Introduction to Density Functional Theory (SS 2008)

Dozent: E.K.U. Gross, Freie Universität Berlin

Problem set No. 1

Hand out : Thursday 17 April 2008 Hand in : Thursday 24 April 2008

1. The Rayleigh-Ritz principle for pure states

Given a Hamiltonian H with orthonormal eigenstates ψ_n (i. e. $\langle \psi_n | \psi_m \rangle = \delta_{nm}$) and eigenvalues E_n obtained by:

$$H \mid \psi_n \rangle = E_n \mid \psi_n \rangle \tag{1}$$

with:

$$E_0 \le E_1 \le E_2 \dots \tag{2}$$

(i.e. we allow for degeneracies).

(a) Prove that:

$$<\phi |H| \phi> \geq E_0$$
 (3)

for any normalized wavefunction ϕ . (2 points)

(b) In the case of q degenerate ground states, i.e. $E_0 = E_1 = \ldots = E_q$ and $E_{q+1} > E_q$, the orthonormal eigenstates ψ_0, \ldots, ψ_q span a linear space \mathbf{L} . Prove that the " = " sign in Eq. 3 holds if and only if $\phi \in \mathbf{L}$. (3 points)

2. The Hohenberg-Kohn (HK) theorem for degenerate systems

- (a) Prove the HK theorem for degenerate systems, i.e. prove that the density of any one of the degenerate ground states uniquely determines the external potential. (3 points)
- (b) Find an example where a given degenerate ground state density corresponds to two different ground state wavefunctions. (2 points)