
Programming 1 / 2008 Fall Demo 10 / 17.11

Demo 10 / 17.11
Tasks

1. Ville: Run Ville web application (look: https://trac.cc.jyu.fi/projects/ohj1/wiki/villeEn) and
carry out task round: Sorting algorithms. Scale the amount of tasks done to the range [1,0]
and round the point you get with precision of 0.2. (An example: if you did 120/195 tasks
(=0.615) mark 0.6 as you final point. If 140/195 (=0.72) mark 0.8.)

2. Integer Lists: Write a lottery program that randomly chooses 7 numbers and 3 additional
numbers from 39. Hint:

 public static void main(String[] args) {
 List<Integer> balls = new ArrayList<Integer>();
 // fill balls with numbers 1-39, example: balls.add(4);
 // scrable balls (see Collections)
 // print 7 first "balls"
 // print the 3 additional balls
 }

3. Loops: The number of the 7 different lottery numbers can be calculated with the following
formula:

See: http://en.wikipedia.org/wiki/Combination

 formula 1 formula 2 formula 3

 39 39! 33*34*35*36*37*38*39
() = -------------- = ---------------------- = 15380937
 7 7! * (39-7)! 1*2*3*4*5*6*7

The result can be calculated using long type numbers. Write a function
long nOverK(int n,int k)

that gives the aforementioned result with tha call nYliK(39,7). The result cannot be
calculated from the middle formula 2 because 39! would greatly exceed the numberical
capacity of even the long type.

4. Lists: Even with the previous formula (3) the capacity of the long type may be exceeded if
one tries to use much larger numbers (the limit is now 515). One way of handling this is
simplifying the formula as much as possible before the calculation. First simplify formula 3
by hand as much as you can. Think about what you did. In the file Amount.java you have a
draft how to make the calculation if both the numerator and the denominator are kept as list
of multipliers. Carry out the methods fill, multiply and remove. The methods
have to function as written in the tests in the comments.

5. Lists: Implement the following method to the previous
int cancel(List<Integer> numerator, List<Integer> denominator, int
cancel)

demo10.odt/12.11.2008 1/2

https://trac.cc.jyu.fi/projects/ohj1/wiki/villeEn
https://trac.cc.jyu.fi/projects/ohj1/attachment/wiki/files/Amount.java?format=raw
http://en.wikipedia.org/wiki/Combination

Programming 1 / 2008 Fall Demo 10 / 17.11

so that it does as the documentation/commentation explains. Like this up to
nOverK(1733,7) = 9202167919706100768L

can be calculated.

6. Exceptions: Write using Double.parseDouble and exceptions a function
convertString(String s,double assumption) that can be used as follows:

 public static void main(String args[]) {
 double d1 = convertString("12.3",0.0);
 double d2 = convertString("12.3e",0.0);
 System.out.printf("%5.2f %5.2f",d1,d2); // 12.30 0.00
 }

B1. Examine how the BigInteger class works in Java and write nOverK(int n,int k)
using it.

GURU-tasks
G1. Figure out how to make nOverK(int n,int k) (henceforth known as C(n,k)) work

recursively, so:
C(n+1,k) = C(n,k) * f(n,k) //think of what the expression of f(n,k) is
C(k,k) = 1

Then using this write an iterative (a loop, not recursion) based solution where the
multiplications don't ”easily” exceed the capacity. With this algorithm we can get to results
< Long.MAX_VALUE/n. With formula 3 we got to results< Long.MAX_VALUE/(k!).

G2. Implement and test the following methods to the class Amount.java :

public static int simplify(List<Integer> numerator, List<Integer>
denominator)
public static int cancel(List<Integer> numerator, List<Integer>
denominator)

demo10.odt/12.11.2008 2/2

	Demo 10 / 17.11
	Tasks
	GURU-tasks

