
Programming 1 / 2008 Fall Demo 6 / 20.10

Demo 6 / 20.10
Tasks that relate to each other can be done in a same file (class). If you want to carry out
tasks in separate files you can call the method (subprogram in class Calculations.java for
example) mide from another file as follows:

double m1 = Calculations.mide(dots);

An another way is to put static import in the beginning of the file:

import static demo6.Calculations.mide;
...
double m1 = mide(dots);

Tasks

1. Ville: Look for our wiki page for further instructions: https://trac.cc.jyu.fi/projects/ohj1/wiki/
villeEn

2. Real number comparison: Real numbers are not allowed to be compared with == operator.
Create two function subprograms to help the equality comparison of real numbers and these
subprograms must work as follows:

double a = 7.1001;
double b = 7.1002;
double c = 7.2002;

if (same(a,b,0.01)) System.out.println("They are almost equal");
if (!same(a,b)) System.out.println("They are unequal");
if (!same(a,c,0.01)) System.out.println("They are unequal");
if (same(a,c,0.2)) System.out.println("More or less equal");

Note that the second call has less parameters than the other ones (this is called function
overloading). Put that in comments first. It is advisable to create a subprogram which has a
right syntax but doesn't do anything smart. An example for the subprogram with two
parameters:

public static boolean same(double a, double b) {
 return false;
}

Then run the program and find out that the syntax is correct. Then alter the program to work
as asked. Pay attention to the commenting and names of variables. Names that Eclipse gives
aren't usually that informative.

3a. Absolute value: Start from scratch creating a function subprogram absolute(double number)
which returns the number every time positive. Begin with proper main program in which you
call the function with different test values.

3b. Distance: Create a function subprogram which returns the distance between two real
numbers. An example:

demo6.odt/16.10.2008 1/3

Programming 1 / 2008 Fall Demo 6 / 20.10

distance(3.2,8.5) is almost 5.3 as well as distance(8.5,3.2);

4. Loops and arrays: Mide is the dot nearest to the average. Create a function subprogram
mide(numbers) which returns the mide of an array of real numbers. Unfortunately you
are not able to use (to call) the function average in the previous demo because it was made
for an array of integers. Instead, you have to copy it and change the type of the array. First
you have to create a function subprogram average which calculates and returns the
average of an array of real numbers. Test with following:

 double[] numbers = {1,2,3,2,5}; // average == 2.6
 double m1 = mide(luvut); // 3
 double m2 = mide(new double[]{1}); // 1
 double m3 = mide(new double[]{3,3}); // 3
 double m4 = mide(new double[]{}); // 0

Hint: Forget the Java first and begin with doing the task with paper and pencil. Think in
stages what you need to do and which auxiliary variables to use.

5a. Scaling: Create a function subprogram scale(number,min,max) which scales a number
between [0,1] to the range between [min,max] . Examples:

scale(0.2,-3,3) => -1,8;
scale(0.2,1,6) => 2.0;
scale(0.0,1,6) => 1.0;
scale(1.0,1,6) => 6.0;

A hint: if you have a number between [0,1[and you want to get a number from it to between
[a,b[then you need to think what to do so that 0 would become a and 1 would become b.
(f(x) = a + (b-a)*x)

5b. Loops and arrays: Create a subprogram randomNumbers(n,min,max) which creates
a size n of an array of real numbers and draws it full of numbers out of the hat (look for
Math.random). These numbers are between min and max, but max is excluded:
[min,max[. Print the array to test the subprogram.

6. Geometry: Think back to school or check Wikipedia for how to calculate the hypotenuse of
a right-angled triangle using the Pythagorean method. Using this, figure out how to calculate
the distance of two spots on a level. Then write a function

 distance(x1,y1,x2,y2)

that calculates the eucleidian distance of two spots.

B1. String management: Write a function subprogram askNumbers(question) that
makes the following main program (hint StringTokenizer,
Mjonot.erotaDouble from Ali.jar):

 public static void main(String[] args) {
 double numbers[] = askNumbers("Enter numbers");
 print(numbers);
 }

work as follows:

demo6.odt/16.10.2008 2/3

https://trac.cc.jyu.fi/projects/ohj1/wiki/aliEn

Programming 1 / 2008 Fall Demo 6 / 20.10

Enter numbers >2 3 4 5 k 9 ;5
 2,00 3,00 4,00 5,00 0,00 9,00 5,00

B2. Matrixes: Create a function subprogram which searches for the greatest element in a two
dimensional array. An example of use:

 public static void main(String[] args) {
 double mat1[][] = {{1,2,3},{2,2,2},{4,2,3}};
 double mat2[][] = {{9,2,8},{1,2,5},{3,19,-3}};

 double greatest1 = greatest(mat1);
 double greatest2 = greatest(mat2);
 System.out.printf("%5.2f %5.2f%n",greatest1,greatest2);
 }

B3. Comparing real numbers: In task 2 you may have compared numbers' absolute size. Still
for example 1000 and 1100 are equal give or take 10% but not to a decimal place. As such it
is often sensible to talk about comparative equality instead of absolute equality. Write one
more function subprogram that works as follows:

nearSame(0.10,0.12,0.1) == false
nearSame(0.10,0.11,0.1) == true
nearSame(1.0,1.2,0.1) == false
nearSame(1.0,1.1,0.1) == true
nearSame(10,12,0.1) == false
nearSame(10,11,0.1) == true
nearSame(1000,1200,0.1) == false
nearSame(1000,1100,0.1) == true

GURU-tasks
G1-2: Plan a Gallow game. Do not realize it! Plan a console based version and think what would

you print on each screen in each stage. Return as an answer a text file with illustrations what
will be printed on the screen.

demo6.odt/16.10.2008 3/3

	Demo 6 / 20.10
	Tasks
	GURU-tasks

