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Abstract—In this paper, we propose an energy-efficient re-
source allocation scheme for a wireless power transfer (WPT)
enabled multi-user massive MIMO system with imperfect channel
estimation. In the considered system, the users who have data to
transmit in the uplink only can be empowered by the WPT in
the downlink from a base station (BS) with large scale multiple
antennas. The problem of optimizing the energy efficiency of the
considered system is formulated with consideration of beamform-
ing design, antenna selection, power allocation and time division
protocol based on the practical consideration, i.e., imperfect chan-
nel state information (CSI) at the BS. In particular, the proposed
antenna selection scheme is intended to find the optimal number
of antennas and then employ the energy beamforming. Moreover,
In order to find the optimal power and time allocation, a scheme
based on nonlinear fractional programming is utilized. Extensive
simulation studies are conducted to demonstrate the effectiveness
of the proposed schemes and their superior performance over
other existing schemes.

Index Terms—wireless power transfer; antenna selection; en-
ergy efficiency; resource allocation; massive MIMO, imperfect
CSI

I. INTRODUCTION

A. Background and Motivation

Many types of wireless networks, such as wireless sensor
networks, are energy constrained, in the sense that the network
elements are empowered by noncontinuous energy supple-
ments (such as batteries, etc.). While the lifetime of these
devices can be extended by replacing or recharging the battery,
sometimes it may be inconvenient and expensive. Another way
to prolong the lifetime of devices is to realize the energy-
harvesting (EH) capabilities and to design energy-efficient
schemes to improve their energy efficiency (EE). The EH
techniques enable the elements in wireless networks to harvest
energy from the surrounding environment. Meanwhile, it is
worth mentioning that most of the EH sources are location-
dependent or weather-dependent (solar, wind, etc). However,
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for wireless elements that cannot easily access these sources,
provision of energy supply is problematic. Recently, apart from
the techniques that harvest energy from sun, wind, or other
physical phenomena, scavenging from electromagnetic signal
offers an interesting idea for addressing the problem of energy
supply. So called simultaneous wireless information and power
transfer (SWIPT) is attracting increasing interests from the
research and industrial communities [1].

Meanwhile, it is widely acknowledged that the current
cellular structure has immense difficulties in satisfying the
increasing demand for data traffic as well as the spectrum
crunch. To further improve the spectrum utilization, massive
multiple-input multiple-output (MIMO) systems make a clean
break with the current practice through the use of a large
number of antennas. When compared to the current MIMO
system, a large number of extra antennas helps bringing
significant improvements in throughput by focusing transmit
energy into smaller regions of space. However, one of the
main disadvantages of employing large scale multiple antennas
is the associated complexity of employing a separate RF chain
for every employed antenna, which also brings a significant
increase in the hardware and energy consumption cost. When
the number of transmit and receive antennas is getting large,
the aggregate power needed to support the corresponding
RF chains can be significant [2]. Currently, most of the
energy-efficient communication techniques typically focus on
minimizing the transmit power only, which is reasonable when
the transmit power is large enough and the number of RF
chains used is small. However, when the transmit power is
relatively small, especially in the system with large scale
multiple antennas where the circuit power consumption can be
comparable to or even dominates the transmit power, it would
be worthwhile and of significant research interest to investigate
whether the massive MIMO systems can outperform the
systems with fewer antennas in terms of the EE [3][4]. In
addition, it is also interesting to find the optimal number of
antennas to further investigate the optimal use of RF chains
and to explore the resource allocation scheme for improving
the system EE performance.

B. Contribution
In this paper, our aim is to investigate an energy-efficient

resource allocation algorithm for a wireless power transfer
(WPT) enabled multi-user massive MIMO system. It is consid-
ered that the users who have data to transmit to the BS can only



2

be empowered by WPT in the downlink. In particular, a joint
optimization of antenna selection, power allocation and time
allocation are studied with the objective to maximize system
EE. Moreover, we also assume only the imperfect channel
state information (CSI) is available, which is rather a practical
case in the wireless networks. Taking into consideration of
imperfect CSI can also enhance the robustness of the proposed
resource allocation algorithm. Specifically, our contributions
on the existing literature can be summered as follows,
• This paper studies the EE optimization for a multi-

user massive MIMO system empowered by WPT with
imperfect CSI. After presenting the theoretical analysis
of throughput of the system, a novel antenna selection
scheme is presented to find the optimal number of
transmit antennas at the BS to obtain the optimal EE
performance. The introduced antenna selection scheme is
based on a binary searching algorithm to find the optimal
solution. Moreover, the energy beamforming scheme is
applied for the selected antennas to maximize energy
transfer.

• In the system considered, the whole time slot, T , is
divided into energy transfer time and data transmission
time. If more time is allocated to energy transfer, higher
transmit power is available at the user. However, less
time remains then for data transmission, which leads to
a lower system throughput. Therefore, we also propose
a time allocation scheme to determine the optimal time
allocation. A power allocation algorithm is thus presented
to find the optimal transmit power at the BS.

• We also present the impact of imperfect channel estima-
tion on the proposed schemes in the considered system.
To address the formulated problem, a nonlinear frac-
tional programming scheme is introduced. The proposed
schemes are illustrated and verified through extensive
simulations. The performance evaluation demonstrates
the effectiveness and superior performance compared
with the recent proposed scheme.

C. Organization

The rest of the paper is organized as follows. In Section
II, we briefly overview the recent development in the related
research area. Section III introduces the system model and
problem formulation. Section IV presents the antenna selection
algorithm and resource allocation optimization. Simulation
results are discussed in Section V. Finally, we conclude this
study in Section VI.

II. RELATED WORK

Recently, the resource allocation problems of wireless pow-
ered communications system have been widely investigated
[5]-[8]. In [5] and [6], when considering single-user and multi-
user cases, the problems of maximizing the throughput of
MIMO WPT systems are studied, respectively. In [7], with the
objective to optimize the EE of a point-to-point MIMO system
with large scale multiple antennas and SWIPT, the authors
present a joint optimization of power and time allocation.
The authors of [8] also propose an energy-efficient resource

allocation scheme for a multi-user MISO system. In order to
improve the energy transfer efficiency of multiple antenna sys-
tem with SWIPT, various beamforming methods are adopted
[9]-[12]. In [9], a beamforming strategy for a secure wireless
information and power transmission system is proposed. In
[10], the authors study a multiuser MISO beamforming scheme
for wireless information and power transmission with the
objective to maximize the weighted sum-power under a series
of constraints. [11] and [12] also propose different robust
beamforming schemes to maximize the WPT in a multiuser
MISO SWIPT system. In [13], the authors focus on the
throughput optimization problem for a multi-user massive
MIMO system, the main objective being to maximize the
achievable data rate of the system by optimizing the time and
power allocation. In [14], the authors examine the feasibility
of wireless energy transfer with multiple antennas array over
fading channels. The authors of [15] focus on the beamforming
design and power allocation method to improve EH gain in a
point-to-point (P2P) MISO system where a receiver harvests
energy from a transmitter. In [16], the authors concentrate on
the design of an efficient CSI acquisition method for a P2P
MIMO WPT system, i.e., the energy transmitter can estimate
the CSI via dedicated reverse-link training from the energy
receiver.

The study of spectral efficiency (SE) in MIMO systems
has received great interests during last decades [17]. Among
these works, [17] has studied the mutual information quantity
optimization problem of the MIMO system, showing that
increasing number of antennas leads to the increment in
spectral efficiency. As a matter of fact, although the use of
MIMO can improve the system’s spectral efficiency, the use
of a large number of antennas brings a significant problem to
the EE design. Therefore, the question of how to improve
EE in a multiple antenna system has received increasing
attentions [4],[19]-[20]. For a massive MIMO system, the
number of selected antennas should be decided in an optimized
manner. In [4], the EE of a large multiple antenna system with
transmit antenna selection is studied, and two antenna selection
algorithms are presented based on the sequential search and
the binary search algorithms. In [18], by elaborating on the
performance of crossing-layer design with antenna selection
under imperfect feedback information in a MIMO system,
the SE and the bit error rate of a closed form are obtained.
In [19], the authors investigate the trade-off between the SE
and EE for massive MIMO systems with linear precoding and
transmit antenna selection. The weighted-sum particle swarm
optimization algorithm and the normal-boundary intersection
particle swarm optimization algorithm are applied to address
the formulated multiobjective optimization problem. The au-
thors of [20] also focus on a similar problem and propose
user association and power coordination schemes to ensure
user fairness.

It can be well observed that most of the aforementioned
works assume that the CSI can be perfectly obtained. However,
in practical wireless communication systems, the CSI cannot
be perfectly obtained due to the imperfection of channel
estimation and feedback. Such imperfection of the CSI can
typically induce system performance degradation. In [21], the



3

Fig. 1. A multi-user wireless powered communications system with transmit
antenna selection.

Fig. 2. Time protocol for wireless information and power transfer.

authors focus on the resource allocation for OFDMA-based
networks with imperfect CSI and multiple classes of services
with diverse QoS requirements. In [22], an energy-efficient
resource allocation for OFDMA relay systems with imperfect
CSI is presented, and a proportional fairness design for the
EE maximization problem is considered. In [23], the authors
formulate a non-convex optimization problem for determining
the training interval of channel estimation, user scheduling,
and power allocation strategies to maximize the EE, and
transform the problem into a tractable convex one. The authors
of [24] investigate the performance of an OFDMA relay
system with imperfect CSI and propose a resource allocation
algorithm to obtain throughput maximization.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As shown in Fig. 1, we consider a multi-user massive
MIMO system with WPT. In the system, there is one BS, K
mobile users and the set of users is denoted by K. The BS is
equipped with N � 1 antennas and each user is equipped
with one antenna. In this model, the role of the BS is to
charge the users via downlink WPT, while the users have
the functionality of storing the energy transmitted by the BS
and use the received energy to deliver data to the BS in the
uplink. The users can also deliver the channel state information
(CSI) through a feedback channel to the BS. For the channel
estimation, the BS first sends preambles, and the user performs
channel estimation in an interval of symbol periods. Then, the
MT feeds the CSI back to the BS. Such a process can be
handled in a standardlized way. Since the usually CSI feedback
is general small comparing with the transmit data, we mainly
focus on the energy and data transmission [15].

We assume that the whole transmission process including
WPT in the downlink and data transmission in the uplink is
within a time block T . In the downlink, BS will use a power
Pt transfer energy to all the users and the duration of WPT
time τk will depend on the individual user k, which should
be further optimized. As shown in Fig. 2, in the first time slot
τk, the BS charges user k via WPT and the user stores the
harvested energy in a rechargeable battery. Then, in the time
duration T − τk, user k sends its own data to the BS.

We consider a quasi-static block fading channel model
where the channel between the BS and user is constant for a
given transmission block T , and can vary independently from
one block to another. In each transmission block, user k uses
a minimum mean square error (MMSE) channel estimator to
estimate the channel. The estimated channel is denoted by ĥk
and the estimation error is êk. Thus, we have the expression
of imperfect CSI as

ĥk = hk + êk, (1)

where hk is the channel coefficient and we assume êk ∼
CN (0, σ2

ek
Iek), where Iek is the identity matrix. The BS is

equipped with N antennas, where N is very large. Meanwhile,
each antenna of BS requires a separate RF chain, which
increases the energy consumption and cost of the massive
MIMO system. In order to reduce the energy consumption
and improve the system EE, we propose an antenna selection
algorithm at the BS, that is, L antennas are selected from
the N antennas with the objective to maximize the EE of
the considered system. Meanwhile, we also propose to design
the energy beamforming vector for the selected antennas to
improve the efficiency of WPT. According to the law of
conservation of energy, user k can obtain the received energy
from the BS as follows [6],

Ek = ητk(α2
k|bHk hk|2Pt), (2)

where αk is the path loss from the BS to user k, bHk is a
energy beamforming vector for user k at the BS and s is
the transmitted signal. In the system, when L antennas are
selected, we have ĥk ∈ C1×L. The transmit power of the BS is
Pt. η(0 < η ≤ 1) is the conversion efficiency which transfers
the harvested energy into electric energy stored by the user. In
order to maximize the harvested energy, we design the energy
beamforming policy as bk = ĥk

‖ĥk‖
[15], which is named as

maximum ratio transmission (MRT) [12]. According to the
estimated CSI and beamforming strategy, the energy transfer
direction can be adjusted properly to maximize the received

energy at the user. Denoting Qk =
σ2
ek

1+σ2
ek

+ ‖ĥk‖2
(1+σ2

ek
)2 , the

obtained energy of user k can be reformed as follows [15]:

Ek = ητk(α2
kQkPt). (3)

B. Throughput Analysis

During the second time slot T − τk, user k can use the
harvested energy to send its data to the BS, and the received
signal at the BS is can be expressed as,
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yIDk =

√
Ek

T − τk
αkĥ

H
k xk + nu,k, (4)

where yIDk is the received signal at the BS, xk is the trans-
mitted signal at user k, and nu,k ∼ CN (0, σ2) is the channel
noise. It is also worth noticing that Ek

T−τk is the transmit power
of user k.

In a massive MIMO system, with the increase of the
number of antennas, the channel hardening effect emerges
[17]. Therefore, in order to obtain the expected data rate
of the considered system with imperfect CSI, we first study
the mutual information distributions with/without antenna se-
lection. To this end, we first arrive at Theorem 1 about
the mutual information distribution of the considered system
without antenna selection.

Theorem 1. Given the imperfect CSI and N � 1 antennas,
a numerical approximation of the mutual information in UL
of the considered system is given as,

I ∼ N

(
log2 (1 +Nρk),

(log2 e)
2

N

)
, (5)

where N represents standard normal distribution. The signal
to interference plus noise ratio (SINR) ρk of user k in the
uplink can be expressed as:

ρk =

Ekα
2
k

T−τk

σ2 +
Ekα2

k

T−τk σ
2
ek

+
∑
j 6=k

Ejα2
j

T−τj

, (6)

where σ2 is noise variance and σ2
ek

is the variance of
estimation error.

Proof. The proof of Theorem 1 is shown in Appendix A.

Theorem 1 presents the distribution of mutual information
when considering N antennas. Similarly, we can obtain the ex-
pression of mutual information when L antennas are selected
out of N in Theorem 2.

Theorem 2. In the considered system, when L antennas
are selected, the mutual information distribution is given as
follows:

Isel ∼ FN
(

log2

(
1 +

(
1 + ln

N

L

)
ρkL

)
,

(log2 e)
2
ρ2kL(2− L

N )

(1 + (1 + ln N
L )ρkL)2

)
,

(7)

where FN represents the folded normal distribution.

Proof. The proof of Theorem 2 is shown in Appendix B.

Obviously, if L = N (N is sufficiently large), the expected
value of the distribution is the same as that of the system
without antenna selection, and the variance is approximately
the same as well. Therefore, adding antenna selection does not
affect the channel hardening phenomenon. Thus, in each time
block, the expected channel capacity under imperfect CSI is
denoted by E[I]im:

E[I]im = log2

(
1 +

(
1 + ln

N

L

)
ρkL

)
. (8)

Correspondingly, when L antennas are selected, the
throughput is

C(Pt, τk, L) =

K∑
k=1

(T − τk) log2

(
1 +

(
1 + ln

N

L

)
ρkL

)
.

(9)

C. Energy Consumption Model

Meanwhile, the total energy consumption of the system can
be expressed as:

U(Pt, τk, L) = Pc · T + Pt max
k∈K

τk, (10)

where Pc is the constant circuit power consumption, which
can be expressed as [25]

Pc ≈ L(PDAC + Pmix + Pfilt)

+K(2Psyn + PLNA + Pmix + PIFA + Pfilr + PADC),
(11)

where PDAC , Pmix, Pfilt, Psyn, PLNA, PIFA, Pfilr, PADC
denotes the power consumption of the DAC, the
mixer, the transmit filter, the frequency synthesizer,
the low noise amplifier, the frequency amplifier, the
receiver filter and ADC, respectively. We denote Puser
as the power consumption of the each user, i.e.,
Puser = 2Psyn + PLNA + Pmix + PIFA + Pfilr + PADC .
Pbs is expressed as the power consumption for each antenna
on the BS, i.e., Pbs = PDAC + Pmix + Pfilt. Then we
have Pc = KPuser + LPbs. Since the BS and users have to
be active for the whole time and the transmit power only
exists in the first time slot, in (10), the denominator of EE is
rewritten as:

U(Pt, τk, L) = (KPuser + LPbs)T + Pt max
k∈K

τk. (12)

D. Problem Formulation

With the above analysis, we can obtain the expressions of
C(Pt, τk, L) in [bits/s/Hz] and U(Pt, τk, L) in [W]. Corre-
spondingly, the objective of EE in [bits/J/Hz] can be defined
as follows,

Π(Pt, τk, L) =
C(Pt, τk, L)

U(Pt, τk, L)
. (13)

From (3), (9) and (13), Π(Pt, τk, L) can be given as follows:

Π(Pt, τk, L)

=

K∑
k=1

(T − τk) log2(1 + (1 + ln N
L )ρkL)

(KPuser + LPbs)T + Pt maxk∈K τk
.

(14)

With the defined objective, the optimization problem P1

can be formulated as follows,
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max
Pt,τk,L

Π(Pt, τk, L), (15)

s.t.

C1 : 0 ≤ Pt ≤ Pbs,max,

C2 :
Ek

T − τk
≤ Puser,max,

C3 : 0 ≤ τk ≤ T,

C4 :
Ck

T − τk
≥ Rmin,

C5 : L ≤ N.

(16)

In P1, the objective is to maximize the overall system EE.
In (16), C1 is the BS transmit power constraint, which shows
that the transmit power of the BS cannot be larger than the
maximum transmit power Pbs,max. C2 is the transmit power
constraint for user k. C3 means that τk cannot be larger than
T and C4 can ensure that Quality of Service (QoS) Rmin can
be meet. Because the channel hardening phenomenon after
antenna selection still exists, we can bring (3) into C2, to
arrive at

Pt ≤
Puser,max(T − τk)

ητkQkα2
k

. (17)

Combining C1 and (17), we can obtain

τk ≤
Puser,maxT

(ηα2
kPbs,maxQ+ Puser,max)

= τmax. (18)

IV. ANTENNA SELECTION AND RESOURCE ALLOCATION

In this section, antenna selection and resource allocation
schemes are introduced to address the formulated problem P1.
At first, we propose an antenna selection scheme to find the
optimal number of antennas that the BS can use to obtain EE
maximization. Then, power and time allocation schemes are
presented to find the optimal transmit power and time duration
of WPT.

A. Proposed Antenna Selection Algorithm

The proposed scheme is based on an improved bisection
method to find the solution for antenna selection. The antenna
selection scheme is presented in Algorithm 1. First, we initial-
ize three variables: the lower bound of the number of antennas,
the upper value and the intermediate value, denoted as ωl, ωh
and ωm, respectively. Among them, the initial values of ωl and
ωh are 1 and N , respectively, and the intermediate values are
calculated as ωm = ωl+ωh

2 . In each cycle, we need to compare
the two values of Π(ωm) and Π(ωm+1), and determine which
subset of the maximum value is located. If Π(ωm) is less than
Π(ωm+1), ωm+1 is assigned to ωl; if Π(ωm) is bigger than
Π(ωm + 1), ωm is assigned to ωh. Thus, the maximum value
of EE is found by selecting the optimal number of antennas.
At the end of each cycle, the ωm value is updated to the new
ωl or ωh. When ωh−ωl = 1, the search is ended. Finally, the
corresponding L can be obtained.

Algorithm 1 Antenna Selection Algorithm
1: Initialize N , Π(N), ωl = 1, ωh = N ,ωm = ωl+ωh

2 .
2: while (ωh − ωl) > 1 do
3: if Π(ωm) < Π(ωm + 1) then
4: set ωl = ωm + 1;
5: else if Π(ωm) > Π(ωm + 1) then
6: set ωh = ωm;
7: else
8: break;
9: end if

10: end while
11: if ωh − ωl = 1 then
12: Π(L) = max{Π(ωl),Π(ωh)};
13: else
14: Π(L) = Π(ωm);
15: end if

B. Power and Time Allocation Schemes

The formulated problem with objective in (15) is a non-
convex fractional programming problem. Based on the Dinkel-
bach’s method [26], we are able to transform it into a subtrac-
tive form. First, given L is obtained, we consider q∗ as the
global optimal solution of EE, i.e.,

q∗ =
C(Pt, τk)

U(Pt, τk)
|Pt=P∗

t ,τk=τ
∗
k
, (19)

where P ∗t is the optimal transmit power and τ∗k is the optimal
WPT time. Then, we can obtain the following Theorem 3,

Theorem 3. q can reach its optimal value if and only if

max
Pt,τk

C(Pt, τk)− qU(Pt, τk) = 0. (20)

The proof can be found in [26]. Consequently, problem P1

can be transformed into a problem P2:

max
Pt,τk

Γ(Pt, τk), (21)

s.t.

C1,C3,C4,

τk < τmax,
(22)

where Γ(Pt, τk) = C(Pt, τk)− q∗U(Pt, τk). We can see that
Γ(Pt, τk) is a concave function with respect to Pt and τk as its
Hessian matrix is negative semi-define. Therefore, P2 is now
a convex optimization problem and we are able to address it in
dual domain to obtain a closed-form solution. The Lagrange
dual function corresponding to P2 is

L(Pt, τk, α, β, µ, ϕ) = C(Pt, τk)− q∗U(Pt, τk)

− λ(Pt − Pbs,max)− β(τk − τmax)− µ(τk − T )

− ϕ(Rmin −
Ck

T − τk
),

(23)

where {λ, β, µ, ϕ} are the positive Lagrange multipliers as-
sociated with the constraint in (22), respectively. Correspond-
ingly, the dual problem of (23) can be expressed as

P3 : min
α,β,µ,ϕ

max
Pt,τk

L(Pt, τk, α, β, µ, ϕ). (24)
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Optimal transmit power P ∗t and the optimal time for WPT τ∗k
can be obtained by solving the Karush-Kuhn-Tucker(KKT)
condition:

∂L(Pt, τk, λ, β, µ, ϕ)

∂Pt
= 0, (25)

and

∂L(Pt, τk, λ, β, µ, ϕ)

∂τk
= 0. (26)

From (25), we can obtain

P ∗t =

−(Ω4 + Ω3)Ω2 +

√
(Ω3 − Ω4)2Ω2

2 + 4
5∏
i=1

Ωi

2Ω3Ω4
, (27)

where Ω1 ∼ Ω5 are given as

Ω1 = ητk(α4
kQ)(L+ L ln(N/L)),

Ω2 = (T − τK)σ2,

Ω3 = ητk(α2
kQ)(σ2

ek
+K − 1),

Ω3 = Ω1 + Ω3,

Ω5 =
(T − τk + ϕ)K

(λ+ q∗maxk∈K τk)(ln 2)
.

(28)

Next, τ∗k can be obtained by addressing (26) numerically.
To obtain the lagrangian multipliers λ, β, µ, ϕ, the subgradient
method with guaranteed convergence [27] can be applied,

λ(n+ 1) = [λ(n)−4λ(Pbs,max − Pt)]+,
β(n+ 1) = [β(n)−4β(τmax − τk)]+,

µ(n+ 1) = [µ(n)−4µ(T − τk)]+,

ϕ(n+ 1) = [ϕ(n)−4ϕ(
Ck

T − τk
−Rmin)]+,

(29)

where n is iteration index, [x]+ = max{0, x}, 4λ, 4β, 4µ,
and 4ϕ are the step sizes. Based on the optimal value q∗ and
the iterative update of the time allocation and power allocation
parameter, the convergence can be obtained by satisfying the
following relations: |C(Pt, τk, L)−q∗U(Pt, τk)| < ε, where ε
is a sufficiently small positive number. If this condition cannot
be meet, q∗ = C(Pt,τk)

U(Pt,τk)
will be updated until the convergence

condition is satisfied. The proposed power and time allocation
scheme is summarized in Algorithm 2.

V. SIMULATION RESULTS

In this section, the performance of the proposed scheme
is presented and illustrated. Some simulation parameters are
given in Table I [25].

In Fig. 3, we present the EE performance of our proposed
schemes and prove the effectiveness of the proposed antenna
selection and time allocation schemes. To illustrate the ad-
vances of the proposed antenna selection scheme, we compare
our proposed scheme with the one without antenna selection,
which is modified from [7]. It can be clearly seen that the
proposed antenna selection scheme can improve system EE

Algorithm 2 Energy Efficient Resource Allocation
1: Initialization:
N , L, K, η, αk, Pbs, Puser, Pbs,max, Puser,max, Rmin,
4λ, 4β, 4µ, and 4ϕ.

2: Define ε as a sufficiently small positive real number.
3: while (!Convergence) do
4: Update λ, β, µ, ϕ according to (29).
5: Obtaining the P ′t and τ ′k by solving the equations (27)

and (26).
6: if |C(Pt′, τk′)− qU(Pt′, τk′)| ≤ ε, then
7: Convergence = true,
8: return P ∗t = P ′t , τ

∗
k = τ ′k, and obtain optimal q∗

9: else
10: Convergence = false,
11: return q = C(Pt′, τk′)/U(Pt′, τk′),
12: end if
13: end while
14: return Obtain P ∗t and τ∗k .

TABLE I
SIMULATION PARAMETERS

Parameter Value

N 100

K 10

Pbs,max 46dBm

Puser,max 23dBm

Rmin 0.1bit/s/Hz

4α,4β,4µ,4ϕ 0.001

C 2

η 0.35

ε 0.001

PDAC , PADC 10mW

Pfilt, Pfilr 2.5mW

Pmix 30.3mW

Psyn 50mW

PLNA 20mW

PIFA 3mW

by selecting the optimal number of antennas from Fig. 3.
Such observation reveals that the antenna selection has great
influence on the EE performance, especially when the BS is
close to users. At the same time, we also compare our proposed
scheme with the one with equal time allocation, i.e., τk = 0.5T
and we assume T = 1 for simplicity. Obviously, the proposed
algorithm also has the superior performance over the equal
time allocation algorithm, which indicates that proper design
of time allocation is needed for the SWIPT system. Moreover,
It can also be found that as the distance between the BS and
users becomes larger, the EE performance decreases.

In Fig. 4, we present the impact of CSI imperfection on the
system EE performance by varying the variance of channel
estimation error σ2

ek
and the distance between the BS and

the user k. The EE performance of the system with perfect
CSI is compared with the EE performance with estimation
errors σ2

ek
= 0.3 and σ2

ek
= 0.5. As we can observe,
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Fig. 3. EE w/wo antenna selection and time allocation

Fig. 4. Effect of imperfect CSI and BS-user distance

the system performance with perfect CSI is higher than that
with imperfect CSI. When the variance of estimation error
increases, the system performance degrades. Also, when the
average distance between the BS and users is longer, the
performance gap between the one with perfect CSI and the
system with the imperfect CSI becomes smaller. For example,
when the distance between the BS and the user is 200m, the
system with the perfect CSI has about 4 times higher EE
than the one with σ2

ek
= 0.5. However, when the distance

becomes 450m, the system with perfect CSI has only 2 times
better performance. From Fig. 4, the EE of the system when
σ2
ek

= 0.3 is higher than the one when σ2
ek

= 0.5, which
confirms that the imperfect CSI has significant impact on the
system performance. At the same time, we can also observe
that the EE decreases with the increase of the distance between
the BS and the users, which is similar to the observation in
Fig. 3.

Fig. 5 describes the EE performance when considering a
different transmit power with the change of the number of
antennas. It can be seen that with the increase of the number
of antennas, the EE performance generally first increases and
then decreases after reaching the maximum. For the considered
system, different transmit power allocation leads to a different
optimal number of antennas. For example, when the transmit
power is 30dBm, optimal L = 30 and when the transmit
power is 35dBm, L = 50. In addition, from the comparison of
the EE performance of a different transmit power allocation,
we can clearly find that increasing transmit power can not

Fig. 5. EE vs. number of antennas

Fig. 6. EE vs. number of users

guarantee any increment of EE. Fig. 5, where the EE of Pt =
30dBm is higher than the other two curves of the EE, also
illustrates the effectiveness of the optimized transmit power
allocation.

The EE performance for different transmit powers with the
change of the number of users K is presented in Fig. 6. It
can be seen that with the increase of the number of users,
the EE performance first increases and then decreases after
reaching the maximum. In addition, by comparing the curves,
we can clearly see that proper increase of transmit power can
improve the EE. The EE with Pt = 30dBm is higher than the
other two cases, which also illustrates the effectiveness of the
proposed transmit power allocation scheme.

VI. CONCLUSION

In the future wireless network, massive antennas will be
explored to improve the system capacity. Meanwhile, as an
emerging technique, wireless power transfer offers a potential
solution to prolong the lifetime of mobile devices. This paper
studies the energy efficiency of a wireless power transfer
enabled multi-user massive MIMO system under imperfect
channel estimation. A joint optimization of beamforming
design, antenna selection, power and time allocation is studied.
In particularly, the antenna selection algorithm is based on
an improved bisection scheme to find the optimal number of
transmit antennas at the BS. Moreover, a scheme based on
nonlinear fractional programming is utilized to address the
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resource allocation problem and find the optimal power and
time allocation. Extensive simulation results can demonstrate
the effectiveness of the proposed schemes.

APPENDIX A

First, we consider a MIMO system with the dimension of
N ×M . Let λ1, λ2, λ3, · · · , λM be the eigenvalues of ĤHĤ

N .
Then in a MIMO system, the mutual information is given by

I = log2 det
(
IM +

ρ

M
ĤHĤ

)
= log2 |IM +

ρN

M

ĤHĤ

N
|

= log2

(
1 +

ρN

M
λ1)(1 +

ρN

M
λ2) · · · (1 +

ρN

M
λM

)
=

M∑
m=1

log2

(
1 +

ρN

M
λm

)
,

(30)

where ρ is the SINR in the UL SIMO channel, and IM is
a unit array. As for massive MIMO system, N → ∞, we
have that ĤHĤ

N → IM(strong law of large numbers [28].
Since λ1, λ2, λ3, · · · , λM are continuous functions of ĤHĤ

N ,
it follows that λm → 1 for m = 1, 2, 3, · · · ,M . Thus, we let
λm = 1 + λ̃m, with the understanding that N →∞, λ̃m → 0.
Then we have

M∑
m=1

log2

(
1 +

ρN

M
λm

)
= log2

(
1 +

ρN

M
λ1

)(
1 +

ρN

M
λ2

)
· · ·
(

1 +
ρN

M
λM

)

= log2

(
1 +

ρN

M

)M (
1 + ρN

M λ1

)(
1 + ρN

M λ2

)
· · ·
(

1 + ρN
M λM

)
(

1 + ρN
M

)M
= log2

(
1 +

ρN

M

)M
+ log2

(
1 + ρN

M λ1

1 + ρN
M

)
+

log2

(
1 + ρN

M λ2

1 + ρN
M

)
+ · · ·+ log2

(
1 + ρN

M λM

1 + ρN
M

)

= M log2

(
1 +

ρN

M

)
+

M∑
m=1

log2

(
1 + ρN

M λm

1 + ρN
M

)

= M log2

(
1 +

ρN

M

)
+

M∑
m=1

log2

(
1 + ρN

M + ρN
M λ̃m

1 + ρN
M

)

= M log2

(
1 +

ρN

M

)
+

M∑
m=1

log2

(
1 +

ρN
M λ̃m

1 + ρN
M

)

= M log2

(
1 +

ρN

M

)
+

ρN
M log2e

1 + ρN
M

M∑
m=1

λ̃m +O

(
M∑
m=1

λ̃2m

)
.

(31)

As N → ∞, we can see that xN = O(yN ) if |xN | ≤ cyN
for some c > 0 and N sufficiently large. Note that the sum of

all eigenvalues
∑M
m λm is the trace of matrix ĤHĤ

N , and

M∑
m=1

λ̃m =

M∑
m=1

(λm − 1)

= λ1 + λ2 + · · ·+ λM −M = tr

(
ĤHĤ

N

)
−M,

(32)

∑M
m=1 λ̃m has a zero mean. From Lemma A in [17], we can

see that E[
∑M
m=1 λ̃

2
m] = M2

N . Therefore, O(
∑M
m=1 λ̃

2
m) in

(31) has an expected value µN , which is O( 1
N ) as N → ∞.

Thus, the expected value of (31) is M log2(1 + ρN
M ) +O( 1

N ).
By Lemma A in [17],

∑M
m=1 λ̃m has variance M

N , and the
fourth-order moment calculations of Wishart matrix show that
the variance of

∑M
m=1 λ̃

2
m is O( 1

N2 ). Therefore,
∑M
m=1 λ̃

2
m−

µN is Op( 1
N2 ) , which is a probabilistic statement. We have

xN = Op(yN ) if for any ξ > 0, we can find a c > 0 such
that P [|xN | > cyN ] < ξ for a sufficiently large N [30]. From
Lemma B in [17],

√
N
M

∑M
m=1 λ̃m−→N (0, 1) as N → ∞.

Thus,
∑M
m=1 λ̃m is Op( 1

N ) and is the dominant random term
in (31). The asymptotic distribution of (31) is therefore also
similarly normal [30], too. Using

ρN
M

1+ ρN
M

= 1 +O( 1
N ), we can

see that

M∑
m=1

log2

(
1 +

ρN

M
λm

)
−M log2

(
1 +

ρN

M

)

= [1 +O

(
1

N

)
] log2 e

M∑
m=1

λ̃m +O

(
M∑
m=1

λ̃2m

)

= log2 e

M∑
m=1

λ̃m,

(33)

which equals to

√
N

M

∑M
m=1 log2

(
1 + ρN

M λm

)
−M log2

(
1 + ρN

M

)
log2 e

=

√
N

M

M∑
m=1

λ̃m ∼ N (0, 1).

(34)

Therefore,

√
N [

M∑
m=1

log2

(
1 +

ρN

M
λm

)
−M log2

(
1 +

ρN

M

)
]

−→ N (0,M log2
2 e),

(35)

namely,
√
N [I −M log2(1 + ρN

M )] −→ N (0,M log2
2 e),

and correspondingly, I ∼ N (M log2(1 + ρN
M ),

M log2
2 e

N ).
For the considered system, when M = 1, we have

I ∼ N

(
log2 (1 +Nρk),

(log2 e)
2

N

)
, (36)
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APPENDIX B

According to [31], We use x1 > x2 > · · · > xN as the
ordered random variables, as N → ∞ and 1 ≤ L ≤ N . The
distribution of the trimmed sum

∑L
i=1 xi is asymptotically

normal. [32] gives the mean and variance when xi is a chi-
square random variable with two degrees of freedom. Thus,
we get the following observation

L∑
i=1

|ĥi|2 ∼ N
(
L

(
1 + ln

N

L

)
, L

(
2− L

N

))
, (37)

where ĥi denotes the subchannel of SIMO channel matrix
Ĥ. Note that the left hand side in (37) is approximated
as a random variable of normal distribution which can take
negative values. However, the left hand side in (37) is positive
for sure. This is because the normal distribution is just an
approximation. The approximation is accurate around the
mean but not very precise in the tails of the distribution.
However, in a massive MIMO system with large N , the
mean of the normal distribution increases while the variance
almost remains constant. Therefore, the probability of taking
negative values becomes smaller and the approximation gets
more accurate.

We have the following derivations of antenna selection,

Isel = log2 |1 + ρk

L∑
i=1

|ĥi|2|

= log2

∣∣∣∣(1 +

(
1 + ln

N

L

)
ρkL

)
x

∣∣∣∣ ,
(38)

where | · | denotes the absolute value, and x is given by:

x = 1 +
ρk

(∑L
i=1 |ĥi|2 − L

(
1 + ln N

L

))
1 +

(
1 + ln N

L

)
ρkL

. (39)

According to (37), it is very easy to obtain that

x ∼ N

(
1,

ρ2kL
(
2− L

N

)(
1 +

(
1 + ln N

L

)
ρkL

)2
)
. (40)

Given a normally distributed random variable x with mean
µ and variance σ2, the random variable y = |x| has a folded
normal distribution, i.e. , FN (µ, σ2) , the PDF is given by

f(y) =
1√
2πσ

e−
(y−µ)2

2σ2 +
1√
2πσ

e−
(y+µ)2

2σ2 , y > 0, (41)

where µ = 1, σ2 =
ρ2kL(2− L

N )
(1+(1+ln N

L )ρkL)
2 . Then, (38) becomes

Isel = log2

(
1 +

(
1 + ln

N

L

)
ρkL

)
+ log2 (1 + (y − 1)) .

(42)
The mean of (y − 1) is zero, and the variance of (y − 1) is

σ2
y−1 =

ρ2kL
(
2− L

N

)(
1 +

(
1 + ln N

L

)
ρkL

)2 < 2− L(
1 + ln N

L

)2
L
. (43)

Note that σ2 → 0 is almost surely for large N . Then,

Isel = log2

(
1 +

(
1 + ln

N

L

)
ρkL

)
+ (y − 1) log2 e+O

(
(y − 1)

2
)
,

(44)

where O
(

(y − 1)
2
)

can be asymptotically negligible [4].
Thus, the distribution of Isel is given by

Isel ∼FN

(
log2

(
1 +

(
1 + ln

N

L

)
ρL

)
,

(log2 e)
2ρ2kL

(
2− L

N

)(
1 +

(
1 + ln N

L

)
ρkL

)2
)
.

(45)
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