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Lecture 5 : Optimal transport approach for generative diffusion models

© Fundamentals of SB and connection to optimal transport/control

© SB as generative model
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Introduction

e Schrédinger bridge (SB) problem historically addressed in 1931 as the dynamic
transportation of cloud of particles.

e Formulated in modern (probabilistic) terms as the search of optimal process evolving
from a measure to another one.

» SB has recently received great attention from the ML community as it is well-suitable
for learning complex continuous time systems, notably for generative modeling
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Schrédinger bridge (SB) problem

@ Q = C([0, T],RY) space of continuous R%valued paths on [0, T], X the canonical
process, i.e. Xe(w) = w(t), t € [0, T], P(R) set of probability measures on path
space Q. For P € P(Q), P, = X;#P =Po X! : marginal law at t.

@ 1o and p7 two given probability measures on RY

@ Q a prior/reference measure on  : belief of the dynamics before data observation,
e.g., law of the Wiener process with initial measure vjg.

(SBP) Find a measure P* on path space solution to
P* € argmin {KL(P|Q) : P € P(Q),Po = po, P = 1},
where

. [log (§5)dP, ifP<<Q
KL(PIQ) == { 00, otherwise

is the Kullback-Leibler (or relative entropy) between two nonnegative measures.

Remark. By strict convexity of KL(-|Q), the solution (when it exists) is unique.
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Reduction to static SB

Denote by Po 7 = P o (Xo, X7)™* the joint initial-terminal law of (Xo, X7) under P. We
have the disintegration formula :

P[] = /ny[-]IPo’T(dX, dy), with PY[]:=P[|(Xo, X7) = (X,y)]

and similarly for Q, Q, and Qo, 7.

— Decomposition of the relative entropy :

KL(PIQ) = KL(]P’o,T|Q0,T)+//KL(nyley)Po,T(d&d)/)

» Reduction to static SB problem : minimize
dm
KL(7|Qo,7) = //Iog (m(x,y))n(dndy) (1)

over m € M(po, ur) = {7? c P(]Rd X ]Rd) Do = Mo, TT = WUT}.
The solution to (SBP) is then given by P* = [ Q¥7*(dx, dy) where 7* is solution to
the static SBP.

5/31



Link with entropy-regularized optimal transport (OT)

e Consider Q = W the Wiener measure of variance o2, i.e., the law of the process

Xe = Xo+oW,, 0<t<T, Xo~vrp,
with W a Brownian motion. In this case, W3 +(dx,dy) = vo(dx)q.(0,x, T, y)dy where
2
9o (t,x,s,y) = %GXP(—M), 0<t<s<T, x,y€cR
(2mo?(s —t))2 20%(s — t)

is the density transition kernel of W7.

e For m € P(RY x RY), 7 << W§ 1, we denote by 7(x, y) its density w.r.t. vo(dx)dy.

Then,
//log qo(O X,yT)y)) (dx.dy)

2
£+ gory [ [ Ix = yPrldx.dy) + cte

where £ is the Shannon entropy :
- [ [ tostmtx n(ax,ay)

KL([Ws,7)
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Entropic optimal transport (EOT)

Static SB problem is then equivalent to minimize

// Ix — y|Pm(dx, dy) — 20° TE(x)
= E.|Xo— Xr|> —7&(r) over m & N(uo, uu7) (2)

Problem (2) is an optimal transport problem with quadratic cost, regularized with the
Shannon entropy via the parameter 7 = ¢ T, and called entropic optimal transport.

— It allows to compute by Sinkhorn algorithm an approximation of the solution 7*7 to
EOT (2), which converges when 7 — 0 to the solution 7* of classical OT :

Wi (po, pr) = inf {Ex|Xo = Xr|* - m € Mo, p7) },

the (square) 2-Wasserstein distance between po and pr.
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Diffusion process formulation of SB

Let Q = W7, and P € P(Q) such KL(P|W?) < co. Then, there exists an R%-valued
process «, adapted w.r.t. F the canonical filtration, with Ep[foT ‘%lzdt] < 00, s.t.

dP dPo T ap dX;
we dTOeXP(/O ?7‘*/| [at) (3)

_ %exp(/{f Leaws + /| ‘fat)

and X follows the dynamics under P by Girsanov’s theorem
dX = adt+odW;, 0<t<T,

with WF a Brownian motion under P

—

KL(P|W?) = KL(P0|1/0)+IE]1»[ /\ Pat]. (4)
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Fundamentals of SB and connection to optimal transport/control Introduction to SB

SB as a stochastic control problem

In view of (4), the SBP can be formulated equivalently as the stochastic control problem
of finding the drift a of the diffusion

dX; adt + odW,,

that minimizes the energy functional

B3 [ 1% fad

under the marginal constraints : Xo ~ po, X7 ~ pr.
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Fundamentals of SB and connection to optimal transport/control Solution to SB

Case where (g = 0y, 7 << Lebesgue measure A

e We consider the prior measure Q = W with 1o = d, = po.

— The law of X7 under W7 is v7(dy) = g (0, x0, T, y)dy, i.e., the law of N'(xo, > Tly)

Theorem 1 (Solution to SB for Dirac initial law)

\.

Assume that KL(p7|vr) < 0o. The solution to SB is given by P* = (T, X7)W?,
where 1) satisfies the Kolmogorov equation :

2
WAy = 0 tedT) and y(T,) = HT (5)
dvr

where A is the Laplacian operator w.r.t. spatial variable. The corresponding opti-
mal drift of the diffusion process X under P* is

af = o?Vxlogy(t,Xe), 0<t<T,
and the optimal cost is KL(P*|W?) = KL(pu7|vr).

Remark. The PDE (5) means that 9(t, X;) is a martingale under W7, given by
Feynman-Kac formula :

pr(Xt)
= o|——" - 7 | F 0<t<T.
(e Xe) o [qa(o,xo,T,xT)| f}’ = =

(6)
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Fundamentals of SB and connection to optimal transport/control Solution to SB

Proof of Theorem 1 : law constraint under P*

o Let P* = (T, X7)W® with 1 given by (5). Then, for any bounded function f on R¢,

pur(Xr)
q0'(07 X0, T7 XT)

pr(y)
= — PV £(y)q.(0,x0, T, y)d
/qU(O,xo,T,y) (¥)gs(0, 0, T, y)dy

B [f(Xr)] = Ewe| F(Xr)]

/ F)ur(y)dy,

where we use in the second equality the fact that y — ¢ (0, x0, T,y) is the density of
X7 under W7. This proves that the law of X7 under P* is urt.

e Moreover, by definition of the density (T, X7) of P*, we have

o [os (0 7))

pr(y)
/Iog (7%(07;07 T y))ur(dy)
KL (u7|N (x0, 0% Tla)).

KL(P*, W)

11/31



Proof of Theorem 1 : drift under IP*

e By Itd's formula, the positive martingale Z; := v (t, X;) under W satisfies
dZt = vx'l/)(t, Xt)dXt = ZtVX IOg 1/)(1', )(t)d.)Q7

hence is in the Doléans-Dade exponential form (3) with

af = o’Valogy(t, Xe).
e Moreover, by (4), we have
* o _ 1 T 0(: 2
KL(P*|W°) = Ep- [5/0 E dt].
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Proof of Theorem 1 : optimality of P*

o Let P € P(Q) associated with drift «, and s.t. X7 ~ pr under P. Then, by (3)

1 = Ewe[¢(T,X7)]

Ep[w(T,XT)exp(—/o Saw; - /| Pat)]

;
exp (Ep[log (T, XT) f/ %thP - %/ ;tfdt]) (by Jensen)
0 0

IV

1 /7
= exp (KL(MT|N(X0, o> T)) — ]E]p[i / %th]),
0
which shows that

KL(P|W?) = [ / | ydt > KL(ur|N(x0, 0% Tly)) = KL(P*[W).
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Case of general distribution g, 1 << A

e Consider a prior measure W with vo = ), called reversible Brownian motion :
@ WooX =2\
@ The law (density) of X;|Xs =y, for t < s, is x — go(t,x,s,Yy).

Theorem 2 (solution to SBP)

The solution to SB is given by P* = (0, Xo)(T, X7)W?, where ¢, are non-
negative functions satisfying the Schrédinger system :

_ dwo = dpr oy
90(07)()1!}(05 X) - d)\ I )‘ a'e') 90( Ta y)/l/)(Tmy) - d)\ I )‘ a'e'7
with the Fokker-Planck, and Kolmogorov equations :
Oy o? B oY o2 .
E(svy)_ ?Acp(sv}/) - Oa E(LX)'F ?Aw(tax) = 0. (7)

The corresponding optimal drift of the diffusion process X under P* is

of = o*Vilogy(t, X)), 0<t<T.
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About Schrédinger system

e The probabilistic representation of the Fokker-Planck and Kolmogorov equations (7)
(Feynman-Kac formulae) are

©(s,y) = Ewo[e(0,Xo0)|Xs =y] = /qU(O,x7 5, ¥)p(0, x)dx
W) = Bar[B(Tx0X=x) = [ ao(tx Tyu(T oy,

— Schrodinger system is written equivalently as the search of functions
90* = 30(07 ‘)7 1/)* = w(Ta ) s.t.

@*()Ewo [U*(X7)|[Xo =x] = e, A-ae, (8)
¥*(y)Ewe [¢*(X0)|IXT =y] = déia A—ae.
The solution to SB problem is then given by P* = ™ (Xo)y™ (X7)W°.

e The functions ¢*, ¥* represent the dual functions associated to the initial and terminal
marginal law constraints of the convex entropic minimization problem. Existence is
proved from the dual problem, and numerical approximation is achieved by
Fortet-Sinkhorn algorithm. There is uniqueness up to a multiplication of ¢* and division
of ¥* by the same constant.
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Proof of Theorem 2 : dual approach on static SB

Consider the Lagrangian function of the static SB problem (1) :

m(x,y)
L(m, £, k) // log ( O T y))]fr(x,y)dxdy

[ [ ey = noGlax -+ [ w)[ [ wxy)ax— nr(]dy

The first order condition (pointwise derivative w.r.t. 7(x, y)) yields :

T (x,¥) _
1+ log (m) +Ux)+r(y) = 0, A@A—ae.
_>
T0Y) L ey
qa(O,X7 T7_y) - ()0 (X)¢ (.y)

for some functions ¢*(x) = e 1™ of x, and ¥*(y) = e ) of y.
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Fundamentals of SB and connection to optimal transport/control Solution to SB

Proof of Theorem 2 : marginal law constraints

By writing that 7" € M(uo, u7) — ¢*, ¥* have to satisfy the Schrodinger system :

W*(X)/QJ((),X, T,y)V"(y)dy = po(x), A—ae,

5 (y) / w0 Ty)e (Jdx = pr(y)s  A—ae.

» The associated minimal relative entropy is

KL(7*|Wgr) = // log C/UO(: %,/_)y))]ﬁ*(x,y)dxdy
[ loge" (] (xax + [ Tlog” (»n)]ur(y)dy.
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Proof of Theorem 2 : back to the dynamic SB

e The solution to SBP is then : P* = ¢*(Xo)y* (X7)W?, with associated relative
entropy :

KL(P*[W?) = Eu[loge"(Xo)] +Euy [logy™ (X7)].
e The optimal drift of X under P* is
af = 0°Vilogy(t,X:), 0<t<T,

with

<
~
o
X
N—
Il

Ewo [ (X7)|Xe = x]

/ 4o (£, %, T,y )" (v)dy.
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Fundamentals of SB and connection to optimal transport/control Fortet-IPF-Sinkhorn algorithm

Numerical approximation of the Schrédinger system

e Set g(x,y) := g-(0,x, T,y) the reference (density) measure, which is strictly positive
and bounded from above. The Schrédinger system is written as :

{w*(X)f g, ) (Y)dy = po(x),

V7 (y) [ alx, )™ (x)dx wr(y). 9)

» The continuous time version of the Sinkhorn (discrete space case) algorithm would
consist in solving (9) by iteration with the following updates :

nt+l — k() 1 _ urt
® (X) = Jaky)vn(y)dy? dj (y) T [aoy)e"TI(x)dx? (10)

initialized with some positive function ¢°, e.g., ¥° = 14.

Remark. The map ® s.t. " = ®[p"] in the scheme (10) does not have the good
suitable properties for proving the fixed point property of ® in the continuous time case.
Fortet proposed a truncated modified scheme for getting the convergence of the scheme.
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Fundamentals of SB and connection to optimal transport/control Fortet-IPF-Sinkhorn algorithm

lterative Proportional Fitting

Define the (density) probability mesures 7™, m > 1, by

2nt1
i

(y) = @"H(x)alx, y)¥"(v),
™" (x,y) = " (x)a(x, y)" (),

starting from some 0, e.g., 7°® = q. Then, from dual approach, se see that

" € argmin {KL(7|7?") : 70 = po },

"2 e argmin {KL(r|x*"*Y) 17 = pr ).

This iteration over 7 via the minimization of relative entropy where one alternately
updates either with the initial or terminal law constraint, is called lterative Proportional
Fitting (IPF) scheme.
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SB as generative model

Generative Al

e We observe i.i.d. data from an unknown distribution pigas € P(Rd)

e Goal : generate/synthesize new (real-looking) samples of figata

LjEd e [Tl |
Ee R0 aEHEdARR

Figure — Real-looking images generated by Al : DALL-E, Midjourney, Stable diffusion, etc
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SB as generative model

Generative learning

Generative modeling (GM) has become a classical task in machine learning with several
competing methods :

o Likelihood-based models : energy-based models (EBM), variational auto-encoders
(VAE)

@ Implicit generative models : generative adversarial network (GAN)
@ Diffusion models :
o Score-based models (2020-) : (from the blog of Y. Song)

Forward SDE (data = noise)
dx = f(x,t)dt + g(t)dw H@

e

E ire function
dx = [f(x,t) — j(t) dt + g(t)dw @

Reverse SDE (noise — data)

o Optimal transport/SB approach (2022-) : this lecture
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Generative learning via Schrodinger bridge (SB)

e De Bortoli, Thornton, Heng, Doucet (21) propose a noising step from SB with po =
ltdata data distribution, pr = pinoise prior distribution generated over finite time

e Wang et al. (22) : learn pgaza << A in two stages

@ Learn a smooth version of pig.e, (noising with Gaussian distribution) :

he(x) = / raea () (x — y)dy,

where ¢. is the density of ®. = N(0,£%/y).
@ Learn pga, starting from pe.
Both steps are performed via Schrédinger bridge diffusion on [0,1] (T = 1).
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Analytic two-stage solution to the SB

@ Define 91(x) = ggz (x). Then, for the SDE

dXe = 0?VilogEwo [¢1(X1)[Xe]dt + odW;, 0<t<1,  (11)

starting from Xo = 0, we have X1 ~ p.
@ For the SDE

dXe = £°Vilog pyg=. (Xe)dt +edWs, 0<t <1, (12)

starting from Xo ~ pe, we have X1 ~ idata-

Comment : The target distribution ji14.ta can be learned from Dirac Mass through two
SDEs (11)-(12) on finite time interval, that are simulated by Euler scheme once we are
able to estimate the drift terms.
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Proof of Theorem 3

e SDE (11) follows directly from Theorem 1.

e For SDE (12), we solve the Schrédinger system in Theorem 2 : we see that ¢"(x) =1,
Y*(y) = pdata(y) solve the Schrédinger system (8) (with diffusion coefficient €) since

©* (x)Ews [0 (X1)|Xo = x] = Ewe [taaea(X1)|Xo = x| = pe(x)
*(y)EBwe [0* (X0)IXT = y] = tdata(y)-

The drift of the SDE (12), is then given by o = €2V, log Y(t, X¢) with
Y(t,x) = Ewe[0* (X)X = x] = Bwe [pdata(X1)|Xe = x] = p 5. (%)
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SB as generative model Deep generative learning

Estimation of the drift terms from data samples (1)

The drift term of SDE (11) is o™ = 02S1(t, X¢) where Si(t,x) := Vx log 1 (t, x) with

daltx) = B [Ba(X)1Xe =] = B [204)1X = 5]

/d)f(y)qo(twl,y)dy = /qo(%(’yl)’y)ue(y)dy

E Go(t,x,1, X1 +e2)
X1~ datar Z~N(0,14) |: ¢O‘(X1 + EZ) i| )

1

(go is the transition density of oW, i.e., g-(t,x,1,y) =
(2mo2(1—t))

—

%exp( 202(1 t)))

E Vxqo(t,x,1,X14+e2Z)
Vath1(t,X) | PXe~igara ZmN(©,1g) b0 (Xatel)

a(t,x) 4o (t,%,1,X1+e2)
( ’ ) EX1~#dara«Z~N'(°,/d) ¢o(X1+eZ)

S1(t, x)

» The score function S; can be estimated based on observation samples Xi of jigata, and
samples of Z ~ N(0, I4).
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Estimation of the drift terms from data samples (2)

Estimation of the time varying drift term of SDE (12), i.e., £*V log pt 7= (x).

e Build a DNN sg(x, &) that approximates the score V log uz(x) for & varying in [0, £].

@ Score matching by minimizing
Jsm(8) = Eu.lse(X,8) — Viog ue(X)|*.
@ Denoising score matching (Vincent 11) : this is equivalent to minimize

Josm(0) = |se (X+2Z,8) - Vlogqbg(Z)‘z,

X~ pdata > Z~N(0,621y)

where Vlog ¢z(z) = — % is the score of N(0,&%ly).

— Estimate sg by minimizing

M N
1 Zii 2
v & lso(Xi + Z5,8) + 2%
MN j=1 i=1 &
from i.i.d. samples &, j = 1,..., M, of U([0,¢]), Xi, i = 1,..., N, of tdata, and Zjj, from

N(0, &7 1q).
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Numerical experiments

stage 1 stage 2

Figure — Denoising with stage 2 from perturbed.real images
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SB as generative model WLULTSES

Fix & and set sg(x) = sg(x, ). Recall pz(%) = [ paaa(x)Pe(X — x)dx
e We develop the score matching criterion as
Jsu(0) = Eulse(X) = Viegue(X)|> = Epuzlse(X)|> —25(0) + G, (13)

where C; 1= ]EH5|VIog,uE~()~()|2, and

5(6) Eu:[ < so(X),Viegus(X) >] = /< 50(X), V log pz(%) > ps(%)ds

[ <500, Vhet) > % = [ <5, 2 [ namal)se(x e > dx

[ <505, [ analo) g 02(5 — x)ax > as

[ <50, [ namat)oe(s - x)ﬁ~ log 62(% — x)dx > d%

//Hdata x)pz(X — x) < sp(X), —X log ¢z(X — x) > dxdx
<se(X +Z),Vliog¢s(Z) > ]. (14)

XN}Lda[a Z~N(0,821) [
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Annex : Proof of Denoising score matching (end) m

e On the other hand, the denoising score matching criterion is developed as

o _ = 2
JDSM(Q) = ]EXNMdata:ZNN(Ovéz’d) |SQ(X =+ Z) \v4 Iog ¢E(Z)|

= B, |se(X)|* — 2E [ <se(X+2),Vieg¢e(Z) > ]+ Ca,

X~ fgata 2N (0,621y)

where G, := E )|Vlog¢5(2)|2.

X~ ligata ZN(0,62 1y

» It follows from (13), (14) and (15) that
Jsm(0) = Jpsm(0) + C1 — G2,

which means that the optimization of Jsy; and Jpsy are equivalent.

(15)

30/31



SB as generative model G

Some references on Schrédinger bridge and applications to generative modeling

[B A. Alouadi, B. Barreau, L. Carlier, H. Pham : Robust time series generation via Schrédinger
bridge : a comprehensive evaluation, 2025, arXiv : 2503.02943

[2 Y. Chen, T. Georgiou, M. Pavon : Stochastic control liaisons : Richard Sinkhorn meets Gaspard
Monge on a Schrédinger bridge, 2021, SIAM Review, 63(2)

[B C. Léonard : A survey of the Schrédinger problem and some of its connections with optimal
transport, 2014, Discrete Continuous and Dynamical systems, 34(4), 1533-1574

B G. Peyré, M. Cuturi : Computational optimal transport, 2019, Foundations and trends in
Machine learning

[ V. De Bortoli, J. Thornton, J. Heng, A. Doucet : Diffusion Schrédinger bridge with applications
to score-based generative modeling, 2021, NeurlPS

@ G. Wang, Y. Jiao, Q. Xu, Y. Wang, C. Yang : Deep generative learning via Schrddinger bridge,
2021, ICML

[B M. Hamdouche, P. Henry Labordére, H. Pham : Generative modeling for time series via
Schrddinger bridge, 2023, arXiv :2304.06093
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