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Abstract—In addition to comforting passengers’ journey, mod-
ern railway system is responsible to support a variety of on-board
Internet services to meet the passenger’s demands on seamless
service provisioning. In order to provide wireless access to the
train, one idea attracting increasing attention is to deploy a series
of track-side access points (TAPs) with high-speed data rates
along the rail lines dedicated to the broadband mobile service
provisioning on board. Due to the heavy data traffic flushing
into the base stations (BSs) of the cellular networks, TAPs act
as a complement to the BSs in data delivery. In this paper, we
focus on the TAP association problem for service provisioning
in a heterogeneous wireless railway network where the TAP and
BS coexist by applying a queueing game theoretic approach.
Specifically, we present comprehensive theoretical analysis of the
delay performance on the circumstances of partially observed,
totally unobserved and totally observed the state of the system.
Moreover, based on the considered payoff model and the derived
association delay time, the passenger’s equilibrium strategies on
association behaviors, i.e. whether to associate with a TAP or not,
are studied. Finally, performance evaluations and discussions are
provided to illustrate our proposed passenger-TAP association
scheme for the heterogeneous wireless railway communication
system.

Index Terms—Service provisioning, game theory, delay time,
railway networks, heterogeneous wireless network.

I. INTRODUCTION

W IRELESS railway system has been developed rapidly
all over the world in the past few years. It is not

only dedicated to providing the passengers fast, convenient
and comfortable travel experience, but also satisfying their
ever-increasing demand for a variety of broadband mobile
communication on board [1]. By constructing a heterogeneous
network architecture [2], a series of track-side access points
(TAPs) [3], [4] complement the base stations (BSs) of the
cellular networks in order to provide high-speed data rates for
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the on-board Internet services. However, due to the limited
transmission power, the TAPs can only support intermittent
wireless communication coverage for the rail line. What is
more, the high-speed moving train brings about heavy Doppler
effects to the wireless communication [5], [6]. Under the
circumstances, the data transmission rates of the wireless
channel will change dynamically in real time. Therefore, it is
extremely crucial to study on the communication technology
for the railway communication system (RCS) [7].

According to the characteristics of TAPs, how to satisfy
various data services of railway communication is a hot issue
in recent years. Since TAPs only provide limited data transmis-
sion rates and queueing buffers, the delay time that a passenger
experiences is considered as one of the most critical issues in
the RCS. In [8], a tight delay bound of train control services is
proposed by applying the stochastic network calculus for the
queueing system. To satisfy the passenger’s demand, the delay
performance of the Internet multimedia services also deserves
much attention in the heterogeneous wireless railway network.
By analyzing the wireless communication on BSs via access
points, an optimal power allocation strategy is investigated
in [9] on account of delay requirements. Nevertheless, this
work is constraint to uplink transmission in the high-speed
railway scenario. In [10], a delay analysis model is proposed
by utilizing queueing theory in a discrete time form as well as
a delay propagation model in high-speed train communication
scenario. But it only considers the delay performance through
switch ports in carriages. Given delay requirements, [11]
formulates a resource allocation problem into a stochastic
optimization problem in high-speed railway wireless commu-
nication. In recent literatures, the delay performance of the on-
demand data delivery is seldom analyzed in the RCS, which
may bring inaccurate results. For example, some solutions
extracted from vehicular environments [12], such as the data
packets delivery between the vehicles and the highway, cannot
be directly applied to the railway communication. [13] models
a radio resource scheduling mechanism as an infinite-horizon
average cost Partially Observed Markov Decision Process
(POMDP) in order to optimize the delay performance through
stochastic learning in vehicular networks. It does not contain
the situation that the system information is totally unobserved,
which is a non-trivial problem. In our previous papers [14],
[15], we analyze the end-to-end delay bounds of two kinds of
data applications through one server under the heterogeneous
network for high-speed trains. However, the cooperation of
the TAPs and BSs is not taken into account in both works.
Therefore, it is urgent to focus on the impact of the queueing
delay performance in the RCS.
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During the past few decades, queueing theory [16] has been
researched from an economic view [17] with more and more
interests. The passengers can make their choices on whether
to join the queue or not, which represents the passenger is
willing to wait in the queue for service or to abandon to
be served in order to maximize their own benefits. In this
way, it is easy to construct a reward-cost framework in order
to reflect the passenger’s decision on whether he is willing
to wait in the system or not. Nevertheless, there exists such
a situation that some passengers possess the same objective
for data services in the RCS [18]. On this occasion, it is
necessary to research on the queueing theory by utilizing the
game theory to obtain the equilibrium behaviors for passengers
on the train. In [19], the state-of-the art of game-theoretic
analysis is presented based on the pricing strategy as well
as the impact on the passenger’s equilibrium strategy with
an economic view for the queueing system. In a monopolist
system, [20] proposes the uniform pricing and the priority
auction mechanisms with consideration of the delay sensitive
customers. The customer can make his/her own decision on
whether to join or balk the queue according to the server’s
pricing mechanism in a Stackelberg game. The sojourn time
is the key measurement for the delay cost of a customer for the
service. [21] researches on the equilibrium balking strategies
obtained under an observable queue case with server vacations
due to random breakdowns and repairs. The vacation length is
assumed to be independent of the queue size. The customers
can make his/her own decision by observing the queue size.
However, it does not consider the impact of the queueing delay
on the single-server queue.

As far as we know, most of the previous works apply
the queueing game theory to wireless networks, especially
to cognitive radio networks [22]. [23] analyzes a queueing
system where one customer transmitting a data packet will
interference all other customers since they share a range of
the wireless spectrum. A cross-layer algorithm is proposed to
solve the problem that whether to transmit or to stay in the
queue in order to maximize the network throughout. However,
it does not consider the queueing delay effects in the system
to make the decision by each customer. [24] investigates a
dynamic on-off strategy based on a tradeoff by considering
the secondary delay and the power consumption. The so-
called secondary delay is caused by the primary data packets
relaying through the secondary node. [25] studies the queueing
control with random service interruptions in cognitive radio
networks. By equalizing the individually and socially optimal
strategies, whether a data packet should join the queue or not
can be decided by an optimal threshold of the queue length.
However, this kind of queueing control model cannot be used
to analyze various traffic metrics. What is more, its channel
statistics are unknown to the system, which is not suitable for
the heterogeneous wireless railway network. [26] concentrates
its attention on the coupling of pricing, load balancing and
the secondary user’s spectrum access decision. Jointly opti-
mal pricing and load balancing problem can be solved by
optimally characterizing the customer’s economic issue and
their spectrum access decision. A secondary user can make
its own decision strategically based on its perceived queueing

delay. An unobservable queueing system is constructed in
[27] to propose the socially optimal pricing schemes. The
service provision to customers are decided by the pricing-
based methods.

In our previous paper [28], it has attracted our interest as
how to allocate the spectrum access for the secondary user.
We investigate a queueing game with pricing strategies that
the secondary user can make his own decision on whether
it should join the partially observed queue of the BS or not
based on the queue information and its own payoff. In order to
optimize the social welfare of the whole system, the individual
equilibrium strategy keeps consistent with the social optimal
strategy. However, the social optimal strategy is not suitable
for the heterogeneous wireless railway networks. Moreover,
the data transmission rates of the TAP are much higher than
the BS. It is impractical and inefficient to access to the BSs for
the railway networks. Unlike some existing literatures which
only consider the queueing delay, the experienced delay by
the passengers includes the queueing delay plus the serving
delay in this paper.

Motivated by the observed problems and inspired by the
previous works, the contribution of this work can be summa-
rized as follows:

• In the system model, we study the case that there are
several TAPs widely deployed along a pre-defined rail
line. The deployment of the TAPs can be considered as a
complementary part in addition to the cellular networks
for providing the passengers wireless connection to the
Internet. Specifically, by considering the characteristics of
the high data transmission rates and intermittent connec-
tions for the TAP wireless link, it is assumed that when
the train is moving along the rail line, the passengers can
choose to be connected with the TAPs intermittently to
request on-board services.

• A symmetric game among the passengers is proposed
to maximize their own payoffs. The formulation of the
individual payoff model for each passenger consists of
three elements, i.e., players, reward and cost. The reward
for the passenger is related to the achievable data rate and
the cost is affected by the delay time they may encounter
in the queue of the TAP. We present a payoff function
to facilitate the passenger to decide whether to associate
with the TAP or not during the data transmission.

• By applying the queueing and game theoretic-based
approaches, our goal is to investigate the equilibrium
strategies of the passengers in the railway system. Based
on some previous analysis and results in [19] and [20],
we consider four different practical scenarios according
to the visibility of information level of the TAP’s queue,
i.e., the queue length and the train position status, and
examine their impacts on the association decisions of the
passengers. Moreover, we present a fundamental analysis
on the delay performance and accordingly derive the
passenger’s equilibrium strategy under four cases. Per-
formance evaluation and discussions are also presented
to illustrate the proposed scheme.

The reminder of this paper is organized as follows. The
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system model and assumptions are presented in Section II. In
Section III, queueing analysis and equilibrium strategy for user
association is given. Performance evaluations and discussions
are presented in Section IV. At last, we conclude this work in
Section V.

II. SYSTEM MODEL

In this section, we present our system model together with
some necessary assumptions, such as the network configura-
tion, train movement trajectory, as well as data arrival process
and service process.

A. Network Configuration

The system model is presented in Fig. I. In the considered
system, the TAPs are deployed along the rail line and they can
only be accessed to the train within intermittent time periods.
Thus, the passengers on the train are able to connect with the
backbone internet via TAP when the train is in the transmission
range of the TAPs. In order to concentrate on the delay
analysis and equilibrium strategy on the wireless connection,
it is assumed that the packet delay on the wired line from the
backbone to the TAPs can be neglected. In the system, we
assume that a central controller is responsible for allocating
network resources based on the data traffic demands and the
train trajectory. Thus, when the train is in the transmission
range of the TAPs, the on-demand service request can be
proceeded by the TAPs. In this context, the requests of the
passengers can enter the queue of the TAP and wait to be
served.

B. Train Movement Trajectory

In general, for a railway system, the location and the speed
of the train can be obtained in advance. Therefore, the on-
demand services can be delivered with high accuracy from the
Internet server to the passengers on the train. The accuracy of
the train movement trajectory is important for analyzing the
service provisioning. For example, in Fig. I, within a time
duration [Ts, Te], the train can travel from the origin station
to the destination station. During the trip, TAPs are deployed
along the rail line. For simplicity, in Fig. I, we take three
TAPs as an example. When the three TAPs are deployed, there

exist three separated contact durations for the passengers to
deliver data packets, which can be represented as

[
T i
s , T

i
e

]
,

i ∈ [1, . . . , I]. Here, T i
s and T i

e denote the starting time and the
ending time of data delivery within the ith TAP, respectively.
We assume that T i

s ≤ T i
e , Ts ≤ T 1

s , Te ≥ T I
e for i ∈ [1, . . . , I].

C. Data Arrival Process and Service Process
Considering the above defined network configuration and

train movement trajectory model, the passengers with service
requests are to make the decision on whether to associate with
the TAP or not. When the data of the passenger cannot be
queued in the buffer of the TAP, we assume that it can be
delivered to the cellular BS if needed1. In practice, as one
passenger may have multiple packets for transmission, we use
customer instead of passenger/packet in the following queue
analysis. The customer can be considered as data packets,
sessions or connections in this queueing model [25]–[28].
Different customers could be from different passengers or from
the same passenger. Note that when considering decision mak-
ing process, we use customer and passenger interchangeably.

The customer arrival rate at the TAPs is assumed to follow
a Poisson process at rate λ [29] and it is assumed to be
independent and identical distribution (i.i.d.) across time slots.
To make the analysis simple, by referring to the vehicular
networks in [30], we model a M/M/1 queueing system at the
TAP where its service rate is assumed to be i.i.d. with expo-
nential distribution µ. The analysis can be also generalized to
a M/G/1 queueing model in which the service time is assumed
to follow a general independent distribution. In this paper,
we just provide an intuitive perspective to the association
problem in the heterogeneous wireless railway networks. To
satisfy the customers’ demand, most of the TAPs should be
deployed along the rail line with heavy data traffic and few
TAPs are deployed in the rural areas to save the deployment
cost. Without loss of generality, while considering the obstacle
of practical wireless environment, we assume that T i+1

s − T i
e

which is the time a train travels between two isolated TAPs
is exponentially distributed at rate ξ and the serving time of a
TAP T i

e − T i
s is according to a exponential process at rate θ.

The queue is considered to be stable so we have µθ > λ(θ+ξ).
The service order of the data is assumed to follow the First-
Come-First-Served (FCFS) rule. In addition, when the train is
out of the transmission range of a TAP, the information of the
queue will be transferred to the next TAP.

We denote the state of the queue at TAP at a time slot t is
as a pair (N(t), I(t)), which consists of the length of queue
N(t), i.e., the number of customers in the system, and the
train position status I(t). If the train is in the coverage of the
TAP, I(t) = 1 and otherwise, I(t) = 0.

III. QUEUEING ANALYSIS AND EQUILIBRIUM STRATEGY
FOR USER ASSOCIATION

By comparing with the BS wireless link, the TAP wireless
link has much higher data transmission rates in the RCS.

1In order to lease the load of the cellular networks and decrease frequent
handovers between TAPs and BSs, we study the user-TAP association problem
in the heterogeneous railway network by fully utilizing the TAPs for mobile
users.
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Therefore, the TAP consumes less delay for the customers in
data delivery. In this way, we consider that the TAP can offer
better QoS than the BS. To investigate the association and
service provisioning solution, we assume that the customer
can receive a reward after being successfully served by the
TAP. Meanwhile, we also assume that while waiting in the
queue, the cost of a customer is a function of its waiting
time. Correspondingly, the customer will make an irreversible
decision on whether to associate with the TAP or not based on
the expected reward and cost, i.e., the customer cannot quit
until being served after associating with the TAP. Since the
TAPs can only provide limited communication range due to
its constraint transmission power, there are huge gaps between
adjacent TAPs. The arrived requests from the customers will
form a queue and then decide whether they should be served
by the TAP. In this way, the queued packets have to endure
remodeling process from time to time during the train move-
ment. It is reasonable to construct a queue with vacations in the
high speed train scenario. We refer to the difference between
the reward and cost as the payoff of the customers.

In this section, the goal is to investigate that under what
circumstance, the customer can make a decision on associating
with the TAP and wait in the queue of the TAP. The customers
are considered to be risk neutral2. Therefore, the customers
aim to maximize their own payoffs and a symmetric game
among the customers is considered in this work. Intuitively,
in the considered game model, a strategy is an equilibrium if
it is the best response against itself. Moreover, we also take
into consideration of whether the customers are aware of the
information of the queue, i.e., a customer may not be aware
of some of the system parameters upon arrival which is rather
practical for a wireless communication system. At first, we
investigate the perfect case that both N(t) and I(t) are known
to the incoming customer at time t. Then, we also consider
the case that the length of the queue N(t) is known to the
customer upon arrival, and the state of the TAP I(t) remains
unknown. In addition, we further explore the reverse situation
that I(t) is known at time slot t but N(t). Last but not the least,
we also investigate the case that (N(t), I(t)) are both unknown
to the arriving customers due to the system limitation.

A. Payoff Model

We first present our definitions of the players, rewards and
cost in the considered game model.

• Player: The player of the symmetric game denotes the
customer in the train who has data packets to be delivered.

• Reward: The customer can obtain a reward φs after being
served by the TAP. The reward can be considered as the
satisfaction level or any other benefits obtained from the
service. For example, a utility function associated with
the achievable data rate can be considered.

2In economic field, risk neutral is a mindset concept where an investor
is indifferent to risk when making an investment decision. If the payoff is
positive, the customers prefer to choose to associate with the TAP. If the
payoff is negative, the customers decide not to join in the queue of the TAP.
If the payoff is equal to 0, the customers are indifferent to whether to associate
with the TAP or not. In this sense, we consider that the customers are risk
neutral.

• Cost: The cost of the customer is represented by χ(T )
where T is waiting time plus the serving time in the queue
of the TAP, i.e., the experienced delay. Generally, χ(T )
should be considered as an increasing function of T . In
this work, we advocate a linear example to simplify the
analysis. By considering C as the unit cost, we assume
that χ(T ) = CT . We assume that R is positive for n = 0
in order to avoid the trivial case when n = 0 and R = 0,
which means

φs >
C

µ
(1 +

ξ

θ
) +

Cξ

θ(λ+ θ + ξ)
. (1)

Then we can utilize a generic payoff model of the customer
in Definition 1, which is commonly refereed in the queueing
analysis [19], [27].

Definition 1. The payoff of a single customer is modelled as
[19]

R := φs − CT. (2)

With the movement of the train, the queue information of
one TAP can be forwarded to the next TAP. And accordingly,
the theoretical result of T is derived. Therefore, the payoff
function (2) depends on the associated TAP and is defined
as a function of the service and waiting time T , which is
related to the queue status and the association decision of the
customers.

B. Queueing Analysis and Equilibrium Strategy Analysis

1) Case 1: Both I(t) and N(t) are known
a) Queueing Analysis

In this case, we utilize the results in [21] and consider
the case both N(t) and I(t) are observable to the customers
with data requests. Since whether the train in the coverage
of a TAP and the number of the customers waiting in the
queue are known to the incoming customer, a pure threshold
strategy (PT1), instead of a mixed strategy, is specified by a
pair (ne(0), ne(1)). ne(I(t)) is the threshold of the queueing
length for the customer with data requirement to decide
whether to associate or not. The PT1 can be defined as “While
arriving at time t, observe (N(t), I(t)); Associate with the
TAP if N(t) ≤ ne(I(t)); Otherwise, remain in the cellular
networks.” Therefore, the expected waiting time of a customer
can be given in Proposition 1.

Proposition 1. A customer finds the expected waiting time just
before its arrival given as

T (n, i) = (n+ 1)

(
1 +

ξ

θ

)
1

µ
+ (1− i)

1

ξ
. (3)

Proof: The proof can be found in Appendix A.
b) Equilibrium Strategy Analysis

According to Proposition 1, the threshold (ne(0), ne(1)) can
be presented in Theorem 1.

Theorem 1. Under the assumption of (1), in the queue of the
TAP, PT1 is a weakly dominant strategy for existed a pair of
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thresholds

(ne(0), ne(1)) =

(
⌊φsµθ − Cµ

C(ξ + θ)
⌋ − 1, ⌊ φsµθ

C(ξ + θ)
⌋ − 1

)
.

(4)

Proof: Based on the expected waiting time in (3), a
customer who enters the queue with state (n, i) has a payoff
as follow,

R(n, i) = φs − CT (n, i). (5)

From (5), we can see that if R(n, i) > 0, a customer will
associate with the TAP. Since the TAP acts as a complementary
role in the cellular networks, it is dedicated for providing
different kinds of on-board services for the customers in the
heterogeneous wireless railway networks. In this paper, we
assume that the customers are connected to the BSs in a
natural way. So, if it is beneficial to connect to the TAP, the
customers choose to associate with the TAP. We consider the
payoff value is positive in this case. However, if the customers
decide not to associate with the TAP, they will seek for or stay
at the BS. In this case, the payoff for associating with the BS
is assumed to be less than 0. If R(n, i) = 0, the customer
is indifferent between associating and balking. Therefore, by
addressing R(n, i) = 0 for n, we can arrive that the customer
with requests will associate with the TAP if and only if the
queue length n = ne(i), ∀i ∈ {0, 1}, and (ne(0), ne(1)) can
be found in (4). This strategy is preferable, independently of
what the other customers do, i.e., it is a weakly dominant
strategy.

2) Case 2. I(t) is unknown and N(t) is known
a) Queueing Analysis

To this end, we then explore the equilibrium strategy when
only I(t) is not informed to the customer. Meanwhile, N(t) is
known to the arriving customer3. Accordingly, as the customer
is able to obtain the information of N(t), the pure threshold
strategy (PT2) about a threshold ne exists and we define it as
follows:

While the customer arrives at time t, it will be informed
about N(t) and I(t) is unknown. If N(t) ≤ ne, the customer
will associate with the TAP. Otherwise, if N(t) > ne, the
customer remains in the cellular networks.

Accordingly, first we can obtain the expected mean delay
time of an arriving customer with data requests in Proposition
2.

Proposition 2. When a customer associates with the TAP
according to a threshold strategy PT2, the mean delay of
a customer that observes n customers ahead and decides to
associate with the TAP can be given in (6) and (7),

E1(n) =
n+1
µ (1 + ξ

θ ) +
(x1/x2)

(n+1)−1

θ((1+β1)(x1/x2)
(n+1)−(1+β2))

,

n ∈ {0, 1, ..., ne},
(6)

3For providing full consideration of each aspect, in this scenario, we
consider that there are deployed some mobile relays on the train, which the
relays can be connected to the TAPs along the railway. Thus, it is possible
for the customers to know N(t) if he/she is not within a coverage of a TAP.

E2(n+ 1) = n+2
µ (1 + ξ

θ )

+ (µ+ξ(1+β1))(x1/x2)
(n+1)−(µ+ξ(1+β2))

θ((µ+(ξ+θ)(1+β1))(x1/x2)
(n+1)−(µ+(ξ+θ)(1+β2)))

,

n = ne,

(7)

where x1, x2 and βj are given as

x1 = λ
2µ(λ+θ) (µ+ ξ + λ+ θ+√

(µ+ ξ + λ+ θ)
2 − 4µ(λ+ θ)),

x2 = λ
2µ(λ+θ) (µ+ ξ + λ+ θ−√

(µ+ ξ + λ+ θ)
2 − 4µ(λ+ θ)),

βj =
(λ+θ)xj−λ

ξxj
, j ∈ {1, 2}.

(8)

Proof: The proof is given in Appendix B.
b) Equilibrium Strategy Analysis

Next, we need to analyze the stationary distribution when
the customers with data requests follow PT2 in Proposition 3.

Proposition 3. The stationary probability p(n, i), n ∈
{0, 1, ..., ne + 1}, i ∈ {0, 1} can be given as follows,

p(n, 0) = α(xn+1
1 − xn+1

2 ), n ∈ {0, 1, ..., ne},
p(n, 1) = α(β1x

n+1
1 − β2x

n+1
2 ), n ∈ {0, 1, ..., ne},

p(ne + 1, 0) =
αλ

θ

(
1 +

ξ

µ
(1 + β1)

)
xne+1
1

−
(
1 +

ξ

µ
(1 + β2)

)
xne+1
2 ,

p(ne + 1, 1) =
αλ

µ

(
(1 + β1)x

ne+1
1 − (1 + β2)x

ne+1
2

)
,

(9)

Proof: In order to obtain the stationary distribution, the
following balance equations can be used [21],

(λ+ θ)p(0, 0) = ξp(0, 1), (10)

(λ+ θ)p(n, 0) = ξp(n− 1, 0) + ξp(n, 1), n ∈ {0, 1, ..., ne},
(11)

µp(n+ 1, 1) = λp(n, 0) + λp(n, 1), n ∈ {0, 1, ..., ne}, (12)

θp(ne + 1, 0) = λp(ne, 0) + ξp(ne + 1, 1). (13)

Addressing (11) with respect to p(n, 1) and substituting in
(12), one can obtain

µ(λ+ θ)p(n+ 1, 0)− λ(λ+ µ+ θ + ξ)p(n, 0)
+λ2p(n− 1, 0) = 0, n ∈ {0, 1, ..., ne − 1}. (14)

(14) is a homogeneous second-order difference equation and
the solution is

p(n, 0) = c1x
n
1 + c2x

n
2 , n ∈ {0, 1, ..., ne}, (15)

where x1 and x2 are the roots of the corresponding charac-
teristic equation. The expression of x1 and x2 can be found
in (8). c1 and c2 are constants to be determined. Substituting
(15) into (11), we can obtain

p(n, 1) = c1β1x
n
1 + c2β2x

n
2 , (16)

where βi, i = 1, 2 is as presented in (8). By substituting
(15) and (16) into (10) and (12), respectively, one can ob-
tain c2/c1 = −β2/β1. Then, the unique unknown constants
ci, ∀i ∈ {1, 2} can be derived using the normalization equation
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as an explicit but involved sum. We can express α as

α =
c1
β1

, (17)

and Proposition 3 can be proved.
Based on the obtained expected mean delay time, the payoff

of the customer with data requests can be derived. Now the
pure threshold equilibrium strategies can be derived with the
above two propositions and Theorem 2 is explained as follow.

Theorem 2. Under the assumption of (1), PT2 is a symmetric
Nash equilibrium strategy for ne ∈ {nl, nl+1, ..., nu}, where
nl is the lower bound and nu represents the upper bound of
ne. The properties of nl and nu are presented in (19) and
(20).

Proof: First, two sequences, g1(n) and g2(n) are defined
by

g1(n) = φs − CE1(n), n ∈ N0,

g2(n) = φs − CE2(n), n ∈ N0.
(18)

In addition, we also consider nl, nu ∈ N0, where nl ≤
nu. Because of the assumption of R, g1(0) > 0 and
limn→+∞ g1(n) = −∞, thus, if we use nu+1 as the subscript
of the first non-positive of g1(n), one can arrive

g1(0), g1(1), g1(2)..., g1(nu) > 0, g1(nu + 1) ≤ 0. (19)

Moreover, we also find that g1(n) > g2(n), ∀n ∈ N0.
Correspondingly, one can obtain g2(nu+1) < g1(nu+1) ≤ 0.
If nl is assumed to be the first subscript that g2(n) ≥ 0, we
have

g2(nl + 1), g2(nl + 2), ..., g2(nu + 1) < 0, g2(nl) ≥ 0. (20)

We have the model where the customers follow PT2 for
fixed value of ne ∈ {nl, nl + 1, ..., nu}. By using (6) and
(7), we can obtain the payoff of the customer, if it arrives at
time t and finds there are n customers ahead and decides to
send the request to the queue. According to the payoff and
the definitions in (18) and (19), the customer will associate
with the TAP when there are n ≤ ne waiting customers in
the queue and it will not associate with the TAP in case of ne

customers ahead. Therefore, PT2 is the best response against
itself, i.e. a symmetric equilibrium.

To find the lower and upper bound of ne, we propose
Algorithm 1 to obtain nl and nu.

Algorithm 1 Finding nl and nu

1: Define g1(n) and g2(n) according to (18).
2: Compute g1(n) up to the first negative term;
3: The highest equilibrium threshold nu can be achieved;
4: Compute g2(n) starting from g2(nu+1) and going towards

0 till the first positive term;
5: The lowest equilibrium threshold nl can be obtained.

return nl and nu.

3) Case 3. I(t) is known and N(t) is unknown
a) Queueing Analysis

When a customer with the access request is arriving at the
queue of the TAP, it may not observe the queue length but

I(t), i.e., whether the train is in the coverage of a TAP or
not. In such a case, a mixed strategy that is specified by the
joining probability q(i) ∈ [0, 1], i ∈ {0, 1} is applied against
the pure threshold strategies. In the following, q(1) stands for
the probability of associating when the train is in the the area
of the TAP, and q(0) is the probability of associating with the
TAP when the train is in the area of cellular networks.

By denoting λi = λq(i), i ∈ {0, 1}, we can obtain the ex-
pected mean delay time and arrive at the following proposition,

Proposition 4. When all customers adopt a mixed strategies
(q(0), q(1)), the expected mean delay time of a customer who
enters the queue of the TAP and observes I(t) = i can be
given as

E(0, q(0), q(1)) =
(

ξλ0+µλ0+θλ1−λ0λ1

µθ−ξλ0−θλ1
+ 1

)
θ+ξ
µθ + 1

θ ,

E(1, q(0), q(1)) =
(

ξλ2
0+θ2λ1+θξλ0

µθ2−θξλ0−θ2λ1
+ 1

)
θ+ξ
µθ .

(21)

Proof: The proof is given in Appendix C.

b) Equilibrium Strategy Analysis

With the above analysis on the delay time, we can obtain
the equilibrium behavior in Theorem 3.

Theorem 3. An unique Nash equilibrium mixed strategy exist-
s: when the customer is arriving, observe I(t) and associate
with the TAP with probability qe(I(t)), where (qe(0), qe(1))

is given by (22) where q∗ = θµ(µ−λ)(φsθ−C)−(θ+ξ)Cµθ
λ(µ−λ)(θ+ξ)C+ξλµ(φsθ−C) .

Proof: The proof is given in Appendix D.

4) Case 4. Both I(t) and N(t) are unknown
a) Queueing Analysis

In this case, the queue of the TAP is fully unobservable to
the customer, i.e., both of N(t) and I(t) are unknown to the
arriving customers. Since identical customers are considered,
we assume each arriving customer joins with a probability q.
Thus, the effective joining rate follows Poisson process with
rate λ

′
= λq. Correspondingly, the expected mean delay time

E(D) can be derived as presented in Proposition 5.

Proposition 5. Considering the fact that all the customers
associate with the TAP with the same strategy and with the
same probability q, the expected mean delay time is expressed
as

E(D) =
θ + ξ

µθ − λ′ξ − λ′θ
+

µξ

(θ + ξ)(µθ − λ′ξ − λ′θ)
. (23)

Proof: We omit it here as the proof is similar to the one
in Appendix C.

b) Equilibrium Strategy Analysis

According to the expression of expected mean delay time,
the unique Nash equilibrium mixed strategy can be obtained
in Theorem 4.

Theorem 4. When N(t) and I(t) are fully unobservable,
there exists an unique Nash equilibrium mixed strategy: the
customer will associate with probability qe, where qe is given
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(qe(0), qe(1)) =



(0, 0), φs <
C(θ+ξ)

θµ ,

(0, µθφs−Cθ−Cξ
φsθλ

), C(θ+ξ)
θµ ≤ φs ≤ C(θ+ξ)

θ(µ−λ) ,

(0, 1), C(θ+ξ)
θ(µ−λ) < φs <

C(θ+ξ)
θ(µ−λ) +

C
θ ,

(q∗, 1), C(θ+ξ)
θ(µ−λ) +

C
θ ≤ φs ≤ C(µλ−λ2+µθ)(θ+ξ)

µθ(µθ−ξλ−θλ) + C
θ ,

(1, 1), C(µλ−λ2+µθ)(θ+ξ)
µθ(µθ−ξλ−θλ) + C

θ < φs,

(22)

by

qe =


0, φs <

C(θ+ξ)2+Cµξ
(θ+ξ)µθ ,

q∗e ,
C(θ+ξ)2+Cµξ

(θ+ξ)µθ ≤ φs ≤ C(θ+ξ)2+Cµξ
(θ+ξ)(µθ−λξ−λθ) ,

1, C(θ+ξ)2+Cµξ
(θ+ξ)(µθ−λξ−λθ) < φs,

(24)

where q∗e = φsθµ(ξ+θ)−C(θ+ξ)2−Cµξ
(θ+ξ)2λφs

.

Proof: The proof is given in Appendix E.

IV. PERFORMANCE EVALUATIONS AND DISCUSSIONS

In this section, analysis and simulation results are conduced
to explore the impact of several parameters on the behavior of
the customers. The system performance of different circum-
stances, i.e., when the state of the system are totally observed,
partially observed, and totally unobserved. In addition, we
also explore the performance of the expected mean delay
time for each case and the association probability for Case
3 and Case 4, respectively. The analysis results in figures
represent the expected mean delay time performance obtained
from our association algorithm. From the figures in this
section, the simulation results fitting the analytical results well
show the accuracy of our proposed algorithm. Meanwhile, the
proposed user association algorithm obtains much better delay
performance compared with max signal to noise ratio (SNR)
method.

A. Performance of Case 1

For this case, it is assumed that both I(t) and N(t) are ob-
servable to the incoming customers. The expected mean delay
time of each customer who enters the queue can be obtained
by (3). In Fig. IV-A, we plot the expected mean delay time
when the train is in the coverage of TAP or not with respect to
n. From this figure, we can find that the expected delay time
increases when more and more customers choose to wait in
the queue. However, as n increases to an extent, the incoming
customers will abandon to join the queue of the TAP but stay
in the cellular networks. Thus, the expected mean delay time
maintains a constant value afterwards, which is consistent with
PT1 in Case 1. In Fig. IV-A, the thresholds of the queue length
for whether the customer should decide to stay in the queue
can be found according to Theorem 1. From Fig. IV-A, we can
find that the thresholds ne(I(t)), ∀I(t) ∈ {0, 1} monotonically
decrease with the distance between two adjacent TAPs. The
larger the ξ is, the more frequently the data transmission fails.
Consequently, more customers decide not to associate with
the TAPs. It can be also found that when the train is in the
coverage of a TAP, the threshold is higher. In other words,
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0 0.2 0.4 0.6 0.8 1

ξ

20

40

60

80

100

120

140

160

T
h
r
e
s
h
o
ld
s

n
e
(0)

n
e
(1)

Fig. 3. Thresholds vs. ξ under Case 1 for λ = 0.5, µ = 5, θ = 0.2,
φs = 30, C = 1

when the train is in the coverage of a TAP, i.e., I(t) = 1, the
customer may tolerant a longer queue and prefer to associate.
For example, when ξ = 0.4 and the queue length is between
40 and 50, if the train is within the coverage of a TAP, the
customers with data requests prefer to associate with the TAP
while they prefer not if the train is out of the transmission
range of the TAP.
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B. Performance of Case 2

We then investigate the performance of the second case,
where the customers with data requests have no knowledge
of I(t). The expected mean delay time of each customer who
enters the queue can be obtained from Proposition 2. Since
Fig. IV-B presents the expected mean delay time varying
with the number of customers in the queue when we have
no knowledge of the accurate position of the train, it cannot
figure out the expected mean delay time of two scenarios as in
Fig. IV-A. Fig. IV-B only indicates the expected mean delay
performance when the customers has knowledge of the number
of customers in the queue. With the consideration of partial
network state information, it is inevitable to allow redundant
customers to join the queue in Case 2. Therefore, the expected
mean delay time in Case 2 is longer than that in Case 1. In
Fig. IV-B, we vary the value of ξ and plot the thresholds
(upper bound or lower bound) of the queue length and can
observe that the thresholds (nu and nl) of the queue length
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are monotonically decreasing with ξ when the time duration
between two isolated TAPs increases. Since the customers
can only access to the TAPs along the rail line for wireless
access services, the increase in ξ indicates that there will be
a longer travel duration between two TAPs. As a result, an
increasing ξ may lead to frequent failures in data transmission.
Correspondingly, the customers are reluctant to associate with
the TAP and enter the queue of the TAP, and the queue length
is therefore decreasing with the increasing of ξ. In Fig. IV-B,
we plot the impact of φs on the queue length thresholds. As
we can see, the thresholds nu and nl increase with φs. This is
mainly due to the fact that as reward φs grows, the customers
can afford higher cost of waiting in this queue. Therefore,
more customers prefer to stay in the queue and thus the queue
length increases.
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C. Performance of Case 3

In the third case, an arriving customer with data requests
is not informed about the queue length N(t) but the status of
TAP I(t). In Fig. 7, we plot the expected mean delay time with
respect to different values of ξ. We can also observe from this
figure that the expected delay time increases with ξ. Similar
to the observations in Fig. IV-B, we can see that the increase
of ξ may lead to an increased travelling duration between two
TAPs. Such a phenomenon can lead to the problem that the
customers are reluctant to stay in the queue if there exists
frequent breakdown of the TAPs. In Fig. 8, the expected mean
delay time is presented by varying the value of θ. As we can
see from Fig. 8, when the serving time θ of a TAP becomes
larger, the expected mean delay time decreases. This is mainly
due to the fact that when the TAPs are able to serve more data
requests, the queue length can decrease, so as the delay time.

D. Performance of Case 4

Here, we assume that the queue length and the state of
the system are both fully unknown to the arriving customers,
which means that N(t) and I(t) are unobservable. In Fig. 9,
the relations between the expected mean delay time and data
arrival rate λ are presented. In general, it is shown that the
expected mean delay time increases with the data arrival rate.
This is due to the fact that as the data arrival rate grows,
there will be more and more customers entering the queue.
Correspondingly, the expected mean delay time increases. We
can also observe from Fig. 9 that the expected mean delay time
decreases with µ. For example, when µ = 1 and λ = 0.35, the
expected delay is 12. When µ = 2 and λ = 0.35, the expected
delay is 8. This is mainly due to the reason that the TAP can
serve the customer in a faster time when µ increases.

In Fig. 10, we vary the value of θ and describe the
performance of the expected mean delay time with different ξ.
From Fig. 10, we can observe that when θ increases, the mean
delay time decreases dramatically when θ ≤ 0.4. The reason
is that the waiting time of the customer is decreased by a
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longer service time. However, when the service time increases,
i.e., θ > 0.4, more customers may decide to join the queue
and associate with the TAPs for service. Correspondingly, the
expected mean delay time does not show a significant change.

E. User Association Probability Performance Evaluation

We further compare the association probability performance
which can be observed in (22) and (24) from Fig. 11 and Fig.
12. From these two figures, we can see that the association
probability of the fourth case is located between the third
case when the train is in the coverage of TAP or not. Fig. 11
presents the association probabilities under Case 3 and Case
4 by varying the value of λ. We can see that the increase
of the data arrival rate λ may lead to the problem that the
customers are not willing to enter the queue of the TAPs.
This is because when more and more data are arrived, the TAP
may be in a high load situation. It can also be found that the
association probability when I(t) = 1 is much higher than the
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Fig. 12. Probability vs. φs for λ = 0.6, µ = 1, θ = 0.8, ξ = 0.3 and
C = 1

one when I(t) = 0. In Fig. 12, the correspondingly association
probabilities are presented with the value of φs under Case 3
and Case 4. From Fig. 12, we can see that when the reward
that the customer can obtain gets larger, the customers prefer
to associate with the TAPs.

V. CONCLUSION

In this paper, a series of TAPs which can provide high-
speed data rates are randomly deployed along the railway.
This kind of modern railway system is capable of supporting
a wide range of on-board Internet services to satisfy the
customers’ demand. In order to efficiently allocate the network
resources, we consider the user association problem for service
provisioning in the heterogeneous wireless railway networks
by applying a queueing game theoretic method. Particularly,
we carry out the theoretical analysis on the expected mean de-
lay time under the following circumstances: totally observed,
partially observed, and totally unobserved the state of the
system. According to the obtained delay value and the payoff

model, the customer’s equilibrium strategies are proposed to
decide whether to associate with a TAP or not. From the
simulation results, the proposed service provisioning and user
association scheme are verified that a unique Nash equilibrium
mixed strategy exists in our heterogeneous wireless railway
communication system. The simulation results matches well
with the numerical values by our proposed algorithm for the
expected mean delay time. The proposed user association
algorithm obtains much better delay performance compared
with max SNR method.

APPENDIX A: PROOF OF PROPOSITION 1

Based on the similar derivation in [21], we can find the
T (n, i) when both n and i are known. First, we assume T (n, i)
is the expected mean waiting time given that the customer
finds the system at state (n, i) just before arrival. Thus, for
n = 1, 2, ..., we can have

T (n, 0) =
1

θ
+ T (n, 1), (25)

T (0, 1) =
1

µ+ θ
+

ξ

µ+ ξ
T (0, 0), (26)

T (n, 1) =
1

µ+ θ
+

µ

µ+ ξ
T (n− 1, 1) +

µ

µ+ ξ
T (n, 0). (27)

When n = 0, we have T (0, 0) and T (0, 1) in (25) and (26),
respectively. By substituting (25) in (27), we obviously obtain
a first-order recursive relation for T (n, 1). Then, T (n, 1) can
be obtained in an iterative manner. We can also use (25) to
obtain T (n, 0). Therefore, we can arrive

T (n, i) = (n+ 1)

(
1 +

ξ

θ

)
1

µ
+ (1− i)

1

ξ
. (28)

APPENDIX B: PROOF OF PROPOSITION 2

The probability that a customer observes n customers wait-
ing in the queue and the train is not in the transmission range
of TAP can be expressed as

P0 =
λp(n, 0)

λp(n, 0) + λp(n, 1)
. (29)

As presented in [21], E(n) can be given as

E(n) = E(n, 1) +
1

θ
P0, (30)

where E(n, 1) is the expected delay time given that the
customer finds N(t) = n, I(t) = 1 upon arrival. The expected
delay time of an arriving customer who finds the system is at
N(t) = n, I(t) = i and decides to associate with the TAP can
be given as [21]

E(n, i) = (n+ 1)(1 +
ξ

θ
)
1

µ
+ (1− i)

1

θ
. (31)

Substituting (31) into (30) with i = 1, and using the sta-
tionary probability in Proposition 3 to obtain (29), Proposition
2 is able to be proved by (30).
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APPENDIX C: PROOF OF PROPOSITION 4
Similar to the proof of Proposition 2, p(n, i) can be found

by using the balance equations,

C1: (λ0 + θ)p(0, 0) = ξp(0, 1),

C2: (λ0 + θ)p(n, 0) = λ0p(n− 1, 0) + ξp(n, 1),

C3: (λ1 + ξ)p(0, 1) = µp(1, 1) + θp(0, 0),

C4: (λ1 + µ+ ξ)p(n, 1)

= µp(n+ 1, 1) + θp(n, 0) + λ1p(n− 1, 1),

C5: µp(n+ 1, 1) = λ0p(n, 0) + λ1p(n, 1).

(32)

To obtain the delay time, the probability generating function
Gi(z) =

∑∞
k=0 z

kp(n, i), i ∈ {0, 1}, |z| ≤ 1 can be used. By
Multiplying zk with both sides of C1,C2 and C5 and summing
over all k, one can have

(λ0 + θ)G0(z) = ξG1(z) + λ0zG0(z), (33)

µ(G1(z)− p(0, 1)) = λ0G0(z)z + λ1G0(z)z. (34)

With z = 1 and the help of normalizing equation and
limz→1 G0(z) + limz→1 G1(z) = 1, we have

G0(1) =
ξ

θ + ξ
,

G1(1) =
θ

θ + ξ
.

(35)

Substituting (33) into (34), we have

µ[G0(z)− p(0, 1)] = (λ0 + θ)G0(z)− ξG1(z) + λ1zG1(z).
(36)

Differentiating (33) and (36) over z, we can obtain

G
′

0(z) =
λ0G0(z) + ξG

′

1(z)

λ0 + θ − λ0z
,

G
′

1(z) =
(λ0 + θ)G

′

0(z) + λ1G1(z)

µ− λ1 + ξ
.

(37)

Letting z = 1, we can arrive at

G
′

0(1) =
λ0(ξ

2 + µ) + λ1(θ − λ0)

(ξ + θ)(µθ − ξλ0 − θλ1)
,

G
′

1(1) =
ξλ2

0 + λ1θ
2 + θξλ0

(ξ + θ)(µθ − ξλ0 − θλ1)
.

(38)

Due to the PASTA property [16], when I(t) = i, the
probability that the arrival customer observes n customers
waiting in the queue of the TAP can be given as

ϕ(n, i) =
p(n, i)∑
j p(j, i)

, n ∈ N0. (39)

Denoting that E(N |I = i) as the expected number of
customers in the queue when I(t) = i, we have

E(N |I = i) =

+∞∑
n=i

nϕ(n, i) =
Gi(1)

G
′
i(1)

. (40)

Then substituting (40) into (31), we have

E(i, q(0), q(1))(E(N |I = i)+ 1)(1+
ξ

θ
)
1

µ
+(1− i)

1

θ
. (41)

Proposition 4 has been proved.

APPENDIX D: PROOF OF THEOREM 3
Based on the payoff model in (2), we denote the expected

payoff accordingly as

R(0, q(0), q(1)) = φs − CE(0, q(0), q(1)),

R(1, q(0), q(1)) = φs − CE(1, q(0), q(1)).
(42)

Therefore, when I(t) = i, a customer with the data
request will associate with the TAP if R(i, q(0), q(1)) > 0,
balk if R(i, q(0), q(1)) < 0. The customer is indifferent if
R(i, q(0), q(1)) = 0. Correspondingly, five cases are consid-
ered here as follows:

1) If φs

C < ξ+θ
θµ , then we have R(1, 0, 0) < 0. According to

(21) and (42), we can see that R(1, q(0), q(1)) is strictly
decreasing for q(0) ∈ [0, 1] and q(1) ∈ [0, 1], respective-
ly. We can see that R(1, q(0), q(1)) ≤ R(1, 0, 0) < 0.
Therefore, if (q(0), q(1)) is the strategy for all other cus-
tomers, a negative payoff is received by the considered
customer from associating. Therefore, the association
probability of the customer is 0 when I(t) = 1. We can
also see that when I(t) = 0, the association probability
is 0 as well. Thus, φs

C < ξ+θ
θµ , (q(0), q(1)) = (0, 0).

2) If θ+ξ
θ(µ−λ) < φs

C < θ+ξ
θ(µ−λ) +

1
θ , we have R(1, 0, 1) > 0

and R(0, 0, 1) < 0. We can also find that R(1, 0, q(1)) is
strictly decreasing for q(1) ∈ [0, 1], and R(1, 0, q(1)) ≥
R(1, 0, 1) > 0. Thus, if (q(0) = 0, q(1) ≤ 1) is the
strategy that all other customers use, the considered
customer can obtain a non-negative payoff from asso-
ciating. Therefore, if I(t) = 1, the best response is
1. Meanwhile, as R(0, q(0), 1) is strictly decreasing for
q(0) ∈ [0, 1]. Therefore, following the previous analysis,
we can see that qe(0) = 0.

3) If θ+ξ
θµ ≤ φs

C ≤ θ+ξ
θ(µ−λ) , we have R(1, 0, 1) ≤ 0 ≤

R(1, 0, 0). As what we have in Cases 1 and 2, and qe(0)
is non-decreasing of R, we can then obtain qe(0) = 0.
Correspondingly, we can see that R(1, 0, q(1)) is strictly
decreasing for q(1) ∈ [0, 1]. Thus, if all the customers
who find I(t) = 1 associate with probability qe(1) = 1,
then R(1, 0, 1) ≤ 0, and qe(1) = 1 does not result in
an equilibrium. In addition, if qe(1) = 0 is used as the
strategy for all other customers, R(1, 0, 0) ≥ 0, and thus,
the considered customer obtains a non-negative payoff
from associating with the TAP, which means that the best
response is 1. Therefore, neither qe(1) = 0 nor qe(1) =
1 is not an equilibrium mixed strategy. Hence, q

′ ∈ [0, 1]
can be used as the equilibrium mixed strategy such that
R(1, 0, q

′
) = 0 and q

′
can be obtained accordingly.

4) If (µλ−λ2+µθ)(θ+ξ)
µθ(µθ−ξλ−θλ) + 1

θ < φs

C , we can see R(1, 1, 1) > 0.
It can also be verified that R(1, q(0), q(1)) is strictly
decreasing for q(0) ∈ [0, 1] and for q(1) ∈ [0, 1]. So, if
the other customers use (q(0), q(1)) as the strategy, the
considered customer has positive payoff when it finds
I(t) = 1 and joins the queue. Thus, the best response is
qe(1) = 1. It can also be found that R(0, 1, 1) > 0 and
R(0, q(0), q(1)) is strictly decreasing for q(0) ∈ [0, 1],
and we have 0 < R(0, 1, 1) ≤ R(0, q(0), q(1)). Thus,
if all other customers use qe(0), 1 as the strategy, the
considered customer has a positive payoff from entering
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so he can enter with probability 1 when observing
I(t) = 0.

5) If θ+ξ
θ(µ−λ) +

1
θ ≤ φs

C ≤ (µλ−λ2+µθ)(θ+ξ)
µθ(µθ−ξλ−θλ) + 1

θ , we have
R(0, 1, 1) ≤ 0 ≤ R(0, 0, 1). From the observations from
Cases 2 and 4, and qe(1) is non-decreasing of φs, we
can obtain qe(1) = 1. Similar to the analysis in Case 3,
the equilibrium mixed strategy qe(0) can be obtained by
addressing R(0, q(0), 1) = 0.

APPENDIX E: PROOF OF THEOREM 4

Based on the payoff model in (2), if a customer decides to
associate with the TAP, the expected payoff is

U(q) = φs − CE(D), (43)

where E(D) is given in (23). It can be noticed that U(q) is a
strictly decreasing function for q ∈ [0, 1] and

U(0) = φs − C
(θ + ξ)2 + µξ

(θ + ξ)µθ
, (44)

U(1) = φs − C
(θ + ξ)2 + µξ

(θ + ξ)(µθ − λθ − λξ − λθ)
. (45)

When (θ+ξ)2+µξ
(θ+ξ)µθ ≤ φs

C ≤ (θ+ξ)2+µξ
(θ+ξ)(µθ−λξ−λθ) , there exists a

unique solution q∗e of the equation U(q) = 0 which lies in the
interval [0, 1]. When φs

C < (θ+ξ)2+µξ
(θ+ξ)µθ , the customer will suffer

a negative benefit if he associates with the TAP. In this case,
the best response is 0. Similarly, when (θ+ξ)2+µξ

(θ+ξ)(µθ−λξ−λθ) <
φs

C ,
we can obtain that U(q) > 0, ∀q ∈ [0, 1]. And the customer’s
best response is 1.
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