LUENTO 6 5.10.

Vieli ennustus-korjaus —menetelmisti

ENNUSTUS-KORJAUS —PERIAATE

Kolme vaihetta: ennustus, voimien laskenta ja korjaus
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* yleiskdyttoinen menetelma 1. tai 2. kl diff.yhtéléiden
numeeriseen ratkaisemiseen

* kertoimien c arvot riippuvat diff.yhtdlon kertaluvusta

* suoraviivainen menetelmai tapauksissa jossa kiihtyvyys
riippuu myds nopeudesta (esim. termostaatit)

* lisdinfoa esim. Allen, Tildesley: Computer Simulation of
Liquids, Appendix E



Numeerisesta integroinnista
[Haa02] luku 5

Integraalille lasketaan numeerinen approksimaatio = KVADRATUURI
(QUADRATURE)

Newton-Cotesin kaavat: interpoloidaan integrandia polynomilla

1. suorakaidekaava

2. keskipistekaava

3. puolisuunnikaskaava

4. Simpsonin kaava

S. korkemmat kertaluvut myos mahdollisia

Approksimaation tarkkuutta voidaan parantaa tihentimilla
integrointivilii -> paloittainen integrointi

Newton 3/8 kaava

Gaussin — Legendren kvadratuuri
e solmupisteet Legendren polynomien nollakohtia valilla [-1,1]
e solmupisteet ja painot taulukoitu
e integraali laskettava valilla [-1,1] esim. muuttujanvaihdolla
e esim. 5.3.1. [Haa02]



Muita vaihtoehtoja:

Gauss-Tsebysev kvadratuuri muotoa

Gauss-Laguerre

Gauss-Hermite
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Taulukko 4.1: Tavallisimmat ortogonaalipolynomiperheet.

Nimi [a, D] w(x) Normituskerroin

Legendren polynomit [—1,1] 1 Jn+1/2

TSebysevin polynomit [-1,1] 1/V/1 — x? \l/_TT (n=20)
V2/m(n=1)

Laguerren polynomit [0, c0) e~ 1

Hermiten polynomit [—c0,00] e~ X2 1/NnV2m




=1 0.5 0 0.5 1
X

a: Legendren polynomit P, P, P- ja b: Polynomit vn + 1x", n =5,6,7,8.
Ps.

Kuva 4.2: Kahden eri kannan polynomeja.

Esimerkki 4.3.3 Tarkastellaan vililla [—1, 1] maéariteltyjen polynomien p(x)
avaruutta. Kantafunktioiksi olisi helppo valita suoraviivaisesti monomit x". Na-
ma eivat kuitenkaan muodosta ortonormaalia systeemia sisatulon (A.22) suh-
teen, silla

| i
| 0, jos m+n on pariton,

x"xMdx =4 ), : s
2/(m+mn+1), jos m+n on parillinen.

-1
Ortonormaali kanta on muodostettavissa Gramin ja Schmidtin menetelmalla

(sivu 391), jolloin paddytdaan normalisoituihin Legendren polynomeihin Py(x) =
1/v2, Pi(x) =+3/2x,P>(x) =5/8(3x% — 1), ...

Kuvassa 4.2a on normalisoitujen Legendren polynomien Ps, P, P7 ja Pg kuvaa-
jat. Jos niitd verrataan alkeellisen kannan x" vastaaviin funktioihin (kuva 4.2b),
on helppo ymmartda miksi jalkimmadainen kanta sopii huonosti darellisella las-
kentatarkkuudella suoritettaviin approksimaatioihin: yksinkertaiset monomit
saavat hyvin pienid arvoja merkittavalla osalla vilia [—1, 1], ja lahelld paatya
x = —1 niiden kayttdaytyminen riippuu oleellisesti eksponentin parillisuudesta
tai parittomuudesta.



Taulukko 5.1: Gaussin ja Legendren kvadratuurien solmupisteitd ja painoja valilla
[—1,1].

n | x; g
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4 | x4 =-x1=0.861136311594053 | w; = wy = 0.347854845137454
x3 = —xp = 0.339981043584856 | wy = w3 = 0.652145154862546

5 | X5 =—x1 =0.906179845938664 | w| = w5 = 0.236926885056189
Xy = —Xxp = 0.538469310105683 | wyr = wy = 0.478628670499366
x3 =0 w3 = 0.568888888888889

6 | xg=—x1 =0.932469514203152 | we = wy = 0.171324492379170
X5 = —x2 = 0.661209386466265 | wr = w5 = 0.360761573048139
X4 = —x3 = 0.238619186083197 | w3 = wy = 0.467913934572691




Taulukko 5.2: TSebysevin kvadratuurien solmupisteet ja paino

n | x; w;
1 | x1=0 w) =2
2 | xo»=-x1=0.57735026918963 | w; =1
3 | x3=-x1=0.70710678118655 | w; =2/3

x> =0

4 | x4 =—-x1 =0.79465447229177 | w; =2/4
X3 = —X» =0.18759247408508
—x1 = 0.83249748700098 | w; =2/5
X3 =—-X>»=0.37454140955358
x3 =0

6 | xg =—-x1 =0.806624681810782 | w; =2/6
X; =—-X>»=0.42251865376111
X4 =—-X3 =0.26663540151670
—x1 = 0.88386170075805 | w; =2/7
X = —X»2 =0.52965677528516
X; = —-Xx3=0.32391181051991
x4 =0
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Esimerkki 5.3.1 Laskemme integraalin J‘; eXdx =1-e* = 0.981684 likiar-
von kayttden kahden pisteen Gaussin kvadratuuria (kohta n = 2 taulukos-
sa 5.1). Koska taulukkoarvot soveltuvat sellaisinaan vain vialin [—1, 1] integraa-
leille, joudumme joko tekeméain integraalissa sopivan muuttujanvaihdoksen
tai skaalaamaan taulukossa annettuja lukuja.

Kokeillaan ensin muuttujanvaihdosta x = 2(t + 1) elit = x/2 — 1, jolloin

4 |

[ e Vdx = [ 2e 2+l gt

0 -1
Jalkimmainen integraali on nyt valilla [—1, 1], joten taulukon luvut ovat kay-
tettavissa sellaisenaan, ja

1
~ (0.944160.

Integraalin arviointi Gaussin kvadratuurilla aiheuttaa tassd tapauksessa abso-
luuttisen virheen 0.981684 — 0.944160 = 0.037524.

Pisteiden ja painojen skaalaus vilille [0,4] sopiviksi kdy puolestaan seuraa-
vasti: vdlien pituuksien suhde on 4 : 2 = 2, joten painot joudutaan kertomaan
tekijalla 2. Solmupisteet ratkeavat kaavasta

o= 370
1-(=1)

eli x; = 2(t; +1),i=1,2, joten x; = 2(—0.577350 + 1) = 0.845299 ja x» =
2(0.577350+ 1) = 3.154701. Lopullinen kvadratuuri on siis

(ti=(=1)) +0

2. @ UB4299 4 oL o3 54701 ) 9441 60.

Kaytannon laskujen kannalta ei siis ole merkitysta kummin pdin hoitaa taulu-
koitujen arvojen soveltamisen.




Moniulotteiset integraalit
Tulokaavat
e sovelletaan 1-ul menetelmii periakkain kullekin dimensiolle
e vyl integrointihila s-ulotteisessa avaruudessa
e virhe O(N?*) - integrointitarkkuus suppenee huonosti jos s
suuri
Ei-tulokaavat
Monte Carlo —integrointi

e suorakulmasainnon sovellus

n-1

Isk = h 2y f(x))/n h=(b-a)/n

- Isk on integrointivili (b-a) * f-arvojen Kkeskiarvo !

kun h 2> 0 (n> o), niin Igx 2 1

Tilastollinen strategia:

valitaan N satunnaispistetta U; valilti [0,1] ja skaalataan
vilille [a,b] : u; =a + Uj(b-a)

lasketaan

N

Inc = (b-2) 2y f(u;)/N



MC integroinnin plussat ja miinukset:

+ yksinkertainen menetelméa myos useampidimensionaaliselle
integraalille

+ virhe aina luokkaa O(N'?), ei riipu integraalin dimensiosta!
- kun dimensio pieni, MC ”suppenee” hitaammin kuin tulokaavat
(esim. 1-ul: N kasvatettava tekijillid 100 jos halutaan parantaa

tuloksen tarkkuutta yhdella desimaalilla)

- satunnaislukuotoksen hyvyys??? (satunnaislukugeneraattorit,
”importance sampling...)
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