3.7.2 Gluon self energy

The gluon 2-point function involves four diagrams + the counter-term con-

tribution:
m@‘m—m = m@m + m%m + fmszszs‘ fzszsms\
+ m@m‘n\ +  vvsoXosTITTe:

The quark loop

We can obtain the contribution of the quark loop from the QED result in
Eq. (2.105) by supplementing the colour factor

1
To(T°T") = 69T, Tr = 5 (3.195)

and summing over all quark flavors that can circulate in the loop. In terms
of the QCD coupling a, = ¢2/4m,

q /N
s = il ()
a 1 % b abpv
—

i) (@) = 0% [¢2g" — ¢'¢”] x 1V (g?) (3.196)
— i 1 2 4t 11
. 2\ S
ill(q”) = - TR/O drx(l — x) Ef [E — vg + log A,

A:m?—x(l—x)(f.
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If the number of quark species is 1, then the UV divergent part is just,

_iQS

(%) = ;
T

2
Trny [E —vp + log 477] + finite terms

The gluon loop

Despite the gluon being massless, the gluon loop

/N
17(2)
mmw&%wwm =il (q)
a, [ 20097 b,v

has no infrared (IR) divergence so no infrared regulator is required. In the
Feynman gauge, the UV-divergent contribution is (Ex.),

100

81

()@ -rr- Q) een

+ finite terms,

2
C(;5ab (E — v + log 47T) (3.197)

where the colour factor Cg is
facdfbcd _ 5abCG’ CG =3, (3198)

Notice that unlike the quark-loop contribution, the gluon in Eq. (3.197) is

not transversal, i.e.

¢TIy, (0) #0. (3199)

It is of course the second term in Eq. (3.197) that breaks the transversality.
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The gluon flower

The next diagram is the one in which we decorate the gluon propagator with

a gluon “flower”,

ZHéb?uu( )
a, [ b,v

By using the QCD Feynman rules,

@ L[ dPp [—ige, 0 5

|:fabefcde ( ,ua vp g,upgvo) + facefbde (g/u/gap . g,upgua>

—0 —0Cq

fadefbce ( 1% O’p g,uagup) ]

5abCG
dPp 1
= —g* 6" Cq X / .
(D =1)g (2m)P p? + ie
The treatment of the integral here is a delicate issue. Let us first do the p°
integral,
/ dp" B / dp? T
p* + e (p° = [p| +i€) (" + [p| —i€)  |p|

Thus,

d’p 1 —iT
/(27T)Dp2—}—ig /dQD/ dlp|p|["~°. (3.201)

In 4 space-time dimensions the integral diverges quadratically and in order to
tame the UV divergence we need to lower the dimesion down to D < 2. In
this case, however, the integral becomes IR divergent, so the above integral

does not exist in any (real) spacetime dimension!
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We can regulate the IR divergence by giving the gluon a fictitious mass m,.

In this case, we can use our standard formulae to write,

de 1 —1 D e/
= L(1-+) (m . (3.202
/ (2m)P p2 — m2 +ie  (47)P/2 ( 2) (m) (3.202)

The integral is now defined for D < 2 and by analytic continuation the
right-hand side is also valid in D = 4 — e dimensions with € being small. We

see that in 4 dimensions the result is proportional to the squared regulator

mass mg so if we take the €,m; — 0O limit in such a way that
D 2 € 7mg
F<1—§>m§:m§(—+--->uo, (3.203)
€

(e.g. taking m, = €?) the integral vanishes.

More generally, the integral [ d*p/(p? + i€) has a dimension of mass squared,
but yet there is no mass/momentum scale in the integral that could give it
the correct dimension. Objects like this are often called scaleless integrals,
and in dimensional regularization they are usually defined to be zero (e.g.
by using the prescription above).

The ghost loop

The fourth contribution to the gluon self energy is the diagram with a ghost

loop,
q k4 B 'H(4)
BT rosssooes = il (q)
a, (4 Y\/ b,v

The UV-divergent contribution is (Ex.),
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: zozb ab {2
i) (q) = o Cad® (E — yp + log 47r> (3.204)

AT

+ finite terms,

As in Eq. (3.197), two Lorentz structures appear. The latter does not fulfill
the expectation of transversality, but the coefficient of this term is exactly

the same as in Eq. (3.197) so they will eventually cancel.

Finally, we add the contribution of the counter-term vertex,

q

—

migmmgm = II%
a, v ab ,uV( )
= _i[ (QQQW - qqu) 03 + 5§qqu} 5.

We are now ready to combine all the pieces to find the final 1-loop gluon

self-energy correction,

iHabaHV( ) anb)uu( ) + ZHELb)/,w( ) + ZHELb),uV( ) + ZH((Ib),uy( ) + Z1_[ab ,uy( )

—1 s v a 4 D 2
:4Z_:(q29u — )5 b TRTLf—OG— [E—'yg—i—logélﬂl
— | (K" = KR 8+ Ok R |67 (3.205)

We see that we can choose §¢; = 0 in the Feynman gauge, but since the
loop contributions to Il ., (¢q) are always transverse (see Ex.11), this is

true in other gauges as well. We read off the counter term ds,

+ fscheme (3206)

as | H 4
5 — S _ =
3% It lscG 3 R
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3.7.3 Ghost self energy

The ghost 2-point function involves only one diagram + the counter-term

contribution:

—100 212
= i C’G(sab% [E — g + log 477]
+ finite terms, (3.207)

and since the counter-term vertex is just i0°°65¢%, we see that

as [ Ca 2 h
C scneme . 2
05 = = (—2 ) X~ foe (3.208)

3.7.4 Ghost-gluon vertex

The 1-loop correction to the ghost-gluon vertex involves two diagrams:

The contributions of the individual diagrams are,
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a

C
M%W@fﬂwgfigwm
q

sCa [2
— guqe et x LG NZ L og(dr) (3.209)
4T 8 |e
+ finite terms
s —3Cq |2
— gulqe e x L TOVG 2 L o (4n) (3.210)
4T 8 €
+ finite terms
In total,
iNGy(q) = iAey (q) + NS (q) — gu/2qoos fo (3.211)
a, Ca |2 .
= guPqo fo x § 222 |2 log(dm) | - 6 8
4 2 |e€

and we can read off the value of the counter term ¢f,

c__ _ s [ X6 < scheme Pl
=52 () x 2+ 1 (3.212)
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3.7.5 Quark self energy

The 1-loop calculation of the quark self energy —i%%(q),

. gfm?z%
i J

is, in practice, identical to the QED case in Section 2.3.2. The only difference
is that we need to multiply the QED result with a colour factor,

3.31) 1 1
T 030 5 [5]’2'5/% - §5jk5ki] = 0;;Cr (3.213)

4
Cp = 3 (3.214)

and change €2 — ¢%. By doing these two operations, the quark 2-point

function is of the form,

i —ioy 2 A2
—1XY(q) = g Cpéj{(élm—g) [E—WE-l—log(:;Z )]}
+1 (52g — (5m) 5% + finite terms, (3.215)

so we can identify the counter terms,

— O 2 scheme
09 = = CF X E + f2 h (3216)
—a, 9
S = —2 40 x = 4 ficheme (3.217)
47 €
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3.7.6 Slavnov-Taylor identities go quantum

We have now explicitly calculated 5 QCD counter terms at 1-loop level:

s 5 4 2 scheme
5= o lgcg — STany | =+ f3 . (gluon field)
C R s — scneme h ﬁ 1
) 47T(2)><€+f20 (ghost field)
s 2 scheme
0y = i Cr X -t f5 (quark field)
— QM 2 scheme
O = A4Cp x =+ fr (quark mass)
A €
c __ s CG 2 scheme
0f = = ( > ) A=t J1e (ghost — gluon vertex)

The above 5 counter terms + Slavnov-Taylor identities in Eq. (3.194) specify
the renormalized QCD Lagangian completely at 1 loop. Even we did not
compute e.g, the 3-gluon function explicitly, it will now automatically be
finite i.e. the Slavnov-Taylor identities correctly set the 1-loop counter term.

To argue how this comes about, let us consider the following BRS identity,
Oprs (2] A, () Ag, ()5 (2)|) = 0, (3.218)

where we have put the subscripts “0" to stress that these are bare fields
(remember our BRS transformations apply on bare fields). We execute the

BRS transformation:
(Qf [Dit(x)cg(x)d€] Af, (y)e5(2)]19) (3.219)

+ (9145, (2) [Doy (y)ea(y)o€] c5(2)2)
1
&
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where
D (x) = 6%0, + goAf,,(x) f*. (3.220)

Eliminating the Grassmann factor J¢,
1
€o

— ([0t (2) + g0 AY (x)ei(x) | A, () (2)1)

(QAS, (2) A5, () [0 - A5(2)] 12) (3.221)

(92145, (2) [0,ch) + 90" AL (1)) | ()1)

Trading the bare fields and parameters with the renormalized ones by using
the relations,

Ag, =23 A8,

co =/ 25c", ¢y =¢c"\/Z§,
ZC
7 €2 _ 1 €/2
§o = Z3€.
we get,
1 a C
Z<Q\AM($)A2(?J) [0 A%(2)] [€2) (3.222)

= (9] 25 0 (@) + g2 f M AL @) )| AL (e ()|)

+ (QIAG ()| 25 0, () + 925 1AL () )| (2)]2)

The left-hand side contains the gluonic 3-point function,

sﬁ%* M&%W + mgi?m + Wfém + wim ﬁg%

multiplied by the gluon propagators. The gluon propagators are now finite
(as the counter term d3 has been set), so if we can show that the right-hand
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side of Eq. (3.222) is finite, we know that the 3-gluon counter term is the
correct one.
As the first term on the right-hand side of Eq. (3.222) we have,

Zs5 8§<Q\Tc“(x)A2(y)Ec(z)|Q> : (3.223)

The ground-state expectation value here is just a ghost-gluon vertex (multi-
plied with the appropriate propagators) and it's finite. Taking the Fourier
transform,

/d4xeip3‘z/d4yeip”/d%eipl'z {3Z(Q|Tca(x)Al;(y)Ec(z)|Q>

= (—ip)) K (1)K (p3) Dyn(p2) x (3.224)

= (—ip,) K (p1) K (p3) Duy(p2) % [—gfabcpgjL...}

The loop diagrams cancel against the counter term (we have explicitly tuned
the counter term like this). However, the factor Z§ = 1+ §§ in front of this
term is contains a divergence, so at this order the remaining divergent term

Is
(=i K (1) K (p3) Dun(p2) x| = gf™p}] x 05 (3.225)
Let's then check the second term on the right-hand of Eq. (3.222). It reads,
Zigf " UQIT Ay () (2) Ay (y)ee (2)|2) (3.226)

By taking the same Fourier transform as above,

/d4x6ip3-a:/d4ye—ip2~y/d4ze—ip1-z [gfahd<Q‘TAZ(:E)Cd(ﬂZ)Ag(y)EC(Z)|Q>

= K(p1)D,,(p2) X (3.227)
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----- > + PR ---E-» —+ PR R R
S eass®
b1, ¢ p3,a,

= K(p1)Doy(p2) % [gf“bch + - ]

The first three diagrams are essentially the same as in the ghost-gluon
vertex function, but just the outgoing ghost line erased. The structure of
the diagrams is thus the same and the factor Zf = 1 4 4{ cancels the UV

divergences from the two first loop diagrams,

= finite

----- > R R R S 4+ e
N eass®
p1,¢C P3, a, b

The remaining diagram contains a ghost-gluon 3-point function with a loop

correction in the outgoing ghost line. This divergence cancels with the one
in Eq. (3.225).

In this way, we can argue why the gluonic 3-point function will be finite

without actually computing it explicitly.

3.7.7 Asymptotic freedom of QCD

Having now worked out the counter terms, we can assemble the [ function
of QCD. From the Slavnov-Taylor identity Eq. (3.194) we see that there
are several equivalent ways to find Z,. Using the ghost-gluon vertex as an
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example,
7 zZi 1+ oY
Y25V Zs (14 05)V1 + 03

(3.228)

1
:1+5f—5§—§53+(9(&2)

g CG 2 h CG 2 h
— 1 _ 2 _ T X — scheme T X = — scheme
4m ( 2 ) € IR ( 2 € 2
115 4 2 1
— |\ =Cr = =T |2 _ — pscheme
2|37C T 3 R ] e 2 ]
-1+ Qs _110G + 4TRnf 1 scheme scheme 1 scheme
T A 3 lc 2c 9 .

Remember form Eq. (2.157) that in the MS scheme the /3 function can be

obtained from Z,, via

247
B(g) = —e (g) + %d—g’l, (3.229)

where Z,; is the coefficient of the 1/e pole. The 1-loop QCD S function is
thus,

93 [110@, - 4TRnf]

Blg) = — e 5 (3.230)

Provided that
11Cq §

AT 2
I.e. that the number of different quark species is 16 at most, the 8 function

ng <

is negative, and the theory is thereby asymptotically free. The origin of this
property is in the non-Abelianity of QCD (= gluon self interactions) as in
QED the structure constants ¢ — and thereby also the factor Cq — is zero.

The fact that non-Abelian gauge theories can have a negative 3 function
was first discovered by Gross, Wilczek, and Politzer in 1973. This earned
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them a Nobel Prize in 2004.

The scale-dependent coupling can be obtained from Eq. (2.171),

dg(g,t)

- =08g1), 9(0,00=g, t=log('/u)  (3231)

It follows that,

92

—92 L

9(9.t) = 77055 nEwrw (3.232)
1 [11Cq — 4Twny

Bo = (im)? [ 3 ] : (3.233)

If By > 0 we clearly see that the QCD coupling gets weaker as the scale 1/

Increases.

It is conventional to define the QCD scale parameter Agcp by,

—1
Aqep = prexp [29250] : (3.234)

which corresponds to the scale at which the running coupling g diverges.

Eliminating the coupling g in favour of Aqcp gives,

1

—2
97 (9,1) = , : (3.235)
Bolog (M 2/ A2QCD)
Replacing 112 — Q? and writing in terms of o, = g2 /4,
9 1
as(Q°) = : (3.236)

4B log (Q2/ A%CD)

The above process in which a dimensionless parameter g is replaced by a
dimensionful one (Aqcp) is an example of dimensional transmutation.
The value of Aqcp must be obtained by comparing calculated cross sections
with experimental data. This results with Aqcp ~ 200 MeV. Today, the
value of strong coupling is usually given by its value at the renormalization
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scale Q? = ]\422 where My denotes the mass of the Z boson. The world
average is as(M72) ~ 0.118.

[Figure from Prog. Theor. Exp. Phys. 2020, 083C01]

0.35 T T T T
[ T decay (N°LO) =~
low Q? cont. (N°LO) e
DIS jets (NLO) =

Heavy Quarkonia (NLO)
¢'e jets/shapes (NNLO+res) F*— ]
pp/pp (jets NLO) =+
EW precision fit (N°LO)—e— ]
pp (top, NNLO) 1

0.3

025

os(Q?%)

0.2

NN\ : :
- N : : e
\\\ -
O 15 TR R PPRRRRRET, L. By & N LT PP PPPPPRRRRTTS L
. NS :

o1+ S ]

= a,(Mz2) = 0.1179 + 0.0010 aal

0.05- L Ll L L """i L Lol |
1 10 100 1000
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The asymptotic freedom is a necessary property for a theory to describe
the nuclear force. Indeed, in the late 60’s the first experimental data on
inelastic electron-nucleon scattering was approximately consistent with the
assumption that the nucleus is made of almost free particles (partons). That
is, the interactions between these particles had to become weak at short

distances (=high momentum scale). However, at that time all the known
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renormalizable theories behaved just in the opposite way, i.e. the coupling

constant became stronger at short distances until hitting the Landau pole.
Given the fundamental importance of the asymptotic freedom, it is crucial
to know whether this property of QCD stands also at higher orders. To this
end, the QCD S function has been calculated up to 5-loop accuracy. Each

new loop involves two interaction vertices so the every second power of g

appears in the expansion of the QCD /3 function,

B(g) = —Bog® — B1g” — Bag" — Bag’ + -+ (3.237)

At two-loop accuracy the easiest way to obtain the coefficient by is to
calculate Z, from Z, = Z{/(Z5\/Z3). The diagrams for the 2-loop gluon

self-energy corrections are [Figures from Mutal:

D Ao A D
X SR S
O G~ D O

00 AP D

The ghost-field renormalization factor Z§ involves diagrams:
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lves the following 34 diagrams:

function invo

-gluon vertex

the ghost

Finally,

- g

iWéw;Auz zA ;ﬁ;.m

&f%&&AAAA -
nu _‘,iwﬁwza;ﬁ ,&;m&

Jw&w éwiwe&;oﬁ zmz%
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The full set of known coefficients (in the MS scheme) is [see Phys.Rev.Lett. 118
(2017) 8, 082002] :

1 2nf
— 11— = 2
by i | (3.23%)
1 38TLf
= 102 — 22U 3.239
1 2857 5033n; 32502
_ _ 3.240
& (47)8 | 2 18 +54]’ (3.240)
1 [ 149753 1078361  6508(s
— 35643 — 3.241
Ps (4@8{ o %046 { 62 27 ]"f (3.241)
50065 6472¢] , 1093
[162+ 81 }"+729”f
1 [ 8157455 621885¢;  88209(y
— ~ —9 242
Bi=1 4ﬂ)10{ e ; 88000¢;  (3.242)
, [ 336460813 4811164,  33935¢, 1358995G;)
1944 81 6 27 '
| [25960918  698531¢, 105266,  381760G5]
1944 81 9 81 f
630550 48722¢;  1618¢,  460(;] 4
R 243 27 g ™
11205 152G3]
T 2916 ~ 781 ]”f}

where (, refers to the Riemann zeta function,

(=) ni Re(s) > 1. (3.243)

n=1

From the expressions for By, B1, B2, and (3 one can easily check that if the

number of flavours ng is small enough, these coefficients remain positive
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and thus the /3 function in Eq. (3.237) stays negative. The same is true for
B4 though one will need to know the numerical values of the zeta function

to see this. For the important special case ny = 6,

T m s

ng=6 2 3 4
3 "2 _gyg? [1 +0.93 (O‘—) —0.29 (O‘—) +5.52 (O‘—) +0.15 (O‘—) ] .
T

This is positive definite for all values of ay, and as the coefficients in front of
the factors (as/m)" are not particularly large, the perturbative series seems

to converge very well.

Beyond the 1-loop approximation, the expression for the running coupling
cannot be expressed in a closed form but approximate formulas can be

derived. We write first the evolution equation Eq. (2.171) in a form,

Q) 9(Q) 1
/ = log <Q> = —/ % 5 T . (3.244)
t(A) A gy A’ Do+ BiA” + PaA* + -

If only the two first coefficients of the 3 function are kept, the above integral

gives an exact result,

L(ON_L[ L 1 s PQh+ AW
1 g( ) . |,92<@> PRIV [ﬁowlg%@]m |
(3.245)

which, however, cannot be solved for ¢g?(Q) in an analytic way. Beyond
the 2-loop accuracy, the integral in Eq. (3.244) can be performed (Ex.) by

expanding the integrand in powers of \?, assuming it's < 1. Keeping terms
up to [,

o () - i|l L+ s (@] + (2 - 0) @)

Bo || 92(@Q%)  Bo Bo B}

+ ( 63 6162 6%

25 B + 255’) g QY + O(f)]] + C'. (3.246)
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By defining the constant C, we essentially define the strength of the coupling
at the reference scale A (but not yet the value of A itself). It is conventional
to adopt the definition

¢ = ﬁlog Bo - (3.247)

B
By solving Eq. (3.246) iteratively (Ex.), we find an approximate expression
for the scale-dependent strong coupling a,(Q?),

1 b1 log L 1
2 1108 2 2
Qg = — + by (log“L —log L — 1) +b
@ =Far |~ aL TGy s Lrlel—1) b
—log” L+ =log” L +2log L — = | — log L + —
+ (BoL)? _bl ( og” L + 5 og” L + 2log 2) 30109 log L + 5
+ 0(1/L4)]] : (3.248)

where L = log(Q?/A?) and by, = B1/B8y. One can now tune the parameter
A such that e.g. as(MZ) =~ 0.118.

Using the result of this and Chapter 2, we can also work out the 1-loop

scale-dependence of the quark masses. In the MS scheme,

Tm(as) = (

s

47T) 60 (3.249)

and it follows that (Ex.),

as(Q?) Q
mars(Q°) = mys(mygg) [1 _ e log< : )] . (3.250)
™ m
MS
By using here the explicit 1-loop expression for a,(Q?) from Eq. (3.236), we
see that the latter term becomes a constant at large Q% so the quark masses
cease to run towards asymptotically large Q2. The running of the quark

masses has been experimentally “confirmed” and the figure below shows an

3-79



example in the case of bottom/beauty quark [Figure from Eur.Phys.J.C 55 (2008)

525-538]
o L b-mass measurements at e+e-
o - A DELPHI B-decays
S ® DELPHI 3-jets
@ b Bm DELPHI 4-jets LO
CS % DELPHI 4-jets NLO
g A ALEPH
S 0 OPAL
£ - @) SLD
4—
: | |
E o\\\
2t
B | 1 L1 11 | | L1 11 |
1 10 10
Q (GeV)

The constant ~,, has been calculated up to 4 loops. The first three coeffi-

cients are [PDG, Quark Masses| ,

MS(, ) — %) 9 202 20ny (%)2 251
T (0) 8(47r * < 3 9 ) \ur (3.251)
2216 160¢(3) 140n2] /ag\?
211249 + (222 - (—) ,
* [ 9+< 27 3 )”f s1 | \4x

where n; is the number of quark flavours.
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The relation between the pole mass mp and the M S mass mgg is known

up to 3 loops [see Phys.Lett.B 482 (2000) 99-108] ,

/[

mp = My (M) |ll + % (M) (3.252)

+

L 2
— 1.0414Ny, + 13.4434] (M)
-

s

W\ 3
0.6527N? — 26.655Ny, + 190,595] (M) ]]

Here Ny, is the number massless quark flavours. In the case of bottom /beauty

quark Mzs pottom (M8 bottom) ~ 4 GeV and at this scale avs (M5 pogiom) ~
0.24. This gives,

P bottom & M bottom (M bostom) | 1 + 010 + 0.05 + 0.03} (3.253)

Although the higher-order corrections may appear small at first sight, the

loop corrections are all of the same order of magnitude, so the perturbative

expansion seems to converge rather badly. This is called a renormalon

problem.
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4 \Weak interactions

The phenomenology of weak interactions is discussed in the Particle Physics
course. Here, we will first remind ourselves of the ingredients of the Glashow-
Weinberg-Salam (GWS) electroweak Lagrangian and then see how to quan-
tize it.

4.1 Electroweak Lagrangian [Peskin20, 11.1]

The GWS theory of weak interactions is based on imposing a local U(1) x
SU(2) invariance. In other words, the Lagrangian should remain intact when

the matter fields of type k& undergo a transformation,
. YN
Yp(z) — Y (z) = exp [Yix(x)] exp {z@ (.CL‘)E] Vr(x), (4.1)

where the parameters Y}, are called hypercharges, and o; are the usual

Pauli spin matrices (= the generators of SU(2) transformations),

S 01 2 0 —i 3
10/’ i 0 ]

which fulfill the commutation relation

ol ol o o"
Z 2| =k 2
[2,2] ie (2) (43)

+1 if 75k is an even permutation of 123
e’" = ¢ —1 ifijk is an odd permutation of 123 . (4.4)

0 otherwize

4.2)

Y
o =
| o
—_
~_
—

40



So here €% plays the role of structure constants f%*¢ in QCD. Repeating
the steps of Sect. 3.2 we find that in this case we can express the covariant
derivative in the form,

i

o

D,u(a) = |0, — ig AL ()% — g ViBy(x) | dn(x),  (45)

where g and ¢’ are real parameters and the vector fields A!(x) and B, ()

transform according to,

Bu(z) = B+ éaﬂx, (4.6)
A;(x)g s Us) [AL(x)%Z + éau] Ul(a), (47)

7

U(w) = expli’(z) 5]

or for an infinitesimal 6'(x),

. 1
AL(w) = AL+ 20,0+ T aleh (4.8)

As in Sect. 3.2 the covariant derivatives are objects which transform as the

field on which they act, so terms

i@k'YMDu@bk (4.9)

are invariant under the transformation specified by Eqgs. (4.1) and (4.6).

The construction of the field-strength tensors is also identical to the case of
QCD and by defining (see Eq. (3.56)),

B,, = 0,B,(z) — 0,B,(z) , (4.10)

Afw = 0,A.(z) — 3VAL(x) + geijkAi(x)Allf(az) : (4.11)
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we know that the combinations

1 1 . .
— BB = A A (4.12)

remain invariant in transformations of Eq. (4.6) and Eq. (4.7).

4.1.1 Matter content

The essence of the GWS theory is to treat the left- and right-chiral fermion
fields on a different footing. To see why this is even possible, we first recall
from QFT | that the left- and right-handed components of a Dirac field are

defined as

1 — 5
Left-handed component: ¢ = Ppi = ( 27 ) Y (4.13)

_ 1+4°
Right-handed component: ¥gp = Pri) = 5 Y. (4.14)

Now, since ¢ = v, + ¥R, the gauge invariant terms zﬂfy“Dﬂw can be

written as
i%“Dm = ZELVHDAWL + i@RVuDuwR (4.15)

+ i)Y' D,tbg + i gy Dby

However, due to the properties of 7, the mixed terms will give zero. For

example,

_ 1 — 5 1 5
i V' Dypg = i) (%) VOW“DM< +27 >¢ (4.16)
— (14~ 1+~°
() (7).

_ 5 5
:Z,w(le)(l 27>7“Duw:0.
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The gauge invariant terms ZEWDH@D thus split into two parts,

ZE’YMDM? = ZEL’YMDqu + ZER'YMDuwR 3 (4.17)

i.e. the kinetic and interaction terms of the left- and right-chiral components
decouple. For this reason the hypercharges Y can be different between v
and 1. We can also assign the two chiral components of fermion fields into
different representations of the gauge group: The left-chiral fermions go to
doublets [which transform under SU(2)], while the right-chiral fermions go
to singlets [which do not transform under SU(2)]. For the three families of
leptons and quarks,

(L) (”ﬁ>, (”z), Gl (), )

€L 228 TL

( ur, ) < cr ) ( tr ) (ur)  (cr)  (tr)
de ) \se )" \be) () (sw)  (bg)

Each symbol here denotes a Dirac field, e.g. e, = Pri.. In the standard
GWS theory there are no right-chiral neutrinos.

For example, the left-handed neutrino-electron doublet transforms as

( Zji‘ ) — ( Z ) = exp [ierX(x)} exp [zel(x)%l} ( :E ) , (4.18)

whereas e.g. the right-handed electron singlet transforms as
er — € = exp |iYox(z)]er . (4.19)

The drawback of assigning left- and right-handed fields into different rep-
resentations is that the usual fermion mass terms —ma)t) are forbidden.

There are again 4 terms,
—m@g/) = —mEL%bL - mER@DR - maLiﬂR - mERl/JL ) (4-20)
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but now the “diagonal” ones are zero since e.g.,

N N
T = (F50) (S5 ) v (4.21)

- 1475 1—7° B
-7 (57) () -0

Thus, in the mass terms the left- and right-handed components mix,

—mW = —mELwR - m@PﬁL . (4-22)

These terms are not gauge invariant as e.g. the transformations of the

left-handed fields mix the two components in the doublet, e.g.
e, — ep = Aep + Buj .

In addition, the hypercharges of ¢, and ©¥z may not be the same.

4.1.2 Interactions of the matter and gauge fields

Having assigned the fermion fields into specific representations, the covariant
derivatives now uniquely fix the interactions between the fermion fields
and the gauge bosons. The covariant derivative in Eq. (4.9) involves an
interaction terms,

o

907" |4} (@)% + g ViBy()|v. (4.23)

We write Al (x)a"/2 explicitly,



where in the last step we defined a complex vector field
W, = (A, +iA2)/V2. (4.25)

To see what kind of interaction term is the one that involves W,,, we can

use e.g. the electron-neutrino doublet as an example,

g —e — lL 0 /I VE g —€ —i- g — e
- R m/ + = m/
V2 ( YL CL >7 ( W, 0 eL V2 T Rt
g (1P (ot (17

= \/§V ( 5 ) Wﬂ ( 5 e+ h.c. (4.26)

1 — 5 1 — 5
:%ﬁewz( 27>< 27)e+h.c.

= 2\9/—_27LWL (1-7")e+hec. (h.c. = Hermitian conjugation)

We see that there are interactions between the two fields in the left-handed
doublets (e.g. between the electron and its neutrino). The complex vector

field TV, represents the W= boson. The interaction above is called the
charged-current interaction.

Let us then group together the remaining diagonal interaction terms.

For left-handed doublets:

— Y. B A3 /2 0
A ! b (4.27)
0 JYiB, — gAi/2

For right-handed singlets:

Uy 9 Ye By v - (4.28)

We would like to identify the photon field. It cannot be B, as that would
imply that e.g. electron and its neutrino have the same strength of interaction,
i.e. the electric charge. Nor can it be Ai as that generates interaction only
between the left-handed fields (in QED the interaction term is the same for

4.5



both handednesses). The solution is to try a linear combination of the two
which preserves the overall normalizations. Thus, we express the fields B,
and Ai in terms of two other fields A, and Z,;:

Ai B cosOw  sin Oy Z, (4.29)
B, ) \ —sinfy cosbw A, ] '

Here the parameter Ay is known as the Weinberg weak-mixing angle.
Writing Eq. (4.27) and Eq. (4.28) in terms of A, and Z,, gives,

For left-handed doublets:

_ 3 3
Py [Au (%g sin Oy + Yi.g' cos 9W> + Z, (%g cos Oy — Y. sin HW> ]zpk

For right-handed singlets:

ey [Au (Yig' cosbw) + Z, (—Yig sin byy) } (o

From the above terms we see that we can identify A, as the photon field if
we choose the parameters g, ¢’ and 6y such that the elementary charge e
is given by

e = g cos By = gsin by, (4.30)

and furthermore choose the hypercharges appropriately. For example, in the
case of w and d quarks the fractional charges are @, = 2/3 and Q; = —1/3,
so we need

v 0 Y,a+1/2 0
Q :@_f—}/ud: I /
0 Quq 2 0 Yua —1/2

Qi =Yy

which implies that

Yoa=1/6, Y,=2/3, Y;=-1/3. (4.32)
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to get the correct fractional charges. Similarly for other quark/lepton species.
In this way, the the terms involving the A, field reduce to standard QED

interaction terms,

EQEDint. = Z leEwaf . (4-33)
f

The remaining interaction terms involving Z,, can be written as

e

3 5in Oy cos By 2 [E’“Wﬂ (7% — 2Qxsin” Ow) Yz + Vet (—2Qusin” Ow) Vg | |

where T} is the eigenvalue of the ®, i.e 41 for up-type quarks and neutrinos

and —1 for down-type quarks and charged leptons:

() =08 ) =)
()6 () - 0)

Since the field Z,, is real, it represents a neutral gauge boson. Thus, the
corresponding interaction term is called a neutral-current interaction
and the field Z,, is identified with the neutral Z boson. The neutral-current

Lagrangian can be written compactly as

Lxc =9z Y Uiy Zy [Le(1 = 2°) + Re(1+9°)] ¢ . (4.34)
k
where
€ 9
— = 4,
9z 4sin Ow cosbyw 4 cos bw (4.35)
Ly = T} — 2Qy. sin? Oy (4.36)
Rk = —QQk SiIl2 QW (4.37)
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The resulting values of L; and Ry, are:

Table 1: Neutral-current couplings of fermions

coupling | v, v, V7 e i, T u, c t d, s, b
1 —1 4+ 2sin® by 1—%sin29w —1+§Sin29w
0 2 sin? Oy —% sin? Oy % sin? Oy

By taking the definitions of the A, and Z, fields from Eq. (4.29) and
substituting them into Eq. (4.12), we find the quadratic kinetic terms,

1 1% 14
1 14 1%

1 14 14
-5 (8, W, — 0,W}) (0"WY — " WH)

plus qubic and quartic interaction terms (Ex.),

Ly =

Ly =

—ie cot Oy { ("W — W) W) Z, — ("W — 0" W) W, Z,
+ ("2 =’ 2"y W, W}

—ie { ("W — W) WA, — ("W — 0"WH) W,A,

+ (0"A — VAW,

(4.39)
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_ T2 _ a7t v
g VI — Wi, we)

—? cot® bw {WW*H2Z, 2" — WiW" Z,2"}
—e? {WIWrA,A" — WIW" A, A}
—e* cot b {2WWHA"Z, — WIWY [A,Z" + Z, AV} .
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Terms L3 and L4 generate three types of interactions between the gauge

bosons:

W+ w+ W+ W+ 5
W= W~ W- W~ 5

4.1.3 The Higgs mechanism

In the construction above, all particles are massless as the gauge invariance
forbids all mass terms. To generate masses for fermions and gauge bosons,
we will need to invoke the Higgs mechanism. This is done by introducing a

complex doublet of scalar fields

L (@) +in@) | _ ((07(@)
= — = 4.40
o= (2o (G0). e
where the designations "+ and “0" anticipate that we are going to arrange

the hypercharges such that ¢ (z) carries electric charge +1 and ¢%(z) is

neutral. We introduce the following ¢-dependent terms in the Lagrangian,

EHiggs = (Du¢)T(DM¢) _ V(¢) (441)
V(g) = 1?6l + A(0'9), (4.42)

where the covariant derivative is the same as in Eq. (4.5),

1

Dud(x) = |9, — ig A} (x) 5 — ig'VoBy() | $(a) (4.43)

Thanks to the covariant derivative, Lhiges is invariant in gauge transforma-
tions. Since,
Tp. =1, Tp=-1,
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