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Abstract—Wireless network virtualization is envisioned as a
promising framework to provide efficient and customized services
for next-generation wireless networks. In wireless virtualized
networks (WVNs), limited radio resources are shared among
different services providers for providing services to different
users with heterogeneous demands. In this work, we propose a
resource allocation scheme for an OFDM-based WVN, where
one small cell base station equipped with a large number of
antennas serves the users with different service requirements. In
particular, with the objective to obtain the energy efficiency in the
uplink, a joint power, subcarrier, and antenna allocation problem
is presented considering availability of both perfect and imperfect
channel state information. Subsequently, relaxation and variable
transformation are applied to develop the efficient algorithm to
solve the formulated non-convex and combinational optimization
problem. Extensive simulation studies demonstrate the advan-
tages of our presented system architecture and proposed schemes.

Index Terms—wireless network virtualization; resource allo-
cation; large scale multiple antenna system; energy efficiency;
small cell

I. INTRODUCTION

The aim of 5G is to provide ubiquitous connectivity for
any kind of devices and any kind of applications that may
benefit from being connected, which may require 1000-fold
more capacity, extreme low-latency (under 1 ms), and low
energy consumption (90% reduction) for trillions of devices
[1]. To realize the vision of essentially unlimited access to
information and sharing of data anywhere and anytime for
anyone and anything, the recent emerging mobile platforms,
such as Software Defined Network (SDN) and Network Func-
tion Virtualization (NFV), bring us novel views on the current
cellular wireless networks, which urge to rethink the current
network infrastructure. The recent advances also open the way
to expand SDN/NFV concepts to Radio Access Networks
(RANs), creating thus the Wireless Virtualized Networks
(WVNs) framework where the execution of RAN functions is
moved from dedicated telecom hardware to commoditized IT
platforms owned by multiple Infrastructure Providers (InPs).
In the context of WVN, both infrastructure and radio resources
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can be abstracted, sliced and shared [2], and a mobile network
operator can rent the radio resources in a virtualized manner.
Consequently, the overall expenses of wireless network de-
ployment and operation can be significantly reduced as well
[3]. In short, WVN can be considered as the technology in
which physical wireless network infrastructure and physical
radio resources are abstracted and sliced into virtual wireless
resources, and shared by multiple parties with a certain degree
of isolation between them.

Although the WVN has the envisioned potential to improve
the utilization of wireless resource for the future 5G networks,
how to operate it in an efficient manner is still under in-
vestigation. Moreover, how to successfully merge or combine
the other recent advances with the WVN requires dedicated
efforts. With wireless virtualization, the wireless network in-
frastructure can be decoupled for different services providers,
from the services that they provides. Hence, differentiated
services can coexist on the same physical infrastructure and
their utilities can be maximized accordingly. After the physical
resources are abstracted and virtualized, they can be divided
into multiple virtual slices and then allocate to different
operators or virtual networks. By virtualizing the uplink and
downlink resources into slices, the network can operate in
a dynamic and reconfigurable manner to fulfill the diverse
requirements of the users in different slices.

Meanwhile, on the way towards the gigabytes transmission,
it can be expected that the number of antennas at the Base
Station (BS) becomes relative large. The resulted large scale
multiple antenna system or so call massive Multi-input Multi-
output (MIMO) system, will consist of hundreds of deployed
antennas at the BS [1]. The increase of number of antennas at
the BS can inevitably bring capacity gain to the system in order
to provide high speed service rates to a large number of users.
On the other hand, the large scale multiple antenna system
also faces many challenges, of which the Energy Efficiency
(EE) issues emerges as a significant one [4]. As the number
of antennas goes large, the relevant energy consumption also
increments if all the antennas are active all the time. Thus, how
to efficiently operate the BS with a large number of antennas
to reduce the energy cost while maintaining the quality of high
speed services induces a careful design from the EE point of
view.

The investigations on wireless networks virtualization have
attracted many interests recently. The authors in [3] and [5]
provide the overview on the general framework for wireless
virtualization and propose a virtual resource allocation scheme
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for virtualized networks, respectively. A wireless resource
slicing scheme has been presented in [6], which can flexibly
partition fragmented frequency spectrum into different slices
that share the RF front end and antenna. By such, it is
shown that the proposed idea can provide a general and clean
abstraction to exploit fragmented spectrum in dense deployed
WiFi networks. The authors of [8] propose a virtualization
framework for LTE systems, where the eNB and physical
resources are allocated to the service providers by a central
entity called hypervior. It can be found that there are several
main challenges that WNV faces, including capacity limita-
tion, complete isolation among different coexisted services and
signaling overhead [9]. In [9], the authors take into account
these challenges and propose a solution for the multiple
operator networks where baseband modules of distributed BSs
cooperate to reallocate radio resources based on the traffic
dynamics. Moreover, insightful discussion on the additional
signaling overhead is presented. In [10], the performances
of different mobile network sharing schemes, ranging from
simple approaches in traditional networks to complex methods
that require virtualized infrastructure, are investigated. Uti-
lizing the game theoretic approaches, the authors present a
stochastic game framework in [11] to model the interactions
between service providers and InPs. In [12], the authors
present different power and spectrum allocation schemes for
the WVN by using game theory. Considering a Cloud-RAN
based small cell network with wireless virtualization, the
authors of [13] present an user-cell association scheme to
achieve the target of energy saving and interference limita-
tion. In [14], the author present a tractable analytical model
for virtualized downlink cellular networks using tools from
stochastic geometry. In [15], the virtual resource allocation
problem in virtualized small cell networks with full-duplex
self-backhaul has been studied.

At the same time, EE in a multiple antenna system has
received increasing attentions as well [17]-[19]. [17] has
studied the mutual information quantity optimization problem
of the MIMO system, showing that increasing number of
used antenna leads to the spectrum efficiency increment. As
a matter of fact, although the use of MIMO can improve
the system spectrum efficiency, the use of a large number of
antennas brings significant problem to the EE design. There-
fore, for the massive MIMO system, the number of selected
antennas should be decided in an optimized manner. The
authors focus the performance of transmitting and receiving
antenna selection when estimation error exists [18]. In [19],
two antenna selection algorithms are presented. The authors
of [20] combine the concept of massive MIMO and WVN,
and then present resource allocation scheme to maximize the
throughput performance for such an advanced framework.

As we can see, the small cell network with massive MIMO
emerges as as one of the key components of next-generation
cellular networks to improve spectrum efficiency. Despite the
potential vision of small cell networks with massive MIMO,
many research challenges still need to be addressed. One of the
main research challenges is resource allocation, which plays
a significant role in traditional wireless networks. As WNV
directs a potential route towards efficient resource allocation

operation by resources abstraction and virtualization, it can
offer us a novel view on managing massive antennas in a
small cell networks. By such, the resource can be divided into
multiple virtual slices and then allocate to different operators
so that a dynamic and reconfigurable operation can be achieved
to fulfill the diverse requirements of the users in different
slices. In this work, our goal is to investigate the problem of
resource allocation for achieving uplink EE considering small
cell network virtualization. Compared to the aforementioned
works, our contributions can be summarized as follows,

• We present the WVN architecture, where a small cell BS
(SBS) with a large number of antennas serves a number
of users via resource slicing. In the proposed virtualized
networks, a joint resource allocation optimization prob-
lem for uplink transmission containing power, subcarrier
and antenna allocation is formulated with the objective to
maximize the EE while maintaining the service quality
of each slice.

• To solve formulated mixed combinatorial and non-convex
optimization problem, we apply the nonlinear fractional
programming method and transfer the original problem
into a subtractive form. Then the constraints of the trans-
formed form can be further relaxed and addressed in the
dual domain. In addition to the consideration of perfect
knowledge of Channel State Information (CSI), we also
take the practical issue that imperfect CSI knowledge is
available into account into consideration when executing
resource allocation decision. By such, the robustness of
the proposed scheme can be enhanced.

• The effectiveness of the proposed scheme is demonstrated
through extensive simulations. It is shown that by uti-
lizing the WVN in the small cell networks with the
proposed virtual resource allocation algorithm, superior
performance can be obtained.

The rest of this paper is organized as follows. Section II
describes the system model and assumptions. We present the
problem formulation in Section III and propose a resource
allocation algorithm in Section IV. The performance evaluation
is illustrated in Section V through simulation study, and we
finally conclude this work in Section VI.

II. SYSTEM MODEL

A. Wireless Virtualized Networks

Virtualization has recently moved from traditional server
virtualization to wireless virtualization. In stead of virtualiz-
ing the computing resources in server virtualization, in the
WNV technologies, physical wireless network infrastructure
and radio resources can be abstracted and sliced into vir-
tual wireless network resources holding certain corresponding
functionalities, and shared by multiple parties through isolating
each other [9]. Therefore, the physical resources of the InPs
need to be abstracted to isolated virtual resources. Then, the
virtual resources can be offered to different Network Service
Providers (NSPs), who concentrate on providing services to
the users. In Fig. 1, a simple illustration of wireless virtualiza-
tion is presented. Following the general frameworks of WVN
[3] [7] [9], in order to offer service to the users, the NSPs
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in Fig. 1 will ask the InPs about the radio resources. Then,
the physical resources, including spectrum, and infrastructures
from different InPs will be handled by the physical network
controller. The resources can then be abstracted, virtualized
and sliced to different virtual resources and provided to
different NSPs according to their demands. The virtualization
is done by the Mobile Virtual Network Operator (MVNO), of
which the rule is to lease and virtualize the physical networks
into virtual network based on the requests of NSPs. End users
logically connect to the virtual network through which they
subscribe to the service, while they physically connect to the
cellular network.

In order for the NSPs to provide services to the end-users,
attracted and virtualized resources are provided to different
NSPs in terms of resource slices. Each resource slice contains
a certain amount of radio resources, such as power, frequency
spectrum, antennas and related hardware in Fig. 1. The amount
of resources that can be allocated to one slice should be based
on the Quality of Service (QoS) requirements of the service it
needs to provide and the total system utility. To maximize the
total utility of all MVNOs, the resource allocation schemes for
WVN should be developed to dynamically allocate the virtual
resources from the physical substrate wireless networks and
then provide services to different users.

The whole virtualization process can be realized in the
following way. First, virtual slices can be used to model the
virtual resources, similar to the physical resource block in LTE.
However, the details of the slices, such as time and frequency,
can be negotiated by the MVNO and NSP. For slicing, the
MVNO generates a certain number of resource slices for the
NSPs based on current network status. Then, the MVNO
defines the properties (e.g., virtualized resources) for each
slices based on the agreements with NSPs and delivers slices
to the corresponding NSPs. After that, each NSP allocates
appropriate number of resources to each subscriber based
on its QoS (e.g., energy efficiency or delay) and data rate
demand, and the MVNO receives such scheduling information
about the next potential served users from NSPs. The isolation
is done in the way that the MVNO converts the properties
of each resource slice to data rate requirements or physical
resource requirements and prepares the corresponding physical
resources for each user. Finally, the MVNO or the InP allocates
physical resources (e.g., BS, radio resource) to each end user
based on the current network status.

B. System Assumption
An example of our considered system model is presented

in Fig. 2. The physical networks including the hardware
(e.g., antennas, etc.), frequency spectrum and other types
of radio resources, which are essential for offering wireless
access services and are provided by the InPs. Based on the
aforementioned virtualization process, the MVNO is able to
create different resource slice containing selected antennas and
spectrum. In our considered system, the physical network is
Orthogonal Frequency Division Multiplexing (OFDM)-based,
and it contains a Small cell Base Station (SBS) with M ≫ 1
antennas and N subcarriers, which is typical in a mmWave-
based small cell. In the considered wireless virtualized network

Fig. 1. Wireless Network Virtualization

Fig. 2. System Model

architecture in Fig. 2, we can see that there is a centralized
controller located in mobile virtual network operator (MVNO),
and it can obtain the feedbacks of each users and carry out
the scheduling decision among different service operators.
Moreover, from [17], we can observe the number of bits
needed for feedback falls off rapidly as the number of antennas
increases. Therefore, for the considered system with a large
number of antennas, the feedback overhead is considered as
sufficiently low. In order to provide the services to the users,
the resources will be slicing into S pieces and the set of
all slices is denoted as S. Each slice s ∈ S has a set of
users with single antenna denoted as Us. The number of users
in each slice is Us = |Us|. As for each slice, the provided
services are varied and the QoS requirements are different.
Thus, we consider there is a minimum data rate or QoS
requirement rrsvs for each slice. Then, the total number of
U =

∑
s∈S Us and we assume that M ≫ U , which is

practical for the small cell networks with a large scale of
multiple antennas. We consider that for each slice, a set of
subcarriers is allocated, and we denote ω ∈ CU×N as the
subcarrier-slice assignment indicator matrix, where each row
vector ωus = [ωus,1, ωus,2, ..., ωus,n, ..., ωus,N ], and we have

ωus,n =

{
1, if subcarrier n is allocated to the user us;
0, otherwise.

(1)
Further, we also define an antenna allocation matrix α ∈
CU×N , in which αus,n is the number of antennas allocated
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to the user us in slice s on subcarrier n and for each slice s.
Meanwhile, the number of allocated antennas for each slice
should be controlled to preserve the fairness between slices
and to improve the energy efficiency [4]. Thus, we define a
set of reserved antenna for each slice as {αmin

s , ..., αmax
s }.

Note that the set of reserved antenna is a discrete set and the
selected antenna is also a integer. Later we will show how to
transfer it to the continous counterpart and address the antenna
selection problem accordingly.

III. PROBLEM FORMULATION

In this section, we present the problem formulation. In par-
ticular, we consider the resource allocation in the uplink (UL)
and formulate a joint optimization of subcarrier, power and
antenna for each slice in the virtualized small cell networks.

A. Channel Model

Let hus,n,βus,n be the channel coefficient of user us in slice
s on subcarrier n and antenna βus,n. Then, for the allocated
αus,n antennas, we have the corresponding channel coefficient
hus,n ∈ C1×αus,n , which is modeled as independent identi-
cally distributed (i.i.d.) complex Gaussian random variables
with zero mean and unit variance 1. We denote dus as the
path loss factor from the SBS to user us. We also denote that
Pus,n as the transmit power from the user us to the BS in
slice s on subcarrier n.

When considering the imperfect knowledge of CSI, we
denote ĥus,n,m as the estimated channel coefficient on antenna
m, which can be expressed

ĥus,n,m = hus,n,m + zus,n,m, (2)

where zus,n,m is the channel estimation error and we assume
that zus,n,m ∼ N (0, σ2

z).
Accordingly, in the perfect CSI case, the received signal on

UL at the BS after from user us on subcarrier n is

yus,n =
√

Pus,ndusbus,nhus,nxus,n + eus,n, (3)

where xus,n is the transmitted signal and eus,n is the channel
n noise. bus,n is the precoding vector and the maximum ratio
transmission design is applied, i.e., bus,n =

hus,n

∥hus,n∥ . eus,n is
the additive Gaussian noise and follows N (0, σ2). Similarly,
considering the imperfect CSI case, we have the received
signal as

ŷus,n =
√

Pus,ndusb
im
us,nĥus,nxus,n + eus,n. (4)

where bimus,n is the precoding vector. In a massive MIMO
system, with the increase of the number of antennas, the

1We consider this work can be applied to the case where CSI information
can be obtained or known. For the mobility case of which the CSI can not be
perfectly obtained, we consider our problem can be addressed by restricting
the outage probability. In fact, in such a case, there are several ways for the
BS/operator to obtain the knowledge of the (at least approximated) location of
the mobility user, e.g., via GPS or location updates in cellular network. Based
on such information, the path loss and slow fading effect can be approximated.
Although the fast fading effect cannot be perfectly known, the problem can
be addressed by putting a constraint on the outage probability.

channel hardening effect emerges [16][17]. In other words,
the mutual information fluctuation decreases rapidly relative
to its mean. Therefore, in order to obtain the expected data
rate of the considered system with imperfect CSI, we first
study the mutual information distributions with/without an-
tenna selection. To this end, based on the above definitions,
we can obtain the mutual information distribution of the users
us without antenna selection as follows [17],

IMI ∼ N
(
log2(1 +Mγus,n),

(log2e)
2

M

)
, (5)

where N represents standard normal distribution and γus,n =
dusPus,n/σ

2 is the SNR and σ2 is the channel noise variance.
Moreover, when considering imperfect CSI, the mutual infor-
mation distribution of the users us without antenna selection
can be

IimMI ∼ N

(
log2 (1 +Mρus,n),

(log2 e)
2

M

)
, (6)

where ρus,n represents the SNR with the imperfect CSI
and channel noise on subcarrier n in slice s, i.e., ρus,n =

dusPus,n

σ2+dusPus,nσ2
z

. The derivation of (6) is given in Appendix A.
As the number of antennas grows, the channel quickly

"hardens", in the sense that the mutual information fluctu-
ation decreases rapidly relative to its mean. This form of
channel hardening is generally welcome for voice and other
traffic that is sensitive to channel fluctuations and delay. In
[17], the implementation, scheduling and rate feedback of
the channel hardening result are discussed. It can be found
that the number of bits needed for rate feedback and the
outage probability decreases as the number of receive antennas
increases. Therefore, we aim to find if there is a similar
channel hardening phenomenon in the considered antenna
selection system. Then, similar to the analysis in (5) and
(6), mutual information distributions of users us with antenna
selection when considering perfect CSI and imperfect CSI are
presented in Lemma 1 and Lemma 2, respectively.

Lemma 1. When assuming full CSI is known, for a large
M and selected antenna αus,n, an approximation of the
distribution of the mutual information of user us on subcarrier
n is given as follows,

Ius,n ∼ FN

(
log2

(
1 +

(
1 + ln

M

αus,n

)
γus,nαus,n

)
,

(log2e)
2γ2

us,nαus,n(2−
αus,n

M )(
1 +

(
1 + ln M

αus,n

)
γus,nαus,n

)2
)
,

(7)

where FN represents the folded normal distribution.

Proof: The proof of Lemma 1 is shown in Appendix B.

Obviously, if αus,n = M (M is sufficiently large), the
expected value of the distribution expression is as the same
as the one in (5), and the variance is approximately the
same. From Lemma 1 and its proof, we can see that it is
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not necessary to obtain the channel gain of each antenna.
Rather, the approximation of mutual information depends on
the number of antennas at BS, the selected number of antennas
and transmit SNR. Therefore, adding antenna selection does
not affect the channel’s hardening. Then we can also derive
the mutual information when considering the imperfect CSI.

Lemma 2. In the considered system, a numerically approxi-
mation of the mutual information Iimus,n considering imperfect
CSI is as follows:

Iimus,n ∼ FN
(
log2

(
1 +

(
1 + ln

M

αus,n

)
ρus,nαus,n

)
,

(log2 e)
2
ρ2us,nαus,n(2−

αus,n

M )

(1 + (1 + ln M
αus,n

)ρus,nαus,n)
2

)
.

(8)

Proof: The proof of Lemma 2 is similar to the one of
Lemma 1 and we omit here.

According to the mutual information distribution, we can
obtain the expected data rate of the user us in the following
theorem.

Theorem 1. The expected data rate of the user us with or
without perfect CSI can be given as

Rus,n =


log2

(
1 +

(
1 + ln M

αus,n

)
γus,nαus,n

)
,

if perfect CSI;

log2

(
1 +

(
1 + ln M

αus,n

)
ρus,nαus,n

)
,

if imperfect CSI.

(9)

Proof: The proof can be simply derived from Lemma 1
and Lemma 2.

To this end, by denoting NC as the set of all the subcarriers,
we can formulate the expected data rate of all the slices in S
as follows,

C(P ,α,ω) =
∑
s∈S

∑
us∈Us

∑
n∈NC

ωus,nRus,n. (10)

B. Energy Consumption Model

In this work, we use the power consumption model in [26]
[28], of which the total power consumption consists of the
transmit power and the circuit power consumption. Here, we
use Pc to represent the constant circuit power consumption
per antenna chain which includes the power dissipations in
the converters, filter, mixer, and frequency synthesizer which
is independent of the actual transmitted power. We also denote
κ as power amplifier efficiency parameter and P0 as the basic
operating power consumed at the BS independent of the num-
ber of transmit antennas, e.g., baseband power consumption.
Correspondingly, the total power consumption of all the slices
can be expressed as

Υ(P ,α,ω) =
∑
s∈S

∑
us∈Us

∑
n∈NC

ωus,nκPus,n + P0 +max
us,n

{ωus,nαus,n}Pc.

(11)

Note that the physical meaning of the term
maxs,us{ωus,nαus,n} is that an antenna is activated
and consumes power even it is used only by some of the
users. Therefore, several users can share same antenna at the
BS.

C. Energy Efficiency Objective

Based on the above analysis, we are able to formulate the
Problem 1, of the which the objective is to maximize EE of
the considered system.

P1 : max
P ,α,ω

E(P ,α,ω) =
C(P ,α,ω)

Υ(P ,α,ω)
, (12)

s.t.

C1 :
∑
s∈S

∑
us∈Us

ωus,n ≤ 1, ωus,n ∈ {0, 1},

C2 :
∑

us∈Us

∑
n∈NC

ωus,nRus,n > rrsvs ,

C3 :
∑

n∈NC

ωus,nPus,n ≤ Pmax
us

,

C4 :
∑

us∈Us

∑
n∈NC

ωus,nαus,n ∈ {αmin
s , ..., αmax

s }.

(13)

The formulated objective in (12) is under the constraints
in (13). In (13), C1 is to ensure the exclusive sub-carrier
allocation; C2 is able to guarantee the minimum required
rate for each slice; C3 puts the constraint on the transmit
power limitation for each user. In C4, αmin

s and αmax
s are

the minimum number of reserved antennas and the maximum
allowable number of allocated antennas for slice s, respec-
tively.

As one can observe, P1 has a non-convex structure with
combinatorial properties and finding the optimal solution of
P1 involves high computational complexity. Next, we propose
an efficient algorithm to solve this problem by applying the
nonlinear fractional programming technique, variable transfor-
mations and constraint relaxation.

IV. ENERGY EFFICIENT RESOURCE ALLOCATION

A. Problem Transformation

The fractional objective function in (12) can be classified as
a nonlinear fractional program [22]. For the sake of notational
simplicity, F is defined as the set of feasible solutions of
the optimization problem P1. Without loss of generality, for
∀{P ,α,ω} ∈ F we define the maximum EE q∗ as

q∗ = E(P ∗,α∗,ω∗) = max
P ,α,ω

C(P ,α,ω)

Υ(P ,α,ω)
, (14)

where P ∗,α∗,ω∗ are the optimal solutions for P ,α,ω,
respectively. We can introduce the following Theorem on the
optimal q∗.

Theorem 2. q can reach its optimal value q∗ if and only if

P2 : max
P ,α,ω

C(P ,α,ω)− qΥ(P ,α,ω) = 0. (15)
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Proof: The proof is derived from [22].
Theorem 2 reveals that for an optimization problem with

an objective function in fractional form, e.g. (12), there is an
equivalent objective function in a subtractive form. As a result,
we are able to focus on the equivalent objective function and
find the solution. In order to obtain q∗, an iterative algorithm
with guaranteed convergence [22] can be applied and it can be
found in Algorithm 1. In Algorithm 1, obtaining the optimal
solution of power, subcarrier, and antenna allocation involves
finding the optimal value of q in (14). For given q, we are able
to reach a solution of power, subcarrier, and antenna allocation.
As we can see from Theorem 2, for a given solution of
{P ,α,ω}, we can find the solution of q by 16. Then iterative
method is applied to optimal solution of {P ,α,ω} and q.

Algorithm 1 Iterative Algorithm for Obtaining q∗

1: Set maximum tolerance δ;
2: while (not convergence) do
3: Solve the problem (16) for a given q and obtain antenna,

power and subcarrier allocation {P ′,α′,ω′};
4: if C(P ′,α′,ω′)− qΥ(P ′,α′,ω′) ≤ δ then
5: Convergence = true;
6: return {P ∗,α∗,ω∗} = {P ′,α′,ω′} and obtain q∗

by (14);
7: else
8: Convergence = false;
9: return Obtain q = C(P ′,α′,ω′)

Υ(P ′,α′,ω′) ;
10: end if
11: end while

During the iteration, in order to achieve q∗, we need to
address the following problem (P2) with q:

max
P ,α,ω

C(P ,α,ω)− qΥ(P ,α,ω), (16)

s.t.

C1− C3. (17)

To this end, we can address the fractional programming
problem in a subtractive form. However, it can also be
found that (P2) is still a non-convex problem due to the
integer programming involved. Tackling the mixed convex and
combinatorial optimization problem requires a prohibitively
high complexity. Another solution which can balance the
computational complexity and optimality can be obtained
when addressing such a problem in the dual domain. For
the formulated optimization problem, as the convexity does
not hold (e.g., mixed integer programming), addressing it in
dual domain may result in a duality gap between primal and
dual problem. As discussed and proved in [21] [23], in the
considered multi-carrier systems, the duality gap of such a
non-convex resource allocation problem satisfying the time-
sharing condition is negligible as the number of subcarriers
becomes sufficiently large e.g., 64. To address the problem,
we relax ωus,n to be a real variable in the range of [0, 1]
instead of a Boolean. Then, ωus,n can be interpreted as a time
sharing factor for utilizing subcarriers. As one can see, the

optimization problem obviously is able to satisfy the time-
sharing condition, it can be solved by using the dual method
and the solution is asymptotically optimal [23] [24].

B. Proposed Solution

Based on above analysis, we can define two new variables,
ϕus,n and φus,n as follows,

ϕus,n = ωus,nPus,n,

φus,n = ωus,nαus,n.
(18)

Now, instead of finding the solution of αus,n, we can
address φus,n to solve the problem of antenna selection. Then,
P2 can be reformed as

P3 : max
ϕ,φ,ω

C̃(ϕ,φ,ω)− qΥ̃(ϕ,φ,ω), (19)

s.t.

C̃1 :
∑
s∈S

∑
us∈Us

ωus,n ≤ 1, ωus,n ∈ [0, 1],

C̃2 :
∑

us∈Us

R̃us > rrsvs ,

C̃3 :
∑

n∈NC

ϕus,n ≤ Pmax
us

.

C̃4 : αmin
s ≤

∑
us∈Us

∑
n∈NC

φus,n ≤ αmax
s .

(20)

In (19), ϕ and φ are the vectors of ϕus,n and φus,n,
respectively. According to (10) and (18), C̃(ϕ,φ,ω) is given
as

C̃(ϕ,φ,ω) =
∑
s∈S

∑
us∈Us

∑
n∈N

ωus,nR̃us,n, (21)

where R̃us,n can be expressed as

R̃us,n =


log2

(
1 +

(
1 + ln

Mωus,n

φus,n

)
γus,n

φus,n

ωus,n

)
,

if perfect CSI;

log2

(
1 +

(
1 + ln

Mωus,n

φus,n

)
ρus,n

φus,n

ωus,n

)
,

if imperfect CSI.
(22)

Similarly, Υ̃(ϕ,φ,ω) is

Υ̃(P ,α,ω) =
∑
s∈S

∑
us∈Us

∑
n∈NC

κϕus,n

+ P0 +max
us,n

φus,nPc.
(23)

Since P3 is a convex optimization problem with involves
continuous variables and convex objective function, we can
solve it in the dual domain. The Lagrange function of P3 can
be given as
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L(ϕ,φ,ω,λ,µ) = C̃(ϕ,φ,ω)− qΥ̃(ϕ,φ,ω)

−
∑

us∈Us

λus

(∑
n∈N

ϕus,n − Pmax
us

)

−
∑
s∈S

µs

(
rrsvs −

∑
us∈Us

R̃us

)
.

(24)

where λus and µs are the Lagrange multipliers for C̃2 and
C̃3, respectively. λ and µ are corresponding vectors for λns

and µs, respectively. Then the dual function is

min
λ,µ

max
ϕ,φ,ω

L(ϕ,φ,ω,λ,µ). (25)

By using the Lagrange dual decomposition, the dual prob-
lem (25) can be decomposed into two layers, minimization
of (24) which is the inner problem and maximization of (25)
which is the outer problem. The dual problem can be solved by
addressing both problems iteratively, where in each iteration,
the optimal antenna selection, power allocation and subchannel
allocation can be obtained by using the Karush-Kuhn-Tucker
(KKT) conditions for a fixed set of Lagrange multipliers, and
the outer problem is solved using the (sub)gradient method
[25]. First, by applying the KKT conditions and given allo-
cated subcarrier, we can obtain the power allocation as

Pus,n =



[
αus,ndus µ̄s−λ̄usσ

2 ln 2+αus,ndus µ̄s ln M
αus,n

αus,ndus λ̄us ln 2
(
1+ln M

αus,n

) ]+
,

if perfect CSI;
Ω,
otherwise,

(26)

where µ̄s = 1 + µs, λ̄us
= qκ+ λus

, and Ω is given in (27),
where

Γ1 = dus
σ2λ̄us

σ2
z ,

Γ2 = σ
√
αus,nλ̄us ,

Γ3 = αus,ndusσ
2
z .

(28)

Similarly, the optimal number of antennas φus,n can be
obtained by addressing the following equation numerically

µ̄s ln
M

φus,n

ln 2 (1 + φus,nϑ)
(
1 + ln M

φus,n

) = Pcq. (29)

where ϑ = min{γus,n} if perfect CSI is considered, otherwise
ϑ = min{ρus,n}. Here, the sub-optimality should be consid-
ered for the practical case, i.e., αus,n = ⌊φus,n⌋, which is
required for fulfilling the combinatorial constraint. Eventually,
(29) reveals that BS will use the same number of antennas for
all the users. Such a phenomena makes sense and it can be
interpreted by the following example: Suppose user 1 and user
2 are using N1 and N2 antennas such that N1 ≤ N2. From
the second user perspective, the cost for N1 − N2 antennas
is paid already. Therefore, since no extra cost has to be paid,

TABLE I
SIMULATION PARAMETERS

Parameter Value
Number of antenna M 100
Power consumption per antenna Pc 43 mW
Constant circuit power consumption Pc 50 mW
Number of subcarriers N 64
αmin
s and αmax

s 10 and 50
Power amplifier efficiency κ 5
Number of users U 5
Pmax
us (unless specified ) 23 dBm

Error variance of imperfect CSI (unless specified ) 0.1
Noise variance 1

the second user will use extra antennas until N2 = N1, which
can bring benefit, i.e., throughput, to the system performance.
Finally, for the subcarrier allocation, we take the derivative
of the subproblem objective function (24) with respective to
ωus,n and obtain

Πus,n =
ln
(
1 + ln

(
1 + ϑ M

αus,n

))
ln 2

− λusPus,n − q(κPus,n + αus,nPc).

(30)

In (30), Πus,n = 0 has the physical meaning that user
us with negative scheduled data rate on subcarrier n is not
selected as they can only provide a negative marginal benefit
to the system. On the contrary, if a user enjoys good channel
conditions with a positive data rate on subcarrier n, it can
provide a higher benefit to the whole system. Thus, the
allocation of subcarrier n to user us is based on the following
policy

ωus,n =

{
1, if Πus,n > 0;
0, otherwise. (31)

To solve the outer problem and obtain the lagrangian
multipliers λ and µ, the gradient method can be applied,

λns(l + 1) = [λns(l)−△λns(P
max
us

−
∑
n∈N

ϕus,n)]
+,

µs(l + 1) = [µs(l)−△µs(
∑

us∈Us

R̃us − rrsvs )]+,
(32)

where l is iteration index, [x]+ = max{0, x}, △λns , and △µs

are the step sizes.

V. SIMULATION RESULTS

In this section, the performance of the proposed scheme is
presented and evaluated by simulation. Some key simulation
parameters are from [27] and [28], and are given in Table 1.

First, we show the accuracy of our analytic results in (7)
and (8). It can be found that with different M and SNR, they
all match perfectly. From Fig. 3, we can see that 90% of the
mutual information of full antennas can be achieved with only
a quarter of the antennas selected. In Fig. 4, we find that the
variance can be very small with large M . Moreover, for a fixed
SNR, when the number of selected antennas is very small,
the channel hardens at a lower rate. But for a large range of
selected antennas, channel hardens at a high rate almost the
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Ω =
−2Γ1 ln 2− 2σ2

zΓ1 ln 2− 2σ2
zΓ1 ln(2 +

M
αus,n

)

2(d2us
λ̄us + Γ3dus ln 2 + Γ3dus ln(2 +

M
αus,n

))

+
dusσ

2
z ln 2Γ2

√
1 + ln M

αus,n

√
4dus µ̄s + 4Γ3µ̄s + Γ2

2σ
4
z ln 2 + 4µ̄sΓ3 ln

M
αus,n

+ Γ2
2σ

4
z ln(2 +

M
αus,n

)

2(d2us
λ̄us + Γ3dus ln 2 + Γ3dus ln(2 +

M
αus,n

))
,

(27)
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Fig. 3. The effect of the number of selected antennas on the mean of the
mutual information.
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Fig. 4. The effect of the number of selected antennas on the variance of the
mutual information.

same as the case of full antennas. It can be observed that the
asymptotic distribution is also very accurate for even small
M . These simulations are consistent with our derived result
in the lemmas and the relevant discussions.

In addition, we also compare our Proposed Scheme (PS)
with the other advanced schemes to show the effectiveness of
our proposed scheme. Specifically, we compare our scheme
with the one with Random Subcarrier allocation Scheme
(RSS), the one with Proportional Fair subcarrier allocation
Scheme (PFS), the one with Equal Power allocation Scheme
(EPS), a Throughput-based resource allocation Scheme (TPS)
[20], and the one without Antenna Selection (nonAS) [29],
and Weight Sum resource allocation Scheme (WSS) [30].

We examine the effect of imperfect CSI estimation on
the system performance in Fig. 5. In this figure, by varying
variance of channel estimation error, i.e., the value of σ2

z ,
the impact on EE can be observed. From Fig. 5, we can see
that when the increase of estimation error leads to a decrease
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Fig. 5. Comparison of three schemes, EE vs. different variance of imperfect
CSI estimation.
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Fig. 6. Comparison of three schemes, EE vs. different transmit power of
user.

of system EE. For example, when σ2
z is about 0.8, EE is

decreased about 25% compared to the one when perfect CSI
is assumed. Moreover, we also plot the EE performance when
the RSS and TPS are considered instead of the proposed one.
We can also observe the same performance degradation due to
the CSI imperfection from the results of Random SA. It can
be also found that our proposed scheme outperform the TPS
and RSS in terms of the EE performance. This is mainly due
to the reason that in TPS, throughput is the major concern and
more transmit power or antennas are used.

In Fig. 6, we validate the effectiveness of our proposed re-
source allocation scheme by comparing our proposed scheme
with the RSS and PFS. The different values of the EE are
obtained by varying the allowed transmit power at the user
Pus,n. In the proposed scheme, we consider the antenna
allocation and subcarrier allocation. In the RSS scheme, the
proposed antenna selection is used and the subcarriers are
randomly assigned to different users and in the PFS, the
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Fig. 7. Impact of antenna selection and transmit power.

subcarrier and power is fairly allocated. The EE performance
comparison among these three schemes is presented together
with the cases that imperfect CSI are assumed. In this figure,
we consider σ2

z = 0.1. As we can see, the maximum EE can
be obtained when Pus,n is about 15dBm when perfect CSI is
assumed. When more power is used at the user, it can be the
case that higher throughput can be obtained, but the overall EE
is degraded due to the cost of energy consumption. Thus, the
optimal power allocation scheme is necessary to optimize the
EE performance. The results in Fig. 6 confirm the observation
in Fig. 5 that the imperfect CSI estimation decreases the
system EE. Moreover, it is shown that our proposed subcarrier
allocation has a better EE performance over the RSS and PFS,
no matter what transmit power is used.

The impact of the number of antennas on the EE perfor-
mance is presented in Fig. 7, where we alternate the number of
used antenna at the BS and plot the corresponding performance
comparing with the proposed antenna selection scheme. It
can be observed that activating a fixed number of antennas
αus,n degrades the system performance in terms of EE. This
is due to the fact that either more power is consumed for
operating the antennas or the number of antennas is not large
enough for contribute to the throughput. On the other hand,
in the high transmit power regime, the performance difference
is smaller comparing to the one in the low transmit power
regime. This is because the data rate requirement in the high
transmit power regime is already satisfied because of the
transmit power. Thus, the proposed scheme tends to advocate
the minimum number of antennas and the performance gain
due to antenna allocation becomes less significant. Moreover,
it can be found that after a certain value, increment of transmit
power results in the degradation of system performance, no
matter what the number of antenna is used, which is similar
to one observed in Fig. 6. The observations in Fig. 7 evidence
the effectiveness of the antenna selection scheme and also
confirms the necessity of design of antenna selection and
power allocation for obtaining better EE. Moreover, it can
also be found that the optimal number of selected antenna
is between 10 and 50, which also show that the selection of
αmin
s and αmax

s in Table 1 should have no impact on the final
solution.

Fig. 8 illustrates EE versus the maximum allowed transmit
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Fig. 8. EE performance comparison of four resource allocation schemes.
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Fig. 9. Throughput vs. maximum transmit power, for different resource
allocation algorithms.

power Pmax
us . It can be seen that when the maximum allowed

transmit power is large enough, e.g., Pmax
us > 14dBm., the

EE performance of the proposed scheme approaches a constant
value since the proposed resource allocation algorithm stops
consuming more power or activating more antennas, when the
maximum EE is achieved. Therefore, after that, the transmit
power, allocated subcarrier and number of used antennas
will maintain no matter how the maximum allowed transmit
power increases. For comparison, in Fig. 8, we also plot
the EE performance of three resource allocation schemes.
The first one, WSS scheme, is to assign different weights
to different users and then allocate the resource accordingly,
which is modified from [30]. The second one is that resource
allocation is performed in the same manner as in the proposed
scheme, except that the transmit power is equalled allocated
for different users and the transmit power is set to Pus,n =
Pmax
us /2. The third one contains the RSS scheme together with

equal power allocation. In other words, the third scheme only
optimize ω instead of {P ,α,ω}. Similar phenomenon can
be found in these three baseline schemes except that the EE
performance reach its maximum at different values of Pmax

us . It
can be well observed that our proposed scheme outperform the
other two, which further evidences the superior performance
of the presented scheme as well.

Fig. 9 shows the throughput performance in bps/Hz versus
maximum transmit power. The system performance of the
proposed algorithm is compared with the baseline algorithm,
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in which resource allocation is performed in the same manner
as in the proposed one, except that the number of transmit
antennas is fixed. We can see that for the PS scheme and the
other two, the throughput performance approach a constant in
the higher transmit power regime. This is because the proposed
algorithm clips the transmit power to maximize EE. It can
also be found that, as expected, the baseline scheme resource
allocator with more antennas achieves a higher throughput
than the PS, due to the use of more antennas. Comparing
with Fig. 7, the superior throughput performance comes at
the expense of low EE. On the other hand, although proposed
antenna selection scheme can benefit EE of the system, there
are some throughput difference comparing to the scheme that
more antennas are used.

VI. CONCLUSION AND FUTURE WORK

In this work, the energy efficient optimization for the wire-
less network virtualization with a large scale multiple antenna
BS is studied. In particular, with the objective to obtain
the energy efficiency, joint power, subcarrier, and antenna
allocation problems are presented considering availability of
both perfect and imperfect channel state information. Sub-
sequently, relaxation and variable transformation are applied
to develop energy efficient algorithm to solve the formulated
non-convex, combinational optimization problem. Extensive
simulation studies demonstrate the advantages of our presented
system architecture and proposed schemes. As the future
research direction, it is expected that the distributed and
energy efficient resource allocation scheme can be investigated
accordingly for a wireless virtualized heterogeneous networks
consisting of multiple macro cells and small cells.
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APPENDIX A: DERIVATION OF (6)

First, for presentation simplicity, we denote ĥ = ĥus,n. Let
λ1, λ2, λ3, · · · , λN be the eigenvalues of ĥHĥ

N . We also have
ρ = ρus,n, then in a MIMO system with K transmit antennas
and M received antennas, the mutual information is given

I = log2 det(IK +
ρ

K
ĥHĥ)

= log2 |IK +
ρM

K

ĥHĥ

M
|

= log2(1 +
ρM

K
λ1)(1 +

ρM

K
λ2) · · · (1 +

ρM

K
λK)

=
K∑

k=1

log2(1 +
ρM

K
λk),

(33)

where ρ is the transmit SNR without channel gain, and IK is
a unit array. As for the massive MIMO UL system, M → ∞,
we have that ĥHĥ

K → IK (strong law of large numbers, [32]).
Since λ1, λ2, λ3, · · · , λK are continuous functions of ĥHĥ

M , it
follows that λn → 1 for n = 1, 2, 3, · · · , N . Thus, we let

λn = 1 + λ̃n, with the understanding that N → ∞, λ̃n → 0.
Therefore, we have

K∑
k=1

log2(1 +
ρM

K
λk)

= log2(1 +
ρM

K
λ1)(1 +

ρM

K
λ2) · · · (1 +

ρM

K
λK)

= log2(1 +
ρM

K
)K

(1 + ρM
K λ1)(1 +

ρM
K λ2) · · · (1 + ρM

K λM )

(1 + ρM
K )K

= log2(1 +
ρM

K
)K + log2(

1 + ρM
K λ1

1 + ρM
K

) + log2(
1 + ρM

K λ2

1 + ρM
K

)

+ · · ·+ log2(
1 + ρM

K λK

1 + ρM
K

)

= M log2(1 +
ρM

K
) +

K∑
k=1

log2(
1 + ρM

K λk

1 + ρM
K

)

= M log2(1 +
ρM

K
) +

K∑
k=1

log2(
1 + ρM

K + ρM
K λ̃k

1 + ρM
K

)

= M log2(1 +
ρM

K
) +

K∑
k=1

log2(1 +
ρM
K λ̃k

1 + ρM
K

)

= M log2(1 +
ρM

K
) +

ρM
K log2e

1 + ρM
K

K∑
k=1

λ̃k +O(

K∑
k=1

λ̃2
k).

(34)

As M → ∞, we can see that xM = O(yM ) if |xM | ≤ cyM
for some c > 0 and sufficiently large M . Note that the sum
of all eigenvalues

∑K
k λk is the trace of matrix ĥHĥ

M , and

K∑
k=1

λ̃k =

K∑
k=1

(λk − 1)

= λ1 + λ2 + · · ·+ λK −K = tr(
ĥH

K
)−K,

(35)

where
∑K

k=1 λ̃k has a zero mean. From Lemma A in [17], we
can see that E[

∑K
k=1 λ̃

2
k] =

K2

M . Therefore, O(
∑K

k=1 λ̃
2
k) in

(34) has an expected value µM , which is O( 1
M ) as M → ∞.

Thus, the expected value of (34) is K log2(1+
ρM
K )+O( 1

M ).

By Lemma A in [17],
∑K

k=1 λ̃k has the variance K
M , and

the fourth-order moment calculations of the Wishart matrix
show that the variance of

∑K
k=1 λ̃

2
k is O( 1

M2 ). Therefore,∑K
k=1 λ̃

2
k−µM is Op(

1
M2 ) which is a probabilistic statement.

We have that xM = Op(yM ) if for any ξ > 0, we can find a
certain c > 0 such that P [|xM | > cyM ] < ξ for a sufficiently
large M [33]. From Lemma B in [17], we can also conclude
that

√
M
K

∑K
k=1 λ̃k−→N (0, 1) as M → ∞. Thus,

∑K
k=1 λ̃k

is Op(
1
M ) and is the dominant random term in (34). The

asymptotic distribution of (34) is therefore also normal [33].
Using

ρM
K

1+ ρM
K

= 1 +O( 1
M ), we can see that
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K∑
k=1

log2(1 +
ρM

K
λk)−K log2(1 +

ρM

K
)

= [1 +O(
1

M
)] log2 e

K∑
k=1

λ̃k +O(
K∑

k=1

λ̃2
k)

= log2 e

K∑
k=1

λ̃k,

(36)

which equivalents to

√
M

K

∑K
k=1 log2(1 +

ρM
K λk)−K log2(1 +

ρM
K )

log2 e

=

√
M

K

K∑
k=1

λ̃k ∼ N (0, 1).

(37)

Therefore,

√
K[

K∑
k=1

log2(1 +
ρK

M
λk)−K log2(1 +

ρK

M
)]

−→ N (0,M log22 e),

(38)

namely,
√
M [I −K log2(1 +

ρM
K )] −→ N (0, N log22 e),

and correspondingly, I ∼ N (M log2(1 +
ρM
K ),

N log2
2 e

M ),
and E[I]im = N log2(1 +

ρM
K ), when N = 1, we have

E[I]im = log2(1 + ρM). (39)

APPENDIX B: PROOF OF LEMMA 1

First, for the sake of simplicity, we consider L = αus,n in
the following. According to [31], the mutual information when
L antennas are selected for receiving can be given as

I = log2

∣∣∣∣∣1 + γ

L∑
l=1

|hl|2
∣∣∣∣∣ . (40)

where γ is transmit SNR. We consider |h1|2 > |h2|2 > ... >
|hl|2 > ... > |hL|2 and |hl|2 is chi-square random variable
with two degrees of freedom. According to [34] and [35],
for the order chi-square random variable with two degrees of
freedom variables z1 > z2 > ... > zl > ... > zM , when
M → ∞ and 1 < L < N

∑L
l zl is asymptotically normal,

and
∑L

l zl ∼ N (L(1 + ln M
L ), L(2− L

M )).
Therefore, one can observe that

∑L
l |hl|2 ∼ N (L(1 +

ln M
L ), L(2− L

M )). Then we can reform (40) as

I = log2

∣∣∣∣∣1 + γ
L∑

l=1

|hl|2
∣∣∣∣∣

= log2

(
1 +

(
1 + ln

M

L

)
γL

)
+ log2 |z|,

(41)

and z is given as

z = 1 +
γ
(∑L

l |hl|2 − L(1 + ln M
L )
)

1 + (1 + ln M
L )γL

. (42)

According to the distribution of
∑L

l |hl|2, one can obtain

z ∼ (1,
γ2L(2− L

M )

(1 + (1 + ln M
L )γL)2

). (43)

Given the distribution of z, the x = |z| follows the folded
normal distribution. With the assumption that z ∼ (µz, σ

2
z)

where µ = 1 and σ2
z = (γ2L(2 + L

M ))/(1 + (1 + ln M
L )γL),

the probability density function of x is

f(x) =
1

2πσz

(
e

x−µz
2σ2

z + e
x+µz
2σ2

z

)
. (44)

It can be noticed that σ2
z = 0 is almost surely for large M ,

then I can be reformed according to Maclaurin series,

I = log2

(
1 +

(
1 + ln

M

L

)
γL

)
+ log2(1 + x− 1)

= log2

(
1 +

(
1 + ln

M

L

)
γL

)
+ (x− 1) log2 e+Θ((x− 1)2).

(45)

Θ((x − 1)2) is very small and can be negligible so we can
finally arrive at

I ∼FN
(
log2

(
1 +

(
1 + ln

M

αus,n

)
αus,nγ

)
,

γ2(log2 e)
2αus,n(2−

αus,n

M )(
1 +

(
1 + ln M

αus,n

)
γαus,n

)2). (46)

where FN () is the folded normal distribution.
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