
How Important are Formal
Methods and Formal Logic for

Software Engineering Education?
Antti Valmari & Veikko Halttunen

University of Jyväskylä, Faculty of Information Technology

1 Introduction 1

2 What Surveys Say 2

3 What Curricula Recommendations Say 3

4 Bottleneck: Writing Convincing Formal Specifications 5

5 Bottleneck and Strength: Automatic Verification 7

6 Undefined Expressions 8

7 Concluding Remarks 9

AV How Important are F. Methods and F. Logic? 2025-09-10 Contents 0/9

1 Introduction

Starting point: a discrepancy

⊲ many consider logic as underlying software engineering and scientific thinking
– logic is standard material in computer science / SWE degrees

⊲ formal methods address major problems related to SW quality
– getting the specification right, and implementing it correctly

⊳ formal logic and formal methods are not used much in practice

We discuss

• how professionals perceive the importance of logic and formal methods

• how much they are taught

• how well they work in practice

• why they do not work better than that

first-order logic second-order logic

less expressive: ∀x, ∃x more expressive: ∀, ∃ P(. . .), f (. . .)

easier to reason with, complete proof systems more difficult to reason with

AV How Important are F. Methods and F. Logic? 2025-09-10 1 Introduction 1/9

2 What Surveys Say

There are (apparently only) five surveys on perceived math needs in SW

• very different

• 2000, 2005, 2004/2009, 2007, 2020

• each suffers from weaknesses in sample size, geographical representability, etc.

• the messages in all of them regarding math, logic and formal methods are very similar

Niemelä, P. & Valmari, A.: Elementary Math to Close the Digital Skills Gap, CSEDU 2018

AV How Important are F. Methods and F. Logic? 2025-09-10 2 What Surveys Say 2/9

3 What Curricula Recommendations Say

IEEE / ACM Software Engineering 2014

• 467 “lecture hours” of “what every SE graduate must know”

→ of them 50 “Mathematical foundations”

→ within which “Basic logic (propositional and predicate)”

• “desirable” “essential”

• “knowledge” “comprehension” “application”

• “logic and discrete mathematics should be taught in the context of their application”

• formal methods are mentioned, but given little emphasis
– cf. testing 18 hours

AV How Important are F. Methods and F. Logic? 2025-09-10 3 What Curricula Recommendations Say 3/9

ACM / IEEE / AAAI Computer Science Curricula 2023

• recent enough to reflect data science and quantum computing (and generative AI?)

• significant background surveys
– 865 industry + 427 educator respondents on a wide range of topics [2021]
– 597 educator respondents on math [2022]

• “lecture hours” obligatory should-be-but-cannot-be obligatory

altogether 270 483

math & statistics 55 145 cf. Computer Science 2013: 37 + 4

discrete math 29 11 includes logic

probability 11 29

statistics 10 30

linear algebra 5 35

calculus 0 40

– “application of mathematics has increased”
– however, “mathematics should not be the reason why otherwise

well-qualified students are kept away from computer science”

• only propositional and “simple predicate logic” are covered

• informal (= ordinary math) proof techniques

• formal methods are “Non-Core”

AV How Important are F. Methods and F. Logic? 2025-09-10 3 What Curricula Recommendations Say 4/9

4 Bottleneck: Writing Convincing Formal Specifications

Formally specifying sorting is trivial — or is it?

• the following

∀i ; 1≤ i < n : A[i−1]≤ A[i]

does not rule out for i := 1 to n−1 do A[i] := A[0]

• the following

(∀i ; 0≤ i < n : ∃ j ; 0≤ j < n : B[j] = A[i]) ∧

(∀i ; 0≤ i < n : ∃ j ; 0≤ j < n : A[j] = B[i])

allows outputting [1,2,2] given [1,1,2]

• the following

∃ f : ∀i ; 0≤ i < n : 0≤ f (i)< n∧B[i] = A[f (i)]∧∃ j ; 0≤ j < n : i = f (j)

requires second-order logic, and how to become convinced that it is correct?

• the following

∀x : number of(x,A) = number of(x,B)

requires both array element type and N, and special (application-specific?) notation

• and we have not even started discussing stable sorting

AV How Important are F. Methods and F. Logic? 2025-09-10 4Bottleneck: Writing Convincing Formal Specifications 5/9

Reachability

• central in graph algorithms, memory management, . . .

• theorem: cannot be specified in first-order logic without some strong help

• second-order: ∀P : ¬P(u)∨P(v)∨∃x : ∃y : P(x)∧ (x y)∧¬P(y)
u

...

x

y

...

v

– how to become convinced that it is correct?

Fairness

• e.g., every submitted paper must eventually be reviewed, but not necessarily fifo

• amazingly difficult to specify
– e.g., how to rule out solutions that prevent from submitting?

Observations

• it is often difficult or impossible to find a straightforward formalization

⇒ it is often difficult to see whether what a formal spec says is right

⇒ informal spec & informal proof may be much more
convincing than formal spec and automated proof

• how to know that a spec, formal or informal, says everything essential?

AV How Important are F. Methods and F. Logic? 2025-09-10 4Bottleneck: Writing Convincing Formal Specifications 6/9

5 Bottleneck and Strength: Automatic Verification

“Nearly all binary searches and mergesorts are broken” [Bloch 2006]

• arithmetic overflow when computing int mid = (low + high) / 2;

• occurs only with very big arrays
⇒ remained undetected for 9 years or so, until computer memories grew big enough

Strength

• checks numerous routine details more reliably than humans

• as a by-product, may confirm the correctness of the abstract algorithm

• may help in validating requirements (verify ad-hoc desired properties)

Bottlenecks: (1) formalization of the spec (2) significant amount of human work needed

• big lines in the proof

• occasional details: 2 228 / 372 307 in [de Gouw & al. 2014] counting & radix sort
res[c[a[j]]] = a[j]; int tmp = a[j]; res[c[tmp]] = tmp;

[Beckert & al. 2024] highly optimized sorting algoritm, > 900 lines of Java

• the specification and guiding the proof: 2 500 lines of JML

• 4 person-months

AV How Important are F. Methods and F. Logic? 2025-09-10 5 Bottleneck and Strength: Automatic Verification 7/9

6 Undefined Expressions

Underspecification [Gries & Schneider 1995] is widely used in two-valued logic

• every expression always has a value in the domain, but we do not always know it

• does not tell if 0 is a root of 1
x
= 3

• makes 0 a root of 1
x
= x

2
+ 1

2x

Short-circuit “and” and “or”

• very common: && and ||

• not commutative, unlike ∧ and ∨

• precise match in three-valued logic: P∧ (¬P∨Q) and P∨ (¬P∧Q)

Also some other things become much more natural in three-valued logic

[Chalin 2005]

• > 200 software professional respondents

when a[0] does not exist true false error / except. other

a[0] == 0 || a[0] != 0 8% 10% 74% 7%

a[0] == a[0] 16% 7% 75% 3%

• “two-valued logic is misaligned with programming practice”

AV How Important are F. Methods and F. Logic? 2025-09-10 6 Undefined Expressions 8/9

7 Concluding Remarks

Mathematical thinking lightweight formal fully formal

At the propositional logic level, focus on common sense and common misunderstandings

• mainstream math, theoretical CS and programming do not use truth tables, etc.
⇒ do not waste time on them

• prone to misunderstandings:
– principle of explosion and its variants
– “if . . . then . . . ” is unidirectional

I am a programmer
All progr.s make programming errors

I make programming errors

– “if . . . then . . . ” is often better treated as a reasoning rule, not as ¬P∨Q

– logical equivalence (← ↑ these two might be worth a paper of its own)

Tools that make it easier to specify formally ⇒ worth teaching, if you favour formality

• three-valued logic

• second-order logic

Teaching formal proof systems is reasonable only if aiming at full formality

A wonderful tool for teaching logic has been presented in this workshop!

Thank You for attention! Questions, discussion?

AV How Important are F. Methods and F. Logic? 2025-09-10 7 Concluding Remarks 9/9

