
Machine learning and stochastic control
Lecture 1

Jyväskylä Summer School
August 4-8, 2025

Huyên PHAM 1

1. Ecole Polytechnique, CMAP
1 / 24

Lecturer : Huyên PHAM

• Full Professor at Ecole Polytechnique (2024-), Department of Applied Mathematics
(CMAP)

• Research areas : Stochastic Analysis and Control, Mathematical Finance, Numerical
Probabilities, Data Science (Deep learning, Reinforcement learning, Generative modeling)

• https://sites.google.com/site/phamxuanhuyen/

• Email : huyen.pham@polytechnique.edu

2 / 24

https://sites.google.com/site/phamxuanhuyen/
mailto:huyen.pham@polytechnique.edu

Planning and organization

• Five sessions on Monday-Friday 12h-14h : August 4-8, 2025

• Passing : Attending at least 4 of the 5 lectures (attendance list to be circulated)

• Documents and slides on : MA1

3 / 24

https://users.jyu.fi/~geiss/workshops/ma1-2025/ma1.html

Objectives of the course

• Explore the synergy between machine learning and stochastic control :

Address challenges in decision-making problems under uncertainty : curse of
dimensionality, complex nonlinear dynamics, unknown environment

Combine theoretical insights with computational tools for solving real-world
problems

Alignment with current research trends

4 / 24

Outline

1 Foundations

Machine learning (ML) meets stochastic control
Basics of reinforcement learning (RL)
Continuous time stochastic control RL

2 Machine learning techniques for control

Neural networks algorithms for PDEs and HJB equations
Policy gradient methods in continuous time
Q-learning and approximations in continuous time

5 / 24

Some references

1 Part I
q Hambly B., Xu R., Yang H. : Recent advances in reinforcement learning in finance,
Mathematical Finance, 2023, 33(3), 437-503, arXiv:2112.04553
q Sutton R., Barto A. : Reinforcement learning, and introduction, 2nd ed. MIT Press, pdf file

q Wang H., Zariphopoulou T., Zhou XY : Reinforcement learning in continuous time and

space : a stochastic control approach, JMLR, 2020, 21, 1-34, pdf file

2 Part II
q Beck C., Hutzenthaler M., Jentzen A., Kuckuck B. : “An overview on deep learning-based
approximation methods for partial differential equations”. arXiv:2012.12348, Discrete and
continuous dynamical systems, B, 2023, 28(6), 3697-3746.
q Germain M., Pham H., Warin X. : Neural networks-based algorithms for stochastic control
and PDEs, Machine learning and data sciences for financial markets, CUP, 2023,
arXiv:2101.08068
q Jia Y., Zhou XY : Policy gradient and actor-critic learning in continuous time and space :
theory and algorithms, JMLR, 2022, 23, 1-50, pdf file

q Jia Y., Zhou XY : q-learning in continuous time, JMLR, 2023, 24, 1-61, pdf file

6 / 24

https://arxiv.org/abs/2112.04553
http://incompleteideas.net/book/RLbook2020.pdf
https://www.columbia.edu/~xz2574/download/rl.pdf
https://arxiv.org/abs/2012.12348
https://arxiv.org/abs/2101.08068
https://www.jmlr.org/papers/volume23/21-1387/21-1387.pdf
https://www.jmlr.org/papers/volume24/22-0755/22-0755.pdf

Introduction

Outline

Part I: Foundations

1 Introduction

2 Basics of reinforcement learning

7 / 24

Introduction

Stochastic control in a nutshell

• Stochastic control : optimization of dynamical systems in a random environment

• Key components :

State dynamics modeled e.g. in continuous time by stochastic differential equations
(SDEs) :

dXt = b(Xt, αt)dt+ σ(Xt, αt)dWt (1)

Objective : maximize/minimize over control/action/decision α = (αt)t
performance/cost over time under uncertainty :

J(α) = E
[∫ T

0

f(Xt, αt)dt+ g(XT)
]
.

I Resolution/characterization by dynamic programming or maximum principle

Hamilton-Jacobi-Bellman equation

Forward-backward SDE

8 / 24

Introduction

Applications in finance and beyond

• Portfolio optimization : allocate assets dynamically to maximize returns

Xt capital/wealth, P&L at time t

αt : number of shares (or amount) invested in assets at time t

f, g : utility functions ↔ preferences criteria of the investor

• Risk management : mitigate exposure to adverse market conditions

• Many more applications :

Robotics and automation : autonomous vehicles

Energy systems : smart grids and energy storage

Heathcare : personalized treatment strategies

9 / 24

Introduction

Why machine learning in stochastic control ?

• Challenges :
Explicit solutions are rarely available → need efficient numerical methods

Curse of dimensionality in large state/action spaces

Unknown (or misspecified) dynamics or reward functions

• Solutions with ML :

Neural networks (deep learning) for approximating value function

Data-driven learning of policies

10 / 24

Introduction

ML meets stochastic control

• Approximation of policies and value functions using supervised and unsupervised ML

• Reinforcement learning (RL) : a data-driven approach to stochastic control by
interacting with the unknown environment by trial and error

Figure – A toy illustration !

11 / 24

Basics of reinforcement learning

Outline

Part I: Foundations

1 Introduction

2 Basics of reinforcement learning

12 / 24

Basics of reinforcement learning

Markov decision process (MDP)

MDP is defined by a quadruple (X , A, P, r = (f, g))

X : state space in which the discrete-time process (Xt)t∈N is valued

A : action space in which the control/decision (αt)t is valued

State dynamics determined by

Xt+1 ∼ Pt(Xt, αt)

with a transition probability (t, x, a) ∈ N×X ×A 7→ Pt(x, a, dx
′) ∈ P(X).

Reward (reinforcement) :

running reward f(x, a) obtained in state x when choosing action a
terminal reward (case of finite horizon) g(x)
Discount factor β ∈ [0, 1] (case of infinite horizon)

13 / 24

Basics of reinforcement learning

Policy

• A (Markovian) policy π is a sequence (πt)t which can be either

deterministic when πt : X → A, i.e., πt(x) represents the action value chosen at
time t in state x

randomized/stochastic when πt : X → P(A), i.e., πt(x,da) represents the
probability of choosing an action at time t in state x

• We say that a control α is drawn (or follows) a policy π, denoted α ∼ π, when

αt = πt(Xt) (case of deterministic policy), for all t

αt ∼ πt(Xt) (case of randomized policy), for all t

I Goal : learn a policy/control that maximizes the sum of rewards

14 / 24

Basics of reinforcement learning

Evaluation of a policy : value functions

• State value function (over a finite horizon T ∈ N∗) of a policy π = (πt)t :

V πt (x) = Eπ
[T−1∑
s=t

f(Xs, αs) + g(XT)|Xt = x
]
, t ∈ {0, . . . , T}, x ∈ X ,

Here, Eπ is expectation w.r.t. trajectory X when α ∼ π.

• Q-function of π :

Qπt (x, a) = Eπ
[T−1∑
s=t

f(Xs, αs) + g(XT)|Xt = x, αt = a
]
, t ∈ {0, . . . , T}, (x, a) ∈ X ×A.

Remark : V πt (x) = Ea∼πt(x)
[
Qπt (x, a)

]
.

15 / 24

Basics of reinforcement learning

Searching for optimal policy

Goal : find an optimal policy π∗ that maximize V π

→ Optimal value function/Q function :

V := sup
π
V π, Q := sup

π
Qπ

Remark : Vt(x) = supa∈AQt(x, a).

16 / 24

Basics of reinforcement learning

A key tool for MDP and RL : Dynamic programming (DP)

• MDP is a global dynamic optimization

• Dynamic programming is a method to reduce the optimization problem to local/static
optimization problem

Bellman’s principle of optimality (57) :

“An optimal policy has the property that, whatever the initial state and the initial
decision are, the remaining decisions must constitute an optimal policy with regard to
the state resulting from the first decision".

17 / 24

Basics of reinforcement learning

Bellman equation for value functions : Backward recursion from one-step transition

For a fixed policy π = (πt)t,
V πT (x) = g(x)

V πt (x) = E
a∼πt(x)

[
f(x, a) + E

x′∼Pt(x,a)

[
V πt+1(x

′)
]

︸ ︷︷ ︸
Qπt (x,a)

]
, t = 0, . . . , T − 1, (2)

and 
QπT (x, a) = g(x)

Qπt (x, a) = f(x, a) + E
x′∼Pt(x,a)
a′∼πt+1(x′)

[
Qπt+1(x

′, a′)
]

(3)

For optimal value and Q functions
VT (x) = g(x)

Vt(x) = sup
a∈A

{
f(x, a) + E

x′∼Pt(x,a)

[
Vt+1(x

′)
]}

︸ ︷︷ ︸
Qt(x,a)

(4)

and QT (x, a) = g(x)

Qt(x, a) = f(x, a) + E
x′∼Pt(x,a)

[
sup
a′∈A

Qt+1(x
′, a′)

] (5)

→ Optimal (deterministic) policy : π∗ = (π∗t) from the Q-value function :

π∗t (x) ∈ argmax
a∈A

Qt(x, a).
18 / 24

Basics of reinforcement learning

Proof of Bellman equations

• From definition of Qπ , and law of conditional expectation, we get :

Q
π
t (x, a) = Eπ

[
f(Xt, αt) + Eπ

[T−1∑
s=t+1

f(Xs, αs) + g(XT)|Xt+1

]
︸ ︷︷ ︸

V π
t+1

(Xt+1)

∣∣Xt = x, αt = a
]

= f(x, a) + Ex′∼Pt(x,a)
[
V
π
t+1(x

′
)
]
. (6)

By using the relation V πs (x) = Ea∼πs(x)[Q
π
s (x, a)] for s = t, this yields the Bellman equation (2) for

V π , and for s = t+ 1, this gives the Bellman equation (3) for Qπ .

• For the Q-value function, and using (6), we have

Qt(x, a) = sup
π
Q
π
t (x, a) = sup

π

{
f(x, a) + Ex′∼Pt(x,a)

[
V
π
t+1(x

′
)
]}

= f(x, a) + Ex′∼Pt(x,a)
[
Vt+1(x

′
)
]
, (7)

by definition of V = supπ V
π .

19 / 24

Basics of reinforcement learning

Proof of Bellman equations (Ctd)
• For the optimal value function, and using (2), we have

Vt(x) = sup
π
V
π
t (x) = sup

π
E
a∼πt(x)

[
f(x, a) + E

x′∼Pt(x,a)

[
V
π
t+1(x

′
)
]]

≤ sup
a∈A

[
f(x, a) + E

x′∼Pt(x,a)

[
Vt+1(x

′
)
]]

= sup
a∈A

Qt(x, a), (8)

by (7). To prove the reverse inequality, let us consider the (deterministic) policy π∗ defined by π∗t (x) ∈
argmaxaQt(x, a) for all t, x. Then, we prove by backward induction that for all t = 0, . . . , T ,

V
π∗
t (x) ≥ sup

a∈A
Qt(x, a) ≥ Vt(x), x ∈ X .

For t = T , this is clear since V π
∗

T = QT = VT = g. Suppose now that V π
∗

t+1 ≥ supa∈AQt+1(·, a) ≥
Vt+1. From the Bellman equation (2) for V π , we then have

V
π∗
t (x) = f(x, π

∗
t (x)) + E

x′∼Pt(x,π∗t (x))

[
V
π∗
t+1(x

′
)
]

≥ f(x, π
∗
t (x)) + E

x′∼Pt(x,π∗t (x))

[
Vt+1(x

′
)
]

= Qt(x, π
∗
t (x)) = sup

a∈A
Qt(x, a) ≥ Vt(x),

by (7), (8), hence the required relation at t. Since V π
∗
≤ V , this shows the equality Vt(x) =

supa∈AQt(x, a) = V π
∗

t (x) for all t, x, hence the optimality of π∗. Together with (7), this yields the
Bellman equation (4) for V , and also the Bellman equation (5) for Q.

2
20 / 24

Basics of reinforcement learning

From MDP to RL

• Model-based approach : DP algorithms require to know the environment, i.e.,
transition probability P and reward function r = (f, g)

• When P, r are unknown (model-free setting), the MDP becomes a RL problem

Agent-environment interface.

Exploration vs Exploitation,
Randomized vs Deterministic Policy.

21 / 24

Basics of reinforcement learning

Classification of RL algorithms

In a model-free setting, the different learning framework based on samples and
observations of state/reward are

Online learning : the agent is in state Xt, take an action αt, observes the reward ft =
f(xt, αt), is in the new state Xt+1 ∼ Pt(Xt, αt), and proceeds forward again.

Episodic learning : Sequence of episodes where on each episode one follows a policy during
a certain period for exploration, and one initializes again the state and starts a new episode.

Learning with generative model : Simulator of the environment that takes as input at any
time t state/action (x, a), and generates as output the reward/next state (ft, x′).

I In this context, there are mainly two classes of RL methods :

• Value-based methods

Learn a representation of the value and Q functions

Policy is then derived implicitly from the value function

• Policy-based methods

Learn directly a representation of the policy

Value function is estimated afterwards from the learnt policy.

22 / 24

Basics of reinforcement learning Value-based methods

Temporal-difference (TD) learning
For a policy π, recall the Bellman equation satisfied by V π :

V πt (x) = E
a∼πt(x)
x′∼Pt(x,a)

[
f(x, a) + V πt+1(x

′)
]
.

I Estimate V π by stochastic approximation (Robbins-Monro algorithm) :
Initialize at episode k = 0 an estimate V̂ π of V π

Generate (from real system or simulator) episodic trajectories/reward samples
(t, x, a, ft, x

′) from policy π, t = 0, . . . , T − 1, fT final reward

Update estimate V̂ π at the next episode by
V̂ πt (x)←− (1− η) V̂ πt (x)︸ ︷︷ ︸

current estimate

+η
[

ft + V̂ πt+1(x
′)︸ ︷︷ ︸

prediction at next state

]
(9)

with V̂ πt+1(x
′) = fT when t = T − 1, and where η = ηt(x, a) ∈ (0, 1) is the learning rate.

Updating rule (9) is also written as

V̂ πt (x)←− V̂ πt (x) + η
[
ft + V̂ πt+1(x

′)− V̂ πt (x)︸ ︷︷ ︸
TD error δt

]
,

and usually referred to as TD(0) algorithm. 23 / 24

Basics of reinforcement learning Value-based methods

Variations of TD

• TD(1) (Monte-Carlo method) : update value function estimate according to

V̂ πt (x)←− V̂ πt (x) + η

T−1∑
s=t

δs

• More generally TD(λ) for λ ∈ [0, 1] :

V̂ πt (x)← V̂ πt (x) + η

T−1∑
s=t

λs−tδs

Remark : Large λ close to 1 permits a more accurate estimation of value function, but
with higher variance.

24 / 24

	Introduction
	Basics of reinforcement learning
	Value-based methods

