LUENTO 4 26.9. (materiaali ldhteestd [Haa02] luku 7)

Tavalliset differentiaaliyhtilot
¢ yksi muuttuja, esim. aika

Yleisesti: y’(t) = f(t,y(t)) y vektori, fvektoriarvoinen funktio
y(to) = Yo alkuarvo

Esimerkki alkuarvotehtiavasta

Esimerkki 7.0.1 Veden ionisoituminen noudattaa reaktiota
HO=H"+OH .

Olkoot[H,O](t),[H"](t) ja[OH ](t)vesimolekyylien, protonien ja hydroksidi-
ionien konsentraatiot (mol/1) hetkelld t. Ionisoitumisnopeus on verrannollinen
veden konsentraatioon, ja veden muodostumisnopeus on verrannollinen pro-
tonien ja hydroksidi-ionien konsentraatioiden tuloon:

LLH,01(0) = ki TH01(8) + ko[H* N (DIOH 1D,
Kertoimet k; ja k2 ovat reaktionopeusvakioita. Merkitdan
[H2O](t) = [H20](0) + x (1)
[H"1(t) = [H"](0) — x(t)
[OH™](t) = [OH"](0) — x(t).

Arvo x (t) on siis poikkeama alkutilasta. Niin saadaan differentiaaliyhtalo

d

g0 =- (ki + k2([H'1(0) + [OH](0))) x(t) + kax*(t)

— ki [H20](0) + k2[OH"](0)[H"](0),

jonka ratkaisu alkuehdolla x (0) = 0 kuvaa reaktion kulkua.




EsimerkKki reuna-arvotehtavasti

Esimerkki 7.1.2 Tarkastelemme palkkia, jonka toinen pdd on tuettu jaykésti
ja toinen paa on vapaa. Olkoon [ palkin pituus ja v{x) poikkeama kohdassa
x mitattuna palkkia pitkin. Tietyin oletuksin kuormitetun palkin poikkeama
toteuttaa yhtdlén

EIv" (x) = q(x) (7.6)
ja reunachdot
»(0) = 0,
V() = 0,
V') =0, (7.7)
vy = 0. (7.8)

Yhtalossa (7.6) g on kuorma, E maleriaalin Kimmokerroin ja I palkin poikkileik-
kauksen nelibmomentti. Reunaehtojen (7.7) ja (7.8) mukaan palkin vapaaseen
paahan ei kohdistu momenttia eika leikkausvoimaa.

Differentiaaliyhtidlon kertaluku on korkeimman derivaatan kertaluku

Kertalukua n oleva diff.yhtdld voidaan ratkaista n:n 1. kl:n diff.yhtdlon
ryhmini, esim. n=2:

y' ==y, ¥0)=0, ¥'(0) =1 (7.4)

-

Merkitsemme jatkossa y'(f) = ¥' ja y(t) = », kun argumentti ei ole esi-
tvksen kannalta oleellinen. Tehtdava (7.4) voidaan helposti muuntaa ensim-
maéisen Kertaluvun differentiaalivhtaléryhméksi. Merkitsemme alkuperiista
muuttujaa ¥, = ¥ ja otamme kdyttoon uuden muuttujan y» = v,. Saamme
vhtraloryhmaén

V=2,

vy =y = -y,

Sz . 7.5
V1 (0) =0, (7.3)

12(0) = ¥ (0) = 1.

Ratkaisemalla tehtdvé (7.4) ensimmadisen Kertaluvun ryvhmadana (7.5) saamme
ratkaisukdyrdn y approksimaation y; lisdksi derivaatan y’ approksimaa-
tion vo.



Kertalukua n oleva vleinen alkuarvotehtava

ym = ey, yh),
via) = A,

Vv'(a) = A,

V[”_li(a‘} - An

voidaan helposti muuntaa ensimmadisen kertaluvun differentiaaliyhtaléryh-
maksi

Yy o= Ve,
Vo o o= V3,

J _y;'; = f‘(xs_yls_yis"' !_yi’l)!
yila) = Ay,
yola) = Ap,
yula) = Ap.

Ratkaisujen stabiilisuus

Yhtdlon stabiilisuus vs. ratkaisumenetelmén stabiilisuus!

Yhtilo on stabiili, jos ”pieni muutos” alkuarvossa aiheuttaa vain ”pienen
muutoksen” ratkaisussa t>0.

Esim. yksinkertainen yhtdlé  y’ =Ay, (A kompleksiluku)

jonka ratkaisu on  y(t) = y(0)e" (t>0)

on stabiili,jos kahden ratkaisun y(t), p(t) ero mielivaltaisella ajanhetkelld



ly(t)- wt)|=]y(0)- )] gRe(t

pysyy rajoitettuna <> Re(L) <0

Yleisesti:

Yleisemmin sanottuna yhtalon
y'(t) =f(t,y) (7.10)

ratkaisu v Kaikilla t = 0 on

e stabiili, jos Kaikilla € > 0 on olemassa ¢ > 0 siten, ettd jokainen yhtalén
(7.10) ratkaisu v, jolle patee

ly(0) —y(0) =0
toteuttaa myos ehdon
ly(t) = v(t)| =€
kaikilla t = 0.
e dasymptoottisesti stabiili, jos se on stabiili ja
ly(t) =y ()| -0,

kun t — co.

Voidaan osoittaa, ettd lineaarisen tehtivan
v = Ay + f(t)

ratkaisu on

e stabiili, jos ja vain jos matriisin A kaikki ominaisarvot A toteuttavat joko
ehdon Re(A) < O tai ehdon Re(A) = 0 ja A ei ole defektiivinen (kappale
9.2),

e asymptoottisesti stabiili, jos ja vain jos kaikille matriisin A ominaisar-
voille A pédtee Re(A) < 0.



Esimerkki 7.1.3 Ongelman

v(0) =a

ratkaisu y(t) = ae~! on asymptoottisesti stabiili, silld kaikilla alkuarvoilla a
ratkaisu yv(t) — 0, kun t — oo,

Eulerin menetelmé

Alkuarvotehtiava

vy = f(t,y), v(a)=yo.

Approksimoidaan ratkaisua vililld [a,b] hilapisteissd
tk=a+kh, k=0,1,...,N, h=(b—-a)/N.

Taylor:

Pl

, h=
V(tgs1) = V() +hy' (ty) + —v"(zx)

2
h=
= y(t) + hf(te, ¥ () + 5 (zi),

Otetaan vain 1. kl termit = Eulerin menetelma

_;}’(ﬂ-) = Yo,
Vsl = Ve +hf(te, Vi), k=0,1,... ,N



QGraafisesti:

251 .
_ Tarkka ratkaisu alkuarvolla 1
_ __ Eulerin menetelmi
~ Tarkka ratkaisu alkuarvolla 2/e
1] — . .2
2071 ... Tarkka ratkaisu alkuarvolla 4/¢”

Kuva 7.1: Eulerin menetelmiéssé edetdin tangentin suuntaan. Menetelmén aiheut-
taman virheen vuoksi derivaatta arvioidaan kuitenkin jollain liheiselld ratkaisukay-
rilld oikean ratkaisun sijaan.

Lokaali virhe ja kokonaisvirhe

Eulerin menetelmédn ainoa parameltri, jota kdyttdja voi muuttaa, on askel-
pituus h. Valitsemalla askelpituus sopivan Iyhyeksi toivotaan, etta laskettu
approksimaatio eroaa tarkasta ratkaisusta haluttua virherajaa € vaihemman.

Tutkimme seuraavassa Eulerin menetelméssa syntyvaa virhetta. Vihennam-
me tarkan ratkaisun pisteessa ty muodostetusta Taylorin kehitelmasta (7.12)
Eulerin menetelmin (7.13) kaavan, jolloin saamme

V(tks1) — Vis1 = V{t) — v + h[ f(te, v(tr)) — f(te, Vi)l

+h2y"(zx) /2, (7.14)

missa fy < zx < tyy1. Yhtdlon vasen puoli ilmaisee kokonaisvirheen pistees-
sd fr+1 eli tarkan ja lasketun ratkaisun vélisen eron. Juuri tdta kokonais-
virhettd yritetadn numeerisessa menetelmassa pitaa pienend. Madritelladn
kokonaisvirhe ey = y(tx) — V.



Paikallinen virhe I

hey' (zx) /2,

on kertalukua 2 = Eulerin menetelméan kertaluku = 1

Virheen kasautumisarvio

ex+1 = (L + hfyler + lgsr.

Virheen vahvistuskerroin

(1+hfy)

Stabiilisuuteen vaaditaan | 1+4f, | < 1

Esimerkki

Tarkastelemme jdlleen testitehtdvad (7.9). Eulerin menetelmaéa soveltamalla
saamme

Vi = Viel + WAV = (L+ hA) v = ... = v(0) (1 + hA)k,

Olkoon nvt Re(A) < 0, jolloin ratkaisut ovat asymptoottisesti stabiileja ja
lahestyvit nollaa. Niinpd numeerisen menetelman antamat approksimaatiot
| V| elvdt saa Kasvaa. Eulerin menetelmdn tapauksessa on siis vaadittava,
ettd |1+ hA| = 1.

Numeerisen menetelman absoluuttinen stabiilisuusalue D on se kompleksi-
tason osa D, johon kuuluville luvuille z = hA menetelmé toteuttaa testiteh-
tavda ratkaistaessa

|Vi—1l = [Vl



kuank=1,2,..... Absoluuttisen stabiilisuusalueen ja reaaliakselin leikkausta
kutsutaan menetelméan absoluuttiseksi stabiilisuusvdaliksi.

Eulerin menetelman absoluuttinen stabiilisuusalue on siis kompleksitason
ympyrd

D={zeC:|l+z| =1}

ja absoluuttinen stabiilisuusviéli on [-2, 0].

Edella kasiteltiin yksittdista differentiaalivhtaloa (7.9). Tarkastellaan seuraa-
vaksi yhtaloryhmaa

y = Ay

ja oletetaan, ettd matriisi A on diagonalisoituva. On helppo osoittaa, etta
Eulerin menetelma kayttaytyy stabiilisti, jos askelpituus h toteuttaa ehdon

h{\l,hr\a, s ,h.r\n c D,

missd Ay, Ao, ..., A, ovat matriisin A ominaisarvot.



Esimerkki 7.2.1 Tutkimme tehtivin
vio=—100v + 100, vi0) =1y (7.16)
ratkaisemista Eulerin menetelmalla. Ongelman tarkka ratkaisu on

— 1001

it ={vg—1lle + 1.

Ratkaisu on selvisti stabiili. Sovellamme Eulerin menetelmad tehtavadn, jolloin
saamme

Vil = Vi + h(—=100v, + 100) = (1 — 100k ) vy + 100h.
Taman differenssivhtilon ratkaisu on
Ve = (Vg — 111 —100h)% + 1.
Olkoon lahtoarvo vy = 2, télldin tarkka ratkaisu

vit) = e 100

+ 1 (7.17)
putoaa nopeasti lahtbarvosta 2 raja-arvoon 1. Approksimaation

Vi = (1 —100h)* +1 (7.18)

pitdisi kayrtaytya samoin kuin tarkka ratkaisu (7.1 7). Kuitenkin jos
1= 0.02, ji | lahestyy daretantd, kun k kasvaa.
h = 0.02, jono | vy | lahestyy adretdnta, kun k kasvaa

Tehtavalle (7.16) A = —100. Niinpa askelpituuden h on toteutettava h € (0,0.02],
jotta Eulerin menetelma olisi stabiili.




Pyoristysvirhe vs. algoritmin stabiilisuus

Esimerkki 7.2.2 Ratkaisemme tehtivin v' = —200tv2, v(—=1) = 1/101 Fule-
rin menetelmdilld eri askelpituuksilla viidentoista numeron tarkkuudella. Ku-
vassa 7.2 on esiterty poikkeama tarkasta ratkaisusta pisteessd t = 0 eri askel-
pituuksilla. Virhe alkaa kasvaa, kun askelpituutta Ivhennetain liikaa.
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Kuva 7.2: Virhe alkaa kasvaa, kun askelpituutia lvhennetdan liikaa.

Esimerkki: Harmonisen oskillaattorin ja Eulerin menetelméin
stabiilisuusanalyysi



Yhteenveto

diff.yhtalon kertaluku = korkeimman derivaatan kertaluku
n:nnen kl:n yhtialo voidaan muuttaa n:n 1 kl:n yhtilon ryhmaksi
alkuarvotehtava vs. reuna-arvotehtava

yhtilon stabiilisuus ja ratkaisualgoritmin stabiilisuus ovat eri
asioita

algoritmille voidaan usien tehda suht. yksinkertainen
stabiilisuusanalyysi = stabiilisuusalue (z € C) tai stabiilisuusvili
(x € R)

algoritmin kertaluku on p, jos paikallinen (katkaisuvirhe) on
kertalukua p+1
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