particle-diffusion, and
shear-viscosity coefficients, respectively.
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The relations (341) are only valid for the moments ρµνλ···r with positive r , but in the full
equations of motion also moments with r < 0 also appear.
We expect the expansion (??) to be complete and, therefore, any moment that does not appear
in this expansion must be linearly related to those that do appear. This means that, using the
moment expansion, Eq. (??), it is possible to express the moments with negative r in terms of the
ones with positive r . Substituting Eq. (??) into Eq. (236) and using Eq. (225), we obtain

ρ
ν1···ν`
−r =

N∑̀
n=0

F (`)
rn ρ

ν1···ν`
n , (343)

where we defined the following thermodynamic integral

F (`)
rn =

`!

(2`+ 1)!!

∫
dK f0k f̃0kE

−r
k H

(`)
kn

(
∆αβkαkβ

)`
. (344)

Therefore, Eqs. (341) lead to

ρ−r = −
3

m2
γ

(0)
r Π +O(Kn) ,

ρµ−r = γ
(1)
r nµ +O(Kn) ,

ρµν−r = γ
(2)
r πµν +O(Kn) , (345)

where we introduced the coefficients

γ
(0)
r =

N0∑
n=0,6=1,2

F (0)
rn Ω

(0)
n0 , γ

(1)
r =

N1∑
n=0,6=1

F (1)
rn Ω

(1)
n0 , γ

(2)
r =

N2∑
n=0

F (2)
rn Ω

(2)
n0 . (346)
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The resulting equations of motion take the form

τΠΠ̇ + Π = −ζθ + J +K+R ,

τnṅ
〈µ〉 + nµ = κnI

µ + J µ +Kµ +Rµ ,

τππ̇
〈µν〉 + πµν = 2ησµν + J µν +Kµν +Rµν . (347)

The tensors J , J µ, and J µν contain all terms of first order in Knudsen and inverse Reynolds
numbers,

J = −`Πn∇ · n − τΠnn · F − δΠΠΠθ − λΠnn · I + λΠππ
µνσµν ,

J µ = −nνωνµ − δnnnµθ − `nΠ∇µΠ + `nπ∆µν∇λπλν + τnΠΠFµ − τnππµνFν
− λnnnνσµν + λnΠΠIµ − λnππµν Iν ,

J µν = 2π
〈µ
λ ω ν〉λ − δπππµνθ − τπππλ〈µ σ ν〉λ + λπΠΠσµν − τπnn〈µ F ν〉

+ `πn∇〈µ n ν〉 + λπnn
〈µ I ν〉 . (348)

where Fµ = ∇µp0 and Iµ = ∇µα0
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The tensors K, Kµ, and Kµν contain all terms of second order in Knudsen number,

K = ζ1 ωµνω
µν + ζ2 σµνσ

µν + ζ3 θ
2 + ζ4 I · I + ζ5 F · F + ζ6 I · F + ζ7∇ · I + ζ8∇ · F ,

Kµ = κ1σ
µν Iν + κ2σ

µνFν + κ3I
µθ + κ4F

µθ + κ5ω
µν Iν + κ6∆µ

λ∂νσ
λν + κ7∇µθ,

Kµν = η1ω
〈µ
λ ω ν〉λ + η2θσ

µν + η3σ
λ〈µ σ

ν〉
λ + η4σ

〈µ
λ ω ν〉λ

+ η5I
〈µ I ν〉 + η6F

〈µ F ν〉 + η7I
〈µ F ν〉 + η8∇〈µ I ν〉 + η9∇〈µ F ν〉. (349)

The tensors R, Rµ, and Rµν contain all terms of second order in inverse Reynolds number,

R = ϕ1Π2 + ϕ2n · n + ϕ3πµνπ
µν ,

Rµ = ϕ4nνπ
µν + ϕ5Πnµ,

Rµν = ϕ6Ππµν + ϕ7π
λ〈µ π

ν〉
λ + ϕ8n

〈µ n ν〉. (350)

These equations contain all the contributions up to order O(Kn2), O(R−1
i R−1

j ), and O(KnR−1
i ).
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Section 10

Results from Dissipative fluid dynamics
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Shear viscosity over entropy density ratio is small

P. Romatschke and U. Romatschke, Phys.Rev.Lett. 99, 172301 (2007)
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. . . , but the extracted value depends on the initial conditions

P. Romatschke and U. Romatschke, Phys.Rev.Lett. 99, 172301 (2007)
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Extracting η/s from experimental data: Initial conditions

C. Shen, S. A. Bass, T. Hirano, P. Huovinen, Z. Qiu, H. Song and U. Heinz, J. Phys. G 38, 124045 (2011) [arXiv:1106.6350

[nucl-th]]

0 10 20 30
(1/S) dN

ch
/dy (fm

-2
)

0

0.05

0.1

0.15

0.2

0.25

v
2
/ε

0 10 20 30 40
(1/S) dN

ch
/dy (fm

-2
)

hydro (η/s) + UrQMD hydro (η/s) + UrQMDMC-GlauberMC-KLN
0.0

0.08

0.16

0.24

0.0

0.08

0.16

0.24

η/sη/s

v
2
{2} / 〈ε

2

part
〉
1/2

Gl

(a) (b)

〈v
2
〉 / 〈ε

part
〉
Gl

v
2
{2} / 〈ε

2

part
〉
1/2

KLN

〈v
2
〉 / 〈ε

part
〉
KLN

η/s ∼ 0.08− 0.24

Large uncertainty from the initial conditions (MC-Glauber vs. MC-KLN)
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Extracting η/s from experimental data: RHIC vs LHC

C. Shen, S. A. Bass, T. Hirano, P. Huovinen, Z. Qiu, H. Song and U. Heinz, J. Phys. G 38, 124045 (2011) [arXiv:1106.6350
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Temperature dependent η/s ?
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Extracting η/s from experimental data: identified hadrons

H. Song, S. Bass and U. W. Heinz, Phys. Rev. C 89, 034919 (2014) [arXiv:1311.0157 [nucl-th]]
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Extracting η/s from experimental data: higher harmonics

C. Gale, S. Jeon, B. Schenke, P. Tribedy and R. Venugopalan, Phys. Rev. Lett. 110, 012302 (2013) [arXiv:1209.6330 [nucl-th]]
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Higher harmonics (vn’s)

Initial density fluctuations make all the difference

IP-Glasma + viscous hydrodynamics −→ vn’s well described with η/s = 0.20
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Section 11

How to constrain η/s(T )

Hydrodynamics in heavy-ion collisions Jyväskylä Summer School 2016 August 11, 2016 135 / 173



Search for QCD matter properties

Relativistic heavy ion collisions:

Create small droplet of QCD fluid

Extract limits for η/s, ζ/s, . . . from
experimental data

Need a complete model:

Initial particle production

Fluid dynamical evolution

Convert fluid to particle spectra
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How to proceed:

Take your favorite initial condition model/parametrizations, and EoS

Tune your initial state to reproduce the multiplicities (also centrality dependence)

Tune your chemical/kinetic freeze-out parameters to reproduce the pT spectra of hadrons.

Tune your η/s(T ) parametrization to reproduce the v2 data.

Check against v3, v4, correlations, fluctuations etc.

If the parameter tuning done for the LHC, retune the model for RHIC (but keeping the
properties of the matter unchanged, i.e. EoS and η/s(T ))

Check the consistency with the RHIC data.

If unable to get all the data simultaneously, make a new η/s(T ) parametrization, and
repeat. . .
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Collisions come with all centralities

Classify events according to the number of produced particles (multiplicity): 0-5 % centrality
class contains 5 % of events with largest multiplicity,

5-10 % centrality class the next 5 %, and so on
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Initial states come in all shapes

Average over all events
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Characterizing initial conditions

εne
inΦn = {rne inφ}

{· · · } =

∫
dxdy e(x , y , τ0)(· · · )

εn eccentricity

Φn “participant plane” angle

n=2 n=3 n=4
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Fluid dynamical evolution
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n = 1

n = 1 . . . 2

n = 1 . . . 3

n = 1 . . . 4

Example: azimuthal spectrum
of charged hadrons dN/dφ in
one collision

Black: full result

Red: Fourier decomposition

Typically v2 dominant

Because initial state fluctuates
(esp. its eccentricities), also vn
coefficients fluctuate.

−→ Even for a fixed centrality
class: distribution of vn, P(vn).
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Flow coefficients as correlators

In a single event define:
vn(pT , y)e inΨn(pT ,y) = 〈e inφ〉φ, (351)

where the angular brackets 〈· · · 〉φ denote the average

〈· · · 〉φ =

(
dN

dydp2
T

)−1 ∫
dφ

dN

dydp2
Tdφ

(· · · ) . (352)

Similarly, the pT -integrated flow coefficients are defined as

vn(y)e inΨn(y) = 〈e inφ〉φ,pT , (353)

where the average is defined as

〈· · · 〉φ,pT =

(
dN

dy

)−1 ∫
dφdp2

T

dN

dydp2
Tdφ

(· · · ) . (354)
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n-particle cumulants

Two-particle cumulant is defined as the correlation

vn{2}2 = 〈e in(φ1−φ2)〉φ ≡
1

N2

∫
dφ1dφ2

dN2

dφ1dφ2
e in(φ1−φ2), (355)

where dN2/dφ1dφ2 is the two-particle spectrum (suppressing the possible rapidity and pT
dependence), which can in general be decomposed as a sum of a product of single-particle
spectra and a “direct” two-particle correlation δ2(φ1, φ2),

dN2

dφ1dφ2
=

dN

dφ1

dN

dφ2
+ δ2(φ1, φ2). (356)

The direct correlations can result e.g. from a ρ-meson decaying into two pions, and these
correlations are usually referred to as non-flow contributions. The event-averaged two-particle
cumulant can be written as

vn{2} = 〈v2
n + δ2〉1/2

ev
flow
= 〈v2

n 〉
1/2
ev , (357)

where the last equality follows in the absence of the non-flow contributions, i.e. assuming that all
the azimuthal correlations are due to the collective flow only.
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Similarly, the event-averaged pT -integrated 4-particle cumulant flow coefficients are defined as

vn{4} ≡
(
2〈v2

n 〉2ev − 〈v4
n 〉ev

)1/4
. (358)

In addition to the vn{2} and vn{4}, we can also define a three-particle cumulant v4{3}

v4{3} ≡
〈v2

2 v4 cos(4 [Ψ2 −Ψ4])〉ev
〈v2

2 〉ev
. (359)

Originally, the higher-order cumulants were introduced to suppress the non-flow correlations, but
after the full realization of the importance of the event-by-event fluctuations it has become clear
that different cumulants do not only have different sensitivity to non-flow correlations, but also
measure different moments of the underlying probability distributions of the flow coefficients.
vn have not only distributions, but they can also have correlations

〈cos(k1Ψ1 + · · ·+ nknΨn)〉SP ≡
〈v |k1|

1 · · · v |kn|n cos(k1Ψ1 + · · ·+ nknΨn)〉ev√
〈v2|k1|

1 〉ev · · · 〈v2|kn|
n 〉ev

, (360)

where the kn’s are integers with the property
∑

n nkn = 0.
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Equation of State
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Lattice parametrization by Petreczky/Huovinen:
Nucl. Phys. A837, 26-53 (2010), [arXiv:0912.2541 [hep-ph]].

Chemical equilibrium (s95p-v1)

(partial) chemical freeze-out at Tchem = 175 MeV (s95p-PCE175-v1)

for comparison bag-model EoS

Hadron Resonance Gas (HRG) includes all hadronic states up to m ∼ 2 GeV
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Freeze-out

Converting fluid to particles
e, uµ, πµν −→ E dN

d3p

Standard Cooper-Frye freeze-out for particle i

E
dN

d3p
=

gi

(2π)3

∫
dσµpµfi (p, x),

where

fi (p, x) = fi,eq(p, uµ,T , {µi})
[

1 +
πµνpµpν

2T 2(e + p)

]
Integral over constant temperature hypersurface

2- and 3-body decays of unstable hadrons included

Here Tdec = 100 MeV
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Initial conditions and centrality selection

Example: H. Niemi, K. J. Eskola and R. Paatelainen, Phys. Rev. C 93, no. 2, 024907 (2016) [arXiv:1505.02677 [hep-ph]].
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ALICE

Calculate ensemble of random initial conditions: random impact parameter, random
positions of nucleons inside the nuclei.

Calculate hydrodynamical evolution and spectra for each initial conditions

Divide events into centrality classes according to hadron multiplicity.
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Temperature dependent η/s

100 150 200 250 300 350 400 450 500
T [MeV]
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Test different temperature dependencies.
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multiplicity
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Fix the parameters of the initial conditions to reproduce the centrality dependence of the
hadron multiplicity.

Entropy production depends on the viscosity.

If the particle number conservation is not solved explicitly: entropy production = particle
production.
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Transverse momentum spectra
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STAR

kinetic (Tdec) and chemical (Tchem) decoupling temperatures are the most important
parameters that determine the shape of pT -spectra.

Tdec = 100 MeV

Tchem = 175 MeV
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η/s(T ) from vn data
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η/s(T ) parametrizations tuned to reproduce the vn data at the LHC.

No strong constraints to the temperature dependence (all give equally good agreement)

Deviations mainly in peripheral collisions, where the applicability of hydro most uncertain.
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Flow fluctuations

1.0 0.5 0.0 0.5 1.0 1.5
δε2 , δv2

10-2

10-1

100

P
(δ
v 2

), 
P
(δ
ε 2

)

5−10 %

(a)

LHC 2.76 TeV Pb +Pb

pQCD δv2

Glauber δv2

pQCD δε2

Glauber δε2

ATLAS

1.0 0.5 0.0 0.5 1.0 1.5
δε2 , δv2

10-2

10-1

100

P
(δ
v 2

), 
P
(δ
ε 2

)

35−40 %

(b)

LHC 2.76 TeV Pb +Pb

pQCD δv2

Glauber δv2

pQCD δε2

Glauber δε2

ATLAS

δvn =
vn − 〈vn〉ev
〈vn〉ev

Even in one centrality class εn fluctuates from event to event −→ vn fluctuates.

Event-by-event models should also reproduce the vn fluctuation spectra.

Turns out, if the average vn is scaled out, that vn fluctuations mainly sensitive to initial
conditions.
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Sensitivity of P(δv2) to viscosity

1.0 0.5 0.0 0.5 1.0
δε2 , δv2

10-2

10-1

100

P
(δ
v 2

), 
P
(δ
ε 2

)

35−40 %

η/s=0.20

η/s=param4

η/s=0.0

ATLAS

Scaled fluctuations show no sensitivity to η/s.
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(non)linear-response?
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ε2 ≡ ε2,2 vs ε1,2

Full azimuthal structure: m = 0, . . . ,∞
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(non)linear-response?
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(non)linear-response?
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Flow fluctuations from vn{2} and vn{4}
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vn{2} and vn{4} measure different
moments of the vn–fluctuation spectrum:

vn{2}
flow
= 〈v2

n 〉
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vn{4}
flow
=
(
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n 〉2ev − 〈v4
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)1/4

If vn fluctuation spectra and average
vn{2} are reproduced −→ also vn{4}
should come out right (It is just a
different moment of the full
distribution)

non-flow effects?

vn w.r.t. reaction plane ∼ vn{4}
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Constraints for η/s(T ) from RHIC vn data
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.

At RHIC different sensitivity to η/s(T ): parametrizations that fit nicely LHC vn’s start to
deviate from each other at RHIC.
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Flow fluctuations
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No direct measurements of the vn fluctuation spectra, but different cumulants.

Simultaneous fit of v2{2} and v2{4} minimal condition to describe the full spectra.
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Event-plane correlations
Luzum & Ollitrault: one should calculate:

〈cos(k1Ψ1 + · · · + nknΨn)〉SP ≡
〈v |k1|

1 · · · v |kn|n cos(k1Ψ1 + · · ·+ nknΨn)〉ev√
〈v2|k1|

1 〉ev · · · 〈v2|kn|
n 〉ev

,

Hydrodynamics in heavy-ion collisions Jyväskylä Summer School 2016 August 11, 2016 161 / 173



Event-plane correlations: 2 angles
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Already from the LHC data more constraints to η/s(T ).
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Event-plane correlations: 3 angles
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Equally well described by the same parametrizations that describe 2-angle correlations.
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δf in v2
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Relative magnitude of δf depends on the η/s parametrization

δf also larger at lower energy collisions.
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δf in event-plane correlations
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In (Ψ2,Ψ4)-correlators, in central to mid-peripheral collisions: δf corrections small.

but note the correlatos involving Ψ6: δf can destroy the correlation completely.
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Bulk viscosity

Bulk viscosity can be large near the QCD
transition

Large bulk viscosity affects the
determination of η/s

Helps to reduce average pT (important
especially at LHC energies)
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Beam Energy scan

More constraints to the hadronic properties of the matter

Important background in determining the QGP properties

Here constant η/s fitted separately for each
√
s

Evidence for temperature and/or net-baryon density dependence of η/s?
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p+Pb collisions

Can be described by using hydrodynamics

Typically η/s small O(0.08)

Inconsistency with AA results with
saturation based initial conditions
η/s ∼ 0.20

Is hydrodynamics valid?
Romatschke, Eur.Phys.J. C75 (2015) no.7, 305

Kozlov, Luzum, Denicol, Jeon, Gale, Nucl. Phys. A931 (2014)
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Section 12

Applicability of fluid dynamics: Knudsen numbers
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Knudsen numbers: applicability of fluid dynamics

H. Niemi and G. S. Denicol, arXiv:1404.7327

Kn = τπθ, θ = expansion rate,
τπ = relaxation/thermalization time.

fluid dynamics: Kn < 0.5 blue

change η/s = 0.08 −→ HH-HQ

Applicability: whole spacetime −→ small
region around Tc
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Knudsen numbers: applicability of fluid dynamics in pA

H. Niemi and G. S. Denicol, arXiv:1404.7327 [nucl-th]

AA collisions −→ pA collisions

Kn > 0.5 almost everywhere

even with small QGP η/s = 0.08
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Summary

QCD properties near thermal equlibrium (EoS, transport coefficients) direct input to fluid
dynamics −→ Fluid dynamics convenient tool in extracting the properties from the data.

Ideal fluid dynamics: assume local thermal equilibrium (LTE)

Relativistic Navier-Stokes: deviations from LTE (unstable, acausal) −→ viscosity

Israel-Stewart or transient fluid dynamics: include effects of non-zero
relaxation/thermalization time.

In HI-collisions: in addition model initial sate and freeze-out

QGP shear viscosity (η/s) small (at least near the QCD phase transition)

Applicability of fluid dynamics in small systems? (especially pA and peripheral AA collisions)
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Some further references

Good introduction to relativistic fluid dynamics:
D. H. Rischke, Lect. Notes Phys. 516, 21 (1999) [nucl-th/9809044].

The Bible of Relativistic fluid dynamics:
Relativistic Kinetic Theory. Principles and Applications - De Groot, S.R. et al.

The Israel-Stewart paper:
W. Israel and J. M. Stewart, Annals Phys. 118, 341 (1979).

Resummed transient fluid dynamics:
G. S. Denicol, H. Niemi, E. Molnar and D. H. Rischke, Phys. Rev. D 85, 114047 (2012)
[arXiv:1202.4551 [nucl-th]].
G. S. Denicol, H. Niemi, I. Bouras, E. Molnar, Z. Xu, D. H. Rischke and C. Greiner, Phys.
Rev. D 89, no. 7, 074005 (2014) [arXiv:1207.6811 [nucl-th]].

Reviews of hydrodynamics and flow in heavy-ion collisions:
U. Heinz and R. Snellings, Ann. Rev. Nucl. Part. Sci. 63, 123 (2013) [arXiv:1301.2826
[nucl-th]].
M. Luzum and H. Petersen, J. Phys. G 41, 063102 (2014) [arXiv:1312.5503 [nucl-th]].
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