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These are lecture notes for the course “MATS4120 Geometry of geodesics”
first given at the University of Jyvaskyla in Spring 2020. The course describes
geodesics and their geometry on Riemannian manifolds. Basic differential
geometry or Riemannian geometry is useful background but is not strictly
necessary. Exercise problems are included, and at least problems marked
important should be solved as you read to ensure that you are able to follow.
Previous feedback has been very useful and new feedback is welcome.
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Geometry of geodesics

1 Riemannian manifolds

1.1 A look on geometry

A central concept in Euclidean geometry is the Euclidean inner product,
although its importance is somewhat hidden in elementary treatises. We
will relax its rigidity to allow for a certain kind of variable inner product.
This provides a rich geometrical framework — Riemannian geometry — and
shines new light on the nature of Euclidean geometry as well.

There is much to be studied beyond Riemannian geometry, but we will
not go there. Neither will we study all of Riemannian geometry; we shall
focus on the geometry of geodesics. Gaps will be left, especially early on,
and may be filled in by more general courses or textbooks on Riemannian
geometry.

Yet another thing we will not be concerned with is regularity. There are
interesting phenomena in various spaces of low regularity, but even those are
best understood if one has background knowledge of the simplest possible
situation. All the structures in this course will be smooth, by which we
mean C*°. Many — but not all — of the resulting functions will be smooth
as well, and we will take some care to show how smoothness of structure
implies smoothness of derived structure.

We will do local Riemannian geometry in the sense that we will implicitly
be working in a single coordinate patch. Even when a more global treatment
would be needed using a partition of unity or some such tool, we will pre-
tend that everything is still in a single patch. This promotes the structures
essential for this course. A reader with more prior familiarity with manifolds
is invited to globalize the proofs presented here in a more honest fashion.

Differential geometry can often be done in a local coordinate formalism or
using invariant concepts. We prefer an invariant approach, but the coordinate
description will always be given as well so as to give more concrete and
calculable definitions.

Some readers may find these notes vague or lacking in detail, but that is
entirely purposeful. The goal is to focus on a certain set of phenomena and
not to be held back by technicalities. One does not need to manually craft
every atom to obtain a coherent big picture, and one might even argue that
orientation to details can harm by causing the focus to drift away from the
ideas that are important for the present goal.
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Figure 1: Two charts (U;, ;) with ¢ = 1,2. The transition func-
tion ¢ maps between the Euclidean domains ¢;(U; N U,;) C R™ cor-
responding to the intersection set on the manifold M. The diagram
commutes. Smooth compatibility is a property of the map .

1.2 Smooth manifolds

Let n € N. A topological n-dimensional manifold M is a topological space
which is second-countabld], Hausdorfl§] and “looks locally like R™. The
last bit in quotes means that any point x € M has a neighborhood U C
M for which there exists a homeomorphism ¢: U — ¢(U) C R™. Such a
local homeomorphism is known as a coordinate chart as it gives Euclidean
coordinates in an open subset of the manifold.

The conditions above define a topological manifold. To make it smooth,
we introduce more structure. As M itself is just an abstract space, there is
no way to differentiate on it. All derivatives will have to be considered in
local Euclidean coordinates given by a chart, but on a single chart there is
nothing to differentiate.

Consider two charts ¢;: U; — ¢;(U;) with i = 1,2. If the domains U,
and U, intersect, we get a map between the two local coordinate systems.
Specifically, if U := Uy NUs, the map 1 p1(U) — ¢2(U) defined by ¢ o @, =
9 is a map between two open sets in R". This map is called the transition
function between the two coordinate charts and it is depicted in figure [1}

Exercise 1.1. Show that the transition function ¢ is a homeomorphism. ()

We say that the two coordinate charts ¢; are smoothly compatible if

LA first-countable space has a countable neighborhood base at each point, whereas a
second-countable space has a countable base for the whole topology.

2The Hausdorff condition is also known as the separation axiom T2. It means that any
two distinct points have disjoint neighborhoods.
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the map v is a diffeomorphism. To either satisfy or irritate the reader, we
observe that if the two open sets U; do not meet, then v is the unique map
from the empty subset of R™ to itself and is vacuously smooth; this ensures
that checking for compatibility only makes a difference if the two domains
meet.

Exercise 1.2. Is smooth compatibility an equivalence relation in the set of
coordinate charts on a manifold M? O

An atlas is a collection of coordinate charts (U,, pa)aca so that they
cover the whole manifold: (J, .4 Us = M. An atlas is smooth if all pairs of
coordinate charts are smoothly compatible. A smooth atlas is maximal if no
new coordinate chart can be added to it without breaking smoothness. A

maximal smooth atlas is sometimes called a smooth structure.

Exercise 1.3. Show that every atlas is contained in a unique maximal atlas.

O

Definition 1.1 (Smooth manifold). A smooth n-dimensional manifold is a
topological n-manifold with a maximal smooth atlas.

All regularity matters are always defined in terms of the local coordinates
given by a fixed atlas. A function f: M — R on a smooth manifold is defined
to be smooth when f o ¢! is a smooth Euclidean function for any local
coordinate map .

* Important exercise 1.4. Define what it should mean for a function f: M — N
between two smooth manifolds of any dimension to be smooth. O

The Euclidean space R™ is an n-dimensional smooth manifold. An atlas
is given by any open cover (e.g. the singleton of the space itself) and identity
maps.

Remark 1.2. Once we have fixed a smooth structure, a valid coordinate chart
is precisely a smooth diffeomorphism ¢: U — ¢(U) C R" from an open set
U C M. This cannot be taken as a starting point, since before the smooth
structure and its charts we do not know what smoothness of such a map
would mean. This only becomes useful later when deciding whether a given
map gives valid coordinates.

1.3 Curves, vectors and differentials

A smooth curve is a smooth map from an interval I C R to our smooth
manifold M. The velocity §(t) of a curve v: I — M at any given time
t € I is a tangent vector in the tangent space T’ ;)M as depicted in figure
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Figure 2: Velocity of a curve «y at time ¢ is a tangent vector +(t). It is
an element of the tangent space at the point v(¢). The picture may be
understood either abstractly on a manifold (with the velocity being
in the corresponding tangent space) or concretely within a single
coordinate chart (with the velocity simply as the time derivative of
the Euclidean curve).

Indeed, the tangent space can be defined using velocities of curvesEL but it is
not the only possible approach. Different points of view are useful, and we
will be free to change perspectives as convenient. It is unimportant for us
which approach one chooses to define tangent spaces.

In terms of local coordinates the tangent space T, M at x € M can be
understood] to be just R™. A typical approach is to define a tangent vector
as a derivation, a certain kind of a differential operator. This is related to
the curve-based definition as follows: A tangent vector W &€ T,M can be
thought of as a differential operator or as the velocity of a curve v at ¢t = 0.
A smooth function f: M — R is differentiated by W f = £ f(7(t))|i=o-

The same object can function as the velocity of a curve or as a derivation.
It would be possible to give different incarnations of tangent vectors different
names and introduce canonical isomorphisms between them, but we will leave
any such identifications out.

An important feature of a tangent space is that it is a vector space. For
any x on an n-dimensional smooth manifold M, the tangent space T, M is
an n-dimensional real vector space. It is therefore isomorphic to R”, but
not in a canonical way. Any local coordinates give a natural way to identify
T, M = R", but the many possible coordinate charts in neighborhoods of x
give different isomorphismg?

30ne says that two curves 7; are equivalent if in a fixed local coordinate system the
Euclidean curves ¢ o «; have the same velocity at the reference point. Then a tangent
vector is an equivalence class of curves. To get a coordinate invariant definition, one needs
to show that the behavior upon changing coordinates is correct.

41t is hopefully evident that any local coordinate chart gives an identification of the
tangent space T, M at x with R™ with the curve approach of the preceding paragraph.

®Indeed, all isomorphisms between the two vector spaces can be realized through a
coordinate chart of a maximal atlas.
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The dual vector space T, M is called the cotangent space and denoted
by T>M. One could also define Ty M first and then define 7, M by duality.
The most important example of a covector is the differential of a function
f+ M — R. The differential at z € M is df, € T M and the duality pairing
is defined by

dfe(W) =Wf (1)

for any W € T,M, considered as a derivation. Be careful to call this the
differential, not the gradient, of a function.

We shall study vectors and covectors in more detail later, but the very
basics are best learned from introductory material to differential geometry.

1.4 Algebraic constructions on the tangent bundle

All of the tangent spaces of a manifold together make up the tangent bundle.
That is, one can define the tangent bundle of our smooth manifold M to be
the disjoint union
™™ = || T.M. (2)
xeM
This is a union of vector spaces, and many operations are done tangent space
by tangent Spaceﬁ

In general, a bundle is a disjoint union of spaces of some kind attached
to each point. (The tangent bundle is a union of tangent spaces.) These
spaces, called the fibers of the bundle, are isomorphic to each other but not
necessarily in a canonical way. (Since T, M = R" for all x € M, the tangent
spaces are indeed isomorphic, but not canonically.)

A section of the tangent bundle TM is a map W: M — TM so that
W(x) € T,M for all z € M. A section of the tangent bundle is called a
vector field. The section of any other bundle is defined in a similar fashion.
We will define later what smoothness of a section means. This will be done
twice, in local coordinates (section[1.5]) and in an invariant fashion (section[9)).

Any vector space operation can be performed for the tangent bundle (or
any vector bundle for that matter). For example, the dual of the tangent
bundle is the cotangent bundle, where the dual is taken fiber by fiber. The
cotangent bundle 7*M is the disjoint union of the cotangent spaces T M.

Remark 1.3. Let us recall (or learn) what tensor products of vector spaces
are. Consider three real vector spaces E, F,G. The tensor product of F
and F is the space E ® F' together with a bilinear map av: EX FF - EF® F

5The tangent bundle is also a smooth manifold itself, and we shall make heavy use of
that later on. But for now it is merely a collection of tangent spaces. Treating it as a
manifold opens new doors, but we will not open them yet.
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so that for any bilinear map b: E'X F' — G there exists a unique linealﬂ map
b: E® F — G so that the diagram

ExF—2*" @

~ »

E®F

commutes. This property defines the space £ ® F' and the map a uniquely
up to natural isomorphism.

To get a concrete description (which is then equivalent to the universal
description), let ' and F have the bases eq,...,ex and fi,..., f;. We can
then declare F ® F' to be the vector space whose basis consists of the formal
products e;® f; — so that the space has dimension kl. We define the required
map by setting

k k k k
o (Z viei, » wjfj) =3 > vwe® f;. (4)
i=1 j=1

i=1 j=1

It may be more concrete to think of the tensor product so that it takes the
free vector spaces over two (finite) sets into the free vector space over the
product set.

Tensor products of several spaces can be defined recursively by tensoring
more spaces in or by using the same definitions with multilinear maps with
more than two inputs.

The cotangent space was constructed from the tangent space using the
linear algebraic construction of dual spaces. Similarly, one can take the
tensor product T'"M ®@ T M, which is a bundle whose fiber at x is T, M Q T, M.
Tensor products of the tangent and cotangent bundles give rise to many of the
bundles one encounters in differential geometry. For example, the Riemann
curvature tensor R is a section of the bundle TM @ T*"M @ T*M @ T*M. In
other words, for any z € M we have a multilinear map

R(z): T:M x T,M x T,M x T,M — R. (5)

It is a 1-contravariant and 3-covariant tensor field, also called a tensor field
of type (1, 3).

A vector field is a tensor field of type (1,0) and covectors have type (0, 1).
A scalar has type (0,0).

"Notice that this is indeed the only linear map of the three.
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For another example of a tensor field, recall that linear maps T, M — T, M
can be thought of as elements of the tensor product T, M @1y M. The bundle
with these fibers is TM ® T*M. Sections of this bundle are “matrix fields”
in the sense that at each point x € M it provides a linear map T,M —
T.M. These are tensor fields of type (1,1). (This is the endomorphism
bundle of T'M, so called because the value of a section at each point is an
endomorphism of the relevant tangent space.)

Tensor products can be understood as spaces of multilinear maps. First,
the dual of a real vector space F is the space of linear maps F — R. We can
write E* = ML(E;R), so it is a multilinear map of one variable — which
is a complicated way to say “linear”. We also have E = M L(E*;R) using
the natural identification £ = (E*)* of finite-dimensional spaces. Now we
can proceed to tensor products. We have E* @ E* = ML(F x E;R) and
E® E® E*= ML(E* x E* x E;R). Using associativity of tensor products
we can also see E* ® F as ML(E; E), and this particular interpretation is
studied in exercise [LAl This allows us to see the Riemann curvature tensor
as a multilinear map (T, M)> — T, M.

FExercise 1.5. Let E and F be two finite-dimensional real vector spaces. There
is a natural mapping ® from the space L(E; F') of linear maps £ — F' to the
tensor product F' @ E*. Describe this map (or its inverse) in formulas or in
words or in pictures — or a combination thereof. O

The idea of bundles is necessarily a little vague here as our focus is else-
where. The hope is that these first impressions make it easier to pick up
ideas along the way and make the reader motivated and well equipped to
treat general bundles later on. We will return to the structure of bundles in
section [Ol

1.5 Coordinate representations of tensor fields

Consider now a single coordinate patch U C M. Identifying U with ¢(U) C
R", we can use Euclidean coordinates®|2* on this subset of M. Let us consider
the tangent and cotangent spaces at a point z € U. Both can be identified
with R™, but it is good to choose a specific identification.

A natural basis for the Euclidean space R™ consists of the standard unit
vectors. However, when considering tangent vectors as derivations (first order

8The index is up. This is just a convention, but life is much easier when one sticks to
it. Lower indices will have a dual meaning.
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differential operators), it is most natural to let the basis vectors beﬂ

arri e T, M. (6)
Evaluation at the point x and indeed the dependence on z is left implicit in
the notation 0;. The notation would quickly become unwieldy with every-
thing spelled out, which is why we have chosen to abbreviate the notation of
the basis vectors.

The corresponding dual basis consists of the vectors da’ € T M. Just as
in regular linear algebra, the dual basis is defined by

dz'(9;) = 6. (7)

The Kronecker delta 6;- tends to have one index up and another one down.
In fact, the ith component of the local coordinates ¢: U — R™ can be seen
as a map z': U — R, and the differential of this map dz’ is the dual basis
element. This justifies the notation.

A vector W € T, M and a covector a € 1M can now be expressed in
these bases:

W =W, and

a = o;dx’.

(8)

Observe that the basis and the components have indices in the opposite
places.

Here we have for the first time employed the Einstein summation conven-
tion:

WZ& = Z Wzaz, and
adzt = Z a,dzt.
i=1

That is, when an index appears once up and once down, all possible values
are summed over. If an index appears more than twice or both occurrences
are up or both down, there is an issue.m

* Important exercise 1.6. Show that

9When we differentiate with respect to something that has an upper index, we get a
lower index. In time this hopefully makes sense.
10This is a non-issue in Euclidean geometry.
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W' = dz" (W) (10)

and

This gives us a way to find the components of a vector or a covector in a
given basis.
As often, dependence on x was left implicit. O

These basis elements on the tangent and cotangent spaces are crucial
for building the smooth structure of the tangent and cotangent bundles in
section [

Consider then a tensor field a of type (1,1). As discussed in section
a(x): T,M — T, M is a linear map. As any linear map, a(x) can be expressed
as a matrix once a basis is given. Indeed,

a(x) = a}(z)0;da’. (12)

The component a;'- describes how the jth component of the input contributes
to the ith component of the output. The component can be extracted
from a(z) using

at(z) = da'(a(x)0;). (13)

The general method is the same: operate with the tensor field on the ba-
sis vector field(s) and then use the basis covector field(s) to evaluate the
component(s).

Smoothness of a tensor field means that all component functions are
smooth. Given some local coordinates, each component of a tensor field
is a real-valued function. The derivative of the component a§ with respect
to the coordinate z* is denoted by a}k. Such derivatives do not behave well
enough under changes of coordinates, so the coordinate derivatives are not
generally the components of a tensor field.

Ezercise 1.7. Express the components Rijkl of a type (1,3) tensor field R
using the basis vectors and covectors. O

As we only use a single coordinate system, we need not study how the
tensor fields transform when coordinates are changed.

10
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1.6 A new look at Euclidean linear algebra

Consider the manifold M = R" and in particular its tangent space ToM =
R™. The basis vectors are given by

€1 = . (14)

and the other standard basis vectors e;. In our Riemannian notation e; = 0;.
A vector is written in terms of the basis as V = V'e;,.

It is natural to think of a vector as a column vector. A row vector
corresponds to a covector, o = ai;e?, where e’ are the dual basis vectors to e;.
There is a natural identification of the two bases, given by

(W) = (e;, W). (15)

If we map e; — ¢’ and extend linearly, we get a linear map R" — (R™)*.
This identification is based on the inner product. In general, inner products
are a way to identify a space with its dual.

The 7th component of a vector W is found by

W= (W) = (e;, W) (16)

as familiar.

* Important exercise 1.8. Given a linear map L: R"™ — R™, how can you find
its matrix elements with respect to some bases on the two spaces? Compare
to ([L3). O

By the identification of the bases we can identify column vectors with row
vectors. This corresponds exactly to transposition. The duality pairing a(W)
is just the matrix product of a row vector and a column vector. The inner
product of two column vectors can be obtained by transposing one of them
and then multiplying as matrices. The concept of transpose is based on the
inner product and changes if the inner product is changed. And we will
change it.

1.7 Riemannian metric

A Riemannian metric is a smooth tensor field g of type (0,2) that satisfies a
positivity condition and a symmetry condition. As a tensor field of this type,
g(x) is a bilinear map T, M x T,M — R. The positivity condition is that

g(x)(v,v) >0 (17)

11
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whenever v € T, M is non-zero. The symmetry condition is that

9(x)(v, w) = g(x)(w,v) (18)

for all v,w € T, M. This gives rise to a rich geometric structure.

The convention in the sequel is as follows: M is always a smooth manifold
of dimension n, and it has a fixed Riemannian metric g. In other words,
(M, g) is a Riemannian manifold. We assume M to be connected [1] Unless
otherwise mentioned, we will be working in a single coordinate chart so as
to avoid unnecessary complications.

The simplest example is the Euclidean metric on M = R". All tangent
spaces can be canonically identified with the same Euclidean space (T, M =
R™ for all z € M), and the Euclidean metric g(x): T,M x T,M — R is
the a-independent quadratic form g(x)(v,w) = >, v'w’, with the vectors
v,w € R™ expressed in coordinates in the usual Euclidean manner. Using
notation from section , we can write g = Y1, ¢’ ® €', understanding that
e’ ® €' acts on a pair of vectors as (' ® e')(v,w) = v'w’. Tt is easy to check
that this g is a valid Riemannian metric on M. If you are at any point during
this course confused, it is advisable to look at the source of confusion from
the point of view of this explicit Riemannian manifold.

Many other examples, including spheres and hyperbolic spaces, can be
obtained by multiplying the Euclidean metric tensor g(z) with a positive
smooth function — a conformal factor — c¢(x) to get a new Riemannian
metric g(x) = ¢(x)g(x). In fact, all Riemannian metrics in two dimensions
are locally of this form upon choosing good coordinates, but this is not true
in higher dimensionsF_Z]

* Important exercise 1.9. Do you have any questions or comments regarding
section 17 Was something confusing or unclear? Were there mistakes? Are
there pictures that should be included in this section? O

2 Distance and geodesics

2.1 An inner product

A Riemannian metric gives an inner product on the tangent space. Namely,
the inner product of two vectors v, w € T, M is given simply by

(v, w) = g(v,w). (19)

UTf M is disconnected, the different connected components have completely independent
lives. We lose awkward situations but no generality in assuming connectedness.

21f you wish to dig further, the keywords would be “conformal flatness” and “uni-
formization theorem”.

12
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We will often leave the dependence of the metric tensor on the base point x

implicit.

Exercise 2.1. Expand objects in terms of their components and show that

(v,w) = gij(z)v'w. O
As described in the Euclidean setting, an inner product gives a canonical

way to identify vectors with covectors. In fact, one can consider g as a linear
map T, M — T M given by

v g(v, ). (20)

Written in terms of components, the vector with components v¢ is mapped
to the covector with components g;;v7. This covector is denoted by v’ and
called “v flat”.

* Important exercise 2.2. Show that the map v — 2° is bijective. You will
need the positivity condition ([17)). O

The inverse of the map v — v’ maps a covector « to the vector af, called
“a sharp”. These are the musical isomorphisms and they satisfy v = (vb)ﬁ
and a = (af)".

Given the canonical bases on T, M and T* M, the matrix of the “flat map”
is g;; itself. The matrix of the inverse map, the “sharp map”, is denoted by g%
and is the inverse of this matrix — it satisfies ¢" g;; = d;. Invariantly, this
can be denoted as g~ !.

Ezercise 2.3. Show that ¢¥ (v”);(w”); = (v, w). O
Exercise 2.4. Show that g% defines an inner product on T M and the musical
isomorphisms preserve the inner product. O

The inner products give us natural definitions of norms for the tangent
and cotangent spaces: |[v| = (v,0)"/? and |a| = (o, @)"/? using the relevant
inner products. The musical isomorphisms are isometries. The (co)tangent
space TQE*)M is also isometric to R"™, as are all n-dimensional real inner prod-
uct spaces.

Due to the way the musical isomorphisms work in coordinates — (v°); =
gi;v7 and (af)' = ga; — they are sometimes called lowering and raising
indices.

Recall that the differential d f of a scalar function f: M — R is a covector
field. The corresponding vector field is called its gradient: Vf = (df)*.

One would obtain much more general structures by taking a norm on the
tangent space that does not correspond to an inner product. This would lead
to Finsler geometry.

13
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Figure 3: A curve can be approximated by discrete steps between
finitely many points on the curve. The length of a step at time ¢ is
roughly |¥(¢)| At, where At is the time step. Letting the time steps
go to zero turns the approximating sum into the Riemann sum of the
integral defining length.

2.2 On computations in local coordinates

Let us consider the flat map as an example. If v is a vector field, then o = v°

is given in local coordinates as o; = g;;v7. Including the variable and the
sum explicitly, this means

a;(x) = Z gij (20 (). (21)

If we need to compute a derivative like J,y; in these local coordinates, it can
be helpful to look at (21). Each a;(z) is a real valued function of x € R"
(or rather only in the set ¢(U) C R"), and so are g;;(x) and v’/(z). Each
component is just a real-valued function — coordinate expressions are almost
always expressions containing sums and products of real numbers, nothing
more elaborate. When you differentiate, the normal product rule applies
without any changes.

2.3 Length of curve
Recall that the length of a smooth curve v: [a,b] — R™ is defined by

b
() = / 4(0)] dt. (22)

We define the length of a smooth curve 7: [a,b] — M by the same formula.
Figure [3] should make the definition more intuitively sensible.

To properly do so, we must know what /(¢) is. As discussed in section
velocities of curves are one way to define tangent vectors in the first place,
so ¥(t) should be an element of T’ M.

14
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In local coordinates one can write ¥(t) = 4%(¢)d;. The length of 4(t) is
given by the metric tensor. Notice how the norm used to measure the length
of 4(t) is different for different values of t.

Everything is defined so that the length of a curve is independent of the
choice of coordinates and parametrization.

2.4 Distance between points

Let p,q € M be any two points. As M is connected, there is a smooth path
between the two point{™] We define the distance between them to be

d(p, q) = inf{l(v);v: [0,1] = M,~(0) = p,7(1) = ¢} (23)

It is typical to choose the curve family so that v is piecewise smooth, but
smooth will work just as well.

Exercise 2.5. Explain with a picture or maybe even a proof why minimizing
length of piecewise smooth curves will lead to the same infimum as minimiz-
ing over smooth curves. O

This concept of distance defines a metric in the sense of metric spaces.
But we will restrict the word “metric” to the metric tensor and call this d
the distance.

Ezercise 2.6. Give an example of two points in a Euclidean domain where
a minimizing curve does not exist within the domain. The same issue can
occur on manifolds, so existence of minimizers requires assumptions. (A local

result is given in exercise [7.75]) O

Proposition 2.1. The manifold M with the distance d satisfies all the az-

toms of a metric space. Its topology coincides with that of the topological
manifold M.

The proof of coincidence of the two topologies can be found in many
introductory treatises of Riemannian geometry. It suffices to prove such
equivalence within a chart, and that follows from the distance being bi-
Lipschitz to the underlying Euclidean metric where the coordinates live. See
exercise 2.8

* Important exercise 2.7. Explain why d is symmetric and satisfies the triangle
inequality. O

13This is a feature of smooth manifolds. In general a connected space is not path
connected, and points in a path connected space need not be connectable by a rectifiable
(finite length) curve.

15
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(.

(1

Figure 4: A family of curves. The reference curve is I'(-,0) = ~(¢),
and different values of s give neighboring curves. The derivative of
the family I'(¢,s) in s at s = 0 gives rise to the variation field of the
family.

FEzercise 2.8. Show that if d(x,y) = 0, then z = y. You can work in local
coordinates near z. Argue by continuity that C~! |v]p, < |v] < C |v|g. for
all v € TU for a small neighborhood U of x (in those local coordinates) and
for some constant C' > 1. Using that estimate find a lower bound on the
length of any smooth curve joining x and y. O

2.5 First variation of length

We want to find the shortest curve between two points. We do so using
smooth calculus of variations. The aim is to find the Euler—Lagrange equation
and later show that its solutions are actually minimal.

LeT: [0,1] x (—&,e) = M be a smooth map. We understand I'(¢, s) to
be a family of curves so that each I'( -, s) is a curve. We want to differentiate

/ O,0(t, )| dt (24)

at s = 0. The family and its variation field are depicted in figure [l Let us
work in local coordinates again.

FExercise 2.9. Show that

Ds[g(T(t, $)) (DT (L, s), 0T (t, 5))]/?

1 o . . 25
= 7 (i (DT AT + 2g,;5(T) AT 0,0,I7), (25)
2|0,
where the argument (¢, s) of I" has been left out for clarity. Here we used the
derivative notation g;; = Org;; again. O

4Here and henceforth, € > 0 is a small number and may appear without being quanti-
fied.
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We are now ready to compute the variation of length of a family of con-
stant speed curves from p to q. Reparametrization does not change length,
so we will now parametrize our curves by [0, 1]. This reparametrization pre-
serves smoothness as long as 9" # 0.

Proposition 2.2. Let I': [0,1] x (—&,e) = M be a smooth map so that

e |0,I'(t,0)| is constant,

e ['(0,s) =p for all s, and

e I'(1,5) = q for all s.
Denotind™| v(t) == I'(t,0), 5(t) = 9,L'(t,0), 5(t) = 0} '(t,0), and V(t) =
OsI'(t, 5)|s=0, we have

1 1
0l(L(+,8))],z0 = / mvk |:§gij7k’)/l’7] — Gie V'V —giw’] dt.  (26)
0

Proof. Exercise 2.9 shows that the derivative in question is

L1 (1 o y

/ o [_gij,kvk’YZ'Vj +gmzatV’“] dt. (27)
o 1Y 12

We integrate by parts in the second term to take the 9; away from V*. As ||

is independent of ¢ and V(0) = 0 and V(1) = 0, we find the desired form of

the derivative. O]

If the curve v(t) = I'(¢,0) is to be minimizing within this family, this
derivative should vanish for any variation field V(¢). This inspires us to
define a geodesic to be a constant speed curve which satisfies
S0 — gAY — gad = 0 (28)
In fact, it turns out that solutions to this equation automatically have con-
stant speed; see corollary [£.3]

It is important to read this result the right way. We have shown that a
smooth minimizing curve is a geodesic — which means satisfying the geodesic
equation. We have not shown that minimizers exist or that they are smooth.
That will come much later.

Remark 2.3. In addition to the length functional ¢(y) = [|§| d¢ one can

also study the energy functional E(vy) = 3 [ 14|% dt. Tt has the nice property

that all critical points are constant speed geodesics, so it leads to the geodesic
equation more directly. The reason we do not use it is the lack of a geometric

interpretation as clear as that of length. We will study length at length.

15Notice that the second order derivatives are computed in local coordinates. We do not
yet have proper tools to handle them invariantly. We will later, and the formula simplifies
considerably; see (51)).
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2.6 The Christoffel symbol

The Christoffel symbol is a gadget that looks a bit like a type (1,2) tensor
field — but is not due to the the way it changes with coordinates. It is
defined in local coordinates as

i L
My = 29 Yok + Gk — Gik)- (29)
This symbol will appear often in coordinate formulas. We immediately point
out the symmetry property:

I, = Fikj. (30)

J

FEzercise 2.10. Show that equation (28)) is equivalent with
4T 4* = 0. (31)

This is called the geodesic equation. O

Observe that in Euclidean geometry where g;;(x) is independent of the
base point = the Christoffel symbol vanishes. On more general manifolds its
appearance is inevitable, but it will disappear in an invariant treatment. In
fact, it is what helps make derivatives invariant.

If one does a non-inertial change of coordinates in classical mechanics, one
introduces pseudoforces such as the centrifugal force. The Christoffel symbol
can be seen as a pseudoforce term: a geodesic would continue at constant
speed (§' = 0) without its effect. A typical Riemannian manifold does not
admit “inertial coordinates” and the Christoffel symbol appears. (They can
be made vanish at a single point as in exercise and even along curves.)
We will also find an invariant form of the geodesic equation which in a sense
removes the pseudoforces from the picture.

2.7 The geodesic equation

A solution to the geodesic equation is called a geodesic. It follows from
standard ODE theory that for any x € M and any v € T, M there is a
unique geodesic v: (—¢,e) — M so that v(0) = = and §(0) = v, as in fig-
ure b Existence for long times is not guaranteed unless additional structure
is introduced ™

Exercise 2.11. Use this result:

161f you are interested, look up geodesic completeness and the Hopf-Rinow theorem.
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Figure 5: Given any point = and any vector v at it, there is a unique
geodesic vz .

If F: RY — RY is Lipschitz, then the ODE «/(t) = F(u(t))
has a unique local C' solution for any given initial conditions
u(0) = uy € RV,

Prove the local existence and uniqueness result for the geodesic equation. ()

Exercise 2.12. Consider the quoted ODE result of the previous exercise.
Show that if F' is smooth, so is u. This proves that geodesics are neces-
sarily smooth. O

We stress that we define a geodesic to be a solution to the geodesic equa-
tion. (The equation will have a couple of equivalent forms.) That geodesics
actually minimize length is not entirely trivial, so we shall prove it later.

Existence of minimizers has not been established yet either. The Arzela—
Ascoli theorem can be used to produce a minimizer, but often of very low
regularity. We will use smooth tools instead.

* Important exercise 2.13. Do you have any questions or comments regarding
section 2?7 Was something confusing or unclear? Were there mistakes? Are
there pictures that should be included in this section? O

3 Connections and covariant differentiation

3.1 Connections in general

It is not always obvious what differentiation should mean. For a function
M — R we can assign a differential as a covector (a cotangent vector).
The derivative of a function R — M (a curve) can be treated as a vector
(a tangent vector). These behave well under changes of coordinates, and
indeed these derivatives can be used to define vectors and covectors in the
first place.

Differentiation of vectors does not make sense equally simply. Consider
a vector field W(x). What does it mean for W (z) to stay constant as x
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changes? Each W (x) belongs to T, M, so the underlying space changes. We
need a way to compare tangent vectors on nearby tangent spaces. We will
only compare along curves, not between any pair of points; the comparison
will depend on the choice of curve.

The same issue arises with all kinds of bundles. The analogue of a vector
field or a tensor field on a general bundle is called a section. A consistent
method of differentiating a section of a bundle is called a connection. A
connection for vector fields is called an affine connection.

Definition 3.1. An affine connection V on a manifold M is a bilinear map
that maps a pair (X,Y) of vector fields into a vector field VxY so that the
following conditions hold for any smooth function f: M — R:

® foy = vaY

o Vx(fY)=fVxY + X(f)Y.

These conditions describe the linearity when the vector fields are multi-
plied by a scalar function instead of a single number. (A reader familiar with
more abstract linear algebra may enjoy the observation that vector fields
constitute a module over the ring C*°(M;R) of smooth functions.)

One can read VY as “the derivative of the vector field Y in the direction
of the vector field X”7. If XY : R®” — R"™ are smooth vector fields, the
standard affine connection of Euclidean geometry is given by

(VXYY = XY, (32)

using the usual coordinates of R™.

Ezxercise 3.1. Show that the Euclidean connection defined above is indeed an
affine connection on the space R™. You will see the familiar Leibniz rule take
a new form. O

3.2 The Levi-Civita connection

There are a great many connections on a smooth manifold. The definition
of a connection had nothing to do with a metric tensor. We would of course
like the concept of differentiation to be somehow compatible with the metric.

Before giving a definition of such a good connection, we need to recall the
concept of a commutator. The commutator of two linear operators A and B
is [A,B] = AB — BA. The commutator of two differential operators of
orders k and m is a differential operator of order k+m — 1. In particular, the
commutator of two derivations (first order differential operators) is another
derivation.
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Therefore the commutator of two vector fields is a vector field. One can
define it explicitly as [X,Y]|f = X(Y f) — Y(Xf), where the vector fields
turn scalar fields to scalar fields.

Exercise 3.2. Let X and Y be two vector fields. Show that their commutator
is a vector field with the components

X, Y] = XY, —YIX' (33)

This shows that the commutator as differential operator has only first order
terms and is therefore a vector field. O

Definition 3.2. An affine connection V on a Riemannian manifold (M, g)
is called a symmetric metric connection if

e VxY —VyX =[X,Y] and

o Xg(V,Z)=9g(VxY,Z)+g(Y,VxZ).

The first condition is a Leibniz rule for the inner product; a Leibniz rule
of a different nature was included in the definition of an affine connection.
The point is that although ¢(Y,Z) contains three tensor fields (the metric
tensor and the two vector fields), there are no derivatives of the metric tensor
in the formula. We will see in a moment that indeed the covariant derivative
of the metric tensor is zero.

The second condition has nothing to do with the metric. Instead, it
states that something called the torsion of the connection vanishes. The
torsion measures how the tangent spaces twist as one moves from one base
point to another. A rough heuristic way to see the condition is that we want
the tangent spaces to rotate but not twist.

Every Riemannian manifold has a unique symmetric metric connection’}
and it is called the Levi-Civita connection®l The connection is defined so
that for two vector fields X (z) and Y (x) we have

(VxY)' = X7V + T, X/VF (34)
It is not apparent as we have not bothered with changing coordinates, but VxY

is indeed a valid vector field.

FEzxercise 3.3. Prove that the Levi-Civita connection is an affine connection.
O

Exercise 3.4. Prove that the Levi-Civita connection is a symmetric metric
connection. O

1"We will not prove this theorem.
18This is named after Tullio Levi-Civita, a single person. The connection is therefore
called the “Levi-Civita connection” instead of the “Levi—Civita connection”.

21



Geometry of geodesics

3.3 Covariant differentiation

We would like to be able to differentiate tensor fields of all kinds. We continue
to use V for this purpose, but in the sequel we will rarely need to differentiate
very complicated tensor fields. For any tensor field T of any type (k,[) and
a vector field X, we would like to be able to compute VT, the covariant
derivative of T" in the direction of X. This should all be defined so that V xT'
is also a tensor field of type (k,[) and thus behaves under coordinate changes
as a tensor field should. As V7T is lineal™| in X, we may regard VT as a
tensor field of type (k,1 +1).

Any affine connection gives rise to such a way, as long as we require the
following;:

e On scalar functions the covariant derivative is simply the derivative by

a vector field: Vx f = X f.
e On vector fields we have the original connection.
e Tensor products satisfy the Leibniz rule

Vx(T®R)=VxT®R+T®VxR. (35)

e The covariant derivative commutes with any contraction or trace/””)
The Levi-Civita connection has an additional property that neatly describes
the metric compatibility:

Vg =0. (36)

That is, the concept of differentiation is defined so that the metric tensor g
is “constant”. (A more appropriate technical term is “parallel”.)

The interpretation that the metric tensor is “constant” should not be
taken too literally. It only concerns covariant differentiation. There is some
genuine variation in the metric that cannot be erased by a clever choice of
connection, and that is captured by the concept(s) of curvature.

The covariant derivative of a scalar field f in the direction of a vector
field X is Vxf = Xf = df(X). Therefore, if we think of the covariant
derivative V f as a tensor field of type (0,1), we find that Vf = df. We
mentioned in section that the gradient of a function f can be defined as
the vector field (df)* corresponding to the covector field df. The gradient
vector field is usually denoted by V f. This is confusing with the covariant
derivative, but fortunately the musical isomorphisms send the two objects

19 Although linearity at a point is more tangible, in some sense the more correct concept
of linearity is that over the ring C°°(M) of smooth functions. Tensor fields of any given
type constitute a module over this ring. In this view, VxT is not linear in T'. It depends
not only on the value of T' but also its derivatives at a point.

20We have not introduced this concept nor will we use it explicitly. This statement is
here for completeness.
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denoted by V f to each other in a canonical way. We shall denote the dif-
ferential (and therefore the covariant derivative) of a scalar function by df,
although some more consistency with other covariant derivatives would be
achieved by different notation.

To get all of this on a more concrete footing, let us see how to covariantly
differentiate a tensor field given in terms of components in some local coor-
dinates. For a vector field Y we have directly the formula of the Levi-Civita
connection:

(VxY)' = X/Y, + T, X/VF (37)
* Important exercise 3.5. The coordinate vector fields 0; are of course valid

vector fields within their coordinate patch. What is da'(Vg,0;)? Describe in
words what it means and give a formula. O

We would then like to find a similar expression for (V x«); for a covector

field a.

FEzercise 3.6. Starting with the covariant derivative of a vector field and the
Leibniz rule
X(aY))=(Vxa)(Y)+ a(VxY) (38)

(which follows from the tensor product rule and the trace rule stipulated
above), show that A _
(Vxa); = Xa;; — 1V, X*a;. (39)

This is the covariant differentiation rule of covector fields. O

A tensor field of any type can be differentiated in a similar fashion. For
every upper index we add a term like we had for vectors and for all lower
indices we add a term like for covectors. For example, the covariant derivative
of a type (1,1) tensor a is given by

(Vxa); = X*al , + Iyl X =T ap X", (40)

* Important exercise 3.7. What is the coordinate expression for Vg for a
type (0, 2)-tensor g7 O
Exercise 3.8. Show directly using the formula of the previous exercise that
Vxg = 0 when g is the metric tensor. O

Remark 3.3. When plugging in indices, remember what type of object every-
thing is. For example, a vector field X has coordinates X*. Expressions like
X% or X; are nonsensical, as this type of object has only one index slot and
it is up. Coordinate derivatives can add indices, but only in one way: after
a comma and in the subindex. Expressions like X*; and X°* . are valid.
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3.4 On notation

There are various different notations in use in differential geometry. Different
conventions are convenient in different situations, and the different ways to
express the same thing offer new points of view.

For example, the derivative of a scalar function f: M — R in the direc-
tions of a vector field X on M can be written as

Vxf=X[=df(X)=(V[,X)=(df,X), (41)

where the last inner product is the duality pairing between T, M and T M.
And this list is not exhaustive; for example, in some cases it is convenient to
denote df by f* and call it the pushforward. The same object can also be
expressed in local coordinates as X‘0;f or X'f,.

Componentwise notations also vary somewhat. It is customary to have
all indices “in sequence” whether up or down, so that a gap is left where an
index is in the other place. This means writing, for example, T ngz instead
of TJ’{“ This only really becomes crucial when raising and lowering indices by
the musical isomorphisms (which extends to tensor fields), so this convention
is not always followed.

In Riemannian geometry one can naturally identify tangent vectors with
cotangent vectors using the musical isomorphisms. It is possible to leave the
isomorphisms implicit and just let indices wander around freely. However,
it is instructive to keep track at least of vectors and covectors. There are
situations where a Riemannian metric is not available for music and often
the natural kind of object sits most comfortably in any computation.

We have seen two types of differentiation. The simplest kind is coordinate
differentiation. For example, the coordinate derivative of a vector field V*
would be 9

%Vi(x) =9,V =V, (42)
This is an object with one index up and another down, but it is not a tensor
field of type (1,1) due to the issue of coordinate invariance which we have
kept mysterious.

The covariant derivative of V' in the direction of the vector field Y is Vy V.
Its components are given by ([37). One can write this in local coordinates as

(VyV)' =YV (43)
by introducing the notation
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Figure 6: Three curves and vector fields along them. Where the
curves are nice, the vector fields can be thought of as functions on
the base point. But the curve v, stops at the tip for a bit and the
vector changes, and the curve 3 intersects itself; both situations
forbid the vector field from depending only on the base point. This
is why a vector field along a curve must be a function of time, not of
point.

These are precisely the components of the (1,1)-type tensor field VV. The
comma is used for coordinate differentiation and semicolon for covariant dif-
ferentiation.

The Christoffel symbols are used as correction terms to make differenti-
ation behave well.

* Important exercise 3.9. Do you have any questions or comments regarding
section 37 Was something confusing or unclear? Were there mistakes? Are
there pictures that should be included in this section? O

4 Fields along a curve

4.1 Vector fields along a curve

Let v: I — M be a smooth curve defined on an interval I C R. We would
like to give a natural space for the velocity vector 4(¢) to live in. Each (t)
is in T’ )M, but this is not a vector field as previously described. It is only
defined on a subset of the manifold, namely the trace y(I). And what if the
curve intersects itself or even stops as in figure [6]?

We deﬁnﬂ a vector field along the curve v to be a smooth map V': I —
TM that satisfies V(t) € T)M for all t € I. There are two important
examples:

e j(t) is a vector field along .

21f one enjoys such language, one should think of vector fields along 7 as sections of the
pullback bundle v*T'M. All kinds of tensor fields live along a curve in a similar fashion.
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o If VV is a vector field on M, then V(v(t)) is a vector field along ~.
If ¥ # 0, then at least locally any vector field along v can be extended to
its neighborhood and considered like the second example. But it is best to
treat objects so that they require no artificial extensions; a vector field along
a curve should only exist on the curve.

It is probably worth pointing out that a vector field along a curve need
not point along the curve. It only has to be defined at all points on the curve
— or rather at all values of parameters defining the curve.

4.2 Covariant differentiation along a curve

In local coordinates we define the covariant derivative D,V () of V' (t) along ~(t)
with respect to t to be

(D V(1) = V*(t) + T VI ()34 (0). (45)

This is a derivative with respect to the time parameter t, but as before, a
naive coordinate derivative is invalid.

FExercise 4.1. Suppose that ~ is the integral curve of a vector field X on M.
This means that §(t) = X (y(¢)) for all ¢. (We will return to integral curves
in section [L1.1]) Let V be any vector field on M. Show thatf?

D,V = VxV. (46)

Where does this equation make sense? O

The velocity of a curve v is 7. Its natural time derivative is D;7¥, the
“covariant acceleration”. In Euclidean geometry it makes sense to say that
a curve is straight if its acceleration vanishes. We can now do the same: we
can say that a curve is straight when D, (t) = 0 for all ¢.

* Important exercise 4.2. Show that a smooth curve v is straight if and only
if it is a geodesic. O

We have found a familiar fact: The shortest curves are straight. But,
unlike in Euclidean geometry, a straight curve is not necessarily the shortest
one between its endpoints.

We have found yet another form of the geodesic equation, this time an
invariant one:

D(t) = 0. (47)

Compare this to the previous versions and .

22We defined covariant differentiation along a curve so that this holds. There is only
one definition that makes this work.
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The first derivative of the curve 7 is often denoted by 7. Sometimes it
is good to write it as 0yy for clarity. And as before, we can define covariant
differentiation of the simplest objects to agree with the usual derivative, so
that we may well write

4 =0y = Dyy. (48)

This is only a matter of notation, but its benefit will come clear soon. The
geodesic equation gets yet another form:

D?y = 0. (49)

This version is both neat and useful. We will see it soon in section [B] when
studying Jacobi fields.

The covariant derivative along a curve is also compatible with the metric
as one might expect. The following two rules establish the natural Leibniz
rules for vector fields V' and W and a scalar field f along 7. (A scalar field
along a curve is simply a real-valued function defined on the interval where
the curve is parametrized.) The time derivative of a scalar f could be written
as Dy f as well, but 0, f highlights that we are only differentiating a number.

FEzercise 4.3. Show that D(fV) = (0,f)V + fD,V. O
FEzercise 4.4. Show that 9, (V,W) = (D,V, W) + (V, D,W). O

4.3 Parallel transport

Definition 4.1. A vector field V along a curve + is said to be parallel if
D,V =0.

A parallel vector field is the closest we can get to a constant vector field.
Any vector at any point along a curve can be parallel transported along it.

Ezercise 4.5. Let v: I — M be a curve. Given any tg € I and V € T)4,) M,
show that there is a unique parallel vector field V' along v with V (ty) = Vb.

This is what it means to parallel transport 1} from a single tangent space
along the curve. O

Beware that parallel transport happens along a curve, not just between
two points. Even if a curve intersects itself, parallel transport around a
loop rarely preserves the vector as depicted in figure [/l But it does preserve
something:

Proposition 4.2. IfV and W are parallel vector fields along a curve v, then
their inner product (V, W) is constant. In particular, a parallel vector field
has constant norm.
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X v ()

=~

Y V(o)
V(T)

Figure 7: A vector v(0) at a point = = ~(0) is parallel transported
along the curve . The curve loops back to the point x at time 7" but
the parallel transported field v(7') is different from the original. Such
a rotation induced by parallel transport around a loop is known as
holonomy.

Proof. As D,V = D,W = 0, exercise implies that 0, (VW) = 0. The
second claim is found by letting V' = W. [

Corollary 4.3. A geodesic has constant speed.

Remark 4.4. When we did our calculus of variations to find the geodesic
equation, we required that || is constant. It should therefore be no sur-
prise that a solution to the equation has constant speed. If we are free to
reparametrize as we like, geodesics will certainly not be unique anymore. If
we drop constant speed parametrization, we can describe geodesics to be
those smooth curves v: I — M for which #(t) # 0 and Dy%(t) = f(t)7(t) for
some smooth function f: I — R. This can be interpreted so that the accel-
eration of the curve must be along the curve. This is similar to describing
Euclidean geodesics as y(t) = = + h(t)v for a function h with non-vanishing
derivative; in its case f(t) = h"(t)/H(t).

We have found that a minimizing curve must be a geodesic. Now we
know that geodesics are as straight as a curve on a Riemannian manifold can
be and that they have constant speed@ What we have not discovered yet
is whether a geodesic is always minimizing and whether one always exists
between any two points. We will prove these statements later, but only
locally as they are not generally globally true.

4.4 Orthonormal bases

The Riemannian metric makes each tangent space T, M into an inner product
space of dimension n. Therefore there is an orthonormal basis ey, ..., e,. As

23 Although the length functional is parametrization independent, we did make use of
constant speed parametrization to find the variation of length.
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Figure 8: At t = 0 we choose an orthonormal basis €1(0), e2(0), e3(0)
for the tangent space at the point x of a three-dimensional manifold.
Parallel transporting these three vectors gives an orthonormal basis at
any point (), and these together constitute an orthonormal parallel
frame. We often choose e3(t) = 4(t) as we have here; this is parallel
if v is a geodesic.

in Euclidean geometry, working within such a basis is convenient.

Now consider a smooth curve v on M. We can take an orthonormal basis
in the tangent space at any point and then parallel transport each@ eq along
the curve. This gives rise to vector fields e, (t) along ~.

Such a collection of vectors is called an orthonormal parallel frame along .
It provides a consistent basis throughout the curve. By proposition the
vectors eq(t) € T, M are orthonormal for all values of ¢. Figure 8| depicts a
frame along a geodesic.

It is common to choose one of the basis vectors to be #(t) itself. It is
indeed parallel and has unit length if v is a unit speed geodesic. However,
for a general curve 7 is not parallel.

In a parallel frame computations appear more Euclidean.

FEzercise 4.6. Any vector field V (¢) along 7 can be expressed in the orthonor-
mal parallel frame as

V()= Valt)ealt). (50)

Show that V' is parallel if and only if each V,(t) is constant. What is the
norm of V(t)? O

Parallel frames exist along curves, but not on the whole manifold. It is
extremely rare that there would be even one non-zero vector field in a small
open subset of the manifold which would be parallel along all curves.

24The index of e, is not a coordinate index, so we try to reduce confusion by using a
different kind of letter.
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Exercise 4.7. Euclidean geometry is far more rigid than general Riemannian
geometry. Give an example of a non-zero vector field on R™ which is parallel
transported along any curve.

Are there n such vectors that could make an orthonormal frame?

Using local coordinates on any Riemannian manifold M makes U C M
look Euclidean. You can then choose a parallel field of this kind in the local
coordinates. Why is it not a parallel field defined in U C M? O

Given a basis of a vector space, there is a corresponding dual basis on the
dual space. The dual basis of an orthonormal parallel frame is an orthonormal
parallel coframe. The same properties of preserved inner products hold with
the dual inner product on 7M.

4.5 The variation field of a family of geodesics

We used a family of curves when we studied variations of length. Let us return
to studying such a family T'(¢, s). Such a family appeared in proposition
The proposition can be rephrased using our new tools:

LetT': [0,1]x(—¢,e) — M be a smooth map for which I'(0, s) = p
and I'(1,s) = ¢ for all s. Denote v(t) = I['(¢,0) and V() =
0sI'(¢,0). Then

Oul(T(+,))]oco = — / @W,w a5

In this form it is more transparent that the geodesic equation is D,% = 0.

Exercise 4.8. Let us explain the negative sign in . Suppose 7 is a unit
speed curve in R2. Draw a picture of a non-geodesic curve « in the plane and
draw a nearby shorter curve with the same endpoints. Draw the variation
field V and the second derivative 4 in a couple of points along the curve.
Explain the negative sign in the formula based on this example. O

The concept of a variation field, depicted in figure [9] already appeared
when we minimized length in section [2.5] but we now define it for concrete-
ness, as it will keep reappearing.

Definition 4.5. The variation field V (¢) of a family of curves I'(¢, s) is de-
fined by V (t) = 0sI'(¢, s)|s=0. It is a vector field along ~(t) = I'(¢,0).

Previously the curves I'( -, s) could be anything. Let us now assume that
every one of them is a geodesic. We have in fact already used the vector
field V(t) = 0sI'(t, s)|s=o in our variational calculations. This is a vector
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f gl

Figure 9: A family of curves joining the points p and ¢ and the
corresponding variation field, a vector field along the reference curve.
In this family all curves have the same end points, but other families
may behave differently in that respect.

field along the reference geodesic v = I'(-,0). This field describes first order
variations of the curve family, and it is far simpler to study the behaviour of
this variation vector field than the whole family of geodesics.

The variation field may be extended to all geodesics in the family by
letting V' (t,s) = 0s['(t,s). In fact, this is the velocity vector field of the
curve I'(¢, - ), where now ¢ is fixed. It is important to be able to differentiate
with respect to both variables ¢ and s — also covariantly.

Of course one can study variations of any curve family, but more struc-
ture emerges when one studies a family of geodesics. Comparison of nearby
geodesics is not trivial; geodesics that start nearby can diverge and later con-
verge and maybe even intersect. Nothing similar can happen in Euclidean
geometry.

* Important exercise 4.9. Do you have any questions or comments regarding
section 47 Was something confusing or unclear? Were there mistakes? Are
there pictures that should be included in this section? O

5 Jacobi fields

5.1 Commutators of covariant derivatives

Consider two vector fields X and Y and a scalar field f on M. One can
differentiate f with X and Y in two different orders. Their difference is
XY f—-YXf=[X,Y]f. Thisis the commutator of two vector fields, and it
is another vector field; see exercise [3.2]

Consider then three vector fields X,Y,Z on M. Again, one can differ-
entiate Z covariantly with X and Y in the two directions. The difference
between the two orders is

[Vx,VylZ. (52)
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Ezercise 5.1. Return to the Euclidean connection of exercise [3.1] (This is
the Levi-Civita connection of R" as a Riemannian manifold.) Show that

Vx,Vy|Z =VixyZ. (53)

This is exactly what we had for scalar fields on a general Riemannian mani-
fold. O
Based on this observation we should ask on a general manifold: What is
Vx,Vy]|Z = VixyZ? (54)

Proposition 5.1. There is a smooth tensor field R of typﬁ (1,3) for which
R(X,)Y,Z) =[Vx,Vy]Z = Vixy|Z. (55)

This tensor is often denoted as R(X,Y')Z instead so that R(X,Y’) is seen
as a linear map T,M — T,M. A tensor field often admits many different
ways to view it. This tensor is called the Riemann curvature tensoi™}

Proof of proposition[5.1. Tt is clear that R(X,Y)Z as given by the formula
is linear in the three vector fields. What is not trivial is that it does not
depend on any derivatives but only on the values of the three vector fields
at a point. This can be verified by calculation. O

Ezercise 5.2. Find a local coordinate expression for [Vx, Vy|Z —Vxy)Z. If
the ith component of the vector R(X,Y)Z is RijleijZl, find an expression
for the components R';, of the Riemann curvature tensor. Second order
derivatives of the metric should appear. You may also choose to use first
order derivatives of Christoffel symbols. O

We will need analogous results for vector fields along curves. First let
I': [0,1]x(—¢,e) = M be any smooth map. We have the natural vector fields
0, and 0" and they are well defined for any values of the two parameters.

Lemma 5.2. The covariant derivatives of I' satisfy the commutator relation-
ship
Dt85F - DsatF. (56)

Exercise 5.3. Prove the lemma. O

Lemma 5.3. If V(t,s) is any smooth vector field depending on the two pa-
rameters so that V (t,s) € Ty, M, then

[D,, D]V = R(,I', ,D)V. (57)

The proof of this lemma is a computation similar to that of exercise [5.2

25 A multilinear map T, M x T, M x T, M x T,,M — R can also be seen as a multilinear
map T, M x T, M x T,M — T, M. We take this interpretation here.

26Much more could be said about the meaning of curvature than is said in these notes.
That would be a detour for our purposes.
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5.2 Jacobi fields

As mentioned in section [4.5] we will study variation fields of families of
geodesics. It is important that all the curves are geodesics; otherwise there
1s no structure.

FExercise 5.4. Show that for any vector field V along a curve v there is a
family of curves I'( -, s) so that the variation field of section is V. Feel
free to work in a single coordinate patch if it helps*] O

When the family consists of geodesics, the variation field has special prop-
erties. It will be what we shall call a Jacobi field. We will first define it and
then see that it behaves as it should.

Ezercise 5.5. A Euclidean geodesic is of the form v, ,(t) = x+tv, parametrized
by z,v € R™. Find all the possible variation fields along a Euclidean geodesic
when all curves in the family are geodesics. For any geodesic there should
be a 2n-dimensional space of such fields along it. O

Definition 5.4. The curvature operator along a geodesic 7 is the linear map
Ty(t)M — Tw(t)M given by

RV = R(V.4)3. (58)

This is in fact a (1,1)-tensor along the geodesic; such concepts can be
defined by analogy to our definition of a vector field along a curve.

Lemma 5.5. We always have (7, R,V) = 0.

Proof. This follows from a symmetry property of the Riemann curvature
tensor, namely (W, R(X,Y)Z) = —(Z, R(X,Y)W). O

Lemma 5.6. The curvature operator along a geodesic from definition 18
symmetric: (V, R,W) = (R,V,W).

Proof. This follows from a symmetry property of the Riemann curvature
tensor, namely (W, R(X,Y)Z) = (X, R(W,2)Y). O

The operator R, is symmetric, the operator R(X,Y) is antisymmetric.

Definition 5.7. Let v be a geodesic. A vector field J along v is called a
Jacobi field if it satisfies the Jacobi equation

D}J+ R,J =0. (59)

2"You have this liberty throughout the course.
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Figure 10: When an end point of a geodesic v defined on an open
interval falls just off the manifold (drawn with dotted boundary), a
Jacobi field J might not have a corresponding family of geodesics. A
neighboring geodesic ~, will necessarily fall off the manifold for some
amount of time for some sign of s unless 7y is normal to the boundary.

FExercise 5.6. Explain why a Jacobi field exists uniquely for all times, given J
and D;J at one time. O

Theorem 5.8. The variation field of a family of geodesics is a Jacobi field.
Conversely, for every Jacobi field there is a family of geodesics whose varia-

tion field is the Jacobi field.

Remark 5.9. Tt is actually important for theorem [5.8|that a family of geodesics
is a function [0,1] x (—&,e) — M, not (0,1) x (—¢,e) — M. The open in-
tervals are harmless if the limit points still belong to the manifold, which
is always true on a geodesically complete manifold. If an endpoint is just
outside the manifold, the family of geodesics might fail to exist as some of
the geodesics can be forced to “fall off the manifold” as in figure |10l Feel free
to assume geodesic completeness in this course when technical issues seem
to arise.

* Important exercise 5.7. Prove the first half of the theorem as follows: The
fact that each T'(-,s) is a geodesic can be rewritten as D?T' = 0. Take D,
of this equation and commute the derivatives using lemmas and
Evaluate at s = 0 to get a vector field along v =T'(-,0). O

Ezercise 5.8. To prove the second half, proceed as follows: You are given a
Jacobi field J(t) along a geodesic y(t), and you must find a family I'(¢, s)
with the correct variation field. Let a be a short curve on M satisfying
a(0) = v(0) and a(0) = J(0). Argue why such an a exists. Let b(s) be any
vector field along a(s) so that Dsb(s)|s—0 = D;J(0) and b(0) = 4(0). Argue
why such a b exists. Now let I'( -, s) be the geodesic starting at a(s) in the
direction b(s). (Smoothness of I' follows from smoothness of the geodesic
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Figure 11: Construction of a family of geodesics I'(¢, s) used in exer-
cise [5.8, Through the initial point there are two curves, the reference
geodesic y(t) and the new curve a(s). Along that new curve we have
a vector field b(s) which we use as the initial data for the family of
geodesics (drawn dotted).

flow, to be established later.) Let V' be the variation field of this family. Use
exercise [5.6] to argue that J = V. This procedure is illustrated in figure

O

5.3 Parallel and normal Jacobi fields

Let v be a geodesic throughout this subsection. There are some special
Jacobi fields, and we should understand them and the corresponding families
of geodesics.

Reparametrization of geodesics produces more geodesics. Consider the
family T'(¢,s) = vy(as + (1 + bs)t). The parameter a describes the shift in
the parametrization and b describes the change in speed. Every geodesic has
constant speed, but that speed can vary with s. The corresponding Jacobi
field is

J(t) = (a+ bt)¥(t). (60)

Let us also verify using the Jacobi equation that this is indeed a Jacobi field.

It follows from lemma that R(%,\y) = 0 for any A € R. Therefore
R4 = 0. The geodesic equation is D;y = 0, and so D?(a+ bt)7(t) = 0. Thus
the Jacobi equation is satisfied.

Jacobi fields of this form are called parallel Jacobi fields. They are some-
what uninteresting, as they reveal nothing about the behaviour of other
geodesics than -~ itself.

For a general Jacobi field the inner product (¥, J) measures heuristically
how much the varied geodesic gets ahead of (¢). This inner product has a
very rigid behaviour:

* Important exercise 5.9. Let J be a Jacobi field along a geodesic . Show
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Figure 12: A vector field along a curve ~ split orthogonally into
parallel and normal components. Both components are vector fields
along the curve. It is a special feature of the Jacobi equation that
both components of a solution are solutions. That is, the parallel and
normal components of the Jacobi equation decouple.

that?®

(7(8), J(8)) = (¥(0), J(0)) + £ (7(0), D;J (0)) . (61)
The easiest way to do this is to compute the second time derivative of the
inner product. O

Thus if both J and D;J are normal to 7 at some point, then they both
remain normal at all times. Such Jacobi fields are called normal Jacobi fields.
The parallel component of a Jacobi field is

Tp(t) = 3172 (3(8), J(£)) 7(2)
= 4172 (3(0), J(0)) 4(t) +t [4] 7% (7(0), Dy J(0)) ().

This is indeed a Jacobi field as verified above, and it is clearly parallel to ~
at all times. The normal component is

(62)

Ju(t) = J() = Jp(t). (63)

Exerciseshows that the Jacobi fields J and J, have the same inner product
against 4 at all times. Therefore J,,(¢) is indeed normal to 4. As the Jacobi
equation is linear, J,, is a Jacobi field.

Figure |[12[shows a vector field along a curve split into parallel and normal
components. It is not generally true that if a vector field satisfies an equation,
then its parallel and normal components will as well. This is a special feature
of the Jacobi equation.

The parallel component of a Jacobi field describes how the parametriza-
tion of the family of geodesics varies. The normal component describes how

28Using t = 0 as the reference time is unimportant but convenient.
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the geodesics as unparametrized curves or sets vary. If a family of geodesics is
reparametrized so that every geodesic has unit speed, then (¥, J) is constant.
The parameters can then be shifted to make this inner product vanish, mak-
ing the corresponding Jacobi field normal. Therefore it is often reasonable
to restrict one’s attention to only normal Jacobi fields, as they describe the
“true variations” of geodesics.

5.4 Spaces of constant curvature

Let us then take a brief look at Jacobi fields in some example spaces.

A space of constant (sectional) curvature k looks locally like a Euclidean
space (k = 0), a hyperbolic space (k < 0), or a sphere (k > 0). On such
manifolds the curvature operator along a geodesic is given by

RV = k(' V = (V,4)4). (64)

The Jacobi equation for a normal Jacobi field along a unit speed geodesic
becomes

D?J 4+ kJ = 0. (65)
As k is just a constant, this can be solved explicitly.
Let e1,...,e,_1,7 be an orthonormal parallel frame along v. We can

write our normal Jacobi field as

i
L

J(t> - Ja(t)ea(t>‘ (66)

1

Q
I

As Die, = 0 and the frame is linearly independent at each point, we get the
equation

Ja(t) +kJa(t) = 0. (67)

This is a constant coefficient ODE for a scalar function and can be solved
explicitly:

asin(vkt) + beos(vVkt) when k> 0,
Jo(t) =< at+b when k =0, (68)
aeV =kt 4 pe=V-kt when k& < 0.

The parameters a,b € R can of course be different for different indices a.

The flat case (k = 0) should be familiar from exercise[5.5] In positive cur-
vature the Jacobi fields oscillate; consider variations of great circles on S?. In
negative curvature the behaviour is exponential; unless very carefully aimed,
a Jacobi field grows exponentially when ¢t — 4-o00.
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The basic message is valid even when curvature is not constant: In nega-
tive curvature nearby geodesics diverge, in positive curvature they converge.
If you want details, look up the Toponogov theorem and the Rauch compar-
ison theorem.

* Important exercise 5.10. Do you have any questions or comments regarding
section 57 Was something confusing or unclear? Were there mistakes? Are
there pictures that should be included in this section? O

6 The exponential map

In this section we will study all geodesics starting from a single point and
collect all of them into a single object.

6.1 Definitions

It x € M and v € T, M, we denote by +,, the unique maximal@ geodesic for
which v, ,(0) = z and 4,,(0) = v. Exercise provides the existence and
uniqueness of such geodesics.

We would like to define the exponential map at z to be exp,.: T, M — M,

exp, (V) = Vaw(1). (69)

This can be interpreted geometrically as a “radial wrapping” of the tangent
space over the manifold, as illustrated in figure [13]

However, this does not necessarily make sense, as geodesics might not be
defined all the way up to time ¢ = 1. The definition is sensible as given if all
geodesics through x can be parametrized by the whole R. In other cases it
needs to be defined on a subset of T, M as a small enough neighborhood of
0 € T, M will be mapped nicely to points near x.

A calculation verifies the scaling law v, x, () = 72,(At) for any A € R for
which everything is defined. Therefore when v € T, M is not zero, we can
write exp,(v) = Vzu/0/(|v]). That is, the norm of the tangent vector gives
the travel time along the corresponding unit speed geodesic.

As we can think of T, M as R™ upon fixing a basis, it makes sense to ask
whether the exponential map is smooth. It is.

Exercise 6.1. Smoothness of the exponential map boils down to a general
smoothness result for ODEs (see e.g. [1]):

29Defined on as long an interval as possible, containing zero.
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Y &

Figure 13: Left: The exponential map at a point =z € S' maps
the tangent space at x by wrapping it around the manifold without
any stretching. Right: The exponential map at a point = € 5?
maps the tangent space at x by wrapping it around the manifold.
A radius emanating from the origin of the tangent space is mapped
without stretching as a geodesic on the manifold. In general: The
exponential map may be seen as a radial wrap, akin to gluing a
sticker on a curved surface and allowing tears and wrinkles in other
directiosn but not radially. If we run out of manifold to wrap over,
then the manifold is not geodesically complete and the exponential
map is not defined on the whole tangent space.

Suppose F: RY — R is smooth. Let u(v,t) be defined on some
open set Q C RY x R so that u(v, ) solves the ODE du(v,t) =
F(u(v,t)) and u(v,0) = v. Then w is smooth in €.

Use this to prove that the exponential map is smooth where it is defined.
(Existence and uniqueness of u was proven in exercise [2.11} Smoothness in
time was proven in exercise but this is not enough.) O

There are different versions of the exponential map defined on different
spaces. The most immediate example is exp: TM — M defined by exp(v) =
exp,(v) when v € T, M.

* Important exercise 6.2. Describe all unit speed geodesics through x € M
using the exponential map. O

Ezercise 6.3. What is the exponential map of the Euclidean space R™ at a
point x € R"? O

FExercise 6.4. On the smooth manifold R or a subset thereof a Riemannian
metric is just a smooth function g = g11: R — (0, 00). The geodesic equation
is 3(t) + 39" (7(1))g~ (v(1))3(t)* = 0.

Consider the metric g(z) = 72 on the manifold M = (0,00). What is
the exponential map exp,: Ty M — M? O
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6.2 Normal coordinates

Let us fix x € M. We have learned that there is a neighborhood Q2 C T, M
of the origin so that exp,: 2 — M is well defined and smooth. Since it can
be differentiated, let us do so.

In general, the differential of a smooth map f: N — M at y € N is a
map df(y): T,N — Ty, M. Using curves, it can be seen as the unique map
for which any smooth curve on N with v(0) = y satisfies O(f(7(t))]i=0 =
df(y)7(0). The curve-based definition is convenient as we may choose any
curve with the correct 4(0).

Exercise 6.5. Given a smooth map f: R™ — R" and a point y € R™, show
that there exists a unique matrix A for which 0;(f(7(t))|t=0 = A¥(0) for any
smooth curve v with v(0) = y. What is this A? O

The differential of the exponential map at the origin should be a map
dexp,(0): To(T, M) — T,M. But as T, M is just a vector space (isometric
to R™), we can naturally identify To(7T, M) = T, M.

Lemma 6.1. The differential dexp,(0): T,M — T,M of the exponential
map s the identity map.

Proof. We use the curve definition of the differential. Let v € T,M be any
vector. We need a curve v: (—¢,e) — T, M with v(0) = 0 and %(0) = v. We
choose 7(t) = tv.

Then we need to know what o(t) := exp,(7y(t)) is, because dexp,(0)v =
7(0). The relationship between the curve v on the tangent space and ¢ on
the manifold is captured by the following commutative diagram:

—£,¢)

(
/ \: (70)
.M s M

exp,

Now o(t) = exp,(tv) = Yow(l) = vu.(t). That is, o coincides with the
geodesic 7, ,. This geodesic satisfies 4,,(0) =v € T, M, so ¢(0) = v.
We have thus found that dexp,(0)v = v. O

The exponential map maps radial lines in T, M into geodesics of M. This
is not generally true of lines that do not meet the origin.

* Important exercise 6.6. Show that there is a neighborhood 2 C T, M of
the origin and a neighborhood U C M of x so that exp,: Q@ — U is a
diffeomorphism. O
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If the inverse of the restricted exp, of the exercise is called ¢: U —
Q and T, M is identified with R™ using an orthonormal basis, we have a
diffeomorphism ¢: U — ¢(U) C R". In light of remark this means
that ¢ is a coordinate chart. These coordinates are called the geodesic normal
coordinates or Gaussian normal coordinates or just normal coordinates at x.

Ezercise 6.7. Given a point x on a Riemannian manifold, how unique are the
normal coordinates at it? O

Exercise 6.8. Study the geodesic equation in the normal coordinates
at x. Consider a geodesic passing through z with velocity v € T, M. Show
that I, v/v* = 0 at 2. Use this information to conclude that I';, = 0 at .

In terms of the pseudoforce description of Christoffel symbols, this means
that the system of coordinates can be chosen to be inertial (no Christof-
fel symbol, no pseudoforce) at a single point. The normal coordinates do
precisely this, but the symbol cannot be typically made vanish in an open

set. Q

6.3 Differential of the exponential map

We saw in lemma that the differential of the exponential map exp, is the
identity map on T, M. But it is smooth everywhere, so what is the derivative
elsewhere?

Consider 0 # v € T, M so that exp,(v) is defined. We would like to
differentiate exp, at v in the direction of any w € T, M. Therefore we study
exp, (v + sw) for some parameter s € (—¢,¢).

This gives rise to a family of geodesics defined by I'(¢, s) = exp, (t(v+sw)).
The derivative of exp, at v in the direction w is

dexp,(v)w = 05 exp, (v + sw) = 5I'(1, $)|s=o0- (71)

Let us denote J,(t) = 0,I'(¢,0). This is a Jacobi field along ~v,,. The
derivative is the value of this Jacobi field at ¢t = 1.

Exercise 6.9. Let us find the initial conditions of the Jacobi field. Verify that
['0,s) = x and 0,I'(¢, s)|t=0 = v + sw for all s. Show that J,(0) = 0 and
Dy J,(0) = w. O

We have found that d exp,(v) maps a vector w into the value of a Jacobi
field along the geodesic 7, , at ¢ = 1 with initial conditions .J,(0) = 0 and
D J,,(0) = w. One can therefore reasonably say that Jacobi fields vanishing
at = are the derivative of exp,.

Ezercise 6.10. This description is in fact valid for v = 0 as well — a constant
curve is a geodesic. Use this description in terms of Jacobi fields to find the
differential of the exponential map at the origin. O
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The derivatives have an orthogonality property named after Gauss:

Theorem 6.2 (The Gauss lemma). Take any v,w € T, M so that exp,(v)
1s defined. Then

(dexp,(v)v,dexp, (v)w) = (v,w) . (72)

Observe that the first inner product is on Teyp, ()M and the second one
on T, M. Also notice that one of the two compared vectors has to be the
direction of the corresponding geodesic.

Proof. The differential of the exponential is given by Jacobi fields. We have
dexp,(v)v = Ji(1) for the Jacobi field .J; along ., with the initial conditions
J1(0) = 0 and D;J;(0) = v. But this Jacobi field is just Ji(t) = t¥,.,(t).
(Recall that this is a Jacobi field with the correct initial condition and that
solutions to the Jacobi equation are unique.) Therefore d exp, (v)v = ;. (1).

Similarly, dexp,(v)w = Jy(1) for the Jacobi field Jo along 7., with the
initial conditions J2(0) = 0 and D;.J5(0) = w. Exercise |5.9| gives

(dexp,(v)v, dexp, (v)w) = (Ya(1), J2(1)) = (v, J2(0)) + 1 {v, De.J5(0)) .
(73)
Using the initial conditions of J, gives the claim. O

There is a more geometric version of the lemma, but that requires some
setting up. We will do that next and conclude the section with the other
version.

Remark 6.3. Take any non-zero v € T,M and denote the corresponding
unit vector by o = v/ |v|. We can complete {0} into an orthonormal basis
{e1,e9,... 61,6, = 0} of T,M. When we parallel transport these vectors
along v, ,, we get an orthonormal parallel frame along this geodesic. The
differential dexp,(v) of the exponential maps from T )M to T,  yM.
Our frame gives a basis for both spaces. Therefore in this frame we can
write d exp,(v) as a matrix. Let us write it in block form, separating the last
component from the n — 1 first ones:

dexp, (v) = ( 4 Z) , (74)

where A is an (n—1) x (n—1) matrix, b and ¢ are column vectors of dimension
n—1,and d € R.

Exercise 6.11. Use the results obtained so far to argue that
e b=0,
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o d= |U|’
e c=0, and
e A is given by values of normal Jacobi fields along ,, that vanish at

t=0.
No new proofs should be required here, just recollection and perhaps recon-
textualization of what has already been done. O

6.4 Submanifolds

When it comes to submanifolds, geometric intuition serves well for basic
concepts and we will not need to go much beyond that. We need to formalize
a couple of concepts, but we will not attempt to build a complete theory or
give all the details.

A subset N C M is submanifold of dimension k& < n if near any point
x € M in local coordinates it is a smooth k-dimensional surface in R™ in the
usual sense. A k-dimensional surface > C R"™ can be defined, for example,
as the image of a smooth map Q — R” from an open Q C R* with an
everywhere injective differential. An alternative way is to require that X is a
level set of a function of a smooth function R® — R"~* with an everywhere
surjective differential. These definitions can be rephrased to work directly
on manifolds as well, being careful to work locally.

An important property is that a k-dimensional submanifold N C M is
also a manifold in its own right. It also inherits a Riemannian structure from
the ambient space M.

For any x € N C M the tangent space of N is a subspace of the tangent
space of M. That is, T, N C T, M. There is a curve-based way to define this
linear subspace: T,V consists of the velocities §(0) of curves v: I —- N C M
for which v(0) = x. That is, T, N consists of velocities of of curves staying
in N.

A vector v € T, M is said to be normal to a submanifold N C M contain-
ing x if (v,w) = 0 for all w € T, N. A basic argument in linear algebra shows
that if N has dimension n — 1, then there is a unique unit normal vector
to N at x up to sign. One can locally define a smooth normal vector field
on N. We can say that a curve v meets N orthogonally if at the intersection
point 7 is normal to V.

6.5 Spheres

The geodesic sphere of radius r» > 0 centered at x € M is the set

{exp,(v);v € T, M, |v| =r}. (75)
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Figure 14: A geodesic starting at the center of a geodesic sphere
meets the sphere normally.

This is the image of the sphere S(0,r) C T, M under the exponential map.
The metric sphere of radius » > 0 centered x € M is the set

{y € M;d(x,y) =r}. (76)

This is the set of points at distance r from z.

These surfaces are closely related as we will soon sed®} Notice that the
geodesic sphere is the image of a smooth (n—1)-dimensional surface (a sphere
of the tangent space) under a smooth map. Therefore it is smooth at least
when d exp,, is bijective. This happens at least near the origin by exercise

Theorem 6.4 (The Gauss lemma for spheres; see figure . Suppose that
the geodesic sphere of radius |v| centered at x € M is a smooth submanifold
near exp,(v). Then the geodesic 7, is normal to the geodesic sphere.

Proof. Let us take curves staying on the geodesic sphere. These are best
described as a(t) = exp,(o(t)), where o: (—e,e) — S(0,|v]) C T, M is a
smooth curve with ¢(0) = v. Since o stays on the sphere, we have 0 =
A lo(t)]> = 2 (o(t),5(t)) and so ¢(0) is orthogonal to v. A tangent vector to
the geodesic sphere is then &(0) = dexp,(v)d(0), and by theorem |6.2] this is
orthogonal to 4, ,(1). O

* Important ezxercise 6.12. Do you have any questions or comments regarding
section 67 Was something confusing or unclear? Were there mistakes? Are
there pictures that should be included in this section? O

30For a quick example, consider the sphere S2. The metric and the geodesic sphere are
exactly the same thing when the radius r is at most 7. When r > 7, the metric sphere is
empty but the geodesic one is not.
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S(o, N)) <T, M

Figure 15: A curve v on the tangent space, starting at the origin
(which is the point = through the local identification through the
exponential map) and ending at the sphere of radius |v|. If it loops
back to the origin and exits the ball, it is enough to show that the
relevant segment has at least length |v|.

7 Minimization of length

7.1 Short geodesics minimize length

We are now ready to see why geodesics minimize length. Before stating the
theorem, we will need to recall the length of a geodesic.

* Important exercise 7.1. Show that the length of the geodesic v, ,: [0,1] — M
is |v| whenever the geodesic is defined on the whole interval. O

Theorem 7.1. Letx € M and letr > 0 be such thatexp,: B(0,r) - U C M
is a diffeomorphism. Then for any v € B(0,r) C T, M the distance between
the endpoints of the corresponding geodesic is

d(z, exp,(v)) = |v]. (77)
In fact, vz0|[0,1] s the unique shortest curve between its endpoints.

Proof. The result is clear if v = 0 so we assume v # 0. We will show that
any curve from z to the geodesic sphere of radius |v| centered at x has at
least length |v|. Every curve from z to exp,(v) will have to meet this sphere.
It is enough to show that the segment of the curve until the first intersection
with this sphere has at least length 7.

We may also assume that the curve we compare to does not meet x again
after ¢ = 0. Otherwise we could take the segment from a later intersection
point to get an even shorter curve. The relevant segment is depicted in
figure

That is, we use a segment of the arbitrary curve and show that it has
length r or more, whence the original curve will have at least this length.
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So, let v: [0,1] — B(0,r) C T,M be a smooth curve with (0) = 0 and
|7(1)] = |v|. Then o = exp, oy (cf. diagram ([70))) is a curve on M from x to
the geodesic sphere of radius |v|.

By exercise [7.1] we have |v| = £(7;,][01]). On the other hand,

o] = y(1)]
1
@ [ d
Q / = (o)l de

Justifying each step is an exercise.
Therefore
f(%:,v’[o,u) < €<0—) (79)
Thus the geodesic is indeed a shortest curve.

Let us then show that it is the unique one. If equality holds through-
out (78)), the vectors dexp, (v(¢))v(t) and dexp, (y(t))7(t) must be parallef’]
at all times. By exercise [7.4] this means that () and +(¢) are parallel.

As we assumed that (t) # 0 for ¢ > 0, this implies that v(t) = h(t)w
for some increasing smooth surjection h: [0,1] — [0, 1] and a constant vector
w € T, M with |w| = |v|]. Upon choosing constant speed parametrization —
which does not change length — we have 7(t) = tw.

If o = exp, oy is a shortest path from x to exp,(v), then o must be
of the form o(t) = exp,(tw). To get the end point right, we must have
exp,(w) = exp,(v). The exponential map is diffeomorphic in the set we are
in, so w = w.

Thus any minimizing curve between the same endpoints must indeed
coincide with our geodesic up to reparamterization. O

31This does not refer to parallel transport here, but to one vector being a scalar multiple
of the other.
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Exercise 7.2. Let us revisit the topological argument used in the proof. We
only wanted to work within the ball B(0, ), so we argued that any curve not
staying within it will have to meet the sphere.

Let v: [0,1] — R™ be continuous with 7(0) = 0 and |y(1)] > 1. Show
that |y(t)| = 1 for some t € (0, 1). O

FExercise 7.3. Justify the named steps in . O

Exercise 7.4. Assume that dexp,(v) is bijectivd’?] Show using the Gauss
lemma that dexp,(v)v and dexp,(v)w are parallel (so that one is a scalar
multiple of the other) if and only if v and w are parallel. O

* Important exercise 7.5. Show that every point x € M has a neighborhood U
so that for any y € U there is a unique shortest curve between x and y and
it is a geodesic. O

Ezercise 7.6. Show that for small enough r > 0 the metric sphere coincides
with the geodesic sphere. O

7.2 Conjugate points

We now have a pretty good understanding of what happens when the ex-
ponential map is a diffeomorphism. When we go far enough from the base
point, it might stop being diffeomorphic. We now turn to studying that.

Proposition 7.2 (cf. figure . The exponential map exp,: T, M — M has
a biective differential at v € T,M \ 0 if and only if every non-trivial Jacobi
field J along vy, that vanishes at t = 0 is non-zero att = 1.

Proof. In remark we write the differential as a matrix using a parallel
orthonormal frame along the geodesic 7,,. In exercise we saw that
this matrix is of the form <1(4)1 2) for some d > 0. Therefore the linear
map dexp,(v) is bijective if and only the matrix A is invertible.

The matrix A was defined so that if a Jacobi field J along the geodesic
satisfies J(0) = 0 and D;J(0) = w, then J(1) = Aw. Notice that D;J(0) €
T, M and J(1) € Texp, ()M, but the parallel frame gives a way to identify
these two vector spaces. The matrix A only fails to be invertible when there
is w # 0 so that Aw = 0. This is equivalent with the existence of a Jacobi
field J for which J(0) =0, D;J(0) # 0, and J(1) = 0.

32Without this assumption the claim is false, but we only apply this in the neighborhood
where the exponential map is a diffeomorphism.
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Yo

X

Figure 16: A family ~, of geodesics depending on an initial angle o
with respect to a reference geodesic 7 corresponds to a Jacobi field
vanishing at ¢ = 0. If that Jacobi field vanishes again at t > 0,
then at that point variations in « are annihilated by dexp,. This
issue can arise exactly at a conjugate point to z. (It may also help
to revisit figure [0 with the added assumption that all curves in the
family are geodesics. The points p and ¢ are conjugate because the
whole non-trivial family goes through them both.)

By exercise[5.6]a Jacobi field .J is uniquely determined by J(0) and D, J(0).
If we require J(0) = 0, then the Jacobi field is non-trivial if and only if
D, J(0) # 0. O

FExercise 7.7. Show that if a non-trivial Jacobi field vanishes at two different
points, then it is normal. O

Proposition [7.2| inspires us to give a name for the case when a non-trivial
Jacobi field vanishes at two points.

Definition 7.3. Let v: I — M be a geodesic and a,b € I. We say that the
points y(a) and v(b) are conjugate along + if there is a non-trivial Jacobi
field along v that vanishes at both a and b.

Just like parallel transport, conjugate points are a concept along a geodesic,
not between a pair of points.

Exercise 7.8. Let v: I — M be a geodesic with non-zero speed and a,b € I.
Show that the following are equivalent:

e The points y(a) and ~(b) are not conjugate along ~.

e The differential dexp,, ((b — a)¥(a)) is a bijection.

e If a Jacobi field J along + vanishes at both a and b, it is identically

zZero.

The last point can be understood as a Jacobi field being uniquely determined
by its values at two non-conjugate points. If the two points are conjugate,
setting these two values is (somewhat) redundant. O

Remark 7.4. Yet another equivalent condition is that the geodesic sphere
is smooth at that point. This is very plausible, but it is possible for a
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smooth map with a non-invertible differential to map a smooth manifold
into a smooth manifold. For the exponential map this cannot happen, but
studying the details would be a digression.

Exercise 7.9. Give an example of a map f: R*> — R3 for which f(R?) is a
smooth surface and the derivative matrix of f is injective almost everywhere
but not everywhere. O

7.3 Second variation of length

The way we first found the geodesic equation was to study variations of the
length of a curve. We essentially defined geodesics to be critical points of the
length functional — with constant speed.

In general there is no guarantee that a critical point is a local minimum.
We just showed that short enough geodesics are globally minimal. To study
minimality locally, we need to calculate second derivative and see whether it
is positive definite.

The second variation is most interesting when the reference curve is a
geodesic, a critical point. This will also simplify matters considerably.

We will consider again a family of curves I'(¢,s). We now assume that
['(-,0) is a geodesic and we assume that each I'( -, s) has constant speed.

Proposition 7.5. Let I': [0,1] X (—&,e) — M be a smooth map so that
e y(t) =T(t,0) is a geodesic,
e |0,I'(t,s)| = cs, a constant depending on s but not t,
e I'(0,s) = p for all s, and
e I'(1,s) = q for all s.
Denoting V(t) = 0sI'(t, s)|s=0, we have

a§e<r<~,s>>rs:o=ﬁ / (IDVE — (V.R,V)) dt. (0)

Here R, is the curvature operator along v from definition [5.4l Notice
that as 4 # 0, we have 0;['(t, s) # 0 everywhere if € > 0 is small enough —
therefore constant speed parametrization is legitimate.

Proof. Proposition (the first variation) was phrased and proven in local
coordinates. Now we will do things invariantly.

Let us denote ¢(I'(-,s)) = £(s). First we observe that since each I'( -, s)
has constant speed and is defined on [0, 1], we have {(s) = ¢;. In fact, as ~
is a geodesic, ¢'(0) = 0.
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To get started, we use the reformulation (51]) of the first variation formula.
Now that the constant speed condition is satisfied for all s, the formula is
valid for all s. We have

¢(s) = — /0 1 % (0,7, D,O,T) dt. (81)

We can now simply differentiate under the integral sign and evaluate at s = 0
to get

7(0) = —ﬁ /0 0. (9.0, DT |y . (82)

The derivatives 0; and Dy are derivatives along the curves I'(¢, -) for fixed t.
Using exercise [4.4) we get

88 <85F, Dtétr> |S:0 - <DS@5F, Dtﬁtr> |5:0 + <85F, DsDtatF> |S:0' (83)

The first term vanishes because D;0,I'(t,0) = 0 — after all, v is a geodesic.
Exercise [7.10] gives that

DyDiOT'|s=o = D}V + R, V. (84)

With these ingredients we can simplify our second derivative to

"(0) = —ﬁ /01 (V,D}V + R,V) dt. (85)

Integration by parts in the first term gives the claim since V' vanishes at the
endpoints. (See exercise for details on integration by parts.) ]

We will study this formula in more detail in section [§]

* Important exercise 7.10. Commute the derivatives to prove that
D,D,0,I" = D?9,I' + R(d,I", 0,")O,T. (86)

At s = 0 this becomes DV + R, V. O

Exercise 7.11. Let us justify integration by parts of vector fields. Let V'
and W be two vector fields along a geodesic v: [a,b] — M. Show that

b b
/ (V. D,WY dt = (V(b), W (b)) — (V(a), W(a)) — / (D,V, W) dt. (87)

It may help to recall how the integration by parts formula for functions on
the real line is proven. O

20



Geometry of geodesics

Exercise 7.12. Show that it follows from the assumptions of proposition
that the variation field is normal to the geodesic v at all times. It can help
to show first that 20, (0;', O,I") = 0s (0,I', 0,I") at s = 0 and to recall that
7(0) = 0. O

As was mentioned in section [5.3] only the normal component of the vari-
ation field is geometrically meaningful. The parallel component corresponds
to reparametrization.

* Important exercise 7.13. Do you have any questions or comments regarding
section 7?7 Was something confusing or unclear? Were there mistakes? Are
there pictures that should be included in this section? O

8 The index form

8.1 Second variation of length

Let us denote by NVF() the space of normal vector fields along a geodesic
v: [a,b] = M. Let NVFy(y) € NVF(y) be the subspace of vector fields
vanishing at the endpoints. The space NVFg(7y) describes proper first order
variations of a geodesic v with fixed endpoints. Since the first order variation
of the length vanishes, the second order variation of length only depends on
the first order variation of the curve itself[?]

Ezercise 8.1. Show that if V' € NVF(v), then also D}V + R,V € NVF(y).

O

We found a formula for the second variation of length in proposition
Inspired by that, we give a name to the gadget we found.

Definition 8.1. Let v: [a,b] — M be a geodesic. The index form [ = I,
of v is a quadratic form on NVF(y) defined by
b
1V = [ (DY, D) = V. RW)) (38)

It follows from lemma [5.6) that the index form is symmetric.

Definition 8.2. Let F be a real vector space and ): F x E — R a quadratic
form@ We say that

33Maybe this point is clearer for smooth functions R — R. Consider f = fo . If
f'(0) = 0, then f”(0) does not depend on «”(0) but only «'(0). In our setting ¢ would
be the length functional, o a parametrized family of geodesics, and f the lengths of that
family.

34That, is Q is a symmetric element of E* @ E*.

51



Geometry of geodesics

"

Figure 17: Analogous situations. Left: Two points connected by
a locally minimizing geodesic. Any nearby geodesic is longer if the
index form is positive definite. But there may well be an entirely dif-
ferent, shorter geodesic, so local minimization does not imply global
minimization. Right: For real valued functions a local minimum is
below nearby values but there may well be a different global mini-
mum.

(@ is positive definite if Q(v,v) > 0 for all v € E '\ 0.

@ is positive semidefinite if Q(v,v) > 0 for all v € E.

() is negative (semi)definite if —@) is positive (semi)definite.

@ is indefinite if Q(v,v) > 0 and Q(w,w) < 0 for some v, w € E.

FEzercise 8.2. Let 7: [a,b] — M be a unit speed geodesic. Show that the
second variation of its length corresponding to a family of curves with a
normal variation field V' € NVF(v) is I(V,V). You only need to rescale
proposition to unit speed and a general interval. O

One should therefore think of the index form as the Hessian of the length
functional. Any geodesic can be made longer by adding wiggles, so the
index form cannot be negative definite or semidefinite. All other options are
possible as we will see.

Exercise 8.3. Show that if 1, is not positive semidefinite on NVFy(y), then v
is not the shortest curve between its endpoints. This together with theo-

rem [7.1| implies that for any z and v € T, M there is § > 0 so that I, is
positive semidefinite on NVEFy(7).

A local minimum need not be a global one as depicted in figure [I7] Even
if the index form is positive definite, the geodesic can fail to be minimizing.
There can be a curve taking an entirely different route between the two
endpoints. No amount of local analysis along a curve can rule this out.

Remark 8.3. Minimization can fail quickly, and the index form will not help
predicting or estimating it. For example, let M C R? be a circle of radius
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€ > 0. There is no intrinsic curvature on a one-dimensional manifold, so there
are no conjugate points and the index form is always positive definite. The
index form is independent of €. On the other hand, geodesics only minimize
length up to distance em.

8.2 Jacobi fields, conjugate points, and definiteness

Integration by parts (exercise [7.11)) reveals a connection between the index
form and Jacobi fields.

* Important exercise 8.4. Let V. € NVF(y). Show that the following are
equivalent:
1. V is a Jacobi field.
2. I(V,W) =0 for all W € NVEFy(7y).
Why is it important that W vanishes at the endpoints? O

Remark 8.4. Exercise has an interesting implication if the endpoints of
the geodesic are conjugate. Then there is a Jacobi field J € NVFy(v) \ {0},
and by the exercise I(J, J) = 0. Therefore positive definiteness is impossible
in this case. This connection between conjugate points and the definiteness
of the index form goes much further as we will see next.

Lemma 8.5. Letv: [a,b] — M be a geodesic. If there are conjugate points y(a')
and v(b') along v so that 0 <V —a’ < b— a, then there is V€ NVFy(7) so
that 1(V, V) < 0.

Proof. There is a non-trivial Jacobi field along v satisfying J(a") = 0 = J(b').
The piecewise smooth vector field J defined by

7 {J(t), a’<t§b’ (89)
0, otherwise

describes, roughly, a piecewise geodesic curve with the same length as v and

with corners at a’ and ¥'. Once we cut the corners, we should get a curve

shorter than ~, as illustrated in figure [I§]

We assume that a < o’ and ¥/ < b. At least one has to be true, and if
the other is replaced by an equality, the analysis we will do can be restricted
to the other point. It is enough to find a normal C! vector field V with the
desired property; see exercise [8.5]

Let us denote ¢ = D;J(a’). We can then parallel transport it as a vector
field ¢(¢) with {(a") = ¢. This vector is normal to + at all times. Notice that
since J(a’) = 0 but J is not identically zero, ¢ # 0. For small ¢ > 0 we define
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v-)
7/(11')

YL
Y(b)

Figure 18: The construction of the variation field V' in the proof of
lemma (8.5 The first step is the curve corresponding to J. This is, to
leading order, a curve of the same length as the reference curve. We
then cut the corners on the scale € by adding Z and H to make the
curve simultaneously both C' and shorter than the reference curve.
The only contribution to the index form is from these corner regions.

a normal vector field Z along ~ as

—1 t I 2 t t 4
0, otherwise
with some positive constant C' > 0.
Similarly, if n = D, J(V'), we define a parallel transport n(t) and letﬁ

H(t) _ {—Csldt — b’| B 5)277(t)> |Zf _ b/| <e (91)

0, otherwise

with the same constant C' > 0. These two vector fields “cut the corners” as
explained above.

We define V(t) = J(t) + Z(t) + H(t). As a sum of three normal vector
fields it is a normal vector field. With a suitable choice of C' > 0 this vector
field is C?; see exercise [8.6f Now it remains to show that I(V,V) < 0 when

35Capital ( is Z, capital n is H.
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e > 0 is small enough. We have
b
I(V,V) :/ (ID VP = (R, V,V)) dt

— /b (|DI[* +2(DiJ, Di(Z + H)) + |Di(Z + H)|?
(R, J, J) = 2(R,J,Z +H) — (R(Z+ H),Z + H)) dt

= [ (I~ (. 7)) ot

a'+e
+/ (2(DJ,DiZ) + |DZ|* —2(R,J, Z) — (R,Z, Z)) dt

b'+e
+/ (2(D,J,D;H) + |D,H’ = 2(R,J,H) — (R, H, H)) dt.

b'—e
(92)

If we use exercise or remark on the geodesic segment |y, we see
that y

/ (|~ (R,J.0)) di =0, (93)

Since J is Lipschitz and vanishes at @’ and V', we have |j | = O(e) in the last
two integrals of (92)). We also have |Z] = O(e) and |H| = O(e). Exercise
gives the other two integrals which contain only Z and H. As the intervals
of integration have length 2¢, we have

b/
(DyJ, D,Z) dt + 2 / (DyJ, D,H) dt
b —¢ (94)

8 8
+3C? (P e+ 3C nfPe + O(Y).

a'+¢e

V.V :2/

a/

Let us study the first remaining integral. In it D;J(¢t) = ((t) + O(e). Using
exercise [8.7] gives thus
a'+e
2/ (DuJ. D,Z) dt = —4C (P = + O(2). (95)

The other integral gives a similar negative leading order term.
We have arrived at

8 8
I(V,V) = —AC (e —4C " e+ C? (P e + 2C* Inf*e + O(e?). (96)
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With our C' > 0 we have 4C' > 8C?/3, whence

uwvy:—MQ@0—§cﬁa—mF@0—§cﬁa+0@% (97)

is indeed negative for € > 0 small enough. O]

Exercise 8.5. Polish the proof by showing that if there is a compactly sup-
ported normal vector field V' with C! regularity so that I,(V,V) < 0, then
there is a smooth one as well. O

Ezercise 8.6. Choose C' > 0 so that the vector field V(¢) of the proof is
actually C'. What is the value of the constant and why is the resulting
vector field C*? Verify that 4C > 8C?/3. O

FExercise 8.7. Show that

ate
/‘|mzﬁm—§wmﬁg (98)
and "
| «o.pizw) at = 20 (99)
Similar formulas hold for H with the norm of 7. O

Lemma 8.6. Let v: [a,b] — M be a geodesic. If there are no conjugate
points along v, then I(V, V) > 0 for all V € NVFy(v) \ 0.

Proof. Let (i,...,(y—1,%(a) be an orthonormal basis of T, M. We can
extend these into an orthonormal parallel frame with the transported vec-
tors (,(t). For a € {1,...,n — 1} let J, be the Jacobi field with J,(a) = 0
and D;J,(a) = (,. Near the initial point we have J,(t) = t(,(t) + O(t?).

When ty € (a,b], the vectors J,(to) are linearly independent. To see this,
suppose that there are coefficients A\, so that

> Xadalto) = 0. (100)

Then the J =Y _ AoJ, is a Jacobi field which vanishes at ¢ = a and t = .
As there are no conjugate points by assumption, J must vanish identically.
Therefore

0=DiJ(a) =) lala (101)
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The vectors (, are linearly independent, so every A\, vanishes. This proves
the linear independence | The Jacobi fields J, (¢) therefore constitute a basis
for the orthogonal complement of (t) in T’y M for any t > a.

We can thus write our normal vector field V' € NVFy(y) in this basis:

V() =) Valt)Jalt). (102)

Here V,(t) are real-valued functions. As V(a) = 0, the functions V,(t) are
smooth up to t = a; see exercise [8.9

Let us denote
At) =) Val(t) Ja(t) (103)

and

B(t) =Y Va(t)DyJa(t). (104)

With this notation we have D,V = A + B.
Let us compute 0; (V, B) — this turns out to simplify matters greatly. At

first we get
0, (V, B) = (D,V, B + (V, D, B). (105)

We already know that D,V = A + B, so let us find D,B. The Leibniz rule
and the Jacobi equation give

DB=Y [Va(t)DtJa(t) + va(t)DfJa(t)}
=3 [Val)Dudalt) = Va(®) By a()] (106)

= =RV () + Y Va(t) Dy Ja(t).

360ne could say that the vectors J,, () form a “Jacobi frame” along «. This provides a
valid basis in every tangent space due to the lack of conjugate points.
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Using this with exercise [8.8 leads to
(V.DB) = = (V.R,V) + > (V,VaDiJu)

=—(V,RV)+> <vﬁJﬂ, VaDtJa>
o,

= - <‘/7 R7V> + Z Vﬁvoz <J57 DtJa>
. (107)
== (V.RV) + ) V5Va (DyJs, Ja)
a,B
= = <‘/7 R’YV> + Z <VﬁDtJ,3a VaJa>
a,B
=—(V,R,V)+(B,A).

Putting all of this together gives
O (V. B) = (A+ B, B) — (V, R,V) + (B, A)

108
— IDVE - AP (VR V) 1oy

Now we can finally turn to the index form. With these preparations it be-
comes easy to analyze.

Because V(a) =0 = V(b), we have

b
I(V,V) :/ (ID,V]* = (R,V,V)) dt

- [ @B i) a (109)

b
:/ AP dt > 0.

If equality holds, then A = 0, which means that V, = 0 and thus each
coefficient V,,(t) is constant. But every V,(t) vanishes at ¢ = b, so V,, = 0.
This means that V =0, so I(V,V) = 0 is only possible when V' = 0. O

Remark 8.7. If there are conjugate points, the “Jacobi frame” used above
only fails to be a frame at conjugate points. This makes one think that
perhaps the Hessian only has very few negative eigenvalues and that they
should correspond to conjugate points. This is indeed true but is beyond the
scope of this course. The maximal dimension of a subspace of NVFy(7y) on
which the index form is negative definite is called the index of the geodesic.
This index is finite and is indeed equal to the number of interior conjugate
points, as long as one counts with multiplicity.
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* Important exercise 8.8. Let J; and Jy be two Jacobi fields along the same
geodesic. Show that

Oy ((DyJy, Ja) — (J1, DyJa)) = 0. (110)

Conclude that if J; and J, both vanish at the same point, then (D;J;, Jo) =
(J1, Dy Js) at all times. O

Exercise 8.9. Little Bézout’s theorem concerns polynomials: If r is a root of
a polynomial p, then p(z) = (x — r)q(x) for some polynomial g.

Show that a similar result holds for smooth functions. That is, show that
if f € C®(R) and f(0) = 0, then f(t) = tg(t) for some smooth function g.
A neat way to do this is to compute fol % f(tx) dt in two ways. This gives an
explicit formula for g as an integral, and smoothness is far easier to see than

by studying g(t) = f(t)/t. O

Theorem 8.8. Let v: [a,b] — M be a geodesic. Consider the index form I,
along it on NVFy.
1. If there are no conjugate points along v, then it is positive definite.
2. If the endpoints are conjugate but there are no other conjugate points,
then it is positive semidefinite.
3. If an interior point is conjugate to another point, then it is indefinite.

Proof. This follows from remark [8.4] lemma (8.5 and lemma[8.6] Recall that
there are always vector fields V' € NVFy(vy) with positive index form. O

8.3 The index form in constant curvature

For a somewhat concrete example, let us take another look at space of con-
stant curvature. See section In this setting the index form on normal
vector fields takes the form

vow) - | (DY D) — (VW) dt (111)

When k < 0, this is positive definite, and more strongly so when k£ < 0.

Indeed, if one studies the forms of Jacobi fields in constant curvature as
given in section [5.4] one sees that there are no conjugate points when k& < 0.
Theorem [8.8| predicts exactly this behaviour.

If k£ > 0, definiteness depends on length. As we saw in exercise the
index form is positive semidefinite (and in fact positive definite) when the
geodesic is short enough. Conjugate points in constant curvature k > 0 are
distance 7/ Vk apart. If the geodesic is longer, then the index form becomes
indefinite.
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One way to interpret this is to consider the Poincaré inequality

b b
/ VI dt < c/ DV dt, (112)

valid for all V'€ NVFy(y). If C is small enough, this ensures that the index
form is positive. The constant C' becomes bigger when the interval [a, b|
gets longer. At b—a = w/ vk the optimal Poincaré constant C' becomes
exactly 1/k, making the index form barely positive semidefinite.

* Important exercise 8.10. Do you have any questions or comments regarding
section 87 Was something confusing or unclear? Were there mistakes? Are
there pictures that should be included in this section? O

9 The tangent bundle

9.1 The tangent bundle as a manifold

Previously, we have considered the tangent bundle as the disjoint union of
tangent spaces:
™ =[] T.M. (113)
xeM
While this is correct as a set, there is more structure. The tangent bundle is
a manifold.

It is often convenient to write a tangent vector as a pair (x,v), where
x € M and v € T, M. The tangent bundle is the set of all such pairs.
Sometimes the base point x is left implicit. When U C M is open, we denote
TU ={(x,v) e TM;x € U}.

Consider an open subset U C M and a diffeomorphism ¢: U — ¢(U) C
R"™. The coordinate maps of a coordinate chart are often denoted by z?, so
that each z°: U — R is a smooth function and its differential is the familiar
basis covector field dz¢. That is, at any point x the differential da*: T,M — R
is a linear map.

Combining the components together, we have the map dp(z): T, M — R"
given by

do(z)v = (dz'(z)v, dz?(2)v, ..., dz"(2)v) = (v}, 0%, ..., 0"). (114)

This map is a linear bijection since dg(x)v expresses v in a basis.
We have a map on each tangent space, and we can promote it to a map dep
on the whole bundle. We define dp: TU — R™ x R" so that

de(z,v) = (p(z), dp(z)v). (115)
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The base point x is mapped with the coordinate map ¢ itself, whereas the
tangent vector v is mapped by its differential dp(z).

We want to use dy as a coordinate chart on 7'M to make it into a man-
ifold. This chart makes TU look like the product U x R™. However, the
tangent bundle is not always a product globally although; this only works
for open sets U diffeomorphic to an open Euclidean set.

Ezercise 9.1. Let (Uy, ¥a)aca be a smooth atlas of M. We defined a topology
on T'M by saying that V' C T'M is open if and only if dp,(TU, N V) C R*"
is open for all & € A. Show that this is a topology. O

FEzercise 9.2. A chart ¢, : Uy, = ¢o(Us) C R™ induces a map dy,: TU, —
V, C R?" as described above. Consider two of these, a = 1,2. Given the
diffeomorphic transition function ¢ between ¢, and o, write down the tran-
sition function ¥ between dy; and dys. Prove that it is a diffeomorphism.
This shows that a smooth atlas (U,, ¢a)aca on M induces a smooth
atlas (TU,,d@a)aca on TM. In particular, TM is a smooth manifold of
dimension 2n. O

Ezercise 9.3. Is the smooth atlas induced by a maximal smooth atlas maxi-
mal? O

A chart ¢: U — R" gives local coordinates on M. The map dp: TU —
R?" gives the induced coordinates on TM.

* Important exercise 9.4. There is a canonical projection 7: T'M — M given
by 7(z,v) = x. Show that this is a smooth map between the smooth mani-

folds TM and M. O

* Important exercise 9.5. Draw a picture of the tangent bundle so that M is
horizontal and the fibers are vertical. Indicate M, a point x, and a fiber T, M
on it. It is important to draw the picture in this orientation. O

One way to visualize tangent bundles, especially by comparison to our
general picture of bundles, is given in figure (19}

9.2 Tensor bundles

Fix some local coordinates on U C M. We saw above that the linear maps
da': T,M — R produced a map T, M — R" and thus local coordinates
TU — R

Recall that T,M is the dual of T)M. We can use the linear maps
0;: TxM — R to produce a map 7;M — R" and thus coordinates on 7T*U.
A similar construction turns 7*M into a smooth manifold of dimension 2n.

Remark 9.1. The musical isomorphisms of a Riemannian manifold are dif-
feomorphisms between T'M and T*M.
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(c) B =m/8 d) =0

Figure 19: The tangent bundle of the circle S* can be visualised in
many ways. First of all, abstractly 7'S? = S' x R. We have used
here the maps fz(a,t) = (cosa,sina,0) + t(sina, — cosa, 0) cos 8 +
t(0,0,1) sin 8 from T'S* to R3, parametrized by an angle 3. The value
t = 0 corresponds to the base point and it is mapped to the same
circle for all 8, but the realization of the fibers varies. If § = 0, the
tangent spaces are actually visually tangent to the circle. The map f3
is not injective in this case and the union of the tangent lines is not
a manifold. If g > 0, the lines are slightly twisted from the plane of
the circle so that they do not intersect. Now fz is a diffeomorphism
from T'S* to its image, the hyperboloid z* + y* — (cot(83)z)* = 1.
At the other extreme 8 = /2 the fibers are orthogonal to the base,
matching our intuition of a bundle in general but depriving points on
the fibers from the geometric meaning of pointing along the base. A
quarter of the bundle here has been cut off for better visibility. The
mesh lines correspond to horizontal (circles parallel to the manifold
itself) and vertical (along the fibers, straight lines at the angle 3). The
parameter 3 is an adjustable trade-off between two desired properties:
(1) horizontal and vertical directions being orthogonal, and (2) the
tangent spaces being tangent to the manifold.
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Any tensor bundles can be treated in a similar fashion. For example,
consider T'M ® T'M. The basis elements of T, M ® T, M are 0; ® 0;. The
dual basis consists of dz’ @ da’ given by

dr' ® da’(a) = a" (116)

for a € T,M @ T, M. Equivalently, if we expand a in terms of basis elements
as B
a=a"0; ® 0;, (117)

we can describe the property as

Using the maps dz’ @ dz/: TU @ TU — R we get coordinate charts TU ®
TU — R on TM ® TM. These make the tensor bundle TM ® T'M into a
smooth manifold.

If £ is any tensor bundle (like TM or T*M @ T'M ), we denote the projec-
tion m: E — M by the same symbol. In general, a bundle is a local product
that comes with a global projection.

The preimage 7 !(z) of a singleton is called a fiber of the bundle. The
fibers of the tangent bundle are the tangent spaces T,M = 7 (x).

9.3 Tensor fields

Definition 9.2. A smooth section of a tensor bundle F is a smooth map
f: M — E for which n(f(z)) = x for all z € M. (In other words, it is a
smooth right inverse of the projection 7.)

A smooth section of the tangent bundle is also called a smooth vector
field. We defined this concept earlier in a different fashion. Sections of
general tensor bundles are called tensor fields.

Exercise 9.6. Show that a vector field is smooth if and only if all its compo-
nents are smooth real-valued functions in any local coordinate system. This
shows that our two definitions of a smooth vector field agree. The same holds
true for tensor fields of any type. O

9.4 The sphere bundle

In all of our examples so far the fiber of a bundle is a vector space. Such
bundles are called vector bundles. There are other kinds of bundles as well,
and many interesting ones are obtained by subbundles of vector bundles.
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(TN
———)
Figure 20: The tangent bundle T'S? consists of the tangent plane

attached to each point. The sphere bundle SS? consists of the unit
sphere of the tangent plane attached to each point.

A subbundle is, informally, a subset of a bundle that looks locally like a
product. A subbundle is a submanifold of the bundle.
The most important example to us is the sphere bundle of a Riemannian

manifold
SM = {(z,v) € TM;|v| =1}. (119)

The fibers S, M of SM are unit spheres in the tangent spaces T, M as depicted
in 201

Ezercise 9.7. If f: N — R is a smooth function on a smooth manifold, then
the level set f~1(0) is a smooth submanifold if df # 0 on this set. This
smoothness follows from the implicit function theorem. Use this to show
that the sphere bundle is a smooth submanifold of T'M. O

The tensor bundles work on a smooth manifold, but the sphere bundle
requires a metric.

9.5 Directions and iterated bundles

We can think that T}, M is, informally, the set of all directions one could move
on M from x. Thinking of T'M as the set of all possible directions of motion
is sometimes useful.

The tangent bundle 7'M is a smooth manifold. The possible directions
on it are described by its tangent bundle, the double tangent bundle TT'M =
T(TM)="T>M.

The fiber at (z,y) € TM, the space T(,,)T'M, describes all the possible
directions one can move in from (x,y). Heuristically, one should be able to
move in two kinds of directions: on the base or on the fiber. This is indeed
true invariantly and usefully, but formalizing it is postponed to the next
section.
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We can, however, describe the tangent vectors in local coordinates. A
local coordinate chart ¢: U — R" induces local coordinates dp: TU —
R™ x R"™ as described above. Let us denote these coordinates by z* and v
— it makes sense to divide coordinates in two halves for base and fiber. The
natural basis of T{, ,)T'M is given by the vectors

Oyt g, O, Oy (120)

The dual basis on T(* TM is given by da® and dy’.
One can take the tangent bundle of any smooth manifold whatsoever. A
very natural space for us will be T'SM.

* Important exercise 9.8. Let M have dimension n as always. What are the
dimensions of the smooth manifolds TM, T*M, SM, TTM, and TSM? ()

Manifolds can be embedded in Euclidean spaces and this can give a way
to visualize matters. But when it comes to the tangent bundle or especially
the double tangent bundle, it is far more transparent to work with abstract
manifolds.

9.6 Lifts and geodesics
Many things can be lifted from manifolds to their tangent bundles.

Fxercise 9.9. Promoting a smooth function into a function between the bun-
dles is often useful. We defined earlier the differential of a smooth function
f:M — N at x € M as a linear map df(z): T,M — T4 ) N. This induces
a map df: TM — TN. Show that df is a bijection if and only if f is a
diffeomorphism. O

The lift of a smooth curve v: R — M is the curve o: R — T'M given
by o(t) = (y(t),74(t)). The second order geodesic equation for 7 is a first
order equation for the lift . We used this to prove existence, uniqueness,
and smoothness of geodesics; see exercises [2.11] and [6.1]

Writing a curve o on T'M in terms of the local coordinates on T'M gives
a'(o(t)) = +'(t) and y'(o(t)) = ¥'(t). If o is the lift of a geodesic , then
Oyt =4t and 0,4 = —FZ] A74% . In other words,

o' (o) = o'
=4 (121)
= y'(0).
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Similarly,
atyi(a) = 3t’7i
= —T'9" (122)
= T3¢ (0)y*(0).
That is, o satisfies
do(t) = X (o (). (123)
for all t, where X is a vector field on T'M given in local coordinates by
X =90y — Ty, (124)

This is called the geodesic vector field.

This should be interpreted so that if o = (x,v) € T M is some initial data
for a geodesic, then X (o) € T(;.,)T'M tells which way the lift of the geodesic
Ve Will start moving. The z-component of o moves in the direction of y and
the y-component moves in a direction depending on the Christoffel symbol.

Let us recall that an integral v of a vector field V' on a smooth manifold N
is a smooth curve on N satisfying 4(t) = V (v(¢)).

FExercise 9.10. Show that if a smooth curve o: R — T'M is the integral curve
of the geodesic vector field, then it is a lift of a geodesic. The opposite
conclusion was obtained above.

We have found a new description of geodesics: A curve is a geodesic if
and only if its lift is an integral curve of the geodesic vector field. Another
way to phrase it is that a geodesic is a projection of an integral curve of the
geodesic vector field. O

We will study this idea further, but we will first need to split T, »T'M
into “base directions” and “fiber directions” invariantly. The span of the
vectors 0, depends on the choice of coordinates.

* Important exercise 9.11. Do you have any questions or comments regarding
section 97 Was something confusing or unclear? Were there mistakes? Are
there pictures that should be included in this section? O

10 Horizontal and vertical subbundles

As we discussed above, the double tangent bundle TT'M describes the direc-
tions of motion on T'M. There are two basic ways to move: along a fiber or
in the base. As per exercise directions along the fiber are called vertical
and those in the base horizontal.

In order to describe the horizontal and vertical subbundles H and V
of TTM, we need to describe their fibers H(6) and V() atop each § € T'M.
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Ty M

Figure 21: A vertical curve ¢ on the tangent bundle is such that it
stays on a single fiber T, M atop a single point z.

10.1 The vertical fiber

Consider a curve o: (—¢,e) — TM with 0(0) = 0 = (z,y) € TM. If o(t)
stays on the fiber T, M as in figure 21} it makes sense to consider ¢(0) €
TyT'M vertical. We can describe o staying on the same fiber by saying
that m(o(t)) stays constant. Differentiating this with respect to t at t = 0

leads to dm(0)5(0) = 0.
Definition 10.1. The vertical fiber at 8 € T'M is
V(0) = ker(dm(0)) C TyT M. (125)

Observe that this definition does not depend on the Riemannian metric g
and can thus be defined on any smooth manifold.

10.2 The horizontal fiber

Consider again a curve o through 6 € T'M. The velocity of the curve should
be considered horizontal if only the base point moves but the tangent vector
does not as in figure 22| But that does not directly make sense; as x changes,
we cannot keep v € T,, M constant. Fortunately, there is a way to make sense
of this through covariant derivatives.

Consider the curve v = moo: (—&,) — M projected to the base mani-
fold M. Now o(t) € Ty)M for all ¢, so o can be regarded as a vector field
along the curve . To make this more explicit, we write o(t) = (y(t), X(t)) €
T M. It makes sense to say that the curve o goes in a horizontal direction if
the covariant derivative of ¥ along v vanishes.

To make this more precise, we define a map Ky: TyTM — T,M by
requiring that each curve o on T'M with o(0) = 6 satisfies

Ko5(0) = Dy3(0), (126)
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Ty M

Figure 22: A horizontal curve ¢ on the tangent bundle is such that
the base point moves but there is no vertical motion. As the curve
goes through different fibers, lack of vertical motion has to mean
parallel transport.

where D, is the covariant derivative along the curve ~.
To make Ky a well-defined map, we need to check two properties:
1. The map is defined everywhere: For every & € TyT' M there is a curve o
through 0 with ¢(0) = &.
2. The map has a unique value everywhere: If oy and oy are two curves
through 6 in the direction £ € TyT' M, then D;%;(0) = D;35(0).

FExercise 10.1. Explain why these properties hold and why Kj is linear. ()

Informally, we can think of a vector £ € TyT'M as (A, B), where A points
along the base and B along the fiber. In this view Ky is the covariant
derivative of B in the direction A.

We can promote these maps Ky into a global connection map

K:TTM — TM (127)

given by
K(0,8) = (m(0), Kof). (128)

Definition 10.2. The horizontal fiber at 8 € T'M is
H(0) = ker(Ky) C TyTM. (129)

An alternative way to describe horizontal directions is to require that
parallel transported objects are horizontal. To achieve this, we define a
horizontal lift Ly: T,M — TyTM at 0 = (z,v) which describes the ways
parallel transports of v evolve in different directions. Given any w € T, M,
let 7, be a curve through = with 4,(0) = w. Let PY(¢) be the parallel
transport of v along ~,,. We get a curve ol (t) = (v (t), PA(t)) on TM. We
now define

Low = 5,,(0). (130)
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Checking that this map is well defined (independent of the choice of the
curve 7,) and linear is similar to the check of Kj.

FEzercise 10.2. Show that ker(Ky) = im(Lg). This gives a different way to
view H (0). O
Notice that H () does depend on the notion of parallel transport and

therefore on g. Vertical directions are smooth concept, horizontal ones are a
metric one.

10.3 Properties of the vertical and horizontal bundles

The vertical subbundle of TT'M is the has the fiber V(0) at § € TM. Simi-
larly, the fibers of the horizontal subbundle are H(6). The vertical subbundle
gives all the directions along the fibers and the horizontal ones all the direc-
tions “along the base”.

The various maps we have seen so far have several interesting properties.

* Important ezercise 10.3. Show that dm(f) o Ly = id on T, M. O
Exercise 10.4. Show that dm(6)|pe): H(0) — T, M is a linear bijection. (O
Ezercise 10.5. Show that Kg|yg): V(8) = T, M is a linear bijection. O

* Important ezercise 10.6. Show that’’| T,TM = H(0) & V (¢). That is, show
that the horizontal and vertical fibers together span TyT'M and they only
intersect at the origin. O

The properties of these maps restricted to the horizontal and vertical

fibers can be collected in the following diagram, where blue arrows (straight
down) are bijective and red arrows (diagonally) are the zero maps:

HO) k, dr(o) _ V(0)
Ly Gw(e)l >< l}(e (131)
T,M T,M

In conclusion, TyT'M is can be seen as a product of the horizonal and
the vertical fiber. Both H(#) and V() can be identified with T,,M. The
projections from TyT M to these two components are dm(f) and Kjy. Indeed,
the map

jo: TyTM — T, M x T,M (132)

37The symbol @ stands for the direct sum, and in this course all direct sums are internal.
For a vector space E and two linear subspaces A, B C E the equation “E = A® B” means
that E = A+ B and AN B = {0}. In perhaps more intuitive terms, it means that E can
be canonically identified with A x B so that 0 x B and A x 0 map to the corresponding
subspaces.
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given by
Jo(§) = (dm(0)¢, Ko¢) (133)

is a linear bijection.

It is useful to denote the horizontal and vertical parts of & € TyT M as
& =dn(0)¢ € T,M and &, = Kp& € T, M. Identifying with js, we can write
5 = (é-ha 60)

10.4 The Sasaki metric

The space T}, M has an inner product given by the metric tensor. The product
of two inner product spaces A and B is an inner product space in a natural
way:

((a,0), (0", 0) 4y p = (@, a') 4 + (b, V) (134)

Definition 10.3. The Sasaki metric on T'M is defined so that for each 0 €
TM the map jg: TyTM — T, M x T, M of (132) is a linear isometry.

In other words, the Sasaki metric is a metric tensor on T'M — a section
of T*(TM) @ T*(TM) — defined so that

e H(0) is orthogonal to V(0),

o dm(0)|m): H(0) — T, M is isometric, and

o Kylvwy: V(0) = T, M is isometric.
For any &, &' € TyT M we have

(6,€) = (dn(0)¢. dm(0)¢) + (Ko Kot)
= (&, &) + (€r &) - (135)

10.5 Coordinate expressions

Suppose we are given some coordinates x on an open set U C M. That is,
we have a map x: U — R" whose coordinates are x'. We freely identify the
point with its coordinates, so we have dropped the chart ¢ altogether from
notation.

The local coordinates z on M induce local coordinates (x,y) on TM.
Informally, “y = da” since the induced coordinates are given by differentials
of the original coordinates. That is, a vector v € T, M can be written as

v =y 0. (136)

If we stay on the same fiber, only the variable y changes. The coordinates
on the fiber are simply the components of the tangent vector in the coordi-
nates x.
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Similarly, the local coordinates (z,y) on T'M induce local coordinates
(x,y,X,Y) on TTM. A vector & € TyTM at 0 = (z,y) € TM can be
written as

£=X"0p +Y'0y. (137)

The vectors 0,: and 0, form a basis for TyT'M, but this basis does not go
well together with the decomposition to horizontal and vertical directions.
The vertical part behaves better.

Lemma 10.4. The vector fields 0y: are a basis for V (0).

Proof. Recall definition and exercise [10.4] The claim of the lemma
follows from dm(#)0,; = 0 (so that the vectors are in the right space) and
Kp0,i = 0, (so that the isomorphism maps them to a known basis).

To show the first property, consider dm(6)0,: € T, M as a derivation. To

that end, let f: M — R be smooth. We have

dm(0)0yi fle = df(x)[dm(0)0,]
=d(fom)(0)0, (138)
= 0yi(f om)lo.

The function fom: TM — R is constant on fibers, so d,i(f om) = 0.

Let us then move to the second claim. To use the definition (or defining
property) of Ky, we need a curve o(t) on T'M for which ¢(0) = 0 and ¢(0) =
d,i. In local coordinates this can be achieved with o(t) = (y(t),3(t)) =
(x,v+t0,i). This curve stays on the fiber T, M and its time derivative is the

1th basis vector on T, M. Since 4 = 0, the covariant derivative is simply

DX (t)]i=0 = 9p(v + t0y1)

t=0 = O (139)

as required. O
Let us define new vector fields 6, = 0, — IV, 470,

Lemma 10.5. The vector fields ,: are a basis for H(0).

The proof consists of two steps:

FExercise 10.7. Prove that Kyd,: = 0. O
FEzercise 10.8. Prove that dm(0)0,: = O,. O
Using the bases given above, any vector £ € TyT'M can be written as

E=X"6u +Y'0, (140)
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and the horizontal and vertical components are
& = dm(0)¢ = X0, (141)

and

£y = Ko =Y'0,. (142)

The components stay the same but the basis changes, as one might expect
of a natural isomorphism.

The inner product in the Sasaki metric between two vectors & ,é e TyT'M
expressed like so is given by

(6,:€) = (an(0)6, dm(O)F) + (Kot Ko
- <X@'ami, Xjaxj> + <Yfaﬂ-, Y/ﬂ‘aﬂ>
= X' X9(0,1,0,) + Y'Y (D1, 0,5)
= Xingij + Yif/jgij.

(143)

This basis makes the structure of the Sasaki metric more transparent.
Let us then consider what happens on the dual side.

Ezercise 10.9. Let eq,..., e, be a basis of a vector space. Suppose another
basis is given by f; = > i A;je;. If the dual basis of the original one is given
by e;, the new dual basis is of the form f7 = > . Bjje;. Show that the

j .
matrix B is the inverse transpose of A. O

The change of basis from d,: and 0,: to d,: and 9, is given by a matrix

of the form
I -G
A= <0 ; ) , (144)

where Gij =1’ +U*. Therefore the change of basis for the dual basis is given

by the matrix
I 0
B = < ar I) : (145)

That is, the dual basis is given by dz’ and dy’ = dy’ 4 I ,y*da’.
Exercise 10.10. Check that

dxz(éx]) = (5;,

dxi(ayj) =0, (146)
§y'(0,5) =0, and

6yi(8yj) = (5;
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G(2)
K%N
t>e (3

t<o

Figure 23: A point z € N and its associated trajectory obtained by
mapping z with ¢;. The generator G(z) of the flow at z is the velocity
of the trajectory.

This ensures that we have indeed a dual basis to 6,: and d,:. This follows
from the general observation of exercise [10.9| and the considerations after it,
but it is worthwhile to verify by hand. O

Observe that we needed to fix the base components 0,: to get a nice basis
for TyT M and the fiber components dy' to get a nice basis on T;TM. One
could say that the vertical and cohorizontal directions do not depend on the
metric but the horizontal and covertical ones do.

If needed, these new basis vectors can be used to span the cohorizontal
and covertical subspaces of T;T'M. This will rarely be needed, as the Sasaki
metric gives a way to identify 1, T'M with TyT' M.

* Important exercise 10.11. Do you have any questions or comments regarding
section 10?7 Was something confusing or unclear? Were there mistakes? Are
there pictures that should be included in this section? O

11 The geodesic flow

11.1 Smooth dynamical systems

A smooth dynamical system or a flow on a smooth manifold N is a smooth
action of the group (R,+) on the diffeomorphism group of N. More con-
cretely, it is a family of smooth maps ¢;: N — N so that

e o, depends smoothly on ¢,

e ¢y =id, and

® Pt O Ps = Pts-
We often speak of such systems so that a point z € N flows to the point
@i(z) € N in time t. The curves ¢ — ¢;(z) are called trajectories. A flow is
illustrated in figure

Exercise 11.1. Show that N is a disjoint union of trajectories. O
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Exercise 11.2. Show that each ¢;: N — N is a diffeomorphism. O

The dynamical system gives rise to a vector field G on N. It can be
defined as a velocity of a trajectory (vector as the velocity of a curve) or as
a differential operator (vector as a derivation). The first point of view says
that

G(2) = 0vp(2)]e=o- (147)

Taking the second point of view, we can differentiate f: N — R along the
flow by

Gf(2) = 0if(pe(x))i=o- (148)
As the derivative can be written as df(z)(G), the two descriptions agree.

FExercise 11.3. Show that a trajectory of the flow ¢, is an integral curve of G.
That is, show that a trajectory o(t) = ¢:(z) satisfies (t) = G(o(t)). O

The exercise shows that the vector field G determines the flow uniquely.
Therefore G is called the generator of the flow.

11.2 The geodesic flow

We defined the geodesic vector field in (124)). It is a vector field on TM and
therefore a section of TT'M.

Definition 11.1. The geodesic flow is the flow on the tangent bundle T'M
of a Riemannian manifold M generated by the geodesic vector field X.

We saw in exercise that trajectories of the geodesic flow are exactly
the lifts of geodesics.

We should hurry to mention that this definition only makes sense as is
if M is geodesically complete. Otherwise some geodesics are not defined for
all times. If M is incomplete, the geodesic flow p: R x TM — T'M is only
defined on some open subset of R x T'M. All our considerations will be local,
so it does not matter whether the flow is globally defined or not. To keep
things simple, we assume M to be geodesically complete, but the assumption
is unimportant.

If (z,v) € TM and t € R, then ¢(z,v) = (74,,(t), Y (t)) gives the posi-
tion and direction of the geodesic starting at (x,v) after time ¢. Exercise
proves the smoothness of the geodesic flow, although in that context we only
argued that exponential maps are smooth.

On TR™ = R"™ x R"™ the geodesic flow is given simply by ¢ (z,v) =
(x + tv,v).
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Ezercise 11.4. Like any vector field on T'M, the geodesic vector field can be
decomposed to horizontal and vertical components. Verify that at (z,v) we
have X;, = v and X, = 0.

That is, the geodesic flow heuristically changes the point on the base but
keeps the direction fixed. This corresponds to geodesics parallel transporting
their velocity. O

* Important ezxercise 11.5. If we want to encode all geodesics on M into a
single dynamical system, why does it have to be a system over T'M instead
of just M? Why cannot a flow on the base encode all geodesics but a flow
on the bundle can? O

11.3 The differential of the geodesic flow

The geodesic flow is a smooth map ¢: R x TM — T'M, and for each t € R
the map ¢,: TM — TM is a diffeomorphism. The time derivative is given
by the geodesic vector field. Let us therefore study the derivative of ¢, for a
fixed t € R.

To this end, consider a smooth curve o: (—¢,e) — T'M through 6 € T M.
We would like to find Osp¢(0(s))|s=o in terms of ¢’(0). The mapping from
the latter to the former is dy.(0): TyTM — T,,T M.

For each s € (—e&,¢) the curve t — ¢ (o(s)) is the lift of a geodesic.
Therefore T'(¢,s) = m(pi(o(s))) is a family of geodesics. Thus we are led to
study the Jacobi field J(t) = 0,['(¢, s)|s=0 along v(¢) = I'(¢,0).

If we denote o’(s) = 0s0(s) (so that the dot refers to a derivative in ¢ but
not in s), we have

J(t) = OL'(t, 5)]s=0
= Os7 (0 (s)))s=o0
= dm(10(0))dii(0(0))o”(0)
= [dip:(6)0"(0)]-

The Jacobi field gives the horizontal part of the differential.
Let us then find the covariant derivative of this Jacobi field. To that end,

(149)
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we write @i(a(s)) = (a(t,s), 5(t,s)) € TM. We find
Dy J(t) = Dd,I(t, 5)]s—0

© DALt 5)]s0

2 D, (pu(o(s)))]s=o

9 D.oalt, s)|so

9 DAt 8)]s=0

2 K o0 0s1(0(5)) =0
L K0 dei(0(0))0 (0)
2 [dgi(8)0’(0))..

That is, the covariant derivative of the Jacobi field gives the vertical part of
the differential.

Exercise 11.6. Explain the named steps in ({150]). O

(150)

To get the initial conditions of the Jacobi field, we study what happens at
t = 0. There ¢y = id and dyy = id, so J(0) = [¢/(0)], and D;J(0) = [07(0)],.

Theorem 11.2. Consider the differential of ¢, at 6 € TM. Choose any
£ € TyTM and denote 1 := d(0)§ € T,0)TM. If these are decomposed in
horizontal and vertical parts as & = (&, &y) and n = (Np,My), then

Nh = Jg (t) and

mo = DyJe(t), (151)

where Jg is the Jacobi field along the geodesic t — m(py(0)) with initial con-
ditions
Je(0) =&, and

DJ(0) = &,. (152)

In words: Through the identifications coming with the horizontal-vertical
decomposition, the differential of the geodesic flow is exactly the solution
operator of the Jacobi equation.

Exercise 11.7. Prove theorem [11.2] O

Jacobi fields describe perturbations in position (horizontal), whereas their
covariant derivatives describe perturbations in direction (vertical).
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If we write the tangent space as H@V at both 6 and ¢.(#), the differential
doy: TyT'M — T,,9)T'M of theorem can be written in block form as

apdo) = (4 ). (153)
where
At H(0) — H(p:(0)),
Apot V(0) = H(p4(0)),
Agn: H(0) = V(p(0)), and (154)
Ay V(0) = V(ipe(0))

are linear maps. That is,

M\ _ (Awn An &n
(m) - (Avh Aw) (5) ' (155)
Each linear map A(t,0) depends on ¢ and 6, but we left that dependence
implicit.

11.4 The exponential map

Let us return to the exponential map from section [6] and see it from the
point of view of the geodesic flow. The geodesic flow contains the lifts of
all geodesics for all times. The exponential map only contains the geodesics
starting from a single point.

* Important exercise 11.8. Show that exp, = m o v1|7, M- O

One could say that the exponential map maps directions to points, as
it maps from one fiber (restriction) to the base (projection). Indeed, its
differential is indeed a vertical-to-horizontal map.

Ezercise 11.9. Consider the block structure of dg:(6) at = (z,v) given
in (153)). Show that dexp,(v) = Ap,(1, (x,v)) when one identifies the hori-
zontal and vertical fibers with tangent spaces of M in the canonical way. (O

In light of exercise[7.8] the points 7(6) and 7(¢7(6)) are conjugate along
the geodesic t — 7(py(#)) if and only if Ap,(t = T) is singular. The whole
block matrix of is always invertible because ¢, is a diffeomorphism,
but the individual blocks can fail to be invertible.
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T
S M

Figure 24: The sphere S, M sits inside the tangent space T, M. To
stay on the sphere, an admissible direction of motion is orthogonal
to the tangent vector.

11.5 The flow on the sphere bundle

Recall that the unit sphere bundle is the set of those (x,v) € TM for which
lv| = 1.

Because the speed of a geodesic is constant, the geodesic flow preserves
the norm of a vector. Therefore we may restrict the diffeomorphism

or: TM — TM (156)

to
o SM — SM. (157)

This is a dynamical system on the sphere bundle SM, and its generator is
still called the geodesic vector field although it is a slightly different object
due to the different ambient manifold. If clarity is required, we will decorate
objects with “T'M” or “SM”.

Since all geodesics have unit speed in the flow on SM, we miss some
directions on the bundle. The only direction missing on T, »T'M is the
vertical direction of v as illustrated in figure 24} Indeed, we have

TSM = {((z,v),£) € TTM;v| = 1,&, L v}. (158)

The missing direction corresponds to reparametrizations of geodesics, so no
geometric information is lost in studying the flow on SM.

Consequently, the Jacobi field t5(t) does not appear in the differential of
the geodesic flow on SM. We can also further restrict directions so that ()
does not appear either. After we have done this in the next section, all Jacobi
fields are normal.

* Important exercise 11.10. Do you have any questions or comments regarding
section 11?7 Was something confusing or unclear? Were there mistakes? Are
there pictures that should be included in this section? O
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12 Derivatives on the unit sphere bundle

12.1 Horizontal and vertical bundles on SM

The sphere bundle is a level set of the function f: TM — R, f(z,y) =
9i(x)y'y?. Given 0 = (x,y) € TM and n € T,TM, let us compute df(0)n.
Take any curve a(t) = (a(t), A(t)) on TM so that a(0) = 6 and &(0) = 7.
Now f(a(t)) = gij(a(t))A (t)AI(t) = (A(t), A(t)) and using the covariant
derivative along a gives 0, f(«(t)) = 2 (A(t), D A(t)).

Let us write 7 in the new basis we found in section [10.5}

Lemma 12.1. Let o(t) = (a(t), A(t)) be a curve on TM. Its velocity is
& = 'Oy + Ay = a'0, + (D A)D,, (159)
where Dy is the covariant derivative along a.

Exercise 12.1. Prove the lemma. O

If we write our n € TyTM as
n=X0u+Y0,, (160)

lemma gives us df(0)n = O f (a(t))]i=o = 2gi;(x)y'Y7.
Because SM = f~1(1) C TM is a level set of f, we have

TSM ={X"6,: +Y'0, € TTM; (z,y) € SM, g;;(x)y'Y’ =0}.  (161)

There is no restriction in X but Y cannot have anything in the direction
of y. We remedy this asymmetry with the following definition using the
decomposition on TT M.

Definition 12.2. Let § = (z,y) € SM. We define the horizontal and vertical
fibers of T'SM at 6 to be

HM(9) = {X'6, € TSM; gij(v)y' X’ = 0} (162)
and
VIM(9) = T,SM N VTM(9). (163)

In the definition of H5™ () we set Y = 0. This ensures that the vector is
horizontal; see lemmas and [10.5] Similarly, in the vertical fiber we have
X' =0, so the point on T'SM can be written as Y*0,: with the constraint
9ij(x)y'Y? = 0.

In words:
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e At 6 = (x,v) € SM the horizontal subspace H* () C TySM consists
of vectors that are purely horizontal and whose horizontal component
(a vector on T, M) is orthogonal to v.

e At 0 = (x,v) € SM the vertical subspace V() C Ty SM consists of
vectors that are purely vertical and whose vertical component (a vector
on T, M) is orthogonal to v.

FExercise 12.2. We took out one direction from H°M and that is the direction
of the geodesic vector field X. Show that this one-dimensional subspace is
all that is not horizontal or vertical, that is,

TpSM = HM(0) ® VM () & RX(0). (164)

This gives a decomposition of T'SM into horizontal, vertical, and geodesic
directions. O

Let N be a bundle over SM whose fiber at (x,y) € SM is
Ny ={v € T M; (v,y) = 0} (165)

This bundle gives us a way to formalize tangent spaces of T, M with the
direction of y removed.

The sphere S, M is a manifold, and so it has a tangent space at every
point. It is well justified to think that N, ) = T,5,. M.

Ezercise 12.3. Let 6 € SM. Recall that TpSM C T,TM. Show that
Ky: VSM(9) — N, is a linear bijection. O

Because Ty SM C TyT M, the Sasaki metric gives an inner product on TS M.
This is the Riemannian metric the submanifold SM inherits from 7M.

Erercise 12.4. We defined things so that HTM () = H¥(0) @ RX (6). Show
that this direct sum is orthogonal. Is the decomposition ((164)) orthogonal as
well? O

As in exercise|12.3 d7(0): HM () — Nj is a linear bijection. The Sasaki
metric was defined so that our maps VS (0) — Ny and H5M(0) — N, are
isometries.

Remark 12.3. If we have a section W of the bundle N and a unit speed
geodesic 7, we get a natural normal vector field along ~ as follows. The lift
of v is the curve (v,%) on SM. At every point W, (t) = W (y(t),%(t)) €
T, wM. Because the fiber N, () is the orthogonal complement of 4(t), the
vector field W, (¢) is indeed orthogonal to (t).
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12.2 Horizontal and vertical gradients on SM

As we will now work mostly on the sphere bundle, let us drop the decorations
and write H5M(0) = H(0) and V5(0) = V (0).

Now that we have a handle on different directions on SM, let us differ-
entiate functions. Consider a function u: SM — R. As the Sasaki metric
makes SM into a Riemannian manifold, v has a gradient Vu(#) € TySM at
0 € SM. Using the decomposition (see (164]))

T,SM = H(0) & V(0) & RX(0), (166)

we may decompose the gradient into these three components. The last ele-
ment in the decomposition is one-dimensional, so it makes sense to treat the
third component of the full gradient as a scalar.

Once we identify H(0) and V() with Ny, we have

TySM = Ny x Ny x R. (167)
In this decomposition
Vu(h) = (Vu(h), Vu(8), Xu(6)), (168)

where %u and %u are the horizontal and vertical gradients of u. Both %u
and Vu are sections of the bundle N because at every point 8 € SM they
take values in Ny.

Let us write these derivatives in terms of coordinates. On T'M we have
the basic derivatives d,: and 0,:. If we want to express derivatives on SM
using these, we need to extend functions from SM to T'M to differentiate
there. A natural extension is given by the scaling map@ s: TM\0— SM,
s(z,y) = (z,y/ |y|). Now that u is a function on SM, the scaled map wo s is
a smooth function in a neighborhood of SM on T'M. We thus define basic
derivatives of u as

S = 0,i(uos) gy and (169

(%U = ayi (u @) S)’SM.

These operators can be used to write the differential of a function. To get the

gradient, we use the musical isomorphisms to write 6* = ¢*§; and 9" = ¢*d;.

Let us consider the restriction u, = ulg,p. The gradient@] of u, should

correspond to %u If we extend u, to a neighborhood of S, M in T, M as
uz o s (but evaluate everything on SM), then the differential is

d(u, o s) = udy’. (170)

38Here 0 C TM stands for the set of the origins of the fibers.
39The gradient in the inner product space T, M or its subset S, M. That is, this is a
Euclidean gradient.
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The gradient is obtained by musical isomorphism:
V(uy 0 8) = 0'udy. (171)

The scaling ensures that the radial derivative of u, o s vanishes, and so the
gradient is orthogonal to the radial vector on TT'M and the gradient belongs
to V(0). Identifying V' (6) with Ny via Ky, we find the vertical gradient of u
to be y

Vu = 0'ud,. (172)

Notice that the natural isomorphism Ky changes the basis, not the compo-
nents.

FExercise 12.5. Show that the geodesic vector field operates on w in local
coordinates as Xu(z,v) = v'd;u(z,v) at any (z,v) € SM. This justifies
thinking of the geodesic vector field as “X = v - V,”, the x-derivative in the
direction of v. In R” we have SR” = R" x S"~! and indeed X =v-V,. O

To find the horizontal gradient at § = (z,v), we can proceed similarly and
differentiate u o s on T'M using the basis elements d,:. The full horizontal
gradient on HTM(0) is

S udyi. (173)

The component in the direction of v should be projected out, as that is
already contained in Xu. Recall exercise[I2.4, Once we project this geodesic
direction out and apply the isomorphism dr(6): H*M () — N, we find that
the horizontal gradient is

Vi = (81 — (Xu)o')d,. (174)

Now we have found coordinate expressions for the decomposition (168]).

12.3 Derivatives of sections of N

There is a natural way to integrate on a Riemannian manifold M. The
divergence div V' of a vector field V' is defined so that

/ V) = /fdwv (175)

for all smooth compactly supported f: M — R. In other words, the diver-
gence is the negative formal transpose of the gradient: “div = —V?”. The
divergence is a first order differential operator given in local coordinates as
divV = V. It is the trace of the covariant derivative VV.
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Similarly, we may integrate over the Riemannian manifold SM. The
horizontal and vertical divergences divu and divu of u are defined similarly
through transposes by requiring that

h h
/ <v, Vu> - —/ udivy (176)
SM SM

and similarly for div. The geodesic vector field X is skew-adjoint: X7 = —X.
The horizontal and vertical divergences map smooth sections of N into
smooth functions on SM.

* Important exercise 12.6. The geodesic vector field also operates on sections
of N. If V is a section, we define

XV(0) = DV (pu(0))=o- (177)

This is the same formula as for scalar differentiation, but the derivative is
now covariant. Show that XV is a section of N.

It follows that if we restrict V to a normal vector field V,, along ~ as
in remark [12.3] then the geodesic vector field corresponds to the covariant
derivative along the geodesics. That is, (XV), = D,V O

Unfortunately more complete details are beyond the scope of this course.

12.4 Commutator relations

Now that we can differentiate, the question arises whether the various dif-
ferential operators commute. This is easiest to study on T'M first. The
coordinate derivatives J,: and Jy: all commute with each other.

* Important exercise 12.7. Show that [0, 0yi] = Fkijayk. O

The commutator [§,i,d,;] will involve derivatives of Christoffel symbols.
Alternatively, it can be seen as a commutator of covariant derivatives. Either
way, it should be no surprise that the commutator contains the curvature
operator. Using the commutator relations for the basis elements on T7T M
allows one to compute the commutators for the various derivatives on SM.

Recall the curvature operator along a geodesic « from definition [5.4] It
is an operator depending on (t) and 4(t) and maps 7%, M — T, M. By
lemma it also maps Ny 4(1)) to itself. Therefore the curvature operator
induces a map R that maps sections of N to sections of N.

Proposition 12.4. The differential operators on SM satisfy the following
commutator relations, with X interpreted as operating on scalars or sections
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of N as appropriate:

XV = -V,
[X,V] = RV,
divv — divV = (n - 1)X, (178)
X, div] = —div,

(X, dlilv] = divR.

We will not prove this proposition@, but we observe a redundancy.

v h v h
FEzercise 12.8. Prove the formula [X,div] = —div assuming [X,V] = -V
using the definitions by formal transposes. (A similar argument works for
the two commutator relations involving the curvature operator.) O

These maps, including both copies of X, can be summarized in a diagram:

X

()

scalars
VO ) (179)

sections of N

7 ND
R X

12.5 The Santalé formula

Let us return briefly to integration over SM. While the exact proofs would
consume too much time, there is an important idea that we need to discuss:
a change of variables associated with the geodesic flow.

To make everything well defined, we have to impose restrictions on the
geometry. First of all, we assume M to be a compact Riemannian manifold
with boundary. One can define manifolds with boundary abstractly, but one
can also think of M as a compact subset with a smooth boundary inside a
Riemannian manifold without boundary.

The manifold M has a boundary, and so does its sphere bundle SM:

I(SM) = {(z,v) € SM;x € OM}. (180)

40Gee [6] for a proof and more details.
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ZASM
LA

Figure 25: The sphere bundle and its boundary. At an interior point y
the sphere S, M is just the unit tangent sphere of the tangent space
and can be thought of as an infinitesimal circle around y. At a bound-
ary point x the sphere S, M is again a similar sphere, but only part of
it points inward. These directions on top of boundary points make up
the bundle 0,,(SM) and serve as initial data for maximal geodesics.
We choose the normal vector v to point outward.

A vector at the boundary can point in three kinds of directions: inwards,
tangentially to OM, or outwards.

Let v(z) be the outer unit normal vector at € M. Then the tangential
vectors at x are precisely those that are normal to v(x). The inward pointing
boundary is

On(SM) = {(z,v) € I(SM); (v,v(x)) < 0.} (181)

This set parametrizes all geodesics that start at the boundary and go inwards
and is depicted in figure 25|

To describe how far the geodesic can be extended before falling out of
the manifold, we define 7: SM — R to be the travel time function so that
a geodesic starting at (x,v) € SM can be maximally extended to the future
to be defined on [0, 7(x,v)].

We want to rule out two problems, depicted in figure [26}

1. There might be geodesics that do not meet the boundary and are thus

not parametrized by 0, (SM).

2. Some geodesics might start tangentially but still go inside the manifold.
To rule out the first one, we assume that every maximal geodesic has finite
length. In other words, given any point and direction, the geodesic comes out
in finite time. To rule out the second one, we assume that the boundary is
strictly convex in the sense that the second fundamental form of the boundary
is positive definite.
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Figure 26: Two kinds of problematic geodesics. The geodesic loop 74
cannot be parametrized by an initial condition on the boundary. The
geodesic v, can but it starts tangent to the boundary, allowing which
is technically awkward.

As 0., (SM) € 0(SM) C SM is a submanifold, it inherits a Riemannian
metric. Therefore one may integrate over it. Let pu be the natural measure
on SM and A the one one J(SM). A measure more compatible with the
geodesic flow is obtained by X = |(v, V)| \.

Proposition 12.5 (The Santalé formula). Let M be a compact Rieman-
nian manifold with boundary so that every geodesic has finite length and the
boundary is strictly convex. Then for any smooth u: SM — R we have

[t dute) -
(x,v)eSM

7(x,v) B
/ / u(pi(x,v))dtdA(z,v).
(z,0)€0in(SM) JO

We omit the proof 7]

So, to integrate over SM, one can integrate over the space of all geodesics
(On(SM)) and then over each geodesic. Think of this as a Fubini-type theo-
rem. In the usual Fubini theorem, one can write the plane as a disjoint union
of parallel lines and integrate first over each line and then integrate all those
integrals together. Now we just write SM as a union of trajectories of the
geodesic flow; see exercise [11.1

(182)

* Important exercise 12.9. Do you have any questions or comments regarding
section 12?7 Was something confusing or unclear? Were there mistakes? Are
there pictures that should be included in this section? O

41Gee [8, lemma 3.3.2).
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Figure 27: In geodesic X-ray tomography one aims to reconstruct
a scalar function f on the manifold M from its integrals over all
maximal geodesics.

13 Geodesic X-ray tomography

This section is devoted to a problem whose solution serves as a recap of
the course and shows how to apply the tools. The question, illustrated in
figure [27] is: Is a function f: M — R on a Riemannian manifold uniquely
determined by its integrals over all geodesics?

13.1 The geodesic X-ray transform

To formalize the question, we define the geodesic X-ray transform. If ' is the
set of all maximal unit speed geodesics on M, the geodesic X-ray transform
of f: M — R is the function Zf: I' — R given by

b
Tf(y) = / F(y(1)) dt (183)

for a maximal geodesic v: (a,b) — M.

Even if f is smooth and compactly supported, the integral might not
exist over all geodesics. Therefore we need to impose some restrictions on
the geometry of M. We assume M to be compact and all maximal geodesics
to have finite length. Then the operator Z is well defined on C*°(M; R).

The problem is easiest to study when the space I' of all geodesics has a
good structure. To that end we require that the boundary is strictly con-
vex. This ensures that all geodesics are parametrized by the submanifold

Exercise 13.1. We can always take I" to be the quotient of SM by the geodesic
flow. That is, we can define an equivalence relation on SM so that 6 ~ 6’
if and only if 6 = ¢.(#) for some ¢ € R. There are manifolds for which
the geodesic flow has a dense trajectory on SM. Show that in this case the
quotient SM/~ is not a topological manifold. O
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Figure 28: A point = and a unit vector v at it define a forward
geodesic segment 7, . The value of u/(z,v) is the integral of f over
this segment starting at (z,v). The travel time function is the integral

of the constant function: 7 = ul.

Exercise 13.2. How would you parametrize geodesics in R”? The parametriza-
tion can be redundant. Give a formula for Zf in R", when f is smooth and
compactly supported. O

Furthermore, to avoid problems near the boundary, we only study func-
tions that are compactly supported in the interior of the manifold M. That
is, there is a positive distance between M and spt(f). In this case we obtain
an operator Z: C®(M;R) — C(0n(SM);R).

The question is: Is this operator injective? That is, do the integrals of f
over all geodesics v € I' determine f uniquely?

We shall show that the operator is indeed injective. To do so, we need to
show that if f € ker(Z), then f = 0.

13.2 The transport equation

Take any smooth f: M — R. We define its integral function u/: SM — R
to be

7(z,v)
! (2, ) = / F(en(®)) dt. (184)

Recall that ., is the geodesic starting at (x,v) and 7(z,v) is the travel
time function. The integral is taken from any point all the way up to the
boundary. The functions v/ and 7 are illustrated in figure .

As geodesics are parametrized by their starting points at 0, (SM), we may
actually write Zf = u/]| am(sa)- The restriction ul |lasanawm (s 1s always zero
because the geodesics to be integrated over have zero length.

Ezercise 13.3. The manifold M with boundary dM can be thought of as
follows. Consider a Riemannian manifold M without boundary and a smooth
function p: M — R. Suppose M = p~1([0,00)), IM = p~1(0), and dp # 0
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at OM. (Smooth domains can always be defined in terms of a smooth defining
function p like this.)

Take any (z,v) € SM \ 9(SM) so that the maximal geodesic starting
there meets boundary in finite time and is not tangent to it at the exit point.
Use the implicit function theorem to show that the travel time function 7
is smooth in a neighborhood of (z,v). It follows then from our assumptions

that 7 is smooth in all of SM \ 9(SM). O

Exercise 13.4. Let p: M — R be a boundary defining function; see the
previous exercise for a definition. Show that for all x+ € OM we have

ker(dp(z)) = T,0M. O

Lemma 13.1. If f is a smooth compactly supported function in the kernel
of I, then v’ is smooth and compactly supported.

Proof. Everything appearing in the defining integral is smooth in the
interior SM \ 9(SM), so u/ is smooth in this set.

If = is close enough to OM, then for any v € S, M either v,, or v, _,
will avoid the support of f for all future times and so uf(x, +v) = 0 for at
least one sign[?] As f € ker(Z), we have u/(z,v) + u/(z, —v) = 0. Thus
u’(z,v) = 0 when z is close enough to OM. O

FExercise 13.5. Now that we have established that u/ is regular, it remains to
establish its crucial property. Show that Xu/ = —7*f.

Here the pullback 7* f means the composition foxw. As f is a function of
x € M only, and 7* f promotes it into a function of (z,v) € SM which does
not depend on v. O

We now know that if Zf = 0, then u/ is smooth (and compactly sup-
ported) and satisfies the transport equation

= o i
{Xu ™ f in SM, (185)

ul =0 on O(SM).

We will show that this boundary value problem for a partial differential
equation has the unique solution v/ = 0. It then follows that 7 f = —Xu/ =
0 and so f = 0. This shows that Z is injective.

To show the uniqueness of the solution of the transport equation, observe
that the right-hand side of the transport equation Xu/ = —7*f is indepen-
dent of direction. Therefore its derivative with respect to the direction v
vanishes. In other words,

v

0=V(-7"f) = VXu/. (186)

42This is a little tricky to prove precisely, but the geometric intuition is hopefully clear
enough.
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Now we have found a homogeneous second order equation for u/.

13.3 The Pestov identity

To show uniqueness of solutions to the PDE VXu= 0, we will use an energy
identity known as a Pestov identity or Mukhometov—Pestov identity. The
identity is not hard to prove using our tools, but it can be hard to guess.

Proposition 13.2 (Pestov identity). If u: SM — R is smooth and com-
pactly supported, then

/ :/ ‘X%ur—/ <%u,R%u>—l—(n—1)/ |XU|2- (187)
SM SM SM SM

Proof. We will write the various integrals as norms and inner products in L?(SM).
Compact support allows us to integrate by parts without boundary terms.
We want to compute

%Xu

‘ 2

H%Xu L HX%U i = (%Xu, %Xu) — (X%u,X%u)

__ (div%xu,X@ n (XX%, %u)
v v v v (188)
= <XdivVXu7 u) — (divXXVu, u)
- ((Xcﬁv%x ~ divX X V), u> .
To simplify this, we apply the commutator rules of proposition to find
XAV — dvX XV = = (divX — dv)VX — divX (VX — V)
= —dlilv%X + d‘i,VX %
— _dWVX + div(VX + RV) (189)
— (divV — divV)X + divRV
— —(n—1)XX +divRV.

Therefore
v 2 v 2 v v v v
HVXu - Hxvu - ((XdivVX - divXXV)u,u)
=—(n—1)(XXu,u) + (d‘ilvR%u7 u) (190)
— (n— 1) (Xu, Xu) (R%u, %u) .
This is the claimed identity. O]
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FEzercise 13.6. What is the commutator [d‘ilv%, X]? O

The Pestov identity is easy to use when VXu =0 as in our case. Let us
try to understand the structure of the right-hand side better. The first two
terms only depend on u through V := Vu, which is a smooth section of the
bundle N. Per remark this section gives rise to a normal vector field
V., € NVFy(v) along any maximal geodesic . The zero boundary values are
due to compact support.

Lemma 13.3. If V is a smooth section of the bundle N, then
[ peve - wvirvy)
SM

) (191)
- / I’Vx,v (V%c,v? VYx,v) d)\(.’]}, U)’
(z,0)EDin(SM)

where A is the Riemannian volume measure on 0;,(SM), I, is the index form
along v, and V,, is the normal vector field along v arising from the section V
of N.

Proof. We begin by applying the Santal6é formula of proposition to our
integral over SM. In the notation of the proposition, u(z,v) = |XV|* —
(V,RV) |(2,0)- Santal6 gives an integral over the inward pointing bound-
ary Oy, (SM) and over each geodesic v = 7,, we end up with the integral

(z,v) 7(x,v) )
| wtatmonae= [T (V)P = v RY)

7(x,v) 192
_/ (ID:V,|* = (V,,, RV,)) dt (192)
0

=1L,(V;, V,).
This completes the proof. O

To prove uniqueness, we want the right-hand side of our Pestov identity
to be positive. We shall see how to do so soon, but we need to make the
right assumption to guarantee positivity.

13.4 Injectivity on simple manifolds

Definition 13.4. A simple Riemannian manifold is a compact Riemannian
manifold with strictly convex boundary so that each maximal geodesic has
finite length and there are no conjugate points.
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For example, the closed Euclidean ball is simple. We can think of simple
manifolds as “ball-like”, but they are quite a bit more flexible.

Theorem 13.5. The geodesic X-ray transform is injective on smooth com-
pactly supported functions on a simple Riemannian manifold of any dimen-
sionn > 2.

Proof. Let us take a smooth and compactly supported f: M — R. We
assume that Zf = 0 and aim to show that f = 0.

The integral functlon u/: SM — R is also smooth and ,compactly sup-
ported by lemma As we found, this function satisfies VXul = 0.

Let us then turn to the Pestov identity of proposition [13.2;
2

2 v
= HXVuf

- (%uf, R%uf) =D xd . (193)

The left-hand side vanishes.
By theorem [8.8| the index form is positive definite in the absence of con-
jugate points. Combining this with lemma [13.3| shows that

A4 2 v v
HxvufH - (vuf,Rvuf) > 0. (194)
Therefore our energy identity reduces to@
0> (n—1) || Xuf||". (195)

This can only hold if Xu/ = 0. Therefore 7*f = —Xu/ = 0andso f =0. [

Remark 13.6. One would obtain positivity in the Pestov identity more di-
rectly if each of the three terms on the right-hand side is positive. This is the
case if R < 0 in the appropriate sense. This brings us back to sections
and where we saw that there are no conjugate points in non-positive
curvature.

Important exercise 13.7. To summarize, list which tools developed through
this course were used to prove theorem [13.5] O

13.5 Applications

The geodesic X-ray transform appears frequently in the theory of inverse
problems. It arises in the study of many inverse boundary value problems
for PDEs and as a linearization of non-linear geometric problems. For ex-
ample, the derivative of the distance between two points with respect to the

43This estimate hints at things failing when n = 1. And injectivity does indeed fail.
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Riemannian metric is an X-ray transform of the variation of the metric ten-
sor. This makes the geodesic X-ray transform appear in linearized travel time
tomography in non-Euclidean geometry, which is useful for global seismol-
ogy and ultrasound imaging. In R? and R? the transform has direct medical
applications, as computerized tomography (CT) is based on it.

* Important ezxercise 13.8. Do you have any questions or comments regarding
section 137 Was something confusing or unclear? Were there mistakes? Are
there pictures that should be included in this section? O

14 Looking back and forward

14.1 Ways to view geodesics

We found a number of different ways to see geodesics, as

critical points of the length functional,

minimizers of length (at least locally),

solutions to the geodesic equation,

as curves that parallel transport their velocity,

as projections of trajectories of the geodesic flow, and

6. as curves that lift to integral curves of the geodesic vector field.

ARl

Exercise 14.1. Where were these different aspects discussed in the notes?
Give, briefly and in your own words, each definition of a geodesic from the

list above. O
FExercise 14.2. How are the different definitions linked to each other? After
all, they define the same concept. O

One way to view geodesics that we ignored is to realize the geodesic flow
as a Hamiltonian flow on the cotangent bundle with its natural symplectic
structure. This topic is highly recommended to readers with any familiarity
with Hamiltonian mechanics — and those without any.

14.2 Families of geodesics

The course had two main goals: to understand individual geodesics and
families of geodesics. There were several different objects that collected or
compared various geodesics:

1. Jacobi fields,

2. the exponential map, and

3. the geodesic flow.
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FExercise 14.3. Summarize what geodesics are described by each of the three
objects above. O

Section [I1.4] compared the exponential map to the geodesic flow. Differ-
entiating either one leads to Jacobi fields.

The flow lives on SM, so its differential lives on T'SM. This was split
in three directions: geodesic, horizontal, and vertical. The horizontal and
vertical components on T'SM correspond to Jacobi fields and their covariant
derivatives.

The geodesic flow is always a diffeomorphism, but the exponential map
as its restriction can fail to be so. This failure happens locally at conjugate
points. Points are conjugate along a geodesic if a Jacobi field vanishes at
both points but not identically.

14.3 More aspects of geodesics

We studied local minimization of length and its connections to the index form
and conjugate points. All conjugate points to a given point can be collected
in a so-called conjugate locus of that point. Theorem can be rephrased
so that geodesics are locally minimal only up to the conjugate locus but not
beyond.

The corresponding global minimization works up to the so-called cut locus
— this is not a theorem but a definition. The conjugate locus is further away
than the cut locus by theorem [8.8f We did not study global minimization
properties of geodesics.

In addition to distances between points, one can study distance between
general submanifolds. Zero-dimensional submanifolds are points. Existence
and uniqueness of minimizing curves between two submanifolds depends on
the geometry of the submanifolds in addition to that of the whole manifold.
A minimizing curve is always a geodesic, but the boundary conditions are
different.

The endpoint is not fixed, but the direction must be normal to the sub-
manifold. The nature of this condition depends on the codimension of the
submanifold. The first variation formula has a boundary term that forces
this. The second variation formula has a more complicated boundary term
depending on the curvature of the submanifold.

When we studied minimization between points, we used Jacobi fields that
correspond to families of geodesics between the two points. Now those have
to be replaced by families of geodesics that are normal to the submanifolds
at the endpoints. This leads to conditions on vanishing Jacobi fields but
the initial conditions are different. Something critical happened when the
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two points were conjugate. Similarly, something critical happens with the
distance from a hypersurface to a point when the point is a focal point. Focal
points are analogous to conjugate points, but one endpoint has to be replaced
by a hypersurface.

We briefly touched upon geodesic spheres in section The shapes of
these spheres have interesting properties as one varies the radius and the
center. There is an evolution equation for the shape operator of the geodesic
sphere that corresponds to the Jacobi equation.

In general, our endeavors have been very local in nature, but there is a
substantial amount of global geometry of geodesics to be studied.

14.4 General geometry

If you have not read Riemannian geometry before this course, perhaps you
have now found a reason to look into the fundamentals of the theory. Lee’s
book [4] is highly recommended for that purpose.

The theory of Riemannian geometry branches out quickly, and we have
only focused on the branch along a geodesic. Matters like integration, cur-
vature, submanifolds, general fiber bundles, and global geometry deserve a
look.

Differential geometry does not end with Riemannian geometry. Pseudo-
Riemannian manifolds are very similar to Riemannian manifolds. The metric
tensor is not assumed to be a positive definite and symmetric matrix in lo-
cal coordinates, but only invertible and symmetric. As we lose positivity,
we lose a sense of distance, but many of the considerations do not really
rely on distance. The geodesic equation, parallel transport, the exponential
map, Jacobi fields, and the flow work just as well. If one wants to intro-
duce geodesics as critical points of a functional, energy is better than length.
Pseudo-Riemannian, especially Lorentzian, manifolds are heavily used in gen-
eral relativity.

A step in a different direction can be taken by throwing away not pos-
itivity but the existence of a quadratic form. If we only require that every
tangent space has a (smooth and strictly convex) norm, we end up with
Finsler geometry. Many of our considerations generalize to Finsler geome-
try, but the details are more technical. A Finsler manifold has a natural
Riemannian metric on each tangent space, but this metric depends on a
reference direction. Therefore Finsler geometry can be seen as “anisotropic
Riemannian geometry”.

It turns out that the (co)tangent bundle has a canonical symplectic struc-
ture, which in turn induces a contact structure on the (co)sphere bundle. To
maintain a narrower focus, we avoided the theory of symplectic manifolds
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and contact manifolds, but one should be aware of the existence of a broader
theory of them. There is a huge variety of different structures one could put
on manifolds and bundles, and they easily fill books.

Of course, one can drop all metric properties altogether and only study a
smooth manifold or perhaps introduce another kind of additional structure.
Or one can keep a metric structure but lose the smooth one and study metric
geometry.

The rabbit hole is deep and branches indefinitely. Nevertheless, the reader
is invited to enter.

14.5 Geodesic flows

We have only scratched the surface of the theory of geodesic flows. The
global and local geometry of the manifold influence the behavior of the flow.
For example, curvature has an effect on ergodicity. For a detailed and deep
exposition of geodesic flow, see the book [5] by Paternain.

14.6 Integral geometry

In section [13| we studied whether a function is determined by its integrals over
geodesics. This is an example of an inverse problem in integral geometry.
There are a number of different problems in this spirit. The object to be
determined can be a tensor field or a connection, for example. The problems
can also be non-linear, and the task can be to determine the whole manifold
from some kind of data.

For integral geometry on manifolds, we recommend the books by Shara-
futdinov [8] and Paternain—Salo-Uhlmann [7]. For the details we omitted in
section the article [6] and its appendices are a good reference. If you want
a big picture of the current state of research on such problems, the review [3]
and references therein can get you started.

These problems are interesting and highly non-trivial already in Euclidean
geometry. For an overview of the various tools and ideas in Euclidean X-ray
tomography, we refer the reader to [2].

Another reference on these topics is the email address given on the cover
page of these notes.

14.7 Feedback

Important exercise 14.4. Which results or ideas did you find most interesting
in this course? O
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* Important exercise 14.5. At times, this course had more focus on ideas than
technical details than usual. How did you find this kind of a course? O

* Important exercise 14.6. Do you feel that something was left out? Is there
something — perhaps some of the further study directions mentioned above
— that you would like to have seen covered? O

* Important exercise 14.7. Do you have any questions or comments regarding
section 14?7 Was something confusing or unclear? Were there mistakes? Are
there pictures that should be included in this section? O

Previous feedback has been of great help in improving these notes. Many

thanks for all students who contributed!
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