
THERMODYNAMICS OF IRREVERSIBLE PROCESSES

The Experimental Verification of the Onsager Reciprocal Relations1

DONALD G. MILLER
Lawrence Radiation Laboratory, University of California, Livermore, California

Received August 28, 1959

CONTENTS

I. Introduction...................................................................... 16

II. Thermodynamical preliminaries..................................................... 16

A. Assumptions................................................................... 16
1. Classical thermodynamics.................................................... 16
2. Division into subsystems..................................................... 16
3. Local equilibrium............................................................ 16

B. Sketch of the formalism......................................................... 16
1. The entropy production...................................................... 16

2. The linear laws.............................................................. 17
3. The Onsager reciprocal relations............................................... 17

III. Thermoelectricity................................................................. 18

A. Definitions and descriptions of the effects.......................................... 18

B. Derivation of Kelvin’s relation................................................... 18

C. Experimental evidence for the Onsager reciprocal relation........................... 19

IV. Electrokinetics.................................................................... 19

A. Definitions and description of the effects.......................................... 19
B. Derivation of Saxfen’s and related equations........................................ 20
C. Data and verification of the Onsager reciprocal relation............................. 20

V. Transference in electrolytic solutions................................................. 21
A. The TIP equations............................................................. 22
B. Hittorf transference............................................................. 23
C. Electrochemical cells with transference............................................ 23
D. The Onsager reciprocal relation and its experimental verification..................... 24

VI. Isothermal diffusion............................................................... 25
A. The TIP description of diffusion.................................................. 25
B. Comparison with Pick’s law description........................................... 26
C. The test of the Onsager reciprocal relation......................................... 26

VII. Conduction of heat and electricity in anisotropic solids................................. 27
A. The classical equations.......................................................... 27
B. The TIP equations............................................................. 28
C. Properties of the thermal conductivity tensor...................................... 28
D. The experiments of Soret and Voigt............................................... 29
E. Reply to Casimir’s objection..................................................... 31

VIII. Thermomagnetism and galvanomagnetism............................................ 31

A. The general TIP equations for thermogalvanomagnetism............................ 31
1.   ......................................................................... 31
2. The linear laws and Onsager reciprocal relations................................. 31
3. A more convenient form...................................................... 32

(a) The transformed linear laws.............................................. 32
(b) The transformed Onsager reciprocal relations............................... 32

B. The isotropic metal............. 32
1. Form of the tensor with and without the field................................... 32
2. The Onsager reciprocal relations............................................... 32

C. Experimental definitions of the desired effects...................................... 32
D. The Bridgman relation and the experimental evidence............................... 33

IX. Cases with meager or inconclusive evidence........................................... 34
A. Chemical reactions............................................................. 34
B. Thermomechanical effects....................................................... 34

X. Assessment....................................................................... 34
XI. References........................................................................ 35

i This work was performed under the auspices of the U.S. Atomic Energy Commission.

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
JY

V
A

SK
Y

L
A

 o
n 

M
ar

ch
 2

7,
 2

01
9 

at
 1

0:
24

:2
0 

(U
T

C
).

 
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

 



16 DONALD G. MILLER

I. Introduction
In the last twenty years a thermodynamic theory of

irreversible processes (TIP) has been vigorously devel-
oped which, unlike its classical forebear, has been able
to treat irreversible phenomena in a detailed way. The
present macroscopic form of the theory (32, 45, 46, 61,
63, 65, 112, 113, 114, 125, 126, 130, 132) was suggested
primarily by the statistical mechanical investigations
of Onsager (125, 126). However the necessary concepts,
such as entropy production, linear laws, and symmetry
of coefficients, are based wholly on experiment and
were known long ago. For example, in the case of heat
conduction in solids, the entropy production was known
at least as early as 1887 (8), the linear laws as early as

1811 (55, 56), and the symmetry of coefficients was

suggested in 1851 (148) and first shown experimentally
in 1893 (143, 144). If these notions had been generalized
and applied to other phenomena, the theory might well
have appeared outright in macroscopic form. By his-
torical accident the interrelation of these notions was

not recognized until statistical mechanics showed the
way. In this review only the macroscopic theory will
be considered, leaving aside all statistical considera-
tions.

This theory of irreversible processes has been very
successful in treating many sorts of irreversible phe-
nomena. In some cases, such as thermoelectricity and
electrical transference in solutions, equations originally
derived by admittedly incorrect means have been put
on a rational basis. Despite the theory’s success, some

(5, 6) have considered that it was not adequately veri-
fied by experiment. Most of the controversy has been
concerned with the validity of the most important con-

sequence of the formalism, the Onsager reciprocal rela-
tions. The purpose of this review is to collect the pres-
ently available experimental data for a variety of quite
different irreversible phenomena and to show that this
evidence does indeed verify the Onsager reciprocal rela-
tions. Some of the data have been in the literature for
years, and part of them were originally obtained to
verify less general or incorrect theories. Thermoelec-
tricity, electrokinetics, transference in electrolytic solu-
tions, isothermal diffusion, heat conduction in aniso-
tropic solids, and thermogalvanomagnetic effects will
be the irreversible phenomena considered in detail.
Chemical reactions and the thermomechanical effects
will be discussed briefly.

II. Thermodynamical Preliminaries

To facilitate the thermodynamic description of the
various irreversible phenomena to be considered, the
assumptions and the general formalism of the theory of
irreversible processes will be discussed briefly. This ma-

terial has been covered more comprehensively in a

previous article (116; cf. 31, 68).

A. ASSUMPTIONS

1. Classical thermodynamics
All the concepts of classical thermodynamics are

assumed.

2. Division into subsystems

It is assumed that systems undergoing irreversible
processes can be divided up into infinitesimal subsys-
tems in which the usual thermodynamical variables
such as T, P, V, E, S, etc., have meaning. For example,
a heat-conducting rod can be divided up into a large
number of thin slices, each of which has a definite tem-
perature. Such an assumption is valid for most processes
but would fail in turbulent systems.

8. Local equilibrium,
It is assumed that each subsystem can be considered

as if it were in local equilibrium, despite the gradients
of the thermodynamic variables which give rise to the
irreversibility. This assumption permits one to apply
all the results of classical thermodynamics to a given
subsystem. It will be valid if perturbations from equi-
librium are not too large.

B. SKETCH OF THE FORMALISM

1. The entropy production

By means of the above assumptions, the entropy
production can be calculated. This notion is based on
the Clausius inequality

dS >   T (irrev.) (1)

a theorem of classical thermodynamics (33a). S is the
entropy, q is the heat transported across a boundary of
the system, T is the temperature of the surroundings
at the boundary, 5 refers to an inexact differential, and
the summation is applied if there are boundaries of the
system at different temperatures. Expression 1 can be
turned into an equality (the entropy equation) in this
manner (63a, 130, 132)

dS =  I + dSint (2)

where d<Sint is called the “entropy created internally”
during the irreversible process, and by equation 1 is
always positive. By means of assumptions 2 and 3,
these equations may be applied to any subsystem. The
“entropy production”   is now defined to be the rate
of change of Sint per unit volume, i.e.,

where t is the time and V is the volume. In any par-
ticular case, dSiBt is calculated from the defining equa-
tion 2 as follows: The quantity d£ is computed for a
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particular subsystem in the usual way by integrating
Sq/T along some reversible path between the initial and
final states associated with some time interval. Assump-
tion 3 is used in this part of the calculation. Next the
quantities Sq/T at each boundary of the subsystem for
the actual irreversible process are calculated and
summed. It is often convenient to compute 5q by a

separate calculation of dE + Sw, where E is the energy
and w is the irreversible work done by the system. Sub-
stitution into equation 2 gives d<Sint. (Some simple ex-

amples are given in reference 116.)
The quantity    is known as the “dissipation” and

was known to Bertrand (8) in 1887 for the case of heat
conduction. Other early workers who calculated   or
   were Rayleigh (135), Natanson (121), Duhem (39),
Jaumann (87, 88), and Lohr (96, 97). More recent calcu-
lations are summarized in De Groot’s book (63), and
many references are given there and by Denbigh (32).

When    is calculated for any system, it is always
found to be of the form

  = J<x< (4)

or its vector or tensor analogs. The J< are flows of
matter, heat, or electricity, and the A,· are generalized
forces such as gradients of chemical potential, tempera-
ture, or electrical potential. Take for example, a fluid
of k constituents (some of which may be charged),
which is situated in a gravitational field and in which
gradients of concentration and temperature exist.   
can be written in one-dimensional form for a given sub-
system as (117):

M-iDHE]
k

Here A denotes the cross-section, x the length, nk the
number of moles of k, Mk the molecular weight, ek the
electrical charge in faradays, at_the chemical potential
(the partial molal free energy Fk), g the acceleration
due to gravity, and   the electrical potential. The
parentheses are the flows J of heat and matter per unit
cross-section, and the square brackets are the general-
ized forces A. More familiar cases will be considered
shortly. It should be remarked again that this sort of
calculation depends on assumptions 2 and 3 and would
not be possible in systems with turbulence.

2. The linear laws

It was noticed experimentally long ago that in simple
cases the forces and flows of    are linearly related to
each other. Thus, for example,

(a) Pure electrical conduction
   = I& (6a)

I={l/R)& Ohm’s law (124) (6b)

(b) Pure heat conduction

’ '-•'•HiE) <7*>

J,= - (K/T)^ Fourier’s law (55, 56) (7b)

where I is the current, S is the e.m.f., R is the resistance,
Jq is the flow of heat, and K/T is the heat conductivity
coefficient. Note that equation 6a, the Joule heat, is
already familiar as a dissipation energy.

In general if there is more than one irreversible proc-
ess occurring, it is found experimentally that each flow
Ji is not only linearly related to its conjugate force A<
but is also linearly related to all other forces found in
the expression for   . If the general linear coefficient is
denoted by L,y, the general form for J,· is

Ji=Yf LiiX,· (8)

For example, in thermoelectricity the flow of current is
caused by the temperature gradient as well as the usual
electric potential gradient. The connection is clear from
a microscopic viewpoint, because heat is conducted
through metals in part by the transfer of energy from
the hotter higher-energy electrons to the cooler lower-
energy ones.

8. The Onsager reciprocal relations

So far, no ideas have been presented above which
were not used extensively before 1900. The only signifi-
cant addition of this century to the theory of irreversible
thermodynamics (63, 125, 126) is the following: Pro-
vided the Ji and A,· are chosen from the expression for   
and are independent, the phenomenological coefficients L,¡
of the linear laws satisfy the symmetry relation

Li,· —   µ (9)

for all i and j. In the presence of magnetic fields, equa-
tion 9 takes the form

Um = Lif-B) (10)

where B is the magnetic induction.
As noted before, this kind of relation was found for

heat conduction in anisotropic solids. However, the
first general statement of this principle was given by
Onsager (125, 126) in 1931, as a consequence of a

statistical mechanical argument. It is known as On-
sager’s principle, and equation 9 states the Onsager
reciprocal relations. The power of this simple relation
will be seen in the following sections.

In any theory, certain axioms or principles are as-

sumed. In a purely macroscopic theory, the validity of
the axioms and their consequences can be compared
directly with experiment. In this way the validity of
classical thermodynamics was shown long ago. Simi-
larly, Onsager’s principle can be taken as an axiom
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supplementary to classical thermodynamics, and its
experimental validity investigated. This is a worthwhile
task, even in view of the existing statistical mechanical
derivations, because the conceptual foundations of equi-
librium statistical mechanics alone are the subject of
considerable controversy. Even more specialized and
controversial hypotheses are required for the derivation
of equation 9.

The experimental evidence for the validity of On-
sager’s reciprocal relations in a wide variety of different
irreversible processes will now be exhibited.

III. Thermoelectricity

A. DEFINITIONS AND DESCRIPTION OF THE EFFECTS

Consider a thermocouple consisting of two metals A
and B whose junctions in electrical contact are at T
and T + dT, as shown in figure 1 (63b, 73). As a result

METAL A

Fig. 1. Schematic diagram of thermocouple. The terminals
of a potentiometer (Seebeck effect) or battery (Peltier effect) are
at Xq and xq.

of the temperature difference, heat and electricity will
flow and potential and thermal gradients will be set up.
There are a number of thermoelectric effects depending
on the complexity and degree of anisotropy of the
system. It is assumed that the above system is isotropic,
and only the Seebeck and Peltier effects will be con-

sidered.
In the Seebeck effect an e.m.f. 8 is measured between

the two junctions P and Q when no current is permitted
to flow. Thus S is measured with a potentiometer,
whose e.m.f. terminals at x0 and x'a are at the same tem-
perature T0 to avoid thermoelectric e.m.f.’s inside the
measuring system. This 8 can clearly be written

where   is the electrical potential. Its derivative

ds
_ d  dx — d 

dT dx dT dT K 1

is called the thermoelectric power.
In the Peltier effect, the two junctions are kept at

the same temperature, but a current is passed through
the wires. A quantity of heat Jq will be absorbed at one

junction and a quantity —Jq at the other. This quan-

tity of heat is found experimentally to be proportional
to the electrical current I; hence the Peltier heat,  , is
defined as

  = (/,//) dr-o (13)

B. DERIVATION OF KELVIN’S RELATION

The above system is easily analyzed by the theory
of irreversible processes in a very direct way as follows.
It can be shown quite easily (63b) that for the thermo-
couple as a whole

»-'·(-*£) (-1)
Hence the linear relations are

Jq — Ln ^
1 d T\
T dx) + Li2 ^

_

dx) (15)

II
1 dT\
T dx) + Ll 2 ^

d  \
dx) (16)

The conditions of the Seebeck experiment are 1 = 0,
and thus by equation 16

— = — (- JnL· (i7)dT \dT),.o TLn U 0

From the definition of the Peltier heat and equations
15 and 16, one readily obtains:

 -(/,//) dr-o = fjj (18)

Thus one has:

Lu/Ln =  / ^| (19)

According to equation 9 = Ln; whence

^= ~  (20)

Conversely, if   = Td8/dT, the Onsager reciprocal
relation will be verified. Equation 20 is a well-known
expression of thermoelectricity, derived by Kelvin in
1854 (152) by an admittedly unjustifiable argument.
Until the theory of irreversible processes, many imagin-
ative but incorrect attempts were made to justify it
(16a, 47, 48, 153).

More elaborate derivations of Kelvin’s relation con-

sider the system to have two components, a fixed metal
and moving electrons (21, 36, 37, 122a). Such deriva-
tions are helpful in understanding the Thomson heat
as well as being valuable in showing the clarification
which can result from a wholly macroscopic treatment.
The arguments have been extended to anisotropic
media by Domenicali (36, 37), whose papers along with
Nye’s book (122a) are especially recommended.

It can also be shown by means of the theory of irre-
versible processes that an electrolytic cell whose elec-
trodes are identical except for being at different tern-
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peratures and whose solution is of uniform composition
behaves in the same way as a metallic thermocouple
and will, if the Onsager reciprocal relations are valid,
also obey equation 20 (2, 78, 120).

C. EXPERIMENTAL EVIDENCE FOR THE ONSAGER
RECIPROCAL RELATION

Not every experimental measurement i§ suitable for
comparison, because it is well known that minor im-
purities have an enormous effect on the thermoelectric
properties of metals. Consequently a test of the validity
of the Onsager reciprocal relations for metals will be
significant only if dS/dT7 and   are determined on the
same specimen. Owing to the difficulty of directly deter-
mining  , not many such measurements exist. In table
1 are the values of  /  and dS/dT7 measured on the

TABLE 1

Test of the Kelvin relation for metallic thermocouples

Couple
Tem-
pera-
ture

  ds*   L\2 Refer-
T d T Tds/dT Lai ence

Cu-Ag..............
°c.
0 -1.8 -2.1 0.86 (82)

18 0.1 0.2 0.5 (27)
Cu-Al............... 15.8 2.4 3.1 0.77 (27)
Cu-Ni.............. 0 18.6 20.0 0.930 (82)

14 20.2 20.7 0.976 (7)
22 20.5 22.3 0.919 (27)

Cu-Pt............... 0 3.66 3.67 0.997 GO)
Cu-Fe.............. 0 -10.16 -10.15 1.000 (10)

19 -9.9 -12.9 0.77 (60)
0 -13.22 -13.24 0.998 (4)

Cu-Gerroan silver.... 0 25.25 25.22 1.001 (10)
Cu-Nickeline........ 0 18.90 18.88 1.001 (10)
Cu-(70% Sn, 30% Pt). 0 2.30 2.32 0.991 (10)
Cu-(70% Pd, 30% Pt). 0 1.06 1.01 1.05 (10)
Cu-Hg.............. 13.9 61.9 61.9 1.00 (150)

56.2 73.6 73.5 1.00 (150)
77.7 79.0 79.4 0.995 (150)
99.7 84.9 85.4 0.994 (150)

132.2 92.8 94.6 0.980 (150)
184.4 107.6 108.0 0.996 (150)

Cu-Bi i.............. 20 -47 -47 1.00 (12)
Cu-Bi i.............. 20 -71 -66 1.08 (12)
Cu-(Bi 45° from hex-

agonal axis)........ 20 -82 -81 1.01 (12)
Cu-Bi............... 20 -65.9 -67.2 0.98 (28)
Cu-Bi (3.75% Sn).... 20 37.0 35.4 1.04 (28)
Cu-Bi (6.36% Sn).... 20 39.8 42.7 0.93 (28)
Cu-Bi (9.93% Sn).... 20 35.6 38.0 0.94 (28)
Cu-Constantan....... 15 35.3 35.7 0.989 (7)

20 37.7 38.9 1.03 (159)
30 40.5 41.8 1.03 (159)
40 43.2 44.6 1.03 (159)

Fe-Ni............... 16 33.1 31.2 1.06 (7)
Fe-Hg.............. 18.4 16.72 16.66 1.004 (128)

56.5 16.17 16.14 1.002 (128)
99.6 15.57 15.42 1.010 (128)

131.6 14.89 14.81 1.005 (128)
182.3 13.88 13.74 1.011 (128)

Fe-Al............... 0 11.0 11.5 0.956 (4)
Fe-German silver..... 0 19.97 20.0 0.998 (4)
Cd-Ni.............. 17 22.1 22.6 0.978 (7)
Cd-Pb.............. 0 3.03 3.02 1.00 (4)
Zn-Ni............... 17 22.1 22.0 1.00 (7)
Zn-Sn............... 0 2.65 2.56 1.04 (4)
Zn-Bi............... 0 25.4 25.1 1.01 (4)
Bio—Bigo............ 27 46.0 48.3 0.95 (50)
BÍ45—Bigo............ 27 33.0 27.7 1.15 (50)
Bi-Pb............... 0 -17.5 -17.2 1.02 (4)

• All values are in microvolts per degree.

TABLE 2

Test of the Kelvin relation for electrolytic thermocouples

Couple
Electrolyte

Concen-
tration

Tem-
pera-
ture

¿¡TdS/dT
 

¿¡Tds/dT

moles/liter °c. kcal./mole kcal./mole

2 25 10.8 (17)* 10.9 (19)* 0.99
  f CuS04...... 1

^imso....... 0.01 ~25 8.9 (14) 8.9 (14) 1.00

/HgiCb.....
H«-\KC1........

Said.
1

25 7.1 (94) 8.2 (92) 0.87

0.01 25 -4.65 (93)
-2.93 (93)

-4,47 (93) 1.03
0.1 25 -2.89 (93) 1.02
0.316 25 -2.30 (93) -2.13 (93) 1.08
1.0 25 -1.82 (93) -1.38 (93) 1.32

* References are given in parentheses.

same specimen for a number of metallic thermocouples.
Table 2 contains the limited data obtained since 1900
for electrolytic thermocouples.

The ratio Ln/Lm is remarkably close to unity in all
but a few cases, leaving no doubt that the Onsager
reciprocal relation is verified within the error of the
experiments.

IV. Electrokinetics

a. definitions and description of the effects

Some of the various electrokinetic quantities (59,
104a) will now be taken up. Consider a fluid system
which may have several components (some of which
may be charged), and suppose this system divided into
two reservoirs separated by a porous diaphragm. The
diaphragm may be a single capillary, a porous frit, or

even pressed fibers such as compressed glass wool. Into
each reservoir dips an electrode as shown in the sche-
matic diagram of figure 2.

If a fixed potential difference S is impressed across

the electrodes, then it is found that as a consequence
of the current flow I, a fluid flow J through the dia-
phragm D results until finally a steady state is reached.
At this point the pressure difference AP = P2 —tPi
just balances the impressed 8, and the flow J becomes
zero. The observed AP depends on both the fluidfarcd
the nature of the diaphragm but is proportional to¿8.
The forced flow of fluid through a diaphragm by an

Ei

—I1—1  
e2 - >

* * Pi*· ·
• » v 1. · · · •P¿ .

·7 ;
*

D
J —

I —

Fig. 2. Schematic diagram of apparatus to measure electro-
osmotic pressure.
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Fig. 3. Schematic diagram of apparatus to measure streaming
current.

impressed e.m.f. is called electroosmosis. Thus for a

given system and diaphragm, the electrodsmotic pressure
(EOP) can be defined as

EOP = (  / )/_o (21)

Now consider the converse experiment with the same
fluid and diaphragm in which the electrodes are short
circuited (i.e., 8=0) and the fluid forced through the
diaphragm by a piston as shown in figure 3. If an am-

meter A is placed between the electrodes, a current I
is observed which is proportional to J but depends on

the fluid and the diaphragm. A quantity called the
streaming current (SC) can be defined as

SC =(///)  _  (22)

There are various other combinations of experimental
conditions which lead to other defined quantities. Thus
if the fluid is forced through the diaphragm with a pres-
sure difference   , and the 8 resulting is measured with
a potentiometer (I = 0), then the streaming potential
(SP) can be defined as

SP = ( /  ),_  (23)

Similarly, when an 8 forces the fluid through the dia-
phragm along a horizontal tube so that AP = 0, both
J and I can be measured, giving rise to the quantities
electrodsmosis (EO),

EO = (J/I)ÍP.o (24)

and 2nd electrodsmosis

2nd EO = (J/ ) ip_o (25)

All of these quantities, as well as the resistance R,
have been measured in the experiments that will be
used to test the Onsager reciprocal relations.

B. DERIVATION OF SAXÉn’S AND RELATED EQUATIONS

The general situation may be analyzed by the theory
of irreversible processes (63c, 100, 101, 108, 109, 116,
129, 132a). It has been shown that the entropy produc-
tion for this type of system is

   = JAP + IS (26)

so that the linear laws are

J = LuAP + Lu& (27a)
7 = LnAP + LnS (27b)

It is easily seen that
EOP = (AP/sV-o = -Pit/Pn (28)

SC = (7/J)6_o = U/Ln (29)

SP = (S/AP),.o = — Lsi/L» (30)

EO = (//7)ap_„ = WLm (31)

2nd EO = (J/S)   -  = Pit (32)

R = (8/7)íp_o = 1/7/22 (33)

It is clear that the assumption Lu = L2i entails
various relations among the experimental quantities;
e.g·,

EOP = -SC (34)

-EO = SP (35)

-(2nd EO)R = SP (36)

Conversely, the validity of these relations entails
¿12 = ¿21.

The first of these, equation 34, is known as Saxén’s
relation and was originally derived using microscopic
models of the details of the electrokinetic process (139).
The analysis assuming the Onsager reciprocal relations
shows that this result, and the others as well, should be
valid independently of any models.

C. DATA AND VERIFICATION OF THE ONSAGER
RECIPROCAL RELATION

It should be remarked that electrokinetic experiments
have the same sort of difficulty as thermoelectric ones.
Two ostensibly identical diaphragms may behave quite
differently. Results even on the same diaphragm may
change with time and are very sensitive to impurities,
especially in dilute solutions. The data collected below
have been determined on systems which used the same

diaphragm for the different kinds of electrokinetic meas-
urements.

Table 3 (139) contains the experimental evidence for
Saxén’s relation, and table 4 (38) contains that for
equation 35. These latter results are stated to have
significant experimental error.

TABLE 3

Test of Saxen’s relation (1S9)

Clay Plugs; Aqueous Solution
-1*

"sc"
1*

EOP

—EOP Lia

SC
"

Ln

H%ZnSO<.......................... 0.356 0.352 1.01
%% ZnS04......................... 0.386 0.388 0.99

0.377 0.377 1.00
0.381 0.379 1.01

1% ZnS04.......................... 0.350 0.338 1.04
0.342 0.350 0.98

1% CuSO*.......................... 0.392 0.380 1.03
0.385 0.389 0.99
0.378 0.387 0.95

2% CuS04.......................... 0.233 0.237 0.98
H%CdS04......................... 0.633 0.609 1.04
1% CdS04.......................... 0.532 0.567 0.94

0.116 0.115 1.01

* 1/SC and 1/EOP are given in cm.8,3/g.1,a.
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TABLE 4
Teat of equation 85 (88)

Glass Slit:
Concentration of Aqueous

Solution

KC1 BaClj Aide

-EO X 10io SP X 1010
-EO
SP

-EO X 1010 SP X   *»
-EO

SP
-EO X lQio SP x 1010

-EO

SP

equiv./liter cc./eec e.8.u. e.e.u. cm.2/dyne cc./eec. e.e.u. e.e.u. cm.2/dyne cc./eec. e.e.u. e.e.u. cm.2/dyne

10-8...................... 132 95.0 1.4 77.9 62.2 1.25 70.9 80 0.88
5 X 10-‘.................. 11.2 18.5 0.61 12.4 11.8 1.05 15.7 16.6 0.94
10-»...................... 9.9 8.0 1.23 4.8 5.3 0.91 7.0 8.1 0.87

T at 23°C.

Much of the data for verifying equation 36 have been
reported in terms of the zeta potential f, a concept
based on the microscopic models. The f potential is
defined in terms of 2nd electroosmosis by

—¿"EO =
4 yl(J / S) ¿p-o

Dr* (37)

and in terms of streaming potential and R by
4t,I(S/AP)/_of9P~- RDi* (38)

where   is the viscosity of the fluid and D its dielectric
constant. The quantities r and l are the radius and
length of a diaphragm consisting of a single capillary.
If the diaphragm is a porous frit, l/r2 is replaced by
the equivalent quantity    referring to the network of
capillaries making up the frit, where K is the effective
cell constant for conductivity and is the same for both
£eo and f sp· If equation 32 is substituted into equa-
tion 37 and if equations 30 and 33 are substituted into
equation 38, one obtains:

Seo = —La[4r¡l/Dr*] (39)

fsr = -|jj (|) W/Dr*] = -Lu [4  /Dr*] (40)

Thus
feo/fsp = Lij/Lji (41)

The evidence that    /Csp = 1 is given in tables 5

(18), 6 (136), and 7 (158). The data in table 5 actually
were not obtained from the same diaphragm but from
a protein-covered capillary (SP) and an electrophoresis
cell covered with the same protein. The larger devia-
tions from 1.00 in table 5 compared to those in tables 6
and 7 may be due to this circumstance.

In table 8 are calculated values of Lu and Lu for
quartz-acetone, based on 2nd electroosmosis, streaming
potential, and R (102).

Also included are L,y determined using sinusoidally
varying voltage and pressure (29). This kind of experi-
ment gives values of L,y which are frequency dependent.
However, the values approach a constant value at suffi-
ciently low frequency. In the table only these low-
frequency values are included. It is interesting to note

TABLE 5

Test of equation 86 (18)

Protein-covered Pyrex;
Aqueous Solution HCl fEo/fsp = La/Lii

molee/liter

0.202% egg albumin.................. 3.5 X 10-8 0.96
0.174% gelatin...................... 5 X 10-» 0.95
0.166% gelatin...................... 6.3 X   -* 0.79
0.166% gelatin...................... 7.0 X 10-8 1.19
0.180% gelatin...................... 7.5 X 10-< 1.45
0.175% gelatin...................... 7.5 X 10-< 0.S2
0.226% gelatin...................... 8.0 X 10-8 1.07
0.207 % gelatin...................... 6.5 X 10-* 1.14
0.219% gelatin...................... 5 X 10-8 1.03

T = 25°C.

that Lu/Ln = 1 within the experimental error even at
higher frequencies. Above 200 cycles per second phase
differences cause difficulty.

Considering the well-known difficulty of carrying out
these experiments, it is clear that Lu = Ln within ex-

perimental uncertainties.
There are also some recent electroosmosis and stream-

ing current data of Rutgers and de Smet (137) for iso-
amylammonium picrate in organic solvents, but they
found that the EO was dependent on S, which implies
that the linear laws (equation 27) are not adequate for
this system. However at low values of S, the linear
approximation will become better, and if fEo at the
lowest value of S is compared with f sc at concentra-
tions of 1 ,ueqmv./l. or larger, the ratio is close to 1.

V. Transference in Electrolytic Solutions
The relation between certain electrochemical effects

in an isothermal system consisting of a single binary
electrolyte in a neutral solvent will now be considered:
namely, Hittorf transference and electrochemical cells
with transference.2

2 This simple case has been chosen for review because it is the
only one for which the cell e.m.f. is independent of the way in
which the liquid junction is formed. Systems with more than one

electrolyte can be analyzed in the same way as this one (117), but
the e.m.f. depends on the concentration distribution in the junc-
tion, and thus in general will be a function of time. To the author’s
knowledge, no e.m.f. experiments have ever been carried out on
these more complex systems to determine transference numbers.
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A. THE TIP EQUATIONS

Suppose the electrolyte CA ionizes into cations C and
anions A as follows:

CA = nC» + M- (42)

where n and r2 are the ionization stoichiometric coef-
ficients for cations and anions and Z\ and z2 are the
charges on the ions with due regard to sign. Let µ 

represent the chemical potential of the electrolyte as a
whole. Then by definition

M12 =  µ  + ryi2 (43)

where µ  and µ2 are the chemical parts of the chemical
potential per mole of the ions; moreover,

n*i + r&i = 0 (44)

TABLE 6

Test of equation 86 (186)

Jena 16 III Capillary;
Concentration in

µ Equivalents per Liter
of Aqueous Solution

KC1; Capillary A, r =

0.0243 cm.
KC1; Capillary B, r =

0.0152 cm.
KC1; Capillary C, r -

0.0109 cm.
KC1; Capillary D, r —

0.00516 cm.

fEO fSP
fEO

fSP
fEO fsp

fEO

fsp
fEO fsp

fEO

fsp
fEO fsp

fEO

fap

mv. mv. mv. mv. mv. mv. mv. mv.

0....................... 149 159 0.94 152 160 0.95 153 168 0.91 156 155 0.99
1....................... 147 165 0.89 144 155 0.93 147 153 0.96 149 152 0.98
2....................... 146 158 0.92 139 150 0.93 143 151 0.95 145 147 0.99
5....................... 144 155 0.93 139 144 0.97 139 148 0.94 142 145 0.98

10....................... 141 148 0.95 132 141 0.94 136 144 0.94 136 141 0.96
20....................... 139 145 0.89 130 136 0.96 136 138 0.99 135 137 0.99
50....................... 133 138 0.96 124 129 0.96 127 133 0.96 123 127 0.97

100....................... 122 129 0.95 116 123 0.94 119 126 0.94 116 119 0.97
200....................... 118 130 0.91 110 113 0.97 113 120 0.94 107 107 1.00

HC1; Capillary D KOH; Capillary D CaCls; Capillary D AHNOaJs; Capillary D

fEO fEO fEO fEO
fEO — fEO fsp — fEO fsp — fEO fsp

fsp fsp fsp fsp

mv. mv. mv. mv. mv. mv. mv. mv.

1....................... 132 135 0.98 153 156 0.98 122 123 0.99 130 132 0.98
2....................... 122 124 0.98 149 156 0.96 115 117 0.98 120 121 0.99
5....................... 100 104 0.96 153 157 0.97 107 108 0.99 60 64 0.94

10....................... 73 77 0.95 154 165 0.93 99 101 0.98
20....................... 61 61 1.00 153 162 0.94 91 92 0.99
50....................... 151 153 0.99 81 82 0.99 -42 -38 1.11

100....................... 146 152 0.96 75 76 0.99 -44 -46 0.96
200....................... 139 139 1.00 69 69 1.00

Values for hydrochloric acid, potassium hydroxide, calcium chloride, and aluminum nitrate were read from the graphs given in reference 136. T = 22.5°C.

TABLE 7

Test of equation 86 (158)

KNOs; Pyrex Capillary KOH; Pyrex Capillary Ba(NOs 2; Pyrex Capillary Ca(NOs)2; Pyrex Capillary KNOs; Pyrex Powder

µ Equivalents
per Liter of fEO fEO fEO fEO fEO

Aqueous Solution fsp fEO fEO fEO
fSP fSP fsp fSP fSP

mv. mv. mv. mv. mv. mv. mv. mv. mv. mv.

0............. 139.8 138 1.01
2............. 111 115 1.04 68.0 68.5 0.99
5............. 145 133 0.92 150 151 0.99 101 101.5 1.00 59.0 56.5 0.99 76 80 0.95

10............. 141.9 130 0.92 155.8 154 0.99 93.5 94 0.99 52.3 52.1 1.00 81 84 0.97
20............. 136.8 125.5 0.92 153 154 0.99 85.5 86.3 0.99 45.7 45.8 1.00 86 89 0.97
50............. 147.9 147 1.01 75.3 75.2 1.00 37.5 38.1 0.98 92.5 95 0.97

100............. 119.2 119 1.00 142.2 142 1.00 67.7 67.5 1.00 31.6 31.7 1.00 95 97.5 0.97
200............. 111.8 110.5 1.01 136.0 136.5 1.00 60.5 60.2 1.00 25.5 25.5 1.00 97 99 0.98
300............. 98 100 0.98

Average T....... 18°C. 16°C. 19°C. 19°C. 19°C. 20°C. 19°C. 19°C. 23°C. 19°C.

Values of fsp for barium nitrate (capillary), lanthanum nitrate (capillary), and potassium nitrate (powder) were from a graph based on data on Wijga’s tables IV,
V, and XXV, respectively.

Values of fEO for potassium nitrate (powder) were obtained from a graph of data in tables XIX and XX. Note that the greatest deviations in the values of f are

for systems whose temperatures for the measurement of EO and SP differed the most.
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TABLE 8

Test of equation 9

System L.2 Lli
L12

¿21

Pressure
Fre-

quency RencT

c.g.s. - e.a.u. c.g.e.-e.a.u. cycles/ sec.

Quartz powder
plug-acetone.. 0.028 0.029 ±0.002 0.96 ±0.08 0 (102)

Glass frit-water:
A............ 0.066 0.074 0.89 20 (29)
B............ 0.060 0.056 1.07 20 (29)
C............ 0.053 0.058 0.91 20 (29)
D............ 0.072 0.073 0.99 20 (29)

Glass capillary-
water........ 0.00050 0.00045 1.11 40 (29)

Cooke’s Lij and Lorenz’s c%j correspond to our Lji.
Lorenz’s experiments were at 30°C.
The maximum estimated error in each of Cooke’s Lij is 6 per cent, or 9 per

cent overall.

the fraction of the current carried by the ¿th ion relative
to the solvent.3

The current (in faradays) is

I = VJ + V( = Vi + Vs (52)

hence

z-J'·
th. =

'

1—tj (uniform composition)ZiJ J   22V 2

At uniform composition, however,

 µ,_ µ. dm_ qdz dm dz

where m is the molality; hence

Xi = —     3^ (uniform composition) (55)dz

(53)

(54)

For such a system (63d),
Ta =   , + /2Xs + J,A3 (45)

+«'af] <«>

where the subscript 3 refers to the solvent (z3 = 0),  
is the electrical potential, and SF is the faraday. It was
mentioned earlier that for the Onsager reciprocal rela-
tions to be valid, the /,· or Xi or both must be inde-
pendent. This is not the case here, since the Gibbs-
Duhem equation relates the chemical potentials. Thus

ni2diU2 +    µ  = 0 =  ^   µ  +  µ2) +    µ s

=   3µ  +  23µ2 +  83µ2 (47)

where  ,· is the number of moles. However, by equations
46 and 44, this result is equivalent to

     + n?Xz -f-   '¿Xi — 0 (48)

Therefore, by eliminating X3, equation 45 is obtained
in the independent form:

TV - (a -%) , + (A
-  ) X, (49)

= J[Xi + J[Xi

The flows J\ can be looked on as motion relative to the
solvent, whereas J, are flows relative to the apparatus.
The linear laws written in terms of J' and Xi are now

suitable for testing the Onsager reciprocal relations.
They are

J[ = LnXi + 1*2X2 (50)

J't = I*tX1 + L22X2 (51)

B. HITTORF TRANSFERENCE (104b)

Suppose a current I is passed through the system,
with the solution at uniform composition throughout.
The Hittorf transference number, t), can be defined as

Thus by equations 50, 51, and 55,

µ _ _Zi (Vn + Z2L12)_ zeox
1 z\L 11 + ZiZ2(Li2 + L21) + z\lm

and similarly for t\.

C. ELECTROCHEMICAL CELLS WITH TRANSFERENCE

(32a, 117, 157)

Now consider an electrochemical cell which has two
identical electrodes and a single electrolyte but which
may have a varying composition, e.g.,

Pb | PbCl2(mi) i PbCl2(m2) | Pb

where is the molality. In such a system diffusion will
occur, and owing to the different mobilities of the ions
a charge separation will be induced. After a very short
time, much less than a microsecond, however, the
powerful coulombic effects speed up the slow ions and
slow down the fast ones so that no electric current
flows through the solution. Thus

7=0 = z,J[ + Vi (57)

a relation expressing the condition of electroneutrality.
From this expression, the liquid-junction (diffusion)

potential is calculated by substituting equations 50 and
51 in equation 57, applying equation 46, and finally
solving for £Fd . The result is

_ (ziLu +  2 2 ) µ  + (z,Li2 + ZiLm)áu2  Vn + z,z2(L,2 + Ui) + z\Ln
( '

Now define the cell or e.m.f. transference number t\ of
ion 1 to be

(1 _ _Z1L11 + Z2L21_ z.QX
Zl ZfLu + Z,Z2(Ll2 + Zz2i) + z¡¿22

3 A rigorous general definition of the Hittorf transference
number valid for nonelectrolytes as well as ions and based on the
actual experiment is given in reference 117. The analysis in
detail, using the flows  -, yields (equation 17 (117)) our equation
53 based on the definitions above.



24 DONALD G. MILLER

and analogously for ion 2. Then the diffusion potential d. the onsager reciprocal relation and its

becomes experimental verification

- id* = íí d« + ^ dM2 (60)
Zl Zi

Note that these transference numbers need not be the
same as the corresponding Hittorf number; they will be
identical only if = Ln.

It should be emphasized that the classical derivation
of the diffusion potential, due essentially to Helmholtz
(75), is not correct, because this system is irreversible
owing to diffusion. Classical methods can be used only
if the states are in equilibrium.

Since the quantities  , µ , and µ2 are not experi-
mentally accessible, it is necessary to consider the whole
cell including the electrodes. Of the two ways to include
the electrodes, the most familiar is the one given in
most chemical thermodynamics or electrochemistry
texts and is based on passing a faraday through the
cell. A better way (33b, 64, 138) is based on the equi-
librium between electrons, electrode, and solution which
exists during a potentiometric measurement. The re-

sults are of course the same, and for a concentration
cell whose electrodes are reversible to the anion are

   = -

t6

nzi (61)

where S is the potential difference measured at the po-
tentiometer terminals, and a and ß represent the anode
and cathode, respectively. For electrodes reversible to
the cation, replace the subscript 1 in t\, rh and Zi by
subscript 2.

Since the chemical potential in terms of the activity
a is

M12 = m°2 + &T In 0i2 (62)

where É is the gas constant, equation 61 can be written:

RT
— d ln an
nzi (63)

Thus if a series of measurements of 8 is done at
various concentrations and if the activity ai2 is already
known by other means, t{ is obtained from the experi-
mental quantities using the derivative of equation 63;
namely,

    
_

ds
ß 

'

d In an (64)

Sometimes ln ot2 is obtained from e.m.f. measurements
on cells without transference, for which the differential
e.m.f. dS* is

ds* RT
     d ln cti2 (65)

Consequently t\ is often obtained from the equation

r= ds.
1 ds* (66)

If, as is ordinarily assumed, the Hittorf and cell
transference numbers are the same, then from equa-
tions 56 and 59

t\ __
z¡Ln -f- ZiLn

_
ziZ/n + z2L2,

__ i|
Zl   z.zyL,·,·   ZiZjLij Zl ^

Clearly the equality of t\ and t\ entails the Onsager
reciprocal relation

L12 — L21 (68)

for electrochemical systems with transference.
In table 9 are collected the t[ and tl for a number of

salts which were investigated at a number of concen-
trations. In table 10 are some for which a fewer number
of comparisons were possible. In cases where no Hittorf
measurements are available, the equivalent moving
boundary results are given. It should be noted that the
measurements of t\ are more difficult, since they involve
the differentiation of two sets of experimental data,
magnifying the errors of each set.

In table 11 are some less accurate transference data,
denoted by t{, determined from gravitational and cen-

trifugal cells. The equations were not derived above,
but the argument is essentially the same as for the case
of the concentration cell (117). The definition of t\ is
exactly the same as that of t{ involving exactly the same

numerical values of L<¡ (apart from a negligible pres-
sure dependency). The data on chlorides were obtained
with gravitational cells for which the 8 is only a few
microvolts per meter. Considering the difficulty of such
measurements, the agreement is remarkably good. The
centrifugal cell measurements on the iodides were done
with modern techniques, but potassium iodide is the
only case where a Hittorf or moving boundary meas-

urement exists at the same T and concentration.
The references are preceded by E,  , M, and G for

cell, Hittorf, moving boundary, and gravity-centrifugal
measurements, respectively. If the temperature of
measurement is other than 25°C., it is noted in °C. in
parentheses after the value of t^ The quantities c and
m are concentrations in moles per liter and moles per
kilogram of solvent, respectively.

The agreement between the two types of transference
numbers is very good and within the errors of experi-
ment. However, by equation 67 if ZiZiLn is small com-

pared to 2,· ZíZjLn, a small error in t[ — t\ will result
in a large per cent error in Ln — Ln- Electrolyte theory
(127) does in fact predict that Ln will be relatively
small, being zero at infinite dilution and increasing as

the concentration (and the ionic interaction) increases.
Some (unpublished) rough calculations from experi-
mental data indicate that the per cent error in (Ln —

Ln)/Ln is very roughly 10 (   — tl)/mllz for strong
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TABLE 9

Teat of equation 67 (concentration cells)

Salt
Concentration in c or m

Reference

0.005 0.01 0.02 0.05 0.1 0.2 0.5 1.0

HCl*....................... A 0.831 0.832 0.834 0.836 0.838 0.843 0.845 E (71)
18°C...................... A 0.832 0.833 0.833 0.834 0.835 0.840 0.844 H (81)

HCl........................ A 0.824 0.825 0.827 0.830 0.830 E (71)
25°C...................... A 0.824 0.825 0.827 0.829 0.831 M (98)

Li Cl....................... A 0.335 0.333 0.331 0.326 0.320 0.313 0.307 0.281 E (89)
25°C...................... A 0.330 0.329 0.327 0.323 0.319 0.312 0.301 0.287 H (89)

BaCla...................... A 0.443 0.440 0.436 0.427 0.418 0.405 0.381 0.353 E (90)
25°C...................... A 0.440 0.438 0.433 0.425 0.416 0.403 0.379 0.353 H (90)

KI......................... ñ 0.497 0.497 0.495 0.494 0.488 E (58)
25°C...................... ,A 0.488 0.488 0.488 0.488 0.489 M (99)

HaSOit..................... it 0.825 0.825 0.824 0.820 0.813 E (70)
20°C...................... /Ah 0.822 0.822 0.820 0.816 0.812 H (81)

CdSO.t.................... íf 0.397 0.390 0.375 0.358 0.338 0.291 0.244 E (15)
A (18°) 0.385 0.379 0.366 0.352 0.330 0.293 0.254 H (84)

CdBrat..................... ¿1 0.434 0.434 0.425 0.408 0.371 E (103)
A (18°) 0.434 0.434 0.431 0.411 0.370 H (83)

* Agreement also at 10°, 30°, and 50°C. t ¿Í at 20°C. from interpolation of Hamer’s values (70) at other temperatures.
Í Some values determined by interpolation from graphs of reported data.

TABLE 10

Test of equation 67 (<concentration cells)

Salt A A c Reference

Znli*................... 0.330 0.325 0.325 E (149)
0.270 0.273 1.277 H (76)

-0.150 -0.157 4.73
ZnCh................... -0.088 -0.08 2.64 E (72)

-0.260 -0.241 4.035 H (77)

* Values of f* obtained from interpolation from graph of data of Stokes and
Levien (149).

1-1 electrolytes, where   is the equivalent conductance,
and is l/& smaller for 2-1 electrolytes. Thus for 1-1 salts,
a 0.001 difference in t\ — t{ is approximately an error
of 10, 4, 2, and 1 per cent at 0.001, 0.01, 0.1, and 1.0
molal, respectively, and is four times as large for acids.
On this rough basis, it may be concluded that the
Onsager reciprocal relations are verified to within about
10 per cent for hydrochloric acid (25°C.), lithium chlo-
ride, barium chloride, and cadmium bromide (table 9),
zinc chloride and zinc iodide (table 10), and potassium
iodide (table 11).

Thus an adequate verification for the Onsager re-

ciprocal relations has been found for most of the cases
in tables 9 and 10 (and for potassium iodide in table 11).
In the remaining ones, the experimental errors are too
large to give a satisfactory test. Moreover, for a test of
the Onsager reciprocal relation to be significant to 1

per cent in dilute solutions, both types of transference
numbers must be known to 1 to 5 parts in 10,000. As
yet, this accuracy has not been achieved in any e.m.f.
measurements.

VI. Isothermal Diffusion
Diffusion is a phenomenon well described by the

theory of irreversible processes. Owing to the Gibbs-
Duhem equation and the experimental condition of no

volume flow described below, it turns out that in binary
systems there can be only one diffusion coefficient, and
thus no Onsager reciprocal relations (63e). The simplest
nontrivial case with an Onsager reciprocal relation is
ternary diffusion; fortunately, suitable data presently
exist for ten such systems. Systems with more com-

ponents are much more complex; furthermore no ade-
quate diffusion data exist.

A. THE TIP DESCRIPTION OF DIFFUSION (119)
It can be shown (63d) that the entropy production is

  (-»)+ ''(-5)+·,'(-  ) ”

TABLE 11

Test of equation 67 (gravitational cells)

Salt A A
Concentra-

References
in c or m

Nal........... 0.383 0.375 (18°C.)
Í0.19 G

G(105), M(34)
[0.1 M

HI............ 0.487 0.489 0.1941 G(107),  (99)
Rbl........... 0.506 0.497 (18°C.) jo.142 G

C(134), M(34)
[0.1 M

Csl............ 0.496 0.497 (18°C.) jO.161 G
G(134), M(34)[0.1 M

HCl........... 0.85 0.835 1.01 C(35), H(81)
G(35), H(89)Li Cl........... 0.23 0.245 4.93

NaCl.......... 0.34 0.365 4.25 G(35), H(81)
KC1........... 0.50 0.486 2.71 G(35), HU06)

G(35), H(90)BaCla.......... 0.36 0.379 0.98
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where the subscripts 1, 2, and 3 refer to solute 1, solute
2, and the solvent, respectively, /,· refers to the flow,
and  µ /dx refers to the chemical potential gradient.
However, the experiments are carried out in such a

way that no volume flow occurs; i.e.,

JiVi + J2?2+JtV, = 0 (70)

where F,· is the partial molal volume. Moreover the
forces of equation 69 are related by the Gibbs-Duhem
equation

 ( µ /  ) + 02( µ2/  ) + 05( µ3/dx) = 0 (71)

 µ.
dx  

 -1

 µ% de j

dCj dx (77)

substituting equation 77 into the F,· of equation 75, and
comparing the corresponding coefficients of dCi/dx in
equations 74 and 76. From the four resulting expres-
sions for By one solves for the L¡¡ and obtains

r._ dPII —’ bP 12

l· ad — be

_dP 2i
— bP22

ad — be

_aPii — eP\\
ad — 6c

__
aP22 — ep22

ad — be

(78)

where c< is the concentration in moles per liter. Since it
was noted previously that the Onsager reciprocal rela-
tions are valid only for independent flows and forces,
these two secondary conditions can be used to get rid
of the dependent solvent terms in TV. By simple substi-
tution one obtains

where

   = J2Y2 + J2Y2

Yi = _ YT +
CsFsJ dx

(72)

(73)

where

  =     + 9íñ) §JL + ogx aal
L\ c3vJ dc1

 
C3F, dcJ

(79)
.rciFjaw /. CsFA  µ  

LcsFj dci \ T
CsFs/ dc,J

and c and d are the same respectively as o and b except
that  /dci is replaced by d/dc2. Nowhere in the above
argument have the Onsager reciprocal relations been
assumed. From equations 78, the necessary and suffi-
cient condition for the Onsager reciprocal relation to
be valid is

and bn is the Kronecker delta. The linear relations are

Ji = LíiYi + LtfYt
J 1

— LsiYl 4* 7-22Y2 (74)

and because the J,· as well as the F,· are independent,
the Onsager reciprocal relation

Lis = Lsi (75)

should now be valid.

B. COMPARISON WITH FICK’S LAW DESCRIPTION

Ordinarily, diffusion is described by Fick’s law. Gen-
eralized to ternary systems, Fick’s law involves con-

centration gradients and has the form (3)

J1 =

  =

(76)

where By are the diffusion coefficients in liters per centi-
meter-second and Ci are concentrations in moles per
liter. The B« are principal or main coefficients. The
By are the interaction or cross coefficients and are

somewhat smaller in numerical value than the Bi¡¡.
Equation 76 is convenient for experiment because con-

centration gradients are easy to measure. However, Bi2
does not equal Du in general.

All the experimental data have been reported in
terms of By. Therefore, in order to test the Onsager
reciprocal relation, it is necessary to get the Ly in
terms of the By. This is done by expanding ßµ%/   into

aPn 4- bPa — ePu 4~ dPn

ad — be   0
(80)

To get the La or to verify the Onsager reciprocal rela-
tion, one must know c,·, F,·, By, and  µ,/dc,·. These
quantities are readily available for the ten ternary dif-
fusion systems except for the thermodynamic quantity
 µ,/dCj. Unfortunately no thermodynamic data are
available in the proper concentration ranges for nine
of the systems, and as a result, the activity coefficients
and their derivatives with concentration had to be esti-
mated (44, 118, 119).

C. THE TEST OF THE ONSAGER RECIPROCAL RELATION

The following systems were investigated at the con-
centrations indicated:

I. LiCl(0.25)-KCl(0.2)-H20 (43, 57)
II. LiCl(0.25)-NaCl(0.2)-H20 (43, 57)

III. NaCl(0.25)-KCl(0.25)-H20 (123)
IV. NaCl(0.5)-KCl(0.25)-H20 (123)
V. NaCl(0.25)-KCl(0.5)-H20 (123)

VI. NaCl(0.5)-KCl(0.5)-H20 (123)
VII. NaCl(1.5)-KCl(1.5)-H20 (42)

VIII. Raffinose(0.015)-KCl(0.5)-H20 (40)
IX. Raffinose(0.015)-KCI(0.1)-H20 (40)
X. Raffinose(0.015)-urea(0.5)-H20 (41)

It can be shown (119) that these are ternary diffusion
systems even though there are four diffusing species in
systems I to IX. System VII is the only one for which
thermodynamic data exist.
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TABLE 12

Test of equation 80

I II III IV V VI VII* VIII IX X

3.73 3.50 3.12 2.19 2.25 1.76 1.10 1.55 1.53 0.41
3.80 3.71 3.24 2.22 2.30 1.80 1.14 1.16 1.53 0.32
0.07 0.21 0.12 0.03 0.05 0.04 0.04 0.39 0 0.09
0.17 0.20 0.12 0.08 0.07 0.05 0.06 0.21 0.27 0.10
1.03 1.14 1.05 1.02 1.04 1.03 1.06 0.42 1.00 0.58

* These values have been calculated from Dunlop’s data (42). 110's kT has been factored out.

In table 12 are given the right- and lefthand sides of
equation 80, the difference between them, and the
probable error of the calculation based on the assumed
errors in Da and the activity coefficient estimates. Also
included is the quantity Ln/Ln. Similar results for
systems III to VI were given by Dunlop and Costing
(44).

The agreement is within the probable error for all
cases except VIII and is remarkably good considering
the experimental difficulties of determining Z)y and the
errors inherent in estimating thermodynamic quantities.
(Private correspondence has revealed that the errors in
Dij for case VIII were underestimated in the calcula-
tions.)

VII. Conduction of Heat and Electricity in

Anisotropic Solids
The discussion will be confined to heat conductivity.

This case will be considered in some detail, both be-
cause it is interesting and because adequate descrip-
tions of the experiments are relatively inaccessible. The
equations and interpretation for electrical conductivity
are the same, but no suitable electrical experiments have
been carried out on crystals.

A. THE CLASSICAL EQUATIONS

The traditional macroscopic theory of heat conduc-
tion in crystals is more than 100 years old and is based
on a simple generalization of Fourier’s law for an iso-
tropic substance (55, 56). Fourier’s law is

Ji = - (81)dXi

The array of nine numbers

*11 &12 fea

[fell = kn k22 fea

kzi* kz2 fea

is called the thermal conductivity tensor and is a

second-rank tensor.
The actual numbers which go into this array depend

on how the (orthogonal) axes Xi, Xu, x¡ are chosen with
respect to the natural axes of the crystal. This tensor,
however, represents a physical property of the crystal;
hence values of the conductivity in a given direction do
not depend on the coordinate axes to which this direc-
tion or the tensor are referred.

For those not too familiar with the concept of a ten-
sor, it can be regarded as a generalization of the con-

cepts of scalar and vector (122b). A scalar (0th rank
tensor) does not depend on direction and has no sub-
scripts on its single component. A vector (first-rank
tensor) is determined by or is related to one direction
and its components have one subscript. A second-rank
tensor, such as [&#], is connected with two directions
and has two subscripts. For example, [ka] is connected
with the directions of the vectors

J = (/., Ji,  )

and

grad T =
/dT dT dT\
\dxi’ dXí’ dx3)

where /,  is the component of heat flow along the co-

ordinate axis Xi, and k is the thermal conductivity. It
seems intuitively clear that in an anisotropic substance
contributions to the component Ji, say, will be made
not only from the temperature gradient dT/dxi, but
from the gradients OT/dx^ and dT/dx^ as well. Thus
classically (13, 25, 145, 148, 156) one writes

  = -

Ji = -

J3= -

dT . , dT~\
i *r--h #i3 T— I

dX2 dXz J
", dT , ,

#11 ---l· #1
dXi

", dT , . dT , . dTl

", dT , , dT,, 5  

(82)

Higher-rank tensors appear as extensions of the above
ideas. A tensor is rigorously defined by transformation
relations such as equations 89, 90, and 91 given below.

Our interest is in the symmetry of the thermal con-

ductivity tensor, i.e., whether &,·,· = k,,. There is
nothing a priori which requires a tensor to be sym-
metric, although many second-rank ones, such as the
magnetic or electric susceptibility tensors, are sym-
metric. However, the electrical conductivity in a mag-
netic field (Hall effect) and the heat conductivity in a

magnetic field (Righi-Leduc effect) are represented by
nonsymmetric second-rank tensors (see Section
VIII,C).
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B. THE TIP EQUATIONS

It can be shown quite straightforwardly (63f) that

TV =  ' £) (84)

x'z with the same origin, then the new axes in terms of
the old are given by

(87)

and therefore the linear laws are

Ji = ZhidJLT dx¡

where ay is the cosine of the angle between the new
axis x'i and the old axis x¡; i.e., its direction cosine. The

(85) ay can for convenience be put into an array of nine
components (not a tensor):

Comparing equation 85 with equation 82, one obtains

Lu = Tka (86)

Thus the Onsager reciprocal relations will be experi-
mentally verified if experiment shows [&,·,·] to be sym-
metric.

It is interesting to note that equation 85 is a conse-

quence of the assumptions of the theory of irreversible
processes. Since it is of the same form as the generalized
form of Fourier’s law (equation 82), equation 85 can be
regarded as a derivation of Fourier’s law from more
basic thermodynamic principles.

It may well be asked at this point, does the TIP
hypothesis of linear equations actually yield a proper
representation of conduction phenomena? For example,
if equation 85 is really valid and if the temperature
gradients (dT/dXi) are changed in sign, then all the
should change sign but the value of the conductivity
should remain the same. If this were not observed, the
form of equation 85 could not be valid, and perhaps a

representation with terms in d2T/dXidx¡ or {dT/dx,)2
would be necessary. This question (i.e., whether the
thermal conductivity tensor is “centrosymmetric”) was

tested experimentally on an appropriate crystal (tour-
maline, point symmetry C3v); when the sign of the
gradients was changed the flows were reversed and the
conductivity was found to be the same (86, 147, 151).
An appropriate crystal is one whose point symmetry
does not already have a center of symmetry.4

C. PROPERTIES OF THE THERMAL CONDUCTIVITY TENSOR

As noted earlier, the numerical values of the entries
in [fcy] depend on the choice of axes. If the axes coincide
with the crystal axes, insofar as this is possible, the
tensor may take simpler forms. To obtain a better back-
ground for the discussion of the experiments, a very
simple procedure for working out these forms is sum-

marized below (160).
Consider a set of orthogonal axes x\, x2, x3. If one

wishes to change to a new set of orthogonal axes x[, x2,

4 There are twenty-one such point symmetries out of the
thirty-two total. Of these there are fourteen (including C8„) for
which a third-rank term in the direction of one of the conventional
coordinate axes changes sign when the temperature gradient in
that direction changes sign, and would thus cause different heat
conductivities in the forward and reverse directions.

x

Oil Ol2 Oil

Oil Oil OiS

031 Oil O 33

The transformation of the components of the tensor
upon the transformation of axes is directly related to
these direction cosines a,·,·. Thus the components of a
first-rank tensor (vector)

p = (Pi, Pi, p>)

transform as

Pi-  a<iPi (89)
i

of a second-rank tensor such asjjfcy] as

k„ — GilGjmklm (90)

and of a third-rank tensor Ty* as

77'* = QilttjmGknTlmn (91)

and so on.

Consider, for example, a crystal which has only a
fourfold axis of symmetry (Ci), and let the x3 axis be
the crystallographic principal axis. The [fcy], as far as

is known at this point, has the general form of expres-
sion 83. Suppose now the axes are rotated one-fourth
of the way around the x3 axis. The table of direction
cosines 88 for this transformation can be seen to be

0-10
1 0 0

0 0 1

The new fc(2 is by simple calculation from equation 90
found to be

k[¡ = — fa i (92)

But a rotation of the axes by 90° really has not changed
anything, since the crystal has a fourfold axis; its prop-
erties must be unchanged by a symmetry operation.
The new components must therefore be the same as the
old; hence fc(2 = fci2. By equation 92

k[ 2
= fai — fa 1 (93)
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In a similar way

¿22 — ¿11 — ¿22

and
¿18 — ¿23 — ¿31 — ¿82 — 0

(94)

(95)

Of course, a system with a fourfold axis automatically
has a twofold axis, but the calculations reproduce equa-
tion 95. For this example no other symmetry operations
remain. Thus a consideration of the symmetry proper-
ties of the crystal has reduced the form of the general
tensor expression 83 to this much simpler form

¿11 ¿12 0

- ¿12 ¿11 0

0 0 ¿31

(96)

The more symmetrical the crystal, the greater is this
simplification. In the example it is seen that considera-
tions of geometrical symmetry alone have resulted in

¿13 — ¿31 ¿23 — ¿81 (97)

quite independently of any possible existence of the
Onsager reciprocal relations.

It turns out that all the orthorhombic (C2v, D¡, Du),
all the cubic (T, Tá, Th, O, Oh), and certain trigonal
(B3, C3„, Da), hexagonal (£>6, C6„, Dih, Dm), and
tetragonal (D4, C4», D2d, Dih) crystal classes satisfy

ha = kjt (98)

for all i and j by geometrical symmetry considerations
alone. Therefore a test of the Onsager reciprocal rela-
tions must come from consideration of the remaining
classes; namely, the triclinic (C'i, Ci), monoclinic (£ >,
C„ C2h), and these of the trigonal (C3, C3i), tetragonal
(Ci, Si, Cm), and hexagonal (C\, Czh, Cm) classes.

The simplest nontrivial cases are those of the above
trigonal, tetragonal, and hexagonal systems, all of which
have exactly the same form of tensor; namely, expres-
sion 96. Henceforth only crystals with this type of tensor
will be considered. Clearly, it can be symmetric only if
ku = 0. Thus if experiment shows that k12 does equal
zero, it has been shown that the Onsager reciprocal
relations are experimentally satisfied for that crystal.

D. THE EXPERIMENTS OF SORET AND VOIGT

of highly conducting material) which is cut perpendic-
ular to the principal axis (z3) of a crystal whose tensor
is like expression 96 (144). In this case, it can be shown
that on heating the center, the resulting isothermals are

always circles. If the tensor is symmetric, the flow of
heat will be in straight lines away from the center; if
not, the heat will flow away in spirals (figure 4) (13, 25,

Fig. 4. Circular plate cut perpendicular to the axis xt heated
at center 0. If the tensor 96 is not symmetric, heat flow (dotted
lines) will be in spirals.

122c, 156). Suppose now a very thin sector is cut out
of the plate. If the tensor is not symmetric, the spiral
heat flow will result in an accumulation of heat on one
side of the cut and a loss on the other. One would thus
find a temperature difference between the two sides.
Soret (144) observed no such difference. The analogous
experiment for electrical conductivity in a magnetic
field (Hall effect), where k12 ^ 0, was suggested inde-
pendently by Boltzmann (9) and carried out by Etting-
hausen and Nernst (49).

Secondly, consider heating on an edge a very large
but thin rectangular piece also cut perpendicular to
the principal axis. In this case, spiral heat flow results
in isotherms -which are not symmetric about the heating
point (143, 144). The effect is magnified by sawing such
a piece in half, rotating one of the halves about an axis
perpendicular to the saw cut but leaving a small space
between the pieces, and heating a point in the crack
between the two pieces (figure 5). When the appropriate
crystals were used, Soret observed no discontinuity in
the isotherms (143, 144).

The experiments carried out to determine whether
[fcy] is symmetric are interesting and rather clever.

.Soret’s experiments (143, 144, 146) are all based on

heating a point of a thin crystal plate. Heat will flow
away from this point, and the temperature gradient
will give rise to a family of isothermals. In an isotropic
crystal these isothermals are circles; in anisotropic sys-
tems, the isothermal lines are ellipses in general (13, 25,
122c, 145, 156).

First, consider a thin plate very large in extent (or
alternatively surrounded by a circular bounding surface

Fig. 5. Thin plate of crystal cut perpendicular to the principal
axis zs and sawed in half. One half is rotated with respect to the
other about an axis perpendicular to the saw cut. Thus originally
edges A and A' were continuations of each other. The twro plates
are separated by a small space, so that no heat is transferred
from one plate to the other. The plates are heated at 0, and if
the tensor 96 is asymmetric, the isotherms -will exhibit a discon-
tinuity.



30 DONALD G. MILLER

The isotherms are made visible in this way (161).
The plates are covered with a thin layer of melted wax,
which is allowed to solidify. When the point is heated,
the wax will melt in the region where the temperature
is higher than its freezing point. The boundary line be-
tween melted and solid wax is the isothermal corre-

sponding to the freezing temperature. When the melted
wax is allowed to cool, this isothermal becomes visible
as a raised edge.

Third, consider a large thin piece this time cut
parallel to the principal axis. If the plate is heated at
an interior point near the middle, the heat flow results
in elliptical isotherms which are unsymmetric with re-

spect to that diameter which is parallel to the principal
axis (144, 146). By means of the wax technique, the iso-
therm is made visible and is viewed with an ocular
micrometer. Upon rotating the sample 180° about the
heating point, Soret found that deviations from perfect
symmetry appeared to be about one-fortieth of the
diameter (146). However, such deviations were also
observed with isotropic substances where no such dis-
symmetry could occur. Since the diameter is inversely
proportional to the square root of conductivity along
the principal axis, he concluded that for crystals of
gypsum, dolomite, erythrite, and apatite the tensor was

symmetric within his experimental error (5 per cent).
Voigt’s experiment (155), suggested also by P. Curie

(30), is more direct and more accurate. Suppose a fixed
temperature difference is applied to the ends of a long,
narrow, thin plate of a crystal whose tensor is like ex-

pression 96. Let the axis x\ be along the length, x2

along the width, and the principal axis x3 be perpen-
dicular to the plate (figure 6). The solution of the

Consequently from the expression for J2, one obtains

E/E=Wfcii=tana (ioo)

where a is the angle which the isothermal straight line
makes with the normal to the line of heat flow (see
figure 7). By means of the melting wax technique, an

Fig. 7. Expanded drawing of isothermala to show how a is
related to the thermal gradients. Since (dT/dx{) = (T" — T')/di
= AT/(d3 tan a) and dT/dx3 = AT/dt, clearly

(if)/(»!),,„„\dXif / \dxj
isothermal is located. If this line is inclined away from
the normal, then the tensor is not symmetric, and the
ratio of fci2 to kn is given by equation 100.

Owing to possible heat losses from the edges, it is
more precise to use Voigt’s “twin plate” method. The
plate is sawed in half along the X\ axis, one piece is
rotated about the x2 axis, and the two pieces are

clamped together. If the tensor is asymmetric, the iso-
therms will have the form shown in figure 8. One meas-

HEAT
RESERVOIR

TB

*2

-^Xl
T =

const.\aj
HEAT

RESERVOIR)
Ta J|

*1

Fig. 6. Schematic diagram of the Curie-Voigt experiment.
The principal axis x3 comes out of the paper. If the tensor 96
is asymmetric, the isothermal lines far from the region of end
effects will be inclined away from the normal (dotted line) to the
direction of heat flow.

boundary value problem is independent of the sym-
metry of the tensor and shows that the heat flows only
along Xu Hence for this case

Fig. 8. Schematic diagram of Voigt’s twin-plate experiment.
If the tensor 96 is not symmetric, the isothermals will form a V
symmetric along the x¡ axis with an interior angle ß. If symmetric,
the isothermals are perpendicular to the x¡ axis.

ures the angle ß at the common edge near the middle,
which avoids any distortion due to losses at the edges
or due to end effects. The angle a is [90° — (ß/2)].
Voigt (155) found that for suitable crystals of apatite
and dolomite, the lines were straight and perpendicular
to X\. More precisely, ß was 180° with an error of not
more than 4 min. (i.e., <0.037 per cent). Therefore, a

is less than 2', and

0 = 1/2= + kl
dT , dT

1

dXi
11

dXz

0 — J3 — - k
dT

33   

hi/kn < 0.0005

This value implies that ku = 0 to less than 0.05 per
cent and consequently that the tensor is symmetric.
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E. REPLY TO CASIMIR’S OBJECTION

An objection to the conclusions drawn from these
 experiments has been raised by Casimir (26, 122d):
namely, that the individual heat flows are not observ-
able physical quantities, but only their divergence (net
flow) is. Consequently one could add a divergence-free
tensor [d,·,·] to [A;,,] without altering any observable
quantity. A sufficient condition for a divergence-free
tender is that it be antisymmetric, i.e., of the form (for
second rank)

0 <¿12 <¿13

—
<¿12 0 <¿23

—
<¿13

—

<¿21 0

Now it can be easily shown that a nonsymmetric tensor
can be split up into the sum of a symmetric and an anti-
symmetric tensor, and, conversely, the addition of an

antisymmetric tensor to a symmetric one yields a non-

symmetric tensor. Therefore it was argued that nothing
can be determined about the symmetry properties of
the thermal conductivity tensor from the experiments
cited, because only the divergence is observable and
because the addition of the antisymmetric [da] could
make the sum [d,·,· + fc,,] nonsymmetric irrespective of
whether [fc¡,·] is symmetric.

However, it should be noted that the solution of the
boundary value problem is independent of the tensor’s
symmetry or lack of it (25). Therefore the form of equa-
tions 99 is valid whether or not a divergence-free tensor
is added. But in Voigt’s experiments (as also in Soret’s),
no flow is measured. The observable quantity is the
isothermal line, not a divergence, and Casimir’s objec-
tion is not relevant. Thus one concludes that the above
experiments do exactly what they were designed to
do; i.e., they test the asymmetry of the conductivity
tensor. It might be mentioned that the same type of
experiments was successful in showing the nonsym-
metrical character of the Hall tensor (49).

It is concluded that the experiments of Soret and of
Voigt have shown that [A:,·,·] is symmetric, and thus by
equation 86 the Onsager reciprocal relations are verified
experimentally for heat conduction in anisotropic solids.

VIII. Thermomagnetism and Galvanomagnetism
This detailed review of the experimental evidence for

the Onsager reciprocal relations will be concluded with
a discussion of galvanomagnetic and thermomagnetic
effects (11, 24, 85, 111a), which ordinarily are not too
well known to chemists. The most familiar one is the
Hall effect, but there are a large number which could be
defined (51, 54). We shall be primarily interested in the
Ettinghausen and Ettinghausen-Nernst effects, be-
cause these, together with the thermal conductivity,
can be related to each other by an Onsager reciprocal
relation. The relation was originally derived by Bridg-

man (16b) in an incorrect way, analogous to the one
used by Kelvin to derive equation 20.

A. THE GENERAL TIP EQUATIONS FOR
thermogalvanomagnetism

1.   

In the general case of simultaneous heat and electrical
flow in a magnetic field, it is necessary to consider all
three coordinate directions. For this case it can be
shown (21, 22, 23, 51, 52, 53, 63g, 110) that    may be
written in vector form as

   = J-  grad(l/D +  ·  (101)

where E = — grad  , I is the electrical current, and the
use of boldface type represents vectors. In component
form, equation 101 is

   JxGx 4~ Jy Gy -f- j,G, -f-      + IyEy + I      (102)

where

dji/T)
dx

1 dT , „    L

Tteand£z= - etc·

It should be noted that E may be employed only in the
case of a metal. Otherwise a term involving the chemical
part of the electron chemical potential is required (21,
22, 23, 51, 52, 53, 54). It is interesting to note that the
magnetic field does not appear explicitly in these
equations.

2. The linear laws and Onsager reciprocal relations

In the standard way, the flows may be written as a

linear function of the forces. It is convenient to write
them in vector and tensor form as follows:

I = Let E + Leq G
(103)

J = Lq, E + LqqG

where G = T grad (1 /T). The L’s are clearly second-
rank tensors and are functions of the magnetic induc-
tion B. In particular, Lee is the electrical conductivity
(Hall) tensor, Lqq is the heat conductivity tensor, and
the Leq and Lqe are related to longitudinal and trans-
verse thermoelectric effects in a magnetic field.

The Onsager reciprocal relations for this case are

given in component form by equation 10. In tensor
form they become

MB) = Ll(—B)
M(B) = Ltq(-B) (104)  

M(B) = Lí,(-B)
where the dagger refers to the transposed tensor. The
need for the transposed notation to express the Onsager
reciprocal relations is seen by writing out equation 103
in component form.
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3. A more convenient form

(a) The transformed linear laws

Experimentally it is more convenient to deal with
currents and temperature gradients, and therefore the
use of I and G as independent variables will simplify
the definitions of the effects of interest. The desired
equations

E — leeI -f" leqG

J = lqe I + IqqO
(105)

are obtained by writing equations 103 in component
form, solving for the components of E, and collecting
the proper terms. Alternatively, the inversion could be
carried out by matrix methods (23).

Suppose that the experimental conditions are such
that B is parallel to the z axis and that I and G are

restricted to the xy plane. Then in component form
equation 105 is written

Ex = lulx + Inly + hiGx + InGy

Ey = Iqilx + Iqqly + lilGx + luGy

J I = kill + Inly + lilGx + luGy

Jy = UJX + lilly + UlGx + ItiGy

(106)

(b) The transformed Onsager reciprocal relations
When the Onsager reciprocal relations (equations

104) are applied to the expressions for Zy in terms of
the Lk, it is found that

Z„(B) = ZL(-B)
Z88(B) = ZL(-B) (107)

leq(B) = - Zj.(-B)

Fig. 9. Schematic diagram of an isotropic metal in a magnetic
field. The field is directed along the z axis, and x is chosen as the
direction of the primary currents. The metal is isotropic only
in the xy plane in a non-zero field.

Suppose now that a magnetic field is directed along
the z axis as shown in figure 9. Then in a sense the metal
is no longer isotropic, since z is now a unique direction.
However there is still isotropy in the xy plane. Since
systems with a three-, four-, or sixfold z axis are also
isotropic in the xy plane, the four pieces of Z—he, lqq,
leq, and lqe—each take exactly the same form as expres-
sion 96, with the z (= x3) components omitted. Thus

hi hi hz hi
— hi hi — lu hz

hi —hi I33 hi
hi hi — In hi

(109)

Because of the isotropy (21, 51, 54, 79) Zi2, lu, hi, and
Z34 must be odd functions of B, i.e., Zy( — B) = — Zy(B),
and In, hi, In, and Z31 must be even functions of B, i.e.,
hi(-B) = UB).

Conversely, the validity of equations 107 implies the
validity of equations 104. Equations 107 are therefore
the Onsager reciprocal relations for the linear laws
(equations 105).

B. THE ISOTROPIC METAL

1. Form of the tensor with and without the field
Consider an isotropic metal. In the absence of a

field, it can be shown by the same kind of geometrical
symmetry arguments used in Section VII that the
tensor of equations 106 has the form

Z11 0 Zu 0

0 Z31 0 Z31

where Zn is the resistance, Z33 the thermal conductivity,
and Z13 and Z31 are related to the absolute thermoelectric
power and the absolute Peltier coefficient, respectively.
For example, for the junction of two isotropic metals
a and b,   = l31 — 13  (122e).

2. The Onsager reciprocal relations

Owing to the assumed symmetry, a number of the
Onsager reciprocal relations are redundant. However
there are still two independent ones arising from the
leq and lqe pieces of Z. From equations 107 and because
In and l3i are even and Z14 and Z4i are odd, one finds that

ln{B) = -Z3i(-B) = -Z3l(S) (110)

MB) = -ln(-B) = MB) (HD

The Bridgman equation is related to equation 111, and
equation 110 is the Kelvin thermoelectric equation for
absolute Peltier and thermoelectric coefficients in a

magnetic field (85).

C. EXPERIMENTAL DEFINITIONS OF THE DESIRED EFFECTS

The Bridgman equation relates the Ettinghausen
and Ettinghausen-Nernst effects to the thermal con-

ductivity. By means of Fieschi’s definitions (51, 54),
the desired coefficients are given in terms of the Zy
without appeal to the Onsager reciprocal relations.
Other definitions (21, 22, 23, 85, 110) are the same

except for sign or a factor B.
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The (isothermal) thermal conductivity k¡ is defined
as

=  * =  »= <' = ° (112>

~dx

and by equations 109

h = l33/T (113)

The definition is clearly the same if one chooses the y
direction. The label “isothermal” is necessary because
an “adiabatic” heat conductivity can be defined for
which /. = /, = Jy = 0 (21, 22, 23, 51, 54, 85, 110).

The Ettinghausen effect is the appearance of a tem-
perature gradient in the y direction when a current
flows in the x direction. The Ettinghausen coefficient
P* is

P.-(af/ay) —TGy
7. h ly = Jy =[QX = 0 : (114)

whence

 -  (115)
¿33

The Ettinghausen-Nernst effect is the appearance of
a potential gradient in the y direction when heat flows
in the x direction. The (isothermal) Ettinghausen-
Nernst coefficient Q\ is defined as

Q<m§T=-YGx L = Iv=Gy=0 (116)

dx

D. THE BRIDGMAN RELATION AND THE
EXPERIMENTAL EVIDENCE

From equations 113, 115, and 117 it is immediate
that

P‘k, = U i (120)

TQ‘ = Z„ (121)

If the Onsager reciprocal relation (equation 111) is
valid, then the Bridgman relation

 % = TQ· (122)

is valid. Conversely, the validity of the Bridgman rela-
tion entails the validity of In = In-

in table 13 are the values of Q¡ and (P%)/T (11,
111a, 142). Unfortunately the experiments are quite
difficult, and the results differ from sample to sample,
as was found in the thermoelectric and electrokinetic
cases. Except for Little’s measurements on arsenic (95),
there are no cases where all three measurements were
done on the same sample (142). In most of the entries
in the table the thermal conductivity was the one not
directly measured. Perhaps for these reasons the On-
sager reciprocal relation (equation 111) is not satisfied
quite as well as in the previous examples. Optimistically
it could be said that considering the difficulty of the
experiments and their attendant errors, the Onsager
reciprocal relation is satisfied, especially since the only
really appropriate case (Little’s data for arsenic) gives
almost perfect agreement. Pessimistically it could be
said that the validity of the Onsager reciprocal relation

whence TABLE 13

Q<=l-f (117)

Although pure heat conduction in a magnetic field is
not a part of the Bridgman equation, it is of interest
because of its connection with the discussion of Section
VII. The Righi-Leduc effect is the appearance of a

temperature gradient in the y direction when heat flows
only in the x direction. The appropriate coefficient S is
defined by

s= dT/dy Gy
dT/dx Gx

   Iy Jy\ 0 (118)

whence

S = lf (119)
¿33

But this definition corresponds exactly to Voigt’s ex-

periment (Section VII,D), S being the tan a of equa-
tion 100. Thus S, the measure of the asymmetry of the
heat conductivity tensor in a magnetic field, can be
determined by the same technique used to show the
symmetry of the tensor in the absence of the field.

Test of the Bridgman relation

Substance
P*ki

1012 x-
T

1018 X Q 1
P‘ki

Q\T
Refer-

Ag................. 2.2 1.8 1.22 (1.34) (154)
Al................. 0.60 0.42 1.43 (1.8) (154)
As................. 22.0 22.5 0.98 (95)
Au................. 1.2 1.8 0.66 (0.67) (66)
Bi................. 2200 2340 0.94 (2.9) (162)
Cd................. 0.9 1.2 0.75 (0.76) (154)
Co................. 22.0 21.9 1.00 (66)
Cu................. 2 1.9 1.05 (0.76) (154)

0.86 (67)
Fe................. 8.6 9.5 0.91 (0.88) (154)
Ni................. 22.0 30.4 0.72 (3.4) (66)
Pd................. 4.00 3.26 1.23 (0.82) (66)

1.23 (67)
Sb................. 220 176 1.25 (0.66) (162)
Zn................. 1.00 0.73 1.37 (4.2) (154)
PbSe-l*............ 6.2 2.3 2.7 (133)
PbSe-2*............ 4.5 4.5 1.00 (133)
FbTe-1*........... 19 13 1.46 (133)
PbTe-2*........... 3.5 3.5 1.00 (133)

Plki/T and QU are in volts per gauss degree. The data and references are

primarily taken from Borelius’ collection (11). The values of P‘ki/Q\T in
parentheses are from a similar collection by Meissner (Illa). A crude calcula-
tion of Z41/Z14 from the adiabatic quantities for iron and nickel (20) gives the
values 0.28 and 0.27, respectively.

* The units of Plki/T and Q\ are in 102 cm.2 sec.-1 deg.-1 The heat conducti-
vities were estimated from a Peltier heat measurement.
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is quite probable, but awaits a series of precise measure-
ments on single samples fbr verification.

It should be emphasized that only one of the Onsager
reciprocal relations is tested by the Bridgman equation.
The other one, Zi3 = — Z3i, is strictly analogous to equa-
tion 20 and must be checked through longitudinal
thermoelectric and Peltier measurements in a trans-
verse magnetic field. Although a few such measure-
ments have been made, there are no recent ones (85).
The comparisons of Peltier heats and thermoelectric
powers obtained by different workers are discordant,
and there seem to be only the measurements of Houlli-
wegue (80) on iron in which both experiments were done
on the same sample (24a, 111b). Here the agreement
was within 5 per cent.

IX. Cases with Meager or Inconclusive Evidence
Six quite different types of irreversible phenomena

have been discussed in some detail above. There are

two more for which the evidence is meager or inconclu-
sive and which will be mentioned very briefly.

A. CHEMICAL REACTIONS

The first case, chemical reactions, is the only common

one where the linear laws do not hold in a useful range
of deviations from equilibrium. Consequently, the hy-
pothesis of the fundamental assumption (Section II,
B,3) is not satisfied. However, sufficiently close to
equilibrium it would be expected that linear laws should
be valid, and this was in fact shown by Prigogine, Outer,
and Herbó (131). Hence near equilibrium, a test of the
Onsager reciprocal relations becomes meaningful. The
first nontrivial Onsager reciprocal relation comes from
a consideration of a triangular chemical reaction system
(32b, 125), and it can be shown that the Onsager recip-
rocal relation is equivalent to the well-accepted prin-
ciple of detailed balance (32b, 125). It can also be shown
that if the Onsager reciprocal relation (detailed balance)
is not satisfied, then such a reaction system will exhibit
oscillations in the concentrations of its components as

it comes to equilibrium. (See, however, the recent dis-
cussions in references 1, 2A, 69, 74, and 141.) The
experimental studies of this phenomenon, however,
have been inconclusive (2A, 140), and the question is
still open from an experimental standpoint.

B. THERMOMECHANICAL EFFECTS

The second case is the interaction of heat and matter
flows in a one-component system (62, 63h, 132b). The
two experimental effects are the thermomolecular pres-
sure difference (TPD) and the mechanocaloric effect
(MCE), which are defined as follows (132b): Consider
a one-component fluid in two vessels connected by a

slit or capillary. If there is a temperature difference
between the vessels, a flow Jm will result and a pressure
difference will be set up. In the steady state Jm = 0

and the quantity (dP/dT7)^^, is the thermomolecular
pressure difference. A related quantity is the amount
of heat «75 necessary to maintain the system at constant
temperature when the fluid is forced through the slit
by a pressure difference. This quantity, (J g/Jm)AT=o, is
the mechanocaloric effect. It can be shown (132b) that

(JJJndtT-0 = QU (124)

where Q,*· (heat of transfer) = I/,j/L22. Since   /  
can be obtained from vapor pressure measurements
and Qn from calorimetric measurements, it is possible
in principle to verify the Onsager reciprocal relation.
The first measurements of these quantities were carried
out on liquid helium II by Kapitza (91) and Meyer
and Mellink (115) who stated, without giving numerical
comparisons, that to within a few per cent  )*2 = Q*i
(and thus Lu = L2i). More recent data, obtained by
Brewer and Edwards (15A) from 1.1 to 1.7°K., are
shown in figure 10. Clearly Q*2 and Qn are equal within
about 5 to 8 per cent, which is the scatter of the data
for each type of experiment.

Fig. 10. Plot of Q*¡ for liquid helium II, adapted from figure 3
of reference 15A. Closed circles represent Q*2 (calorimetric)
and open circles Q*¡ (dP/dT). The per cent deviation is from a
theoretical calculation of Q*,· which is not relevant to this
discussion.

X. Assessment

By means of the data in the foregoing sections, it
has been possible to check the validity of the Onsager
reciprocal relations. The results may be summarized as

follows: For thermoelectricity, electrokinetics, iso-
thermal diffusion, and anisotropic heat conduction, the
experimental checks are sufficiently good that the va-

lidity of these relations is practically unquestionable.
With electrolytic transference, most systems check
pretty well, i.e., within about 10 per cent. In the re-

maining ones the experimental errors are too large to
yield a significant test, even though equations 67 and
68 are satisfied within these errors. In the thermo-
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galvanomagnetic case, the Bridgman relation is nicely
verified for the only system where all the quantities were
measured on the same sample. With the other systems,
the values of Li/lu are more scattered but still reason-

ably close to 1, i.e., 1 ± 0.5. Because it is most likely
that the scatter is a result of not doing all measurements
on the same sample, the validity of the Onsager recip-
rocal relation (equation 111) may be accepted with
considerable confidence. With the thermomechanical
effects the experimental test is very good, but there are

data for only one system. Finally, for chemical reac-

tions, the evidence is inconclusive.
In view of the above, the author concludes that the

experimental evidence is overwhelmingly in favor of
the validity of the Onsager reciprocal relations. More-
over, this experimental check of the relations is at the
same time a proof of both the essential correctness of
the linearity assumption and the adequacy of the
thermodynamic description of these irreversible phe-
nomena.

It would of course be desirable to have some further
experiments to clinch the argument in those cases where
experimental errors were especially large. The following
are suggested: (a) Accurate measurements of Hittorf
(or moving boundary) and cell transference numbers in
relatively concentrated solutions of weak electrolytes
such as cadmium bromide; because of ion association
Lu and Ln will be significantly larger, (b) A series of
measurements by modern techniques of the three ther-
mogalvanomagnetic coefficients and of the longitudinal
Peltier heats and thermoelectric powers in a transverse
field to check equations 110 and 111, respectively; all
quantities to be determined on the same sample. Since
semiconductors often have large galvanomagnetic ef-
fects, such systems would be most suitable, (c) Some
direct calorimetric measurements of the heat of trans-
port to compare with the value obtained from the
thermomolecular pressure difference on systems other
than helium II. Both measurements of course should
be made using the same diaphragm. (d) A careful rein-
vestigation of the question of oscillating concentrations
in triangular chemical reactions.

The author would like to thank his colleagues, D. F.
Abell and M. W. Nathans, for their generous help with
various sections of the manuscript.
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