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AbstrAct
The uncertainties brought by intermit-

tent renewable generation and uncoordinated 
charging behaviors of EVs pose great challenges 
to the reliable operation of power systems, which 
motivates us to explore the integration of robust 
optimization with energy scheduling in V2G net-
works. In this article, we first introduce V2G robust 
energy scheduling problems and review the state-
of-the art contributions from the perspectives of 
renewable energy integration, ancillary service 
provision, and proactive demand-side participa-
tion in the electricity market. Second, for each 
category of V2G applications, the corresponding 
problem formulations, robust solution concepts, 
and design approaches are described in detail 
based on the characteristics of problem struc-
tures and uncertainty sets. Then, an adjustable 
robust energy scheduling solution is proposed to 
address the over-conservatism problem by explor-
ing chance-constrained methods. Results demon-
strate that the proposed algorithm not only can 
efficiently shift the peak load and reduce the total 
operation cost, but also provide great flexibility in 
adjusting the trade-off between economic perfor-
mance and reliable operation. Finally, we present 
key research challenges and opportunities.

IntroductIon
The smart grid provides an open platform for 
integrating every piece of equipment involved 
in energy generation, transmission, distribution, 
storage, and consumption into a network with 
up-to-date information and communication tech-
nologies. As a key component of the smart grid, 
the emerging vehicle-to-gird (V2G) technology 
can explore the batteries of electric vehicles (EVs) 
to reduce energy demand and supply imbalance 
by absorbing excess energy during off-peak hours 
and delivering it back to the grid when needed. 
As a result, V2G networks can benefit the grid by 
facilitating the integration of intermittent renew-
able energy sources, enhancing system reliability 
and safety through ancillary services, and promot-
ing the demand-side liberalization of the electric-
ity market through demand response and virtual 
power plant (VPP) programs [1].

However, due to the dynamic nature of EV 
charging time, locations, user behavior, and load 
profiles, the large-scale penetration of uncon-
trolled and uncoordinated EVs into power sys-
tems, especially distribution networks, may cause 
a high level of volatility and increase potential 
sources for system disturbances. Furthermore, 
intermittent and fluctuating renewable generation 
provides little controllability and predictability, 

and poses new challenges in balancing genera-
tion and load. Hence, intelligent energy sched-
uling schemes are required to harness the full 
potential of the aforementioned benefits brought 
by V2G networks.

Two main methodologies, i.e., stochastic opti-
mization and robust optimization, have been 
widely applied in handling data uncertainties in 
optimization [2]. Stochastic optimization provides 
an effective solution if the uncertain numerical 
data follow a well known probability distribution. 
However, considering the complex operation 
details and various practical constraints, it is diffi-
cult to identify accurate probability distributions 
for uncertain factors. Hence, stochastic optimi-
zation based energy scheduling approaches may 
not sufficiently address the impacts of uncertain-
ties on the reliability performance.

In comparison, robust optimization can over-
come the aforementioned limitations of stochastic 
optimization, and provide the following advantag-
es for V2G energy scheduling [3]:
•  It allows a distribution-free model of uncer-

tainties and only requires moderate informa-
tion, which can be implemented more easily 
in practical V2G networks.

•  The worst-case operation scenarios of V2G 
networks have been taken into consideration 
during the modeling process, and the gener-
ated solution is proved to be immune against 
all possible realizations of the uncertainties.
Realizing robust energy scheduling in V2G net-

works is not trivial. First of all, the computational 
complexity increases exponentially with the num-
ber of optimization stages and EVs. It would be 
infeasible to take every detail into consideration 
as the problem size increases [4]. Second, the 
robust version of a tractable energy scheduling 
problem is not guaranteed to be tractable, which 
mainly depends on the problem structure and 
the design of uncertainty sets. Finally, it will take 
an unrealistically high price to ensure robustness 
when the worst case scenarios are considered 
simultaneously for numerous uncertain factors of 
EVs and renewable energy sources.

There are existing works that investigated the 
robust optimization oriented approaches. A group 
coordination-based robust charging strategy and 
robust linear optimizations based energy manage-
ment scheme were proposed to solve the energy 
scheduling problem in [5] and [6], respectively. 
In [7], a robust optimization framework was pro-
posed to solve the frequency regulation capacity 
scheduling problem with the consideration of the 
performance-based compensation scheme and 
the random charging and discharging behaviors. 
The robust energy scheduling problem in the sce-
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nario of V2G-based ancillary service provision was 
solved by the mix-integer quadratic programming 
approach in [3]. However, most previous works 
are restricted to limited aspects of V2G applica-
tions, and have not provided a comprehensive 
framework for how to integrate robust optimiza-
tion with energy scheduling in V2G networks.

In this article, we will provide a unified treat-
ment of robust energy scheduling design in V2G 
networks. First, a novel classification of robust 
energy scheduling problems was proposed based 
on the V2G application scenarios. For each cate-
gory of applications, the corresponding problem 
formulation and robust solution design method-
ology are presented based on the characteristics 
of problem structures and uncertainty sets. Then, 
we propose an adjustable robust energy sched-
uling algorithm to tackle the over-conservatism 
problem by exploring chance-constrained meth-
ods. Simulation studies are conducted for a V2G 
network to validate the economic efficiency and 
robustness of the proposed algorithm. Finally, 
we conclude the article, and present major open 
research issues.

EnErgy schEdulIng
Traditional energy scheduling is aimed at sched-
uling thermal power generators to meet the load 
demand with minimum operating cost [8], which 
is no longer suitable to deal with the uncertainties 
caused by the large-scale integration of intermit-
tent renewable energy sources and uncontrolled 
EVs. This section provides a detailed illustration 
of the new energy scheduling challenges in smart 
grid, with a particular emphasis on V2G networks.

EnErgy schEdulIng In smArt grId
Smart grid represents a new paradigm shift for 
energy scheduling design. On one hand, the 
utilization of the advanced communication and 
control technologies enables the smart grid to 
efficiently control millions of devices in the field 
from a remote operation center. On the other 
hand, with bi-directional energy exchanging and 
sharing becoming possible, any consumer is 
both a contributor and a beneficiary of the ener-
gy exchanged on the network. Therefore, novel 
energy scheduling methodologies are required 
to realize the unprecedented level of coopera-
tion between energy providers and consumers for 
reducing the energy supply-demand imbalance 
by making efficient use of widespread renewable 
energy resources and EVs. The following section 
describes the energy scheduling scenarios in V2G 
networks in details.

EnErgy schEdulIng In VEhIclE-to-grId nEtworks
Figure 1 presents the conceptualized structure of 
a V2G network with large-scale EV and renewable 
energy penetrations. EVs can be charged via pri-
vate chargers at home or via public chargers in 
work places, parking lots, and charging stations. 
EV aggregators in these places perform real-time 
status monitoring, seamless data collection, and 
coordinated charging/discharging management. 
The conventional generators and renewable gen-
erators submit their pre-schedule generation plans 
(or predicted renewable output intervals) to the 
control center of the utility. In the centralized 
energy scheduling scenario, the control center 

calculates the scheduling problem based on the 
collected information and then issues dispatch 
signals to EV aggregators. Depending on the dis-
patch signals, EV aggregators can either act as 
a well defined responsive load or as an energy 
source to provide additional generation capac-
ity. In comparison, distributed energy schedul-
ing does not require the knowledge of global 
information and thus avoids the large communi-
cation and computational cost. Each EV owner 
can actively adjust the charging and discharging 
behavior in accordance with properly designed 
electricity pricing or incentive mechanisms.

However, in real-world V2G energy scheduling 
problems, a small uncertainty in the coefficient 
data can sometimes make the solution heavily 
infeasible or even completely meaningless to 
the original problem from a practical viewpoint. 
These data uncertainties, i.e., the values are not 
known exactly when the problem is being solved, 
can arise from implementation, measurement, 
and estimation errors. For example, the uncertain-
ties brought by renewable energy sources and 
EVs may result in a significant mismatch between 
generation and load, which leads to numerous 
critical issues such as power imbalance, interarea 
oscillations, voltage instability, and frequency 
fluctuations[9]. This motivates us to explore the 
integration of robust optimization with energy 
scheduling, which provides an effective way to 
reduce the adverse effects caused by uncertain-
ties.

robust EnErgy schEdulIng In 
VEhIclE-to-grId nEtworks

The goal of robust energy scheduling is to allevi-
ate the negative effect of data uncertainty on the 
solution quality [10]. To explain the robust energy 
scheduling paradigm, we consider a problem with 
a linear-form objective function, which is defined 
as

FIGURE 1. A conceptualized structure of a V2G network with large-scale EV and 
renewable energy penetrations.
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min
x

cT x :Ax ≤ b{ }, (c, A, b)∈U{ }.
  

(1)

where x  Rk is the vector of decision variables, 
and c   Rk is the vector of coefficients. The 
m  k matrix A and b  Rm specify the coeffi-
cients for the constraints. The proposed robust 
energy scheduling paradigm in this article is 
worst-case-oriented, that is, the robust feasible 
solution is guaranteed to be feasible and mean-
ingful to all the possible realizations of (c, A, b) 
from the uncertainty set U. In other words, the 
best possible robust feasible solution is the one 
that optimizes the worst case value sup{cTx: Ax ≤ 
b, ∀(c, A, b)  U}. The corresponding optimization 
problem is given by

min
x
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(2)

which is equivalent to the optimization problem

min
x,ε

ε :cT x ≤ ε, Ax ≤ b,∀(c, A, b)∈U{ }.
  

(3)

The latter optimization problem is also called the 
robust counterpart of the original linear program-
ming program. Here, the minimum value of the 
variable e represents the worst case value sup{cTx: 
Ax ≤ b, ∀(c, A, b)  U}. In general, the robust 
counterpart is computationally tractable when 
the uncertain set U is a nonnegative orthant or 
polytope with a convex hull, and can be efficiently 
solved by traditional programming approaches 
such as the interior point algorithm and Lagrang-
ian relaxation methods, and so on.

In this section, the V2G energy scheduling 
problems are classified into three categories 
according to the application scenarios: renewable 
energy integration, ancillary service provision, and 
proactive demand-side participation in the elec-
tricity market. For each class of applications, how 
to design robust energy scheduling based on the 
structures of the problem and properties of the 
uncertainty set is described in detail. A compre-
hensive summary of the classifications of V2G 
robust energy scheduling problems and the state-
of-the art contributions is provided in Table 1. The 
objective of the utility is usually to minimize the 
total cost or to improve the reliability of the over-
all power system. The utility may pay a subsidy to 
EV owners for their contributions in supporting 
V2G applications, which can be generally consid-
ered as a linear function of discharging power and 
subtracted from the objective function of the utili-
ty. In comparison, the objective of each EV owner 
is to maximize individual benefits rather than the 
total benefits of the overall power system.

lArgE-scAlE rEnEwAblE EnErgy IntEgrAtIon
With robust energy scheduling, V2G networks 
can act as a source of backup for renewables by 
storing excess energy during off-peak hours and 
discharging the batteries into the grid to meet 

the peak demands. In robust energy scheduling 
problems for integrating renewable energy, most 
object functions can be efficiently modeled in lin-
ear forms, which include [13]:
• The active power generation cost of fossil 

fuel-based distributed generators such as gas 
and diesel turbines.

• The absolute value of maximum deviation 
between renewable generation and load.

• The utilization of the clean and sustainable 
renewable energy.
The following constraints can also be repre-

sented in linear forms [7]:
• Active power balance constraint: the total 

power generated any time is equal to the 
sum of the total load demand and transmis-
sion losses.

• Spinning reserve constraint: in each power 
control area, a certain amount of the total 
active generator power is kept available for 
unforeseen cases such as voltage and fre-
quency fluctuations.

• Ramp rate constraint: the power generated 
by each generator in certain intervals cannot 
exceed that of the previous interval by more 
than a specified amount.

• Active power generation limits: the active 
power output of each generator is within the 
upper and lower generation limits.

• Charging and discharging power limits: the 
charging/discharging power of each EV is 
within the upper and lower charging/dis-
charging limits.

• Energy balancing constraint for each EV: the 
total charged energy is equal to the sum of 
the EV owner’s charging demand and dis-
charged energy.
Even if a studied object has nonlinear features, 

the objective function can still be transformed 
into a linear from by employing linear approxima-
tion methods.

Furthermore, direct current (DC) distribution 
networks have emerged as a promising solution 
to integrate renewable energy sources since 
many small-scale renewables and energy storage 
systems operate as DC resources. In DC load 
flow analysis, the nonlinear model of alternating 
current (AC) systems can be simplified to linear 
forms because DC load flow only focuses on 
active power flows and neglects reactive power 
flows.

Therefore, considering the linear-form objec-
tive functions and constraints, the V2G energy 
scheduling problem for integrating renewable 
energy can be described as a linear optimiza-
tion problem and solved by robust linear ener-
gy scheduling (RLES) algorithms. The collection 
of uncertain data in a RLES problem should be 
closed and convex, for example, the box or ellip-
soid uncertainty models. The robust counterpart 
of the RLES problem is to minimize the largest 
value of the objective over all robust feasible solu-
tions. In particular, the RLES methodology can be 
extended to solve the more general mixed-integer 
linear optimization problems, where only some 
of the decision variables are constrained to be 
integer values.

Considering the linear-form objective functions and constraints, the V2G energy scheduling problem for 
integrating renewable energy can be described as a linear optimization problem and solved by robust 

linear energy scheduling (RLES) algorithms.
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AncIllAry sErVIcE ProVIsIon

V2G networks represent a new paradigm for pro-
viding ancillary services, such as voltage regula-
tion, frequency control, and spinning reserve, to 
power grid in a cost-efficient way. V2G robust 
energy scheduling enables fast response to dis-
patch signals and low cost for short-duration grid 
support, compared to the costly process of ramp-
ing large generators up and down under real-time 
control.

In this application scenario, the overall goal 
is to improve the reliability and flexibility of the 
power system. Not only the active power, but 
also the reactive power needs to be adjusted and 
controlled properly to provide better voltage con-
trol, minimize real power loss, and improve power 
coefficients. As a result, the RLES methodology is 
not suitable to deal with nonlinear optimization 
problems in complex AC systems. The nonlinear 
objective functions and constraints include [5]:
• Generation cost of large thermal generation 

units, which can be described as a quadratic 
function of power output.

• Active power loss in transmission networks, 
which can be described as a quadratic func-
tion of bus voltage.

• Power flow balance constraint, including the 
real and reactive power balance equations 
for each load bus, which can be represented 
as a quadratic polynomial function of bus 
voltage based on the complex phasor repre-
sentation of the voltage-current relationship.

• Branch megavolt ampere power, which is the 
quadratic function of active power and reac-
tive power, should be within the upper and 
lower limits to avoid damage to transmission 
lines.
Robust conic energy scheduling (RCES) of 

polynomial complexity can limit the solution 
search space to a finite convex cone, and avoid 
mass calculation of power flow, which makes it a 
fast and effective method to handle an extremely 
wide variety of energy scheduling problems in 
convex form [14]. The uncertain set is a closed 
pointed convex cone with a nonempty interior, 
such as the direct products of nonnegative rays, 
Lorentz cones, or semidefinite cones. The objec-
tive function and constraints should be in linear 
forms and nonlinear conic forms, respectively. 

Most of the AC-flow based energy scheduling 
problems can be formulated as mixed integer 
quadratic programming, quadratically constrained 
quadratic programming, and second-order cone 
programming problems, which can be trans-
formed into conic-form problems by methodolo-
gies such as lift and project relaxation, and then 
solved by RCES algorithms. Therefore, RCES prob-
lems can be treated as a “conic version” of RLES 
problems, and the goal of the corresponding 
robust counterpart is also to minimize the guaran-
teed value of the objective over all robust feasible 
solutions.

ProActIVE dEmAnd-sIdE PArtIcIPAtIon In thE 
ElEctrIcIty mArkEt

V2G networks enable EV owners to proactively 
participate in electricity market programs such as 
demand response and VPP by integrating robust 
energy scheduling with electricity market infor-
mation in a holistic framework. Taking demand 
response as an example, both price signals and 
monetary incentives can be employed to mod-
ify EVs’ electricity usage patterns [11]. On one 
hand, price-based demand response programs 
such as real-time pricing, critical peak pricing, and 
time of use pricing rates, enable EVs to manage 
their charging/discharging behaviors according 
to the time-varying rates that reflect the value of 
electricity in different times. On the other hand, 
incentive-based demand response programs pay 
EV owners for adjusting their electricity usage 
behaviors according to the demand reduction 
instructions. Furthermore, a sufficiently large num-
ber of aggregated EVs can be centrally coordinat-
ed and managed to form a VPP, which provides a 
competitive edge for individual EV owners to take 
part in day-ahead capacity biddings and long-term 
electricity auctions.

For electricity market related applications, the 
overall goal is to maximize the expected profit of 
EV owners or VPPs, which can be represented as 
the difference between the total benefit of market 
participation and the total cost of operation. Com-
monly used cost-benefit models are summarized 
as follows [12]:
• The benefits (or cost) of selling (or purchas-

ing) electricity in real-time or day-ahead mar-
kets.

• The generation cost of small-scale dispatch-

TABLE 1. A comprehensive summary of the classifications of V2G robust energy scheduling problems and the state-of-the art contributions.

Categories Application scenarios Optimization goals Practical constraints Solution methods

Renewable energy 
integration [6, 7]

Backup for intermittent and 
fluctuating renewable energy

Minimizing the active power generation 
DC linear constraints: 
• Active power balance constraint  
• Spinning reserve constraint  
• Active power generation limits  
• Ramp rate limit constraint  
• Charging and discharging  
   power limits  
• Energy balancing constraint for 
   each EV 
AC non-linear constraints:  
• Active and reactive power flow 
  balance constraint  
• Branch megavolt ampere limits

RLES, RMES Minimizing the maximum deviation

Maximizing the utilization of renewable energy

Ancillary service  
provision [3, 5]

Voltage regulation, frequency 
regulation, spinning serve and 
peak-load shaving

Minimize the generation cost of large thermal 
generation unit RLES, RCES, RMES

Minimize the active power loss in transmission networks

Demand-side 
participation in 
electricity market 
[11, 12]

Day-ahead electricity market 
bidding, price-based and 
incentive-based demand-side 
management

Maximizing the profit of EV owners or VPPs

RLES, RCES, RMES

Minimizing the total operation cost of power system
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able generators, including fossil fuel and 
renewable-based distributed generators.

• The battery degradation cost, which is relat-
ed to the number of cycles, operation tem-
perature, rate of charge and discharge, and 
the depth of discharge.

• Start-up and shut-down costs of generators, 
which represent the costs of cooling down 
and preheating boilers and turbines of gener-
ators.
Since the probability distribution of electricity 

price in the next time period depends only on 
the current period and not on the sequence of 
periods that preceded it, the time series of elec-
tricity price can be modeled as a Markov chain 
[15]. However, despite the well known “curse 
of dimensionality,” there exists another critical 
challenge for Markov decision process (MDP) 
based solutions, i.e., the “curse of uncertainty,” 
which refers to the fact that coefficient uncertain-
ty may have significant influence on the state tran-
sition probability and finally cause a change of 
decision strategy. The reason is that optimality 
performance is very sensitive with respect to the 
precision of the state transition probabilities, while 
the accurate estimation of these probabilities can 
be a tremendous challenge in practical appli-
cations of the electricity market. Hence, in the 
design of robust MDP energy scheduling (RMES) 
algorithms, the curse of uncertainty is addressed 
by assuming that the transition probabilities can 
be changed at will by a second player within pre-
scribed bounds. Examples of the uncertainty set 
include the scenario model, the interval model, 
the likelihood model, the entropy model, and the 
ellipsoidal model. The robust counterpart of the 
RMES problem is to minimize the expected value 
of the cost function under the worst-case estimat-
ed transition probabilities. Furthermore, RMES can 
be combined with on-line learning methods such 
as reinforcement learning and Q-learning algo-

rithms to solve problems even without explicit 
specification of the transition probabilities.

thE AdjustAblE robust 
EnErgy schEdulIng APProAch And A cAsE study
V2G robust energy scheduling faces the over-con-
servatism problem, which is inherited from robust 
optimization. Although considering the worst-
case scenario for each uncertain factor provides 
the highest protection against uncertainties, the 
economic performance is also severely degraded 
in order to ensure robustness. For some non-ur-
gent applications, probabilistic guarantees for the 
robust solution are more preferred which allow 
the ability to choose the level of protection based 
on practical requirements. Therefore, how to pro-
vide the flexibility of adjusting the robustness of 
the solution and offer full control of the degree 
of conservatism for every uncertain constraint are 
exciting research directions.

our ProPosEd schEmE
We propose an adjustable robust energy sched-
uling scheme to address the over-conservatism 
problem, which is able to adjust the level of 
robustness in terms of probabilistic guarantee 
for constraint violation. Since it is unlikely that all 
uncertain coefficients change simultaneously in 
a constraint, our aim is to protect the constraint 
feasibility against uncertainties with high probabil-
ity while improving the economic performance. 
First of all, we need to construct the uncertainty 
set in order to implement the proposed adjust-
able robust energy scheduling scheme. One 
advantage of robust energy scheduling is that 
the partial information on the stochastic nature 
of data uncertainty can also be explored to build 
the uncertainty sets and improve the economic 
performance. To demonstrate this advantage, we 
can assume that the total charging load of each 
EV aggregator can be well approximated as the 
normal distribution by employing the central limit 
theorem. Denote L as the total number of aggre-
gators. Based on the normal distribution assump-
tion, the uncertainty set of the l-th aggregator’s 
charging load can be designed by using the pre-
diction interval method as [—Pl – P̂l, 

—Pl + P̂l]. 
—Pl and  

P̂l are the sample mean and standard deviation, 
respectively, which can be calculated by using 
the previous N observed samples. Pl,N+1 is the 
(N + 1)-th observation. d is the probability that 
Pl,N+1 falls in the prediction interval [—Pl – P̂l, 

—Pl + P̂l]. 
A future observation Pl,N+1 which will fall within 
the interval, has a certain probability d , that 
is, —Pl – P̂l ≤ Pl,N+1 ≤ —Pl + P̂l) = d. It is noted that the 
robust energy scheduling algorithm is still valid 
even though the distribution of the aggregator 
charging load is completely unknown. The reason 
is that we can always construct a loose uncertain-
ty set for robust energy scheduling based on his-
torical data, which may not be as tight as the one 
based on partial stochastic information.

Then, we introduce a protection threshold a 
for the L uncertain charging loads, that is, P1, …, 
PL, which controls the trade-off between the prob-
ability of constraint violation and the impact on 
the optimal objective values. a can take values 
(not necessarily integers) from the interval [0, L]. 
The solution is robust feasible deterministically if 

FIGURE 2. The diagram of the simulation program.
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⎣a ⎦ (the largest integer that does not exceed a) 
uncertain charging loads are allowed to change 
with the prediction intervals, and up to one load, 
for example, Pl, is allowed to change within the 
interval [—Pl – (a – ⎣a⎦) P̂l, 

—Pl + (a – ⎣a⎦) P̂l]. Further-
more, the solution will be feasible with high prob-
ability even if more than ⎣a⎦ uncertain coefficients 
change, which is validated later by numerical 
results. The mathematical proof is omitted here 
due to space limitations and will be included in 
the future journal version.

To validate the proposed algorithm, simulation 
studies are conducted for a V2G network scenario 
as shown in Fig. 1, which is composed of one gas 
generator, four wind turbines, one hundred EVs, 
and six aggregators. With robust energy sched-
uling, the utility schedules EVs to absorb excess 
wind power during valley periods and deliver 
power back to the grid during peak load periods 
to improve the economic performance. The opti-
mization goal is to minimize the generation cost 
of the gas generator and the maintenance cost of 
wind turbines under the uncertainties of EVs’ arriv-
al time, initial state of charge of the battery, and 
wind turbine outputs. Practical constraints such 
as active power balance, active power genera-
tion limits, EVs’ charging and discharging power 
limits, EVs’ energy balance, and spinning reserve, 
have been taken into consideration. The simula-
tion program diagram is shown in Fig. 2. RLES has 
been applied since both the objective function 
and constraints can be represented in linear forms 
based on the DC load flow analysis.

IllustrAtIVE rEsults
Figure 3 compares the energy supply and demand 
profiles with and without V2G robust energy 
scheduling capabilities. When the peak load starts 
at 19:30 p.m. during periods of low wind genera-
tion, the gas generator without V2G robust ener-
gy scheduling (abbreviated as RES in Fig. 3) has to 
increase output dramatically to satisfy the power 
balance constraint. On the other hand, during the 
off-peak times from 23:00 p.m. to 3:00 a.m., high 
wind generation at times of low residential and EV 
charging loads results in the waste of excess wind 
energy. Hence, it is clear that the uncoordinated 
charging behaviors of EVs and the intermittent 
output of wind turbines will significantly increase 
the total operation cost, which is 1,860 dollars. 
With the adoption of V2G robust energy sched-
uling, both the peak load and the total operation 
cost can be reduced by 49 percent and 54 per-
cent, respectively. V2G robust energy scheduling 
can efficiently shift the peak load and reduce the 
cost of gas generators by enabling the batteries to 
discharge during peak hours and absorb excess 
energy during off-peak hours.

Figure 4 shows the relationship between the 
probability of constraint violation and the total 
operation cost. When the protection threshold 
a increases, the probabilistic guarantee of con-
straint violation is improved at the expens of 
increased operation cost. It is interesting to note 
that the minimum operation cost is only marginal-
ly affected when the robustness is increased. For 
instance, when a is increased from zero to six, 
the chance of constraint violation is reduced by 
95 percent, while the minimum operation cost is 
only increased by 14 percent (from 740 US dol-

lars to 852 US dollars). Therefore, the proposed 
robust energy scheduling algorithm does not 
heavily penalize the objective value to reduce the 
constraint violation probability, which provides 
an adjustable tradeoff between reliable operation 
and economic dispatch.

Figure 5 shows the impact of the protection 
threshold a on the EV charging/discharging strat-
egies. a = 0, 4, and 6 represent the weak-level, 
middle-level, and strong-level protections, respec-
tively. As a increases from 0 to 6, EVs charge their 
batteries more aggressively and take more conser-
vative approaches during the discharging phase in 
order to reduce the probability of constraint viola-
tion. This again demonstrates that large values of 
a are able to reduce the chance of constraint vio-
lation at the expenses of economic performance.

FIGURE 3. A comparison of the energy supply and demand profiles with and with-
out V2G RES.
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conclusIon And oPEn IssuEs
In this article, we provided a holistic tutorial on the 
use of robust optimization for addressing uncertain 
energy scheduling problems in emerging V2G net-
works. First, we introduced the basic application 
scenarios and new challenges of energy schedul-
ing in V2G networks. Then, we classified robust 
energy scheduling problems into three categories 
based on application scenarios and provided a 
detailed treatment of how to formulate problems 
and design robust solutions for each category. 
Finally, we proposed adjustable robust energy 
scheduling to address the over-conservatism prob-
lem by exploring chance-constrained methods. 
Some important challenging issues that need to be 
addressed in the context of robust energy sched-
uling in V2G networks are pointed out as follows.

Adding robustness to conventional V2G ener-
gy scheduling problems comes at the expense of 
computational complexity, which increases dra-
matically with the number of optimization stag-
es and EVs. Most of the previous algorithms for 
solving robust energy scheduling problems are 
centralized. Unfortunately, it would be infeasible 
to have the complete information and knowledge 
of every EV in a large-scale V2G network due to 
the prohibited communication and computation-
al costs. Therefore, alternative distributed solu-
tions that explore game-theoretical approaches or 
aggregator-based group coordination should be 
investigated to tackle this challenge. In our pro-
posed centralized algorithm, the tradeoff between 
robustness and optimality has been characterized 
both analytically and numerically. However, in a 
distributed robust energy scheduling design, the 
more complex three-dimensional tradeoff among 
robustness performance, optimality gap, and com-
munication overheads has not been investigated 
sufficiently for V2G applications.

With the development of advanced infor-
mation and communication technologies, large 
volumes of data are routinely collected in every 
aspect of V2G networks including EV locations, 

travel patterns, charging/discharging behaviors, 
battery states, historical demand profiles, and 
so on. Learning from these massive amounts of 
data is expected to bring significant improve-
ments in robustness and economic performance. 
Data-driven optimization approaches that utilize 
the historical realizations of the random variables 
for designing uncertainty sets can be explored 
to adapt traditional robust energy scheduling to 
this new data-centered paradigm. Without prior 
knowledge of data probability distribution, the 
data-driven robust energy scheduling approach 
can develop a probabilistic guarantee on the 
optimality of the solution, which is less conser-
vative than traditional counterparts while retain-
ing several robustness properties. However, since 
the robust counterpart of an original tractable 
problem is not guaranteed to be tractable, how 
to incorporate data-driven approaches into the 
uncertainty set design to preserve tractability is a 
valuable yet challenging issue.
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