
3.7.2 Gluon self energy

The gluon 2-point function involves four diagrams + the counter-term con-
tribution:

= + +

+ +

The quark loop

We can obtain the contribution of the quark loop from the QED result in
Eq. (2.105) by supplementing the colour factor

Tr(T aT b) = δabTR , TR ≡ 1

2
, (3.195)

and summing over all quark flavors that can circulate in the loop. In terms
of the QCD coupling αs ≡ g2/4π,

= iΠ
(1)
ab,µν(q)a µ ν b

q

iΠ
(1)
ab,µν(q) = δab

�
q2gµν − qµqν

�
× iΠ(1)(q2) (3.196)

iΠ(q2) =
−2iαs

π
TR

� 1

0

dxx(1− x)
�

f

�
2

�
− γE + log

4πµ2

Δf

�

Δ = m2
f − x(1− x)q2 .
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If the number of quark species is nf , then the UV divergent part is just,

iΠ(1)(q2) =
−iαs

3π
TRnf

�
2

�
− γE + log 4π

�
+ finite terms

The gluon loop

Despite the gluon being massless, the gluon loop

= iΠ
(2)
ab,µν(q)

a, µ b, ν

q

has no infrared (IR) divergence so no infrared regulator is required. In the
Feynman gauge, the UV-divergent contribution is (Ex.),

iΠ
(2)
ab,µν(q) =

iαs

8π
CGδ

ab

�
2

�
− γE + log 4π

�
(3.197)

×
��

41

12

��
q2gµν − qµqν

�
−
�
1

4

��
q2gµν + qµqν

� �

+ finite terms ,

where the colour factor CG is

facdf bcd = δabCG , CG ≡ 3 . (3.198)

Notice that unlike the quark-loop contribution, the gluon in Eq. (3.197) is
not transversal, i.e.

qµΠ
(2)
ab,µν(q) �= 0 . (3.199)

It is of course the second term in Eq. (3.197) that breaks the transversality.
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The gluon flower

The next diagram is the one in which we decorate the gluon propagator with
a gluon “flower”,

= iΠ
(3)
ab,µν(q)

a, µ b, ν

q

d, σ c, ρ

p

By using the QCD Feynman rules,

iΠ
(3)
ab,µν(q) =

1

2

�
dDp

(2π)D

�−igσρδ
cd

p2 + i�

� �
−ig2µ�

�
(3.200)

�
fabef cde

� �� �
→0

(gµσgνρ − gµρgνσ) + facef bde

� �� �
→δabCG

(gµνgσρ − gµρgνσ)

+ fadef bce

� �� �
→δabCG

(gµνgσρ − gµσgνρ)

�

= −g2µ�δabCG(D − 1)gµν ×
�

dDp

(2π)D
1

p2 + i�
.

The treatment of the integral here is a delicate issue. Let us first do the p0

integral,
�

dp0

p2 + i�
=

�
dp0

(p0 − |p|+ i�) (p0 + |p|− i�)
=

−πi

|p| .

Thus,
�

dDp

(2π)D
1

p2 + i�
=

−iπ

(2π)D

�
dΩD

� ∞

0

d|p||p|D−3 . (3.201)

In 4 space-time dimensions the integral diverges quadratically and in order to
tame the UV divergence we need to lower the dimesion down to D < 2. In
this case, however, the integral becomes IR divergent, so the above integral
does not exist in any (real) spacetime dimension!
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We can regulate the IR divergence by giving the gluon a fictitious mass mg.
In this case, we can use our standard formulae to write,

�
dDp

(2π)D
1

p2 −m2
g + i�

=
−i

(4π)D/2
Γ

�
1− D

2

��
m2

g

�1−�/2
. (3.202)

The integral is now defined for D < 2 and by analytic continuation the
right-hand side is also valid in D = 4− � dimensions with � being small. We
see that in 4 dimensions the result is proportional to the squared regulator
mass m2

g so if we take the �,mg → 0 limit in such a way that

Γ

�
1− D

2

�
m2

g = m2
g

�
2

�
+ · · ·

�
�→0,mg→0−−−−−−→ 0 , (3.203)

(e.g. taking mg = �2) the integral vanishes.

More generally, the integral
�
d4p/(p2 + i�) has a dimension of mass squared,

but yet there is no mass/momentum scale in the integral that could give it
the correct dimension. Objects like this are often called scaleless integrals,
and in dimensional regularization they are usually defined to be zero (e.g.
by using the prescription above).

The ghost loop

The fourth contribution to the gluon self energy is the diagram with a ghost
loop,

= iΠ
(4)
ab,µν(q)

a, µ b, ν

q

The UV-divergent contribution is (Ex.),
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iΠ
(4)
ab,µν(q) =

iαs

8π
CGδ

ab

�
2

�
− γE + log 4π

�
(3.204)

×
��−1

12

��
q2gµν − qµqν

�
+

�
1

4

��
q2gµν + qµqν

� �

+ finite terms ,

As in Eq. (3.197), two Lorentz structures appear. The latter does not fulfill
the expectation of transversality, but the coefficient of this term is exactly
the same as in Eq. (3.197) so they will eventually cancel.

Finally, we add the contribution of the counter-term vertex,

= iΠc.t.
ab,µν(q)

a, µ b, ν

q

= −i
� �

q2gµν − qµqν
�
δ3 + δξq

µqν
�
δab .

We are now ready to combine all the pieces to find the final 1-loop gluon
self-energy correction,

iΠab,µν(q) = iΠ
(1)
ab,µν(q) + iΠ

(2)
ab,µν(q) + iΠ

(3)
ab,µν(q) + iΠ

(4)
ab,µν(q) + iΠc.t.

ab,µν(q)

=
−iαs

4π

�
q2gµν − qµqν

�
δab

�
4

3
TRnf − CG

5

3

� �
2

�
− γE + log 4π

�

− i
� �

k2gµν − kµkν
�
δ3 + δξk

µkν
�
δab . (3.205)

We see that we can choose δξ = 0 in the Feynman gauge, but since the
loop contributions to iΠab,µν(q) are always transverse (see Ex.11), this is
true in other gauges as well. We read off the counter term δ3,

δ3 =
αs

4π

�
5

3
CG − 4

3
TRnf

�
2

�
+ f scheme

3 . (3.206)
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3.7.3 Ghost self energy

The ghost 2-point function involves only one diagram + the counter-term
contribution:

= +

The above loop diagram gives,

= iΠghost
ab (q)

a b

q

=
−iαs

4π
CGδ

abq
2

2

�
2

�
− γE + log 4π

�

+ finite terms , (3.207)

and since the counter-term vertex is just iδabδc2q
2, we see that

δc2 =
αs

4π

�
CG

2

�
× 2

�
+ f scheme

2c . (3.208)

3.7.4 Ghost-gluon vertex

The 1-loop correction to the ghost-gluon vertex involves two diagrams:

= + +

The contributions of the individual diagrams are,
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iΛ
α,(1)
acb (q) =

b α a

c

q

= −gµ�/2qαfacb × αs

4π

CG

8

�
2

�
− γE + log(4π)

�
(3.209)

+ finite terms

iΛ
α,(2)
acb (q) =

b a

c,α

q

= gµ�/2qαfacb × αs

4π

−3CG

8

�
2

�
− γE + log(4π)

�
(3.210)

+ finite terms

In total,

iΛα
acb(q) = iΛ

α,(1)
acb (q) + iΛ

α,(2)
acb (q)− gµ�/2qαδc1f

acb (3.211)

= gµ�/2qαfacb ×
�
−αs

4π

CG

2

�
2

�
− γE + log(4π)

�
− δc1

�
,

and we can read off the value of the counter term δc1,

δc1 = −αs

4π

�
CG

2

�
× 2

�
+ f scheme

1c . (3.212)
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3.7.5 Quark self energy

The 1-loop calculation of the quark self energy −iΣij(q),

= +

q

i j

is, in practice, identical to the QED case in Section 2.3.2. The only difference
is that we need to multiply the QED result with a colour factor,

T a
jkT

a
ki

(3.31)
=

1

2

�
δjiδkk −

1

3
δjkδki

�
= δijCF (3.213)

CF =
4

3
, (3.214)

and change e2 → g2. By doing these two operations, the quark 2-point
function is of the form,

−iΣij(q) =
−iαs

4π
CFδ

ij

�
�
4m− /q

� �2
�
− γE + log

�
4πµ2

m2

���

+ i
�
δ2/q − δm

�
δij + finite terms , (3.215)

so we can identify the counter terms,

δ2 =
−αs

4π
CF ×

2

�
+ f scheme

2 (3.216)

δm =
−αsm

4π
4CF ×

2

�
+ f scheme

m . (3.217)
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3.7.6 Slavnov-Taylor identities go quantum

We have now explicitly calculated 5 QCD counter terms at 1-loop level:

δ3 =
αs

4π

�
5

3
CG − 4

3
TRnf

�
2

�
+ f scheme

3 (gluon field)

δc2 =
αs

4π

�
CG

2

�
× 2

�
+ f scheme

2c (ghost field)

δ2 =
−αs

4π
CF ×

2

�
+ f scheme

2 (quark field)

δm =
−αsm

4π
4CF ×

2

�
+ f scheme

m (quark mass)

δc1 = −αs

4π

�
CG

2

�
× 2

�
+ f scheme

1c (ghost− gluon vertex)

The above 5 counter terms + Slavnov-Taylor identities in Eq. (3.194) specify
the renormalized QCD Lagangian completely at 1 loop. Even we did not
compute e.g, the 3-gluon function explicitly, it will now automatically be
finite i.e. the Slavnov-Taylor identities correctly set the 1-loop counter term.
To argue how this comes about, let us consider the following BRS identity,

δBRS�Ω|Aa
0µ(x)A

b
0ν(y)c

c
0(z)|Ω� = 0 , (3.218)

where we have put the subscripts “0” to stress that these are bare fields
(remember our BRS transformations apply on bare fields). We execute the
BRS transformation:

�Ω|
�
Dad

0µ(x)c
d
0(x)δξ

�
Ab

0ν(y)c
c
0(z)|Ω� (3.219)

+ �Ω|Aa
0µ(x)

�
Dbd

0ν(y)c
d
0(y)δξ

�
cc0(z)|Ω�

+ �Ω|Aa
0µ(x)A

b
0ν(y)

�
1

ξ0
∂ · Ac

0(z)

�
δξ|Ω� = 0 ,
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where

Dab
0µ(x) = δab∂µ + g0A

c
0µ(x)f

acb . (3.220)

Eliminating the Grassmann factor δξ,

1

ξ0
�Ω|Aa

0µ(x)A
b
0ν(y) [∂ · Ac

0(z)] |Ω� (3.221)

= �Ω|
�
∂µc

a
0(x) + g0f

ahdAh
0µ(x)c

d
0(x)
�
Ab

0ν(y)c
c
0(z)|Ω�

+ �Ω|Aa
0µ(x)

�
∂νc

b
0(y) + g0f

bhdAh
0ν(y)c

d
0(y)
�
cc0(z)|Ω� .

Trading the bare fields and parameters with the renormalized ones by using
the relations,

Aa
0µ =

�
Z3A

a
µ ,

ca0 =
�

Zc
2c

a , ca0 = ca
�

Zc
2 ,

g0 = Zggµ
�/2 =

Zc
1

Zc
2

√
Z3

gµ�/2

ξ0 = Z3ξ .

we get,

1

ξ
�Ω|Aa

µ(x)A
b
ν(y) [∂ · Ac(z)] |Ω� (3.222)

= �Ω|
�
Zc
2 ∂µc

a(x) + gZc
1f

ahdAh
µ(x)c

d(x)
�
Ab

ν(y)c
c(z)|Ω�

+ �Ω|Aa
µ(x)
�
Zc
2 ∂νc

b(y) + gZc
1f

bhdAh
ν(y)c

d(y)
�
cc(z)|Ω� .

The left-hand side contains the gluonic 3-point function,

+ + + + +

multiplied by the gluon propagators. The gluon propagators are now finite
(as the counter term δ3 has been set), so if we can show that the right-hand
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side of Eq. (3.222) is finite, we know that the 3-gluon counter term is the
correct one.

As the first term on the right-hand side of Eq. (3.222) we have,

Zc
2 ∂

x
µ�Ω|Tca(x)Ab

ν(y)c
c(z)|Ω� . (3.223)

The ground-state expectation value here is just a ghost-gluon vertex (multi-
plied with the appropriate propagators) and it’s finite. Taking the Fourier
transform,
�

d4xeip3·x
�

d4ye−ip2·y
�

d4ze−ip1·z
�
∂x
µ�Ω|Tca(x)Ab

ν(y)c
c(z)|Ω�

�

= (−ip3µ)K(p1)K(p3)Dνη(p2) × (3.224)

p1, c p3, a

p
2 ,b,ν

+ + +

= (−ip3µ)K(p1)K(p3)Dνη(p2) ×
�
− gfabcpη3 + · · ·

�

The loop diagrams cancel against the counter term (we have explicitly tuned
the counter term like this). However, the factor Zc

2 = 1+ δc2 in front of this
term is contains a divergence, so at this order the remaining divergent term
is

(−ip3µ)K(p1)K(p3)Dνη(p2) ×
�
− gfabcpη3

�
× δc2 . (3.225)

Let’s then check the second term on the right-hand of Eq. (3.222). It reads,

Zc
1gf

ahd�Ω|TAh
µ(x)c

d(x)Ab
ν(y)c

c(z)|Ω� (3.226)

By taking the same Fourier transform as above,

�
d4xeip3·x

�
d4ye−ip2·y

�
d4ze−ip1·z

�
gfahd�Ω|TAh

µ(x)c
d(x)Ab

ν(y)c
c(z)|Ω�

�

= K(p1)Dνη(p2) × (3.227)
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p1, c p3, a, µ

p
2 ,b,ν

+ + +

= K(p1)Dνη(p2) ×
�
gfabcgηµ + · · ·

�

The first three diagrams are essentially the same as in the ghost-gluon
vertex function, but just the outgoing ghost line erased. The structure of
the diagrams is thus the same and the factor Zc

1 = 1 + δc1 cancels the UV
divergences from the two first loop diagrams,

p1, c p3, a, µ

p
2 ,b,ν

+

δc1× + = finite

The remaining diagram contains a ghost-gluon 3-point function with a loop
correction in the outgoing ghost line. This divergence cancels with the one
in Eq. (3.225).

In this way, we can argue why the gluonic 3-point function will be finite
without actually computing it explicitly.

3.7.7 Asymptotic freedom of QCD

Having now worked out the counter terms, we can assemble the β function
of QCD. From the Slavnov-Taylor identity Eq. (3.194) we see that there
are several equivalent ways to find Zg. Using the ghost-gluon vertex as an
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example,

Zg =
Zc
1

Zc
2

√
Z3

=
1 + δc1

(1 + δc2)
√
1 + δ3

(3.228)

= 1 + δc1 − δc2 −
1

2
δ3 +O(α2

s)

= 1 +
αs

4π

�
−
�
CG

2

�
× 2

�
+ f scheme

1c −
�
CG

2

�
× 2

�
− f scheme

2c

− 1

2

�
5

3
CG − 4

3
TRnf

�
2

�
− 1

2
f scheme
3

�

= 1 +
αs

4π

�−11CG + 4TRnf

3

�
1

�
+ f scheme

1c − f scheme
2c − 1

2
f scheme
3 .

Remember form Eq. (2.157) that in the MS scheme the β function can be
obtained from Zg, via

β(g) = −�
�g
2

�
+

g2

2

dZg,1

dg
, (3.229)

where Zg,1 is the coefficient of the 1/� pole. The 1-loop QCD β function is
thus,

β(g) = − g3

(4π)2

�
11CG − 4TRnf

3

�
(3.230)

Provided that
nf <

11CG

4TR
=

33

2
,

i.e. that the number of different quark species is 16 at most, the β function
is negative, and the theory is thereby asymptotically free. The origin of this
property is in the non-Abelianity of QCD (=̂ gluon self interactions) as in
QED the structure constants fabc – and thereby also the factor CG – is zero.

The fact that non-Abelian gauge theories can have a negative β function
was first discovered by Gross, Wilczek, and Politzer in 1973. This earned
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them a Nobel Prize in 2004.

The scale-dependent coupling can be obtained from Eq. (2.171),

∂g(g, t)

∂t
= β (g(g, t)) , g(g, 0) = g , t = log(µ�/µ) (3.231)

It follows that,

g2(g, t) =
g2

1 + 2g2β0t
(3.232)

β0 =
1

(4π)2

�
11CG − 4TRnf

3

�
. (3.233)

If β0 > 0 we clearly see that the QCD coupling gets weaker as the scale µ�

increases.

It is conventional to define the QCD scale parameter ΛQCD by,

ΛQCD ≡ µ exp

� −1

2g2β0

�
, (3.234)

which corresponds to the scale at which the running coupling g diverges.
Eliminating the coupling g in favour of ΛQCD gives,

g2(g, t) =
1

β0 log
�
µ�2/ Λ2

QCD

� . (3.235)

Replacing µ
�2 → Q2 and writing in terms of αs = g2/4π,

αs(Q
2) =

1

4πβ0 log
�
Q2/ Λ2

QCD

� . (3.236)

The above process in which a dimensionless parameter g is replaced by a
dimensionful one (ΛQCD) is an example of dimensional transmutation.
The value of ΛQCD must be obtained by comparing calculated cross sections
with experimental data. This results with ΛQCD ∼ 200MeV. Today, the
value of strong coupling is usually given by its value at the renormalization
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scale Q2 = M 2
Z, where MZ denotes the mass of the Z boson. The world

average is αs(M
2
Z) ≈ 0.118.

[Figure from Prog. Theor. Exp. Phys. 2020, 083C01]

The asymptotic freedom is a necessary property for a theory to describe
the nuclear force. Indeed, in the late 60’s the first experimental data on
inelastic electron-nucleon scattering was approximately consistent with the
assumption that the nucleus is made of almost free particles (partons). That
is, the interactions between these particles had to become weak at short
distances (=high momentum scale). However, at that time all the known
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renormalizable theories behaved just in the opposite way, i.e. the coupling
constant became stronger at short distances until hitting the Landau pole.

Given the fundamental importance of the asymptotic freedom, it is crucial
to know whether this property of QCD stands also at higher orders. To this
end, the QCD β function has been calculated up to 5-loop accuracy. Each
new loop involves two interaction vertices so the every second power of g
appears in the expansion of the QCD β function,

β(g) = −β0g
3 − β1g

5 − β2g
7 − β3g

9 + · · · (3.237)

At two-loop accuracy the easiest way to obtain the coefficient b1 is to
calculate Zg from Zg = Zc

1/(Z
c
2

√
Z3). The diagrams for the 2-loop gluon

self-energy corrections are [Figures from Muta]:

The ghost-field renormalization factor Zc
2 involves diagrams:
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Finally, the ghost-gluon vertex function involves the following 34 diagrams:
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The full set of known coefficients (in the MS scheme) is [see Phys.Rev.Lett. 118

(2017) 8, 082002] :

β0 =
1

(4π)2

�
11− 2nf

3

�
, (3.238)

β1 =
1

(4π)4

�
102− 38nf

3

�
, (3.239)

β2 =
1

(4π)6

�
2857

2
− 5033nf

18
+

325n2
f

54

�
, (3.240)

β3 =
1

(4π)8

�
149753

6
+ 3564ζ3 −

�
1078361

162
+

6508ζ3
27

�
nf (3.241)

+

�
50065

162
+

6472ζ3
81

�
n2
f +

1093

729
n3
f

�
,

β4 =
1

(4π)10

�
8157455

16
+

621885ζ3
2

− 88209ζ4
2

− 288090ζ5 (3.242)

+

�
−336460813

1944
− 4811164ζ3

81
+

33935ζ4
6

+
1358995ζ5

27

�
nf

+

�
25960913

1944
+

698531ζ3
81

− 10526ζ4
9

− 381760ζ5
81

�
n2
f

+

�
−630559

5832
− 48722ζ3

243
+

1618ζ4
27

+
460ζ5
9

�
n3
f

+

�
1205

2916
− 152ζ3

81

�
n4
f

�
,

where ζs refers to the Riemann zeta function,

ζs ≡
∞�

n=1

1

ns
, Re(s) > 1 . (3.243)

From the expressions for β0, β1, β2, and β3 one can easily check that if the
number of flavours nf is small enough, these coefficients remain positive
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and thus the β function in Eq. (3.237) stays negative. The same is true for
β4 though one will need to know the numerical values of the zeta function
to see this. For the important special case nf = 6,

β
(nf=6)≈ −β0g

3

�
1 + 0.93

�αs

π

�
− 0.29

�αs

π

�2
+ 5.52

�αs

π

�3
+ 0.15

�αs

π

�4�
.

This is positive definite for all values of αs, and as the coefficients in front of
the factors (αs/π)

n are not particularly large, the perturbative series seems
to converge very well.

Beyond the 1-loop approximation, the expression for the running coupling
cannot be expressed in a closed form but approximate formulas can be
derived. We write first the evolution equation Eq. (2.171) in a form,

� t(Q)

t(Λ)

= log

�
Q

Λ

�
= −

� g(Q)

g(Λ)

dλ

λ3

1

β0 + β1λ2 + β2λ4 + · · · . (3.244)

If only the two first coefficients of the β function are kept, the above integral
gives an exact result,

log

�
Q2

Λ2

�
=

1

β0

��
1

g2(Q)
− 1

g2(Λ)
+

β1
β0

log
g2(Q)

�
β0 + β1g

2(Λ)
�

g2(Λ)
�
β0 + β1g2(Q)

�
��
,

(3.245)

which, however, cannot be solved for g2(Q) in an analytic way. Beyond
the 2-loop accuracy, the integral in Eq. (3.244) can be performed (Ex.) by
expanding the integrand in powers of λ2, assuming it’s � 1. Keeping terms
up to β3,

log

�
Q2

Λ2

�
=

1

β0

��
1

g2(Q2)
+

2β1
β0

log
�
g(Q2)

�
+

�
β2
β0

− β2
1

β2
0

�
g2(Q2)

+

�
β3
2β0

− β1β2
β2
0

+
β3
1

2β3
0

�
g4(Q2) +O(g6)

��
+ C . (3.246)
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By defining the constant C, we essentially define the strength of the coupling
at the reference scale Λ (but not yet the value of Λ itself). It is conventional
to adopt the definition

C =
β1
β2
0

log β0 . (3.247)

By solving Eq. (3.246) iteratively (Ex.), we find an approximate expression
for the scale-dependent strong coupling αs(Q

2),

αs(Q
2) =

1

4πβ0L

��
1− b1 logL

β0L
+

1

(β0L)2
�
b21
�
log2 L− logL− 1

�
+ b2

�

+
1

(β0L)3

�
b31

�
− log3 L+

5

2
log2 L+ 2 logL− 1

2

�
− 3b1b2 logL+

b3
2

�

+O(1/L4)

��
, (3.248)

where L = log(Q2/Λ2) and bk = βk/β0. One can now tune the parameter
Λ such that e.g. αs(M

2
Z) ≈ 0.118.

Using the result of this and Chapter 2, we can also work out the 1-loop
scale-dependence of the quark masses. In the MS scheme,

γm(αs) =
�αs

4π

�
6CF (3.249)

and it follows that (Ex.),

mMS(Q
2) = mMS(m

2
MS

)

�
1− αs(Q

2)

π
log

�
Q2

m2
MS

��
. (3.250)

By using here the explicit 1-loop expression for αs(Q
2) from Eq. (3.236), we

see that the latter term becomes a constant at large Q2 so the quark masses
cease to run towards asymptotically large Q2. The running of the quark
masses has been experimentally “confirmed” and the figure below shows an
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example in the case of bottom/beauty quark [Figure from Eur.Phys.J.C 55 (2008)

525-538] :

The constant γm has been calculated up to 4 loops. The first three coeffi-
cients are [PDG, Quark Masses] ,

γMS
m (αs) = 8

�αs

4π

�
+ 2

�
202

3
− 20nf

9

��αs

4π

�2
(3.251)

+ 2

�
1249 +

�
−2216

27
− 160ζ(3)

3

�
nf −

140n2
f

81

��αs

4π

�3
,

where nf is the number of quark flavours.
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The relation between the pole mass mP and the MS mass mMS is known
up to 3 loops [see Phys.Lett.B 482 (2000) 99-108] ,

mP = mMS(mMS)

��
1 +

4

3

�
αs(mMS)

π

�
(3.252)

+

�
− 1.0414NL + 13.4434

��
αs(mMS)

π

�2

+

�
0.6527N 2

L − 26.655NL + 190.595

��
αs(mMS)

π

�3
��

Here NL is the number massless quark flavours. In the case of bottom/beauty
quark mMS,bottom(mMS,bottom) ∼ 4GeV and at this scale αs(mMS,bottom) ∼
0.24. This gives,

mP,bottom ≈ mMS,bottom(mMS,bottom)
�
1 + 0.10 + 0.05 + 0.03

�
(3.253)

Although the higher-order corrections may appear small at first sight, the
loop corrections are all of the same order of magnitude, so the perturbative
expansion seems to converge rather badly. This is called a renormalon
problem.
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4 Weak interactions

The phenomenology of weak interactions is discussed in the Particle Physics
course. Here, we will first remind ourselves of the ingredients of the Glashow-
Weinberg-Salam (GWS) electroweak Lagrangian and then see how to quan-
tize it.

4.1 Electroweak Lagrangian [Peskin 20, 11.1]

The GWS theory of weak interactions is based on imposing a local U(1) ×
SU(2) invariance. In other words, the Lagrangian should remain intact when
the matter fields of type k undergo a transformation,

ψk(x) → ψ�
k(x) = exp

�
iYkχ(x)

�
exp
�
iθi(x)

σi

2

�
ψk(x) , (4.1)

where the parameters Yk are called hypercharges, and σi are the usual
Pauli spin matrices (= the generators of SU(2) transformations),

σ1 =

�
0 1

1 0

�
, σ2 =

�
0 −i

i 0

�
, σ3 =

�
1 0

0 −1

�
, (4.2)

which fulfill the commutation relation

�
σi

2
,
σj

2

�
= i�ijk

�
σk

2

�
, (4.3)

�ijk =





+1 if ijk is an even permutation of 123
−1 if ijk is an odd permutation of 123
0 otherwize

. (4.4)
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So here �ijk plays the role of structure constants fabc in QCD. Repeating
the steps of Sect. 3.2 we find that in this case we can express the covariant
derivative in the form,

Dµψk(x) =

�
∂µ − igAi

µ(x)
σi

2
− ig�YkBµ(x)

�
ψk(x) , (4.5)

where g and g� are real parameters and the vector fields Ai
µ(x) and Bµ(x)

transform according to,

Bµ(x) → Bµ +
1

g�
∂µχ , (4.6)

Ai
µ(x)

σi

2
→ U(x)

�
Ai

µ(x)
σi

2
+

i

g
∂µ

�
U †(x) , (4.7)

U(x) = exp[iθi(x)
σi

2
]

or for an infinitesimal θi(x),

Ai
µ(x) → Ai

µ +
1

g
∂µθ

i + �ijkAj
µθ

k , (4.8)

As in Sect. 3.2 the covariant derivatives are objects which transform as the
field on which they act, so terms

iψkγ
µDµψk (4.9)

are invariant under the transformation specified by Eqs. (4.1) and (4.6).

The construction of the field-strength tensors is also identical to the case of
QCD and by defining (see Eq. (3.56)),

Bµν ≡ ∂µBν(x)− ∂νBµ(x) , (4.10)

Ai
µν ≡ ∂µA

i
ν(x)− ∂νA

i
µ(x) + g�ijkAj

µ(x)A
k
ν(x) , (4.11)
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we know that the combinations

−1

4
BµνB

µν − 1

4
Ai

µνA
i,µν (4.12)

remain invariant in transformations of Eq. (4.6) and Eq. (4.7).

4.1.1 Matter content

The essence of the GWS theory is to treat the left- and right-chiral fermion
fields on a different footing. To see why this is even possible, we first recall
from QFT I that the left- and right-handed components of a Dirac field are
defined as

Left-handed component: ψL = PLψ =

�
1− γ5

2

�
ψ (4.13)

Right-handed component: ψR = PRψ =

�
1 + γ5

2

�
ψ . (4.14)

Now, since ψ = ψL + ψR, the gauge invariant terms iψγµDµψ can be
written as

iψγµDµψ = iψLγ
µDµψL + iψRγ

µDµψR (4.15)

+ iψLγ
µDµψR + iψRγ

µDµψL .

However, due to the properties of γ5, the mixed terms will give zero. For
example,

iψLγ
µDµψR = iψ†

�
1− γ5

2

�
γ0γµDµ

�
1 + γ5

2

�
ψ (4.16)

= iψ

�
1 + γ5

2

�
γµDµ

�
1 + γ5

2

�
ψ

= iψ

�
1 + γ5

2

��
1− γ5

2

�
γµDµψ = 0 .
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The gauge invariant terms iψγµDµψ thus split into two parts,

iψγµDµψ = iψLγ
µDµψL + iψRγ

µDµψR , (4.17)

i.e. the kinetic and interaction terms of the left- and right-chiral components
decouple. For this reason the hypercharges Yk can be different between ψR

and ψL. We can also assign the two chiral components of fermion fields into
different representations of the gauge group: The left-chiral fermions go to
doublets [which transform under SU(2)], while the right-chiral fermions go
to singlets [which do not transform under SU(2)]. For the three families of
leptons and quarks,

�
νeL
eL

�
,

�
νµL
µL

�
,

�
ντL
τL

�
, (eR) , (µR) , (τR)

�
uL

dL

�
,

�
cL

sL

�
,

�
tL

bL

�
,

(uR)

(dR)
,

(cR)

(sR)
,

(tR)

(bR)

Each symbol here denotes a Dirac field, e.g. eL = PLψe. In the standard
GWS theory there are no right-chiral neutrinos.

For example, the left-handed neutrino-electron doublet transforms as

�
νeL
eL

�
→
�

νe
�

L

e�L

�
= exp

�
iYνeχ(x)

�
exp
�
iθi(x)

σi

2

�
�

νeL
eL

�
, (4.18)

whereas e.g. the right-handed electron singlet transforms as

eR → e�R = exp
�
iYeχ(x)

�
eR . (4.19)

The drawback of assigning left- and right-handed fields into different rep-
resentations is that the usual fermion mass terms −mψψ are forbidden.
There are again 4 terms,

−mψψ = −mψLψL −mψRψR −mψLψR −mψRψL , (4.20)
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but now the “diagonal” ones are zero since e.g.,

ψLψL = ψ†
�
1− γ5

2

�
γ0

�
1− γ5

2

�
ψ (4.21)

= ψ

�
1 + γ5

2

��
1− γ5

2

�
ψ = 0 .

Thus, in the mass terms the left- and right-handed components mix,

−mψψ = −mψLψR −mψRψL . (4.22)

These terms are not gauge invariant as e.g. the transformations of the
left-handed fields mix the two components in the doublet, e.g.

eL −→ e�L = AeL + BνeL .

In addition, the hypercharges of ψL and ψR may not be the same.

4.1.2 Interactions of the matter and gauge fields

Having assigned the fermion fields into specific representations, the covariant
derivatives now uniquely fix the interactions between the fermion fields
and the gauge bosons. The covariant derivative in Eq. (4.9) involves an
interaction terms,

gψγµ
�
Ai

µ(x)
σi

2
+ g�YkBµ(x)

�
ψ . (4.23)

We write Ai
µ(x)σ

i/2 explicitly,

Ai
µ(x)

σi

2
=

A1
µ

2

�
0 1

1 0

�
+

A2
µ

2

�
0 −i

i 0

�
+

A3
µ

2

�
1 0

0 −1

�
(4.24)

=
1

2

�
A3

µ A1
µ − iA2

µ

A1
µ + iA2

µ −A3
µ

�

=
1√
2

�
A3

µ/
√
2 W †

µ

Wµ −A3
µ/
√
2

�
,
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where in the last step we defined a complex vector field

Wµ ≡ (A1
µ + iA2

µ)/
√
2 . (4.25)

To see what kind of interaction term is the one that involves Wµ, we can
use e.g. the electron-neutrino doublet as an example,

g√
2

�
νeL eL

�
γµ

�
0 W †

µ

Wµ 0

��
νeL
eL

�
=

g√
2
νeL /W

†
µeL +

g√
2
eL /W µν

e
L

=
g√
2
νe
�
1 + γ5

2

�
/W

†
µ

�
1− γ5

2

�
e+ h.c. (4.26)

=
g√
2
νe /W

†
µ

�
1− γ5

2

��
1− γ5

2

�
e+ h.c.

=
g

2
√
2
νeL /W

†
µ

�
1− γ5

�
e+ h.c. (h.c. = Hermitian conjugation)

We see that there are interactions between the two fields in the left-handed
doublets (e.g. between the electron and its neutrino). The complex vector
field Wµ represents the W± boson. The interaction above is called the
charged-current interaction.

Let us then group together the remaining diagonal interaction terms.

For left-handed doublets:

ψkγ
µ

�
g�YkBµ + gA3

µ/2 0

0 g�YkBµ − gA3
µ/2

�
ψk . (4.27)

For right-handed singlets:

ψkγ
µ
�
g�YkBµ

�
ψk . (4.28)

We would like to identify the photon field. It cannot be Bµ as that would
imply that e.g. electron and its neutrino have the same strength of interaction,
i.e. the electric charge. Nor can it be A3

µ as that generates interaction only
between the left-handed fields (in QED the interaction term is the same for
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both handednesses). The solution is to try a linear combination of the two
which preserves the overall normalizations. Thus, we express the fields Bµ

and A3
µ in terms of two other fields Aµ and Zµ:

�
A3

µ

Bµ

�
=

�
cos θW sin θW

− sin θW cos θW

��
Zµ

Aµ

�
. (4.29)

Here the parameter θW is known as the Weinberg weak-mixing angle.
Writing Eq. (4.27) and Eq. (4.28) in terms of Aµ and Zµ gives,

For left-handed doublets:

ψkγ
µ

�
Aµ

�
σ3

2
g sin θW + Ykg

� cos θW

�
+ Zµ

�
σ3

2
g cos θW − Ykg

� sin θW

��
ψk

For right-handed singlets:

ψkγ
µ

�
Aµ (Ykg

� cos θW) + Zµ (−Ykg
� sin θW)

�
ψk

From the above terms we see that we can identify Aµ as the photon field if
we choose the parameters g, g� and θW such that the elementary charge e

is given by

e = g� cos θW = g sin θW , (4.30)

and furthermore choose the hypercharges appropriately. For example, in the
case of u and d quarks the fractional charges are Qu = 2/3 and Qd = −1/3,
so we need

�
Qu 0

0 Qd

�
=

σ3
2

+ Yud =

�
Yud + 1/2 0

0 Yud − 1/2

�

Qu = Yu (4.31)

Qd = Yd

which implies that

Yud = 1/6 , Yu = 2/3 , Yd = −1/3 . (4.32)
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to get the correct fractional charges. Similarly for other quark/lepton species.
In this way, the the terms involving the Aµ field reduce to standard QED
interaction terms,

LQEDint. =
�

f

eQfψf /Aψf . (4.33)

The remaining interaction terms involving Zµ can be written as

e

2 sin θW cos θW
Zµ

�
ψkLγ

µ
�
T 3
k − 2Qk sin

2 θW
�
ψkL + ψkRγ

µ
�
−2Qk sin

2 θW
�
ψkR

�
,

where T 3
k is the eigenvalue of the σ3, i.e +1 for up-type quarks and neutrinos

and −1 for down-type quarks and charged leptons:

σ3

�
u

0

�
=

�
1 0

0 −1

��
u

0

�
= +1×

�
u

0

�

σ3

�
0

d

�
=

�
1 0

0 −1

��
0

d

�
= −1×

�
0

d

�
.

Since the field Zµ is real, it represents a neutral gauge boson. Thus, the
corresponding interaction term is called a neutral-current interaction
and the field Zµ is identified with the neutral Z boson. The neutral-current
Lagrangian can be written compactly as

LNC = gZ
�

k

ψkγ
µZµ

�
Lk(1− γ5) +Rk(1 + γ5)

�
ψk , (4.34)

where

gZ =
e

4 sin θW cos θW
=

g

4 cos θW
(4.35)

Lk = T 3
k − 2Qk sin

2 θW (4.36)

Rk = −2Qk sin
2 θW (4.37)
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The resulting values of Lk and Rk are:

Table 1: Neutral-current couplings of fermions
coupling νe, νµ, ντ e, µ, τ u, c, t d, s, b

Lf 1 −1 + 2 sin2 θW 1− 4
3 sin

2 θW −1 + 2
3 sin

2 θW

Rf 0 2 sin2 θW −4
3 sin

2 θW
2
3 sin

2 θW

By taking the definitions of the Aµ and Zµ fields from Eq. (4.29) and
substituting them into Eq. (4.12), we find the quadratic kinetic terms,

−1

4
(∂µAν − ∂νAµ) (∂

µAν − ∂νAµ)

−1

4
(∂µZν − ∂νZµ) (∂

µZν − ∂νZµ) (4.38)

−1

2

�
∂µW

†
ν − ∂νW

†
µ

�
(∂µW ν − ∂νW µ)

plus qubic and quartic interaction terms (Ex.),

L3 = −ie cot θW
�
(∂µW ν − ∂νW µ)W †

µZν −
�
∂µW ν† − ∂νW µ†�WµZν

+ (∂µZν − ∂νZµ)WµW
†
ν

�

−ie
�
(∂µW ν − ∂νW µ)W †

µAν −
�
∂µW ν† − ∂νW µ†�WµAν

+ (∂µAν − ∂νAµ)WµW
†
ν

�

(4.39)

L4 = − e2

2 sin θW

�
(W †

µW
µ)2 −W †

µW
µ†WνW

ν
�

−e2 cot2 θW
�
W †

µW
µZνZ

ν −W †
µW

νZνZ
µ
�

−e2
�
W †

µW
µAνA

ν −W †
µW

νAνA
µ
�

−e2 cot θW
�
2W †

µW
µAνZν −W †

µW
ν [AνZ

µ + ZνA
µ]
�
.
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Terms L3 and L4 generate three types of interactions between the gauge
bosons:

γ, Z

W+ W+ W+ W+ γ, Z

W− W− W− W− γ, Z

4.1.3 The Higgs mechanism

In the construction above, all particles are massless as the gauge invariance
forbids all mass terms. To generate masses for fermions and gauge bosons,
we will need to invoke the Higgs mechanism. This is done by introducing a
complex doublet of scalar fields

φ(x) =
1√
2

�
φ1(x) + iφ2(x)

φ3(x) + iφ4(x)

�
=

�
φ+(x)

φ0(x)

�
, (4.40)

where the designations “+” and “0” anticipate that we are going to arrange
the hypercharges such that φ+(x) carries electric charge +1 and φ0(x) is
neutral. We introduce the following φ-dependent terms in the Lagrangian,

LHiggs = (Dµφ)
†(Dµφ)− V (φ) (4.41)

V (φ) = µ2φ†φ+ λ(φ†φ)2 , (4.42)

where the covariant derivative is the same as in Eq. (4.5),

Dµφ(x) =

�
∂µ − igAi

µ(x)
σi

2
− ig�YφBµ(x)

�
φ(x) . (4.43)

Thanks to the covariant derivative, LHiggs is invariant in gauge transforma-
tions. Since,

T 3
φ+ = 1 , T 3

φ0 = −1 ,
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