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Introduction

• Schrödinger bridge (SB) problem historically addressed in 1931 as the dynamic
transportation of cloud of particles.

• Formulated in modern (probabilistic) terms as the search of optimal process evolving
from a measure to another one.

I SB has recently received great attention from the ML community as it is well-suitable
for learning complex continuous time systems, notably for generative modeling
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Fundamentals of SB and connection to optimal transport/control Introduction to SB

Schrödinger bridge (SB) problem

Ω = C([0,T ],Rd) space of continuous Rd -valued paths on [0,T ], X the canonical
process, i.e. Xt(ω) = ω(t), t ∈ [0,T ], P(Ω) set of probability measures on path
space Ω. For P ∈ P(Ω), Pt = Xt#P = P ◦ X−1

t : marginal law at t.

µ0 and µT two given probability measures on Rd

Q a prior/reference measure on Ω : belief of the dynamics before data observation,
e.g., law of the Wiener process with initial measure ν0.

(SBP) Find a measure P∗ on path space solution to

P∗ ∈ arg min
{
KL(P|Q) : P ∈ P(Ω),P0 = µ0,PT = µT

}
,

where

KL(P|Q) :=

{ ∫
log
( dP

dQ
)
dP, if P << Q

∞, otherwise

is the Kullback-Leibler (or relative entropy) between two nonnegative measures.

Remark. By strict convexity of KL(·|Q), the solution (when it exists) is unique.
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Fundamentals of SB and connection to optimal transport/control Introduction to SB

Reduction to static SB

Denote by P0,T = P ◦ (X0,XT )−1 the joint initial-terminal law of (X0,XT ) under P. We
have the disintegration formula :

P[·] =

∫
Pxy [·]P0,T (dx ,dy), with Pxy [·] := P[·|(X0,XT ) = (x , y)

]
and similarly for Q, Qxy , and Q0,T .

→ Decomposition of the relative entropy :

KL(P|Q) = KL(P0,T |Q0,T ) +

∫ ∫
KL(Pxy |Qxy )P0,T (dx , dy)

I Reduction to static SB problem : minimize

KL(π|Q0,T ) =

∫ ∫
log
( dπ

dQ0,T
(x , y)

)
π(dx , dy) (1)

over π ∈ Π(µ0, µT ) =
{
π ∈ P(Rd × Rd) : π0 = µ0, πT = µT}.

The solution to (SBP) is then given by P∗ =
∫
Qxyπ∗(dx , dy) where π∗ is solution to

the static SBP.
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Fundamentals of SB and connection to optimal transport/control Introduction to SB

Link with entropy-regularized optimal transport (OT)
• Consider Q = Wσ the Wiener measure of variance σ2, i.e., the law of the process

Xt = X0 + σWt , 0 ≤ t ≤ T , X0 ∼ ν0,

with W a Brownian motion. In this case, Wσ
0,T (dx ,dy) = ν0(dx)qσ(0, x ,T , y)dy where

qσ(t, x , s, y) =
1(

2πσ2(s − t)
) d

2
exp

(
−
|y − x |2

2σ2(s − t)

)
, 0 ≤ t < s ≤ T , x , y ∈ Rd ,

is the density transition kernel of Wσ.

• For π ∈ P(Rd × Rd), π << Wσ
0,T , we denote by π(x , y) its density w.r.t. ν0(dx)dy .

Then,

KL(π|Wσ
0,T ) =

∫ ∫
log
( π(x , y)

qσ(0, x ,T , y)

)
π(dx , dy)

= −E(π) +
1

2σ2T

∫ ∫
|x − y |2π(dx , dy) + cte,

where E is the Shannon entropy :

E(π) := −
∫ ∫

log(π(x , y))π(dx , dy)
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Fundamentals of SB and connection to optimal transport/control Introduction to SB

Entropic optimal transport (EOT)

Static SB problem is then equivalent to minimize∫ ∫
|x − y |2π(dx ,dy)− 2σ2TE(π)

= Eπ|X0 − XT |2 − τE(π) over π ∈ Π(µ0, µT ) (2)

Problem (2) is an optimal transport problem with quadratic cost, regularized with the
Shannon entropy via the parameter τ = σ2T , and called entropic optimal transport.

→ It allows to compute by Sinkhorn algorithm an approximation of the solution π∗,τ to
EOT (2), which converges when τ → 0 to the solution π∗ of classical OT :

W2
2 (µ0, µT ) := inf

{
Eπ|X0 − XT |2 : π ∈ Π(µ0, µT )

}
,

the (square) 2-Wasserstein distance between µ0 and µT .
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Fundamentals of SB and connection to optimal transport/control Introduction to SB

Diffusion process formulation of SB

Let Q = Wσ, and P ∈ P(Ω) such KL(P|Wσ) < ∞. Then, there exists an Rd -valued
process α, adapted w.r.t. F the canonical filtration, with EP

[ ∫ T

0

∣∣αt
σ

∣∣2dt] < ∞, s.t.

dP
dWσ

=
dP0

dν0
exp

(∫ T

0

αt

σ

dXt

σ
− 1

2

∫ T

0

∣∣αt

σ

∣∣2dt) (3)

=
dP0

dν0
exp

(∫ T

0

αt

σ
dW P

t +
1
2

∫ T

0

∣∣αt

σ

∣∣2dt)
and X follows the dynamics under P by Girsanov’s theorem

dXt = αtdt + σdW P
t , 0 ≤ t ≤ T ,

with W P a Brownian motion under P.

→

KL(P|Wσ) = KL(P0|ν0) + EP

[1
2

∫ T

0

∣∣αt

σ

∣∣2dt]. (4)
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Fundamentals of SB and connection to optimal transport/control Introduction to SB

SB as a stochastic control problem

In view of (4), the SBP can be formulated equivalently as the stochastic control problem
of finding the drift α of the diffusion

dXt = αtdt + σdWt ,

that minimizes the energy functional

E
[1
2

∫ T

0

∣∣αt

σ

∣∣2dt]
under the marginal constraints : X0 ∼ µ0, XT ∼ µT .
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Fundamentals of SB and connection to optimal transport/control Solution to SB

Case where µ0 = δx0, µT << Lebesgue measure λ
• We consider the prior measure Q = Wσ with ν0 = δx0 = µ0.

→ The law of XT under Wσ is νT (dy) = qσ(0, x0,T , y)dy , i.e., the law of N (x0, σ
2TId)

Theorem 1 (Solution to SB for Dirac initial law)

Assume that KL(µT |νT ) <∞. The solution to SB is given by P∗ = ψ(T ,XT )Wσ,
where ψ satisfies the Kolmogorov equation :

∂ψ

∂t
+
σ2

2
∆ψ = 0, t ∈ [0,T ), and ψ(T , ·) =

dµT
dνT

. (5)

where ∆ is the Laplacian operator w.r.t. spatial variable. The corresponding opti-
mal drift of the diffusion process X under P∗ is

α∗t = σ2∇x logψ(t,Xt), 0 ≤ t ≤ T ,

and the optimal cost is KL(P∗|Wσ) = KL(µT |νT ).

Remark. The PDE (5) means that ψ(t,Xt) is a martingale under Wσ, given by
Feynman-Kac formula :

ψ(t,Xt) = EWσ
[ µT (XT )

qσ(0, x0,T ,XT )

∣∣Ft

]
, 0 ≤ t ≤ T . (6)
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Fundamentals of SB and connection to optimal transport/control Solution to SB

Proof of Theorem 1 : law constraint under P∗

• Let P∗ = ψ(T ,XT )Wσ with ψ given by (5). Then, for any bounded function f on Rd ,

EP∗
[
f (XT )

]
= EWσ

[ µT (XT )

qσ(0, x0,T ,XT )
f (XT )

]
=

∫
µT (y)

qσ(0, x0,T , y)
f (y)qσ(0, x0,T , y)dy

=

∫
f (y)µT (y)dy ,

where we use in the second equality the fact that y 7→ qσ(0, x0,T , y) is the density of
XT under Wσ. This proves that the law of XT under P∗ is µT .

• Moreover, by definition of the density ψ(T ,XT ) of P∗, we have

KL(P∗,Wσ) = EP∗
[

log
( µT (XT )

qσ(0, x0,T ,XT )

)]
=

∫
log
( µT (y)

qσ(0, x0,T , y)

)
µT (dy)

= KL
(
µT |N (x0, σ

2TId)
)
.
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Fundamentals of SB and connection to optimal transport/control Solution to SB

Proof of Theorem 1 : drift under P∗

• By Itô’s formula, the positive martingale Zt := ψ(t,Xt) under Wσ satisfies

dZt = ∇xψ(t,Xt)dXt = Zt∇x logψ(t,Xt)dXt ,

hence is in the Doléans-Dade exponential form (3) with

α∗t = σ2∇x logψ(t,Xt).

• Moreover, by (4), we have

KL(P∗|Wσ) = EP∗
[1
2

∫ T

0

∣∣α∗t
σ

∣∣2dt].
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Fundamentals of SB and connection to optimal transport/control Solution to SB

Proof of Theorem 1 : optimality of P∗

• Let P ∈ P(Ω) associated with drift α, and s.t. XT ∼ µT under P. Then, by (3)

1 = EWσ
[
ψ(T ,XT )

]
= EP

[
ψ(T ,XT ) exp

(
−
∫ T

0

αt

σ
dW P

t −
1
2

∫ T

0

∣∣αt

σ

∣∣2dt)]
≥ exp

(
EP

[
logψ(T ,XT )−

∫ T

0

αt

σ
dW P

t −
1
2

∫ T

0

∣∣αt

σ

∣∣2dt]) (by Jensen)

= exp
(
KL
(
µT |N (x0, σ

2T )
)
− EP

[1
2

∫ T

0

∣∣αt

σ

∣∣2dt]),
which shows that

KL(P|Wσ) = EP
[1
2

∫ T

0

∣∣αt

σ

∣∣2dt] ≥ KL
(
µT |N (x0, σ

2TId)
)

= KL(P∗|Wσ).

2
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Fundamentals of SB and connection to optimal transport/control Solution to SB

Case of general distribution µ0, µT << λ

• Consider a prior measure Wσ with ν0 = λ, called reversible Brownian motion :

Wσ ◦ X−1
t = λ.

The law (density) of Xt |Xs = y , for t < s, is x 7→ qσ(t, x , s, y).

Theorem 2 (solution to SBP)

The solution to SB is given by P∗ = ϕ(0,X0)ψ(T ,XT )Wσ, where ϕ,ψ are non-
negative functions satisfying the Schrödinger system :

ϕ(0, x)ψ(0, x) =
dµ0

dλ
, λ− a.e., ϕ(T , y)ψ(T , y) =

dµT

dλ
, λ− a.e.,

with the Fokker-Planck, and Kolmogorov equations :

∂ϕ

∂s
(s, y)− σ2

2
∆ϕ(s, y) = 0,

∂ψ

∂t
(t, x) +

σ2

2
∆ψ(t, x) = 0. (7)

The corresponding optimal drift of the diffusion process X under P∗ is

α∗t = σ2∇x logψ(t,Xt), 0 ≤ t ≤ T .
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Fundamentals of SB and connection to optimal transport/control Solution to SB

About Schrödinger system

• The probabilistic representation of the Fokker-Planck and Kolmogorov equations (7)
(Feynman-Kac formulae) are

ϕ(s, y) = EWσ
[
ϕ(0,X0)|Xs = y

]
=

∫
qσ(0, x , s, y)ϕ(0, x)dx

ψ(t, x) = EWσ
[
ψ(T ,XT )|Xt = x

]
=

∫
qσ(t, x ,T , y)ψ(T , y)dy ,

→ Schrödinger system is written equivalently as the search of functions
ϕ∗ = ϕ(0, ·), ψ∗ = ψ(T , ·) s.t.{

ϕ∗(x)EWσ
[
ψ∗(XT )|X0 = x

]
= dµ0

dλ , λ− a.e.,
ψ∗(y)EWσ

[
ϕ∗(X0)|XT = y

]
= dµT

dλ , λ− a.e..
(8)

The solution to SB problem is then given by P∗ = ϕ∗(X0)ψ∗(XT )Wσ.

• The functions ϕ∗, ψ∗ represent the dual functions associated to the initial and terminal
marginal law constraints of the convex entropic minimization problem. Existence is
proved from the dual problem, and numerical approximation is achieved by
Fortet-Sinkhorn algorithm. There is uniqueness up to a multiplication of ϕ∗ and division
of ψ∗ by the same constant.
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Fundamentals of SB and connection to optimal transport/control Solution to SB

Proof of Theorem 2 : dual approach on static SB

Consider the Lagrangian function of the static SB problem (1) :

L(π, `, κ) =

∫ ∫ [
log
( π(x , y)

qσ(0, x ,T , y)

)]
π(x , y)dxdy

+

∫
`(x)

[ ∫
π(x , y)dy − µ0(x)

]
dx +

∫
κ(y)

[ ∫
π(x , y)dx − µT (y)

]
dy .

The first order condition (pointwise derivative w.r.t. π(x , y)) yields :

1 + log
( π∗(x , y)

qσ(0, x ,T , y)

)
+ `(x) + κ(y) = 0, λ⊗ λ− a.e.

→

π∗(x , y)

qσ(0, x ,T , y)
= ϕ∗(x)ψ∗(y)

for some functions ϕ∗(x) = e−1−`(x) of x , and ψ∗(y) = e−κ(y) of y .
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Fundamentals of SB and connection to optimal transport/control Solution to SB

Proof of Theorem 2 : marginal law constraints

By writing that π∗ ∈ Π(µ0, µT ) → ϕ∗, ψ∗ have to satisfy the Schrödinger system :

ϕ∗(x)

∫
qσ(0, x ,T , y)ψ∗(y)dy = µ0(x), λ− a.e.,

ψ∗(y)

∫
qσ(0, x ,T , y)ϕ∗(x)dx = µT (y), λ− a.e.

I The associated minimal relative entropy is

KL(π∗|Wσ
0T ) =

∫ ∫ [
log
( π∗(x , y)

qσ(0, x ,T , y)

)]
π∗(x , y)dxdy

=

∫ [
logϕ∗(x)

]
µ0(x)dx +

∫ [
logψ∗(y)

]
µT (y)dy .
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Fundamentals of SB and connection to optimal transport/control Solution to SB

Proof of Theorem 2 : back to the dynamic SB

• The solution to SBP is then : P∗ = ϕ∗(X0)ψ∗(XT )Wσ, with associated relative
entropy :

KL(P∗|Wσ) = Eµ0

[
logϕ∗(X0)

]
+ EµT

[
logψ∗(XT )

]
.

• The optimal drift of X under P∗ is

α∗t = σ2∇x logψ(t,Xt), 0 ≤ t ≤ T ,

with

ψ(t, x) = EWσ
[
ψ∗(XT )|Xt = x

]
=

∫
qσ(t, x ,T , y)ψ∗(y)dy .

2
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Fundamentals of SB and connection to optimal transport/control Fortet-IPF-Sinkhorn algorithm

Numerical approximation of the Schrödinger system

• Set q(x , y) := qσ(0, x ,T , y) the reference (density) measure, which is strictly positive
and bounded from above. The Schrödinger system is written as :{

ϕ∗(x)
∫
q(x , y)ψ∗(y)dy = µ0(x),

ψ∗(y)
∫
q(x , y)ϕ∗(x)dx = µT (y).

(9)

I The continuous time version of the Sinkhorn (discrete space case) algorithm would
consist in solving (9) by iteration with the following updates :

ϕn+1(x) = µ0(x)∫
q(x,y)ψn(y)dy , ψn+1(y) = µT (y)∫

q(x,y)ϕn+1(x)dx , (10)

initialized with some positive function ψ0, e.g., ψ0 = 1d .

Remark. The map Φ s.t. ϕn+1 = Φ[ϕn] in the scheme (10) does not have the good
suitable properties for proving the fixed point property of Φ in the continuous time case.
Fortet proposed a truncated modified scheme for getting the convergence of the scheme.
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Fundamentals of SB and connection to optimal transport/control Fortet-IPF-Sinkhorn algorithm

Iterative Proportional Fitting

Define the (density) probability mesures πm, m ≥ 1, by

π2n+1(x , y) := ϕn+1(x)q(x , y)ψn(y),

π2n+2(x , y) := ϕn+1(x)q(x , y)ψn+1(y),

starting from some π0, e.g., π0 = q. Then, from dual approach, se see that

π2n+1 ∈ arg min
{
KL(π|π2n) : π0 = µ0

}
,

π2n+2 ∈ arg min
{
KL(π|π2n+1) : πT = µT

}
.

This iteration over π via the minimization of relative entropy where one alternately
updates either with the initial or terminal law constraint, is called Iterative Proportional
Fitting (IPF) scheme.
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SB as generative model

Generative AI

• We observe i.i.d. data from an unknown distribution µdata ∈ P(Rd)

• Goal : generate/synthesize new (real-looking) samples of µdata

Figure – Real-looking images generated by AI : DALL-E, Midjourney, Stable diffusion, etc
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SB as generative model

Generative learning

Generative modeling (GM) has become a classical task in machine learning with several
competing methods :

Likelihood-based models : energy-based models (EBM), variational auto-encoders
(VAE)

Implicit generative models : generative adversarial network (GAN)

Diffusion models :

Score-based models (2020-) : (from the blog of Y. Song)

Optimal transport/SB approach (2022-) : this lecture
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SB as generative model Deep generative learning

Generative learning via Schrödinger bridge (SB)

• De Bortoli, Thornton, Heng, Doucet (21) propose a noising step from SB with µ0 =
µdata data distribution, µT = µnoise prior distribution generated over finite time

• Wang et al. (22) : learn µdata << λ in two stages
1 Learn a smooth version of µdata (noising with Gaussian distribution) :

µε(x) =

∫
µdata(y)φε(x − y)dy ,

where φε is the density of Φε ≡ N (0, ε2Id).
2 Learn µdata starting from µε.

Both steps are performed via Schrödinger bridge diffusion on [0, 1] (T = 1).
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SB as generative model Deep generative learning

Analytic two-stage solution to the SB

Theorem 3

1 Define ψ1(x) = dµε
dΦσ

(x). Then, for the SDE

dXt = σ2∇x logEWσ
[
ψ1(X1)|Xt ]dt + σdWt , 0 ≤ t ≤ 1, (11)

starting from X0 = 0, we have X1 ∼ µε.
2 For the SDE

dXt = ε2∇x logµ√1−tε(Xt)dt + εdWt , 0 ≤ t ≤ 1, (12)

starting from X0 ∼ µε, we have X1 ∼ µdata.

Comment : The target distribution µdata can be learned from Dirac Mass through two
SDEs (11)-(12) on finite time interval, that are simulated by Euler scheme once we are
able to estimate the drift terms.

24 / 31



SB as generative model Deep generative learning

Proof of Theorem 3

• SDE (11) follows directly from Theorem 1.

• For SDE (12), we solve the Schrödinger system in Theorem 2 : we see that ϕ∗(x) ≡ 1,
ψ∗(y) = µdata(y) solve the Schrödinger system (8) (with diffusion coefficient ε) since{

ϕ∗(x)EWε
[
ψ∗(X1)|X0 = x

]
= EWε

[
µdata(X1)|X0 = x

]
= µε(x)

ψ∗(y)EWε
[
ϕ∗(X0)|XT = y

]
= µdata(y).

The drift of the SDE (12), is then given by α2,∗
t = ε2∇x logψ(t,Xt) with

ψ(t, x) = EWε
[
ψ∗(X1)|Xt = x

]
= EWε

[
µdata(X1)|Xt = x

]
= µ√1−tε(x).

2
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SB as generative model Deep generative learning

Estimation of the drift terms from data samples (1)

The drift term of SDE (11) is α1,∗
t = σ2S1(t,Xt) where S1(t, x) := ∇x logψ1(t, x) with

ψ1(t, x) = EWσ
[
ψ1(X1)|Xt = x

]
= EWσ

[µε
φσ

(X1)|Xt = x
]

=

∫
µε
φσ

(y)qσ(t, x , 1, y)dy =

∫
qσ(t, x , 1, y)

φσ(y)
µε(y)dy

= E
X1∼µdata,Z∼N (0,Id )

[qσ(t, x , 1,X1 + εZ)

φσ(X1 + εZ)

]
,

(qσ is the transition density of σW , i.e., qσ(t, x , 1, y) = 1

(2πσ2(1−t))
d
2

exp(− |y−x|2
2σ2(1−t)

))
→

S1(t, x) =
∇xψ1(t, x)

ψ1(t, x)
=

E
X1∼µdata,Z∼N (0,Id )

[
∇xqσ(t,x,1,X1+εZ)

φσ(X1+εZ)

]
E

X1∼µdata,Z∼N (0,Id )

[
qσ(t,x,1,X1+εZ)
φσ(X1+εZ)

] .

I The score function S1 can be estimated based on observation samples X1 of µdata, and
samples of Z ∼ N (0, Id).
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SB as generative model Deep generative learning

Estimation of the drift terms from data samples (2)
Estimation of the time varying drift term of SDE (12), i.e., ε2∇ logµ√1−tε(x).

• Build a DNN sθ(x , ε̃) that approximates the score ∇ logµε̃(x) for ε̃ varying in [0, ε].

Score matching by minimizing

JSM(θ) := Eµε̃
∣∣sθ(X̃ , ε̃)−∇ logµε̃(X̃ )

∣∣2.
Denoising score matching (Vincent 11) : this is equivalent to minimize Annex

JDSM(θ) := E
X∼µdata,Z∼N (0,ε̃2 Id )

∣∣sθ(X + Z , ε̃)−∇ log φε̃(Z)
∣∣2,

where ∇ log φε̃(z) = − z
ε̃2 is the score of N (0, ε̃2Id).

→ Estimate sθ by minimizing

1
MN

M∑
j=1

N∑
i=1

ε̃2j

∣∣∣sθ(Xi + Zij , ε̃j) +
Zij

ε̃2j

∣∣∣2
from i.i.d. samples ε̃j , j = 1, . . . ,M, of U([0, ε]), Xi , i = 1, . . . ,N, of µdata, and Zij , from
N (0, ε̃2j Id).
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SB as generative model Deep generative learning

Numerical experiments

Figure – Particle evolution after two stages

Figure – Denoising with stage 2 from perturbed real images
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SB as generative model Annexes

Annex : Proof of Denoising score matching back

Fix ε̃, and set sθ(x) = sθ(x , ε̃). Recall µε̃(x̃) =
∫
µdata(x)φε̃(x̃ − x)dx .

• We develop the score matching criterion as

JSM(θ) := Eµε̃
∣∣sθ(X̃ )−∇ log µε̃(X̃ )

∣∣2 = Eµε̃
∣∣sθ(X̃ )

∣∣2 − 2S(θ) + C1, (13)

where C1 := Eµε̃
∣∣∇ log µε̃(X̃ )

∣∣2, and

S(θ) = Eµε̃
[
< sθ(X̃ ),∇ log µε̃(X̃ ) >

]
=

∫
< sθ(x̃),∇ log µε̃(x̃) > µε̃(x̃)dx̃

=

∫
< sθ(x̃),∇µε̃(x̃) > dx̃ =

∫
< sθ(x̃),

∂

∂x̃

∫
µdata(x)φε̃(x̃ − x)dx > dx̃

=

∫
< sθ(x̃),

∫
µdata(x)

∂

∂x̃
φε̃(x̃ − x)dx > dx̃

=

∫
< sθ(x̃),

∫
µdata(x)φε̃(x̃ − x)

∂

∂x̃
log φε̃(x̃ − x)dx > dx̃

=

∫ ∫
µdata(x)φε̃(x̃ − x) < sθ(x̃),

∂

∂x̃
log φε̃(x̃ − x) > dxdx̃

= E
X∼µdata,Z∼N (0,ε̃2 Id )

[
< sθ(X + Z),∇ log φε̃(Z) >

]
. (14)

29 / 31



SB as generative model Annexes

Annex : Proof of Denoising score matching (end) back

• On the other hand, the denoising score matching criterion is developed as

JDSM (θ) := E
X∼µdata,Z∼N (0,ε̃2 Id )

∣∣sθ(X + Z)−∇ log φε̃(Z)
∣∣2

= Eµε̃
∣∣sθ(X̃ )

∣∣2 − 2E
X∼µdata,Z∼N (0,ε̃2 Id )

[
< sθ(X + Z),∇ log φε̃(Z) >

]
+ C2, (15)

where C2 := E
X∼µdata,Z∼N (0,ε̃2 Id )

∣∣∇ log φε̃(Z)
∣∣2.

I It follows from (13), (14) and (15) that

JSM(θ) = JDSM(θ) + C1 − C2,

which means that the optimization of JSM and JDSM are equivalent. 2
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