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Abstract

In the experimental part of IPhO (and generally when performing
measurements) you have to estimate the accuracy of your results. In
this lecture I go trough the most important aspects of error analysis.

1 Introduction

A rule of thumb: a result without an estimate of its accuracy is worthless.
This holds also in the experimental part of IPhO (if it is not stated in the
problem that the error estimation is not required). Example: the fine struc-
ture constant (important in e.g. quantum mechanics and particle physics) is
measured to be

a = (7.297 352537 + 0.000 000 005) x 10~° (1)

Look at that accuracy! Uncertainty is only 0.37 parts per billion!

On the other hand if the densities of the samples are measured to be
p1 = 1.1+0.5kg/m? and py = 1.5 + 0.4 kg/m3, can one say whether or not
these samples consist of same/different material? What if the error bars were
not given?

In the following chapters we shall go trough quickly the most important
topics in error analysis. There are also a few excercises for you to do.
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Figure 1: Distribution of measurements if the correct result is x = 0 and
systematic error is —2 units.

Terminology

e If result is a £ b, b is the absolute error and b/|a| is the relative error.

e Systematic error is an error caused by a bias of the measurement device.
This can be fixed (at least partly) by calibration.

e Statistical error is caused by many independent, unknown effects. Mea-
surements obey usually the normal distribution.

The situation is shown in Fig. 1. If the correct value of some quantity is
0 and due to an incorrect calibration our measurement device gives results
which are two units smaller than the real value, our measured values are
distributed around —2. Usually one can assume that this distribution is
Gaussian (~ e *@=0)* for some k around zy = —2 in this example).

As a sidenote: one can actually derive exactly the results presented in
this lecture assuming that the measured values follow the normal (Gaussian)
distribution. However, we will not go trough the rigorous derivations here as
these are not needed in IPhO. You will derive these results during your first
year in the university.



2 Errors in calculations

2.1 Max—Min

“Max—Min” method is the simplest possible way to estimate the error. As
a straightforward way it is a good tool for IPhO: even tough it gives quite
large error estimates, you will get full points :)

Let us consider a situation where you want to measure some quantity f
which is a function of some other quantities a and b (this method generalizes
easily for an arbitrary number of quantities). For example if f was velocity,
you would determine it by measuring quantities a = s (length) and b = ¢
(time): f = f(a,b) = a/b.

Denote the absolute error of a by da and similarly 6b for b. We can
now evaluate the largest and smallest possible values for f by calculating
f(a = da,b £+ 6b), and choosing the signs in such a way that we get the
largest /smallest possible result. In this way we get foax and fmin, and the
error estimation for f is

5f:max{fmax_f>f_fmin}- (2)

Another (equally correct) way to define 6f would be an average of these
terms.

Exercise 1. (a trivial one) You have measured s = 10+ 1cm and t =
5+ 0.2s. Evaluate velocity and its accuracy.

Exercise 2. Evaluate the error bars for the (quite an arbitrary) quantity

c

q= % sin(ma) Ind, (3)

where we have measured a = 0.8 £ 0.1, b = 2+ 0.3, ¢ = 0.4 £ 0.01 and
d=10 =+ 2.

Exercise 3. For a quantity ¢ = a-b show the result

by _da b
gl lal b

(4)

You may assume that errors are small compared to the actual values of the
quantities, namely da/|a| < 1.

In addition consider a situation ¢ = a/b, and convince yourself that the
above result holds also in this case. You may need an approximation

1
1+=x

~lFx (5)



valid for small x < 1 (this kind of approzimations are useful to know; can
you derive this?).
Do you see how does these results generalize to the case where

a/l-a2.a-aN
q_

=12 N 6
by-by--- by (6)

(A derivation is not required)

2.2 Addition of errors

Usually errors do not move result to the same direction, so min-max-method
gives quite large error estimate as it gives the worst-case scenario. Thus if we
have two independent errors (say, statistical error and systematical error),
more realistic method is to add errors in quadrature.

Consider for example a case in which ¢ = x +y. In this case dg = dx + dy
clearly overestimates the error: if x and y are independent, a better idea is
to compute uncertainty as

0g = /(0)? + (dy)*. (7)

Compare with the Pythagora’s theorem! This can be interpreted such that
the independent error sources move the result to orthogonal directions (there
is no correlation between the errors), and here we actually compute the most
probable error instead of the maximum error.

For relative errors one can derive

2 2
@:\/(%> _}__|_<6G_N> (8)
q ai an
for ¢ = ay---ap/(aks1 -~ an).

Addition in quadrature is usually used when you have got two (or more)
different errors from different sources. Let us say that the statistical error of
q is estimated to be 0gsa¢ and that the systematic error is estimated as d¢sys.
In that case g = \/((5qstat)2 + (0gsyst)?.

For example we might measure the length of a pen by a ruler to be
L = 7.50 cm, and we estimate the accuracy in which we can read the ruler
is 0.10 cm. In addition, we can’t be sure that that cheap ruler is really
"calibrated” correctly: we estimate (or the manufacturer gives the estimate)
that the ruler is "calibrated” in accuracy 0.05 cm. As a result the error
estimate is 6L = /(0.10 cm)? + (0.05 cm)? = 0.12 cm.
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Exercise 4. The efficiency of an electric motor which lifts a mass m to an
altitude h in time t 1s

mgh

e=—, 9

VIt )

where V and I are the voltage and the current that the motor uses, respec-
tively. Let us suppose that m, h and V are measured in 1% accuracy, I in
3% accuracy and t only in 7% accuracy. Compute the relative error of the
efficiency using a) the maz-min method b) addition of errors quadratively.
How does you result change if you neglect the smallest errors?

3 Fitting parameters and linearizing data

In order to obtain more accurate results, one usually has to vary some quan-
tity and measure how some other quantity changes. For example, one can
measure resistance of a resistor by varying the current in the circuit and
measuring the voltage over the resistor. As U = RI, plotting current as a
function of voltage the data points should fall on a same straight line. Fitting
a straight line to this data set gives the resistance, as it is now just the slope
of the line (there are mathematical algorithms to do that, but in practice
[=IPhO] one draws the line by hand such that it agrees with the data points
as well as possible).

Of course one could just measure current at one voltage and obtain a re-
sult. However, especially in more complicated measurements one data point
may hide some errors. For example if in the above example the fitted line
would not go trough the origin, there would probably be some systematic
error in the measurement. But we could still obtain the resistance by evalu-
ating the slope of the fitted line. Also, if the data point would not fall on a
same curve, we might conclude that we see some new phenomena. In this ex-
ample, at sufficiently large currents the temperature of the resistor increases
significantly and the resistance probably changes also.

If the two quantities (above voltage and current) do not depend linearly
on each other, fitting procedure is more complicated. As an example, let us
consider a radioactive decay: if the half-life of an isotope is t; /2, the number
of active nuclei at time t is

N(t) = Npexp(—At) = Nyexp (—in—Qt) : (10)

1/2

where N is the number of nuclei at time ¢ = 0 and A = In 2/, is the decay
constant. From this we can calculate the activity of the sample, namely



Table 1: Activity of the sample.
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Figure 2: Activity as a function of time

number of decays per unit time which is nothing but a derivative (do you see
why?)
A(t) = |N'(t)] = NoXexp(—At). (11)

Let us say that we want to measure the half life of the given nucleus, and
a Geiger counter is used to measure the activity as a function of time. The
results with their corresponding error estimations are given in the table 1.

The results are plotted in figure 2. How can we find out the decay constant
A and thus the half-life? (Of course modern computers can fit a function
f(z) = A- exp(—Bt) and give you the constants, but you don’t have one in
IPhO )

The idea is to linearize the data, plot it and fit a straight line to data set.
Taking a logarithm on both sides of eq. (11) one gets

In A(t) = In [NoAe ] = In(NoA) — At (12)

(Notice that here the world "logarithm” refers to the natural (base-e) loga-
rithm). So we see that if we plot the logarithm of activity as a function of
time and fit a straight line to the data set, the slope of the line will give us
directly the decay constant .

1.7+1



As we learned at the beginning, we also have to estimate the error of
our result. So in addition to the “best fit” you just did, you also have to
fit (taking into account the error bars) lines which have largest and smallest
possible slopes in such a way that they still somehow go trough all the points
(within their error bars). In this way you get maximum and minimum values
for the slope and thus for the decay constant, so you can estimate the error.

Exercise 5. Follow the previously explained procedure and figure out the half-
life of the nuclei (result is probably something like 2.5 hours) and estimate the
error. Can you also figure out the number of nuclei at the beginning (t =0)?

4 Statistical analysis

In order to get more reliable results, one has to make a lot of measurements.
But how to get an error estimation from large amount of data?

In section 3 we learned how to linearize data and fit some curves to it.
This is not very useful method if you measure the same quantity many times
and want to somehow combine the results.

Note: The methods described in this chapter work only if you have a lot
of data points. How much is a lot? It depends, but let us say that less than
ten is clearly too few. But on the other hand, keep in mind that in IPhO
you shouldn’t waste your time by making {00 many measurements.

Let us first define a quantity called standard deviation (in Finnish keski-
hajonta) which measures how much the data points vary around the average.
If the average is denoted by z and we have measured values z,xs, ..., 2y,
the standard deviation is

Zz]\il(f — ;)
o= \/ N : (13)

An another interpretation is that o gives the most probable error of a single
measurement.

(To be precise there should be N — 1 in the denominator, but as N is
large, N — 1 ~ N. This is actually one possible way to determine whether
you are allowed to do statistical analysis: if N =~ N — 1, then N is probably
large enough).

Once the standard deviation is computed, it is easy to obtain an error
estimation:

0T = (14)

e



If the datapoints have different error estimates, then it is no longer pos-
sible to just calculate the mean value, because it would mean that one con-
sidered measurements with huge errorbars as important as more accurate
measurements.

Let us say that we have measured a quantity x /N times, the results are
x; and the error estimation of each data point is dx;. Then we should use
1/6x? as a weight, and the weighted mean is

N

>imy Ti/0x}
N

> i1 1/0a7

Because the weight is square of the inverse error, measurements with poor

accuracy contribute little to the final result.
The error estimation is

(15)

T =

0T = S (16)

N

Derivation of this result is problem 8.

Exercise 6. (A boring one...)

Estimate an error for the quantity x if measurements are x1 = 5, x5 = 8§,
r3 =10, x4y =7, x5 =6, x7 =6, x8 =22, t =9, x10 = 7, v11 = 4 and
T12 = D.

5 General formula for error propagation

So far we have gone trough a few (more or less) straightforward ways to
compute an error of the measured quantity. What you have learned this far
is enough for TPhO. However, the general law presented in this section is, in
my opinion, so easy and quick to use that it might be worth of knowing also
in IPhO. Plus it gives smaller errors than min-max method!

The idea is that we use derivative of the function to approximate how
much the error in some quantity « affects our result ¢ = ¢(z,y,2,...). As
you may know, the derivative gives the local slope of the function. Thus, if
the absolute value of the derivative is large, only a small error in x causes
huge difference in the final result q.

The situation is shown in Fig. 3, where all other variables y, z and so on
are kept constant. Now as ¢/(z) gives the local slope of the function ¢(z), we
can approximate that

a(x + 6w) = q(x) + ¢ (x)5. (17)
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Figure 3: ¢(z) as a function of z, and effect of 0z on dq.

which gives
g = q(z + 0x) — q(z) = ¢'(x)dz. (18)

Thus it is enough to calculate the derivative of the function ¢ in order to find
out the error estimation! Notice that here we basically approximate function
using its first order Taylor polynomial around x to see what happens when
x changes a bit. Higher order terms are neglected, which requires that dx is
small (02% < dz).

We can of course do the same calculation for other variables y, z, ... and
add these errors in quadrature:

- g 2 g 2 g 2

if ¢ = q(x,y, 2) and all variables are independent.

A nice thing is that now you don’t have to think about which combination
of parameters gives the largest/smallest value: it is enough to just calculate
the derivatives and add the results in quadrature.

Exercise 7. In order to measure the lattice constant of a given material one
measured that the second intensity maxima was seen in angle § = 30 & 2°,
when the laser wavelength was A = 450 £ 30 nm. Calculate the lattice con-
stant and its error using the general formula for error propagation. (Recall:
dsinf = kX, d is the lattice constant and k the number of mazima,).

Exercise 8. Derive equations (16) and (8) (in the case where ¢ = x1 -+ - xn).
Hint: Notice that the weighted average is a function of original measured
values.



Exercise 9. First, show that the relative uncentainty for the quantity ¢ = x*
18 5
0 _ 50 (20)
q¢ |z
Now, compare result (20) with the result you get from the equation (8) by
writing ¢ = x - x, so that

%:\/<%’3)2+ (%")2: 2%‘. (21)

According to the previous problem, both of these results follow from the
general rule for error propagation. Why do we get different results? Which
one is correct?

Exercise 10. Consider a quantity ¢ = x(Inxz — 1). After a careful measure-
ment of x, one obtains x = 1.00 £ 0.07. Calculate q and estimate its error
using a) general formula for error propagation b) maz-min method. Which
one is correct here?

6 About measurement devices

First, notice that according to TPhO syllabus, “Candidates must be aware
that instruments affect measurements”. (If you haven’t done it yet, take a
look of the syllabus [list of topics you should be familiar with], you find it
from page http://ipho.phy.ntnu.edu.tw/syllabus.html ). For example,
multimeter has a finite resistance when it measures voltage/current.

There are two clearly different sources of errors when one measures some-
thing with some device: the measurement procedure might be difficult (e.g.
the setup geometry may make it difficult to use ruler to measure distances)
and there is some internal error attached in each device. First one is more
or less easy to estimate, the last one requires some calculation.

Device manufacturer usually tells the accuracy of the device e.g. in the
manual. In easiest case the error is given to be e.g. 1%, so the error of the
measured value a is just 0.01-a. At the end this error and other estimated
errors (e.g. from the difficulties in reading the values or using the device) are
added in quadrature.

The accuracy of a mutlimeter is usually given in a form ”+0.9% + 1 dig”.
Let us say we use a multimeter in range where you read the voltage to be
10.00 V. The accuracy is then calculated as 0.009-10.00 V+ last digit that
counts (the last one that the device shows you), in this case 0.01 V. So the
total error estimation is (0.09 4+ 0.01) V.= 0.1 V.
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Exercise 11. To measure the resistance of a resistor, one measures the volt-
age over it to be U = 2.0 V and the current in the circuit to be 0.15 A. In
the range used the multimeter accuracy for voltage measurements is £1% + 2
digits and for current measurements £2% + 1 digit. Calculate the resistance
and its accuracy. Use the general formula for error propagation.

Exercise 12. List a few possible experimental setups (that might be possible
in IPhO) where one has to take into account that instruments affect mea-
surements.

7 Final words

One more thing to learn: rounding. FErrors are always rounded up. In
the final result you should have as many significant numbers in the error
estimation as in the result. For example 1.2345 4 0.322456 ~ 1.2 + 0.4.

In real experiment you have a lot of error sources. In order to avoid
unnecessary work one can include in the error analysis only uncertainties
which are dominant. For example, if in some experiment you measure the
weight of a ball using an accurate weighing scale in 0.0001 g accuracy and
then use a stopwatch to measure the time it takes for the ball to fall from
a given height, it makes no sense to include this tiny mass uncertainty in
the error analysis. This is especially important in IPhO as there you do not
have the luxury of having an extra time to do "too accurate” error estimates.
Keep it simple!

Error analysis may not be the most interesting topic, but is something
you just have to handle in order to get points in IPhO (and to become a
physicist).
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