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Lecture 12: Bose-Einstein Condensation

1 Introduction

Bose-Einstein condensation is a quantum phenomenon in Bose gases in which a large number
of bosons simultaneously occupy the ground state of a system. Bose-Einstein condensates were
predicted in 1925 by Bose and discovered experimentally 70 years later by Weimann, Cornell and
Ketterle who shared the Nobel prize for their discovery in 2001.

Your �rst thought might be, of course a lot of bosons are in the ground state! After all, there
is no quantum e�ect preventing them from being in the ground state (no Pauli exclusion), and
naturally particles want to be in the state of lowest energy. This is a good thought, and I'm glad
you had it. Let's follow through. How many bosons do you expect in the ground state? Well, say
they obey Maxwell-Boltzmann statistics, so that ni � e¡"i/kBT . This function is pretty �at for
"i�kBT , so we would expect that if there are say 100 states below kBT then each one should have
roughly the same number of particles in it � nothing too special about the ground state. Thus, if
you want a sizable fraction, say 1/2 the particles, to be in the ground state, you would have to get
kBT down below the energy of the �rst excited state "1. This argument is correct, and we'll �esh it
out more in a moment. The amazing thing is that with Bose-Einstein statistics this isn't true � you
can �nd more than half of the particles in the ground state even for temperatures with kBT � "1.

Bose-Einstein condensation is tricky to explain, so we'll approach it di�erent ways. First, we'll
try to understand what it is about Bose-Einstein statistics that allows condensation to happen
through a simple system that we can solve in the canonical ensemble. Then we'll do the general
case using the grand-canonical ensemble, �rst numerically, and then through analytic expansions.

In this lecture, it will be helpful to set the ground state energy to zero: "0 = 0. By setting it
to zero, we mean that we list all energies as relative to the ground state. Shifting all the energies
as well as the chemical potential in this way will have no e�ect on the physics and can be done
without loss of generality.

2 Two-state system: canonical ensemble

Consider a system with N particles but only two possible energy states: "0=0 and "1= ". Because
there are only two states, we can study this system in the canonical ensemble for both Maxwell-
Boltzmann statistics and Bose-Einstein statistics. We'll see that even in this two-state system
the ground state occupancy can be much larger than N

2
even when kBT � " with Bose-Einstein

statistics. With the large number of states present in any realistic system, the canonical ensemble
will not be tractable and we will have to resort to the more abstract grand canonical ensemble.

Let's start with the simplest case of our 2-state system N =1. If there is only one particle, then
for any statistics, the partition function is

Z1=
X
k

e¡�Ek=1+ e¡�" (1)

The probability of �nding the particle in the ground state is Pground =
1

Z1
e¡�"0 =

1

Z1
and so the

expected fraction of particles in the ground state is

hNgroundi
N

=1 �Pground+0 �Pnot¡ground=
1
Z1

=
1

1+ e¡�"
(2)

Again, this holds for any statistics, since there is only one particle.
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Now say there are N particles. With Maxwell-Boltzmann statistics, the probability of �nding
any particle in the ground state is independent of the probability of �nding any other particle
anywhere. This implies that the N particle partition function is related to the 1 particle one by

ZN
MB=

1

N !
(Z1)N =

1

N !
(1+ e¡�")N (3)

Of the 2N microstates, there is only one microstate with all the particles in the ground state, and
we divide by N ! since the particles are identical. Thus

Pallground=
1
N !

1

ZN
MBe

¡�"0=
1
N !

1

ZN
MB (4)

There are N states with 1 particle in the excited state,
�
N
2

�
states with 2 particles in the excited

state and so on. As a check on this the probabilities should sum to one:

X
k

Pk=
1

N !ZN
MB

�
1+Ne¡�"+

�
N
2

�
e¡2�"+ ���+

�
N
N

�
e¡N�"

�
=

1

N !ZN
MB(1+ e¡�")N =1 (5)

where Eqs. (1) and (3) were used in the last step. To compute the expected number in the ground
state, we multiply each term in this sum by the ground state occupancy:

hNground
MB i= 1

N !ZN
MB

�
N � 1+ (N ¡ 1) �Ne¡�"+(N ¡ 2) �

�
N
2

�
e¡2�"+ ���+0 �

�
N
N

�
e¡N�"

�
(6)

=
N

1+ e¡"�
(7)

To do the sum, I used Mathematica, but you can do it by hand without too much work. Note
that at large T (�! 0), hNground

MB i goes to N

2
: half the particles are in the ground state, half in the

excited state.
With Bose-Einstein statistics there is only one state with m particles in the ground state and

N ¡m particles in the excited state. So there are only N +1 possible states all together and

ZN
BE=1+ e¡�"+ e¡2�"+ ���+ e¡N�"=

1¡ e¡(N¡1)�"

1¡ e¡�"
(8)

Then the expected number in the ground state is

hNground
BE i= 1

ZN
BE

[N � 1+ (N ¡ 1) � e¡�"+(N ¡ 2) � e¡2�"+ ���+0 � e¡N�"] (9)

=
1

e¡�"¡ 1
+

N +1

1¡ e¡(N+1)�"
(10)

Let us look at Eqs. (7) and (10) numerically for N = 100:

Figure 1. The fractional population of the ground state in a two state system with N =100.
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This plot demonstrates Bose-Einstein condensation. With Maxwell-Boltzmann statistics, the
temperature has to be very low to get the lowest state to have an appreciable �lling fraction.
At temperature kBT & " both the ground state and the �rst excited state are around equally
populated so hNgroundi= N

2
. In contrast, with Bose-Einstein statistics, a signi�cant fraction of the

the particles are in the ground state even well above the temperature kBT = ". For example, with
at kBT =

N

10"� " we �nd 90% of the atoms are in the ground state for Bose-Einstein statistics, but
only 52% for Maxwell-Boltzmann statistics. This demonstrates Bose-Einstein condensation.

Bose-Einstein condensation is a phase transition whereby the ground state become highly
occupied. What is the critical temperature for this to occur? There is only two dimensionless
numbers we can work with kBT

"
and N . We want N to be large, N � 1. Then we can expand in

two limits kBT

"
�N (i.e. �"N � 1) and kBT

"
�N (i.e. �"N � 1). Expanding Eq. (10) in the �rst

limit gives
hNground

BE i
N

=
1

2
+

N"

12kBT
+ ���

�
kBT

"
�N

�
(11)

This is the true high-temperature limit, where the classical behavior hNground
BE i
N

! hNground
MB i
N

� 1

2
is

approached as T !1. In the second limit N � kBT

"
� 1, the temperature is large, but not too

large, and the expansion gives a di�erent result

hNground
BE i
N

=1¡ kBT
N"

+ ���
�
N� kBT

"

�
(12)

This limit shows the growth of hNground
BE i
N

toward 1 as T!0. The comparison of these approximations
to Eq. (10) looks like

Figure 2. The approximations to the Bose-Einstein cuve in Eqs. (11) and (12).

The crossover point is roughly where the approximations used for our expansions break down.
The �rst term is the same order as the second term in Eq. (11) when kBT =

N"

6
. For Eq. (12) the

crossover is at kBT =N". Thus we �nd a critical temperature Tc� N"

6kB
� N"

kB
for this two state model

indicating the onset of Bose-Einstein condensation. (The crossover point in this 2-state example
is not at a precise temperature, as you can see from the plot. TC will become precise when we
consider a realistic system with a large number of states in the next section.)

To emphasize how strange Bose-Einstein condensation is, remember that at kBT� " we should
be able to use e¡�"� 1 independent of N . That is, the ground state and �rst excited state should
have pretty similar thermodynamic properties and occupancy at high temperature. This is not
what we are �nding. Instead, for N = 10 million, with a temperature 1 million times the excited
state energy, 90% of the atoms are in the ground state and only 10% are in the excited state.

Now, this 2-state model is not a realistic approximation to any physical system. It turns out to
be very di�cult to calculate hNground

BE i in the canonical ensemble for a realistic system that has an
in�nite number of states. The di�culty is that we have to count the number of ways of allocating
N particles to the states, and then to perform the sum over occupancies of the ground state times
Boltzmann factors. It turns out to be much easier to compute the general case using the grand-
canonical ensemble with � instead of N , as we will now see.
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3 Grand canonical ensemble

With Bose-Einstein statistics, we determined that using the grand canonical ensemble the expected
number of particles in a state i is

hnii=
1

e�("i¡�)¡ 1
(13)

with "i the energy of the state i. So the expected number of particles in the ground state ("i=0) is

hNgroundi=
1

e¡��¡ 1
= (14)

Recall that for Bose gases, � will always be lower then all the energies (i.e. � < 0 when "0 = 0).
We can see this explicitly from the plot.

We can invert Eq. (14) to solve for � in terms of hNgroundi:

e¡��=
1

hNgroundi
+1 (15)

Our strategy will then be to �nd the ground state occupancy by using the constraint the the total
number of particles is N . That is, we will compute

N =
X
i

hnii=
X
i

1

e�"ie¡��¡ 1
=

X
i

1

e�"i
�

1

hNgroundi
+1

�
¡ 1

(16)

Once we work out the "i we can do the sum numerically or analytically and therefore �nd hNgroundi
N .

Before beginning the calculation, let us quickly ask about the non-ground state occupancies.
Can they be large too? Note that for the ground state, the occupancy is large when �� 0= "0: it
is in this limit that hNgroundi blows up. For excited states, we would need �� "i. However, � has
an upper bound of "0=0, so � cannot get arbitrarily close to "i and therefore condensation cannot
happen in any excited state. The ground state is special.

3.1 Exact numerical solution

Now let us calculate N , and hence hNgroundi
N

. Bose-Einstein condensation is relevant at low temper-
ature, where particles are non-relativistic. So consider a non-relativistic gas of monatomic bosonic
atoms in a 3D box of size L. The allowed wavevectors of the system are k~n=

�

L
n~ just like for photons

or phonons, and the momenta are p~ = ~k~ as always. In a non relativistic system, the energies are

"n=
~k~n2
2m

=
~2�2
2mL2

n~ 2 (17)

We have set the ground state to "0=0 (rather than "0=mc2), since the absolute energy scale will
be irrelevant. Another useful number is the gap to the �rst excited state

"1=
~2�2
2mL2

(1; 0; 0)2=
~2�2
2mL2

(18)

So that

"n= "1n
2 (19)
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Then, from Eq. (16) we get

N =
X

nx;ny;nz=0

1
1

e�"1(nx
2+ny

2+nz
2)
�

1

hNgroundi
+1

�
¡ 1

(20)

This formula lets us compute N given hNgroundi and �"1. For example, if hNgroundi = 80 and
T = 10 "1

kB
then doing the sum numerically gives N = 167.5. This means with 167.5 particles at

T = 10 "1
kB
, then 80 will be in the ground state.

What we really want is to specify N and T and �nd hNgroundi. Do get this function, we need
to do the sum in Eq. (20) and then solve for hNgroundi in terms of �"1 and N . Unfortunately, we
cannot do the sum exactly, but at least we can do it numerically. For N=100 we �nd the numerical
solution for hNgroundi

N
has the form (see the Mathematica notebook on canvas)

Figure 3. Exact numerical result for the ground state occupancy in a Bose system with N = 100.

I added to the plot the prediction using Maxwell-Boltzmann statistics. For MB statistics, we drop
all the factors of �1. So, hNgroundi= e�� and so Eq. (20) becomes

N =
X

nx;ny;nz

1

e�"1(nx
2+ny

2+nz
2)
�

1

hNgroundi

�= hNgroundi
X

nx;ny;nz

e¡�"1(nx
2+ny

2+nz
2) (21)

These sums can be done numerically with the result is plotted alongside the BE result in Fig. 3.

If we turn the sum into integrals, then hNground
MB i
N

�
�

4"1
�kBT

�3/2
which looks a lot like the exact result

that is plotted.
For di�erent N the curve shifts, but looks qualitatively the same. After a little �ddling (inspired

by the analytic result below), we see that if we plot the ground state occupancy as a function of
kBT

N2/3"1
the result is essentially independent of N for the Bose-Einstein case:

Figure 4. Pulling out a factor of N2/3 makes the ground state occupancy essentially independent of N .
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3.2 Approximate analytical solution
Having determined the exact solution numerically, let us proceed to use an analytical approach to
determine some scaling relations and the transition temperature.

As with the phonon or photon gas, we �rst trasform the sum to an integral viaX
n~

!1

8

Z
0

1
4�n2 dn (22)

where the 1

8
comes from n~ being a vector of whole numbers, as in the phonon or photon case. We

want to convert n to ", which we can do using using Eq. (19), "= "1n
2 so

d"=2"1ndn (23)

So X
n~

!�
2

Z
0

1
nndn=

�
2

Z
0

1 "
"1

r
d"
2"1

=
�

4"1
3/2

Z
0

1
"

p
d" (24)

As before we write this as X
n~

!
Z
g(")d" (25)

where

g(")=
�

4"1
3/2

"
p

(26)

is the density of states.
At this point, we would like to integrate over " to �nd N

N =

Z
0

1
g(")hn"i=

�

4"1
3/2

Z
0

1
d" "
p 1

e�("¡�)¡ 1
(27)

This is a little too quick, however. The problem is that converting a sum to an integral can only
be justi�ed if we do not care at all about the discreteness. For Bose-Einstein condensation we do
care about the discreteness: the ground state, as we have seen, is qualitatively di�erent from the
other states.

Although discreteness is important for the ground sates, for the excited states, even the �rst
excited state, there is no issue � the chemical potential � can never approach any of their energies
and so their occupancy numbers will never be unusually large. So let us proceed by taking the
continuum limit for all but the ground state. Moreover, since e¡���1 when hNgroundi&1 which is
the region of interest, we can simply set �=0 for the excited state calculation and Eq. (27) becomes

hNexcitedi=
�

4"1
3/2

Z
0

1
d" "
p 1

e�"¡ 1
=

�
�kBT
4"1

�3/2
�3/2 (28)

where �3/2= �
¡ 3
2

�
� 2.61 with �(z) the Riemann Zeta function.

When does the approximation that �=0 break down? It breaks down when hNgroundi � 0, as
you can see from Eq. (14). As Nground! 0 then ��¡kBT ln(Nground) which goes to ¡1. When
hNgroundi � 0 then hNexcitedi � N . Setting Eq. (28) equal to N we �nd that our approximation
breaks down when

hNexcitedi= �3/2

�
�kBT
4"1

�3/2
>N (29)

We can equivalently write this as T >Tc where the critical temperature Tc is is de�ned by

N = �3/2

�
�kBTc
4"1

�3/2
= 2.612

�
mkBTc
8~2�

�3/2
V (30)

where with "1 from Eq. (18) was used. Solving for Tc gives

Tc=
4"1
�kB

�
N
�3/2

�2/3
= 3.31

~2
kBm

�
N
V

�2/3
(31)
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This lets us write Eq. (28) as

Nexcited

N
=

�
T
Tc

�3/2
; T <Tc (32)

Thus, the fraction in the ground state is

hNgroundi
N

=
N ¡hNexcitedi

N
=1¡

�
T
Tc

�3/2
=

(33)

Comparing to our exact numerical results from Section 3.1 we �nd good agreement:

Figure 5. Comparison of the analytic result 1¡
�
T

Tc

�3/2
with the exact numerical results for N =102;103;

104.

4 Experimental evidence

Even though the transition temperature to the BEC is well above the �rst excited state energy, one
still needs to get a system of bosons very very cold to produce a BEC. It took 70 years from when
BEC's were �rst conjectured theoretically (by Satyendra Nath Bose in 1924) to when technology
to cool atoms was su�ciently advanced that the BEC could be produced and detected (Cornell,
Weimann and Ketterle in 1995).

Since Tc= 3.31 ~2

kBm

�
N

V

�2/3
having more atoms, a smaller volume, or lighter atoms allows the

critical temperature to be higher. You might therefore think hydrogen is the easiest element to cool
to see a BEC form. Unfortunately, in the mid 1990s, lasers weren't available that could operate at
frequencies conducive to cooling hydrogen. Cornell and Weimann, and Ketterle, used Rubidium
atoms, 87Rb to form the BEC. Rubidium has a convenient set of energy levels that were will suited
to the available laser cooling technologies at the time. They were able to cool around 2000 atoms
using magneto-optical traps (MOTs) along with laser and evaporative cooling techniques to the
nanokelvin temperature scales required for the BEC. They found that below Tc � 170nK Bose-
Einstein condensation can be seen. This critical temperature is in excellent agreement with the

general formula Tc= 3.31 ~2

kBm

�
N

V

�2/3
when you plug in the density they were able to achieve.
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In order to see the BEC, one needs to be able to distinguish atoms in the ground state from
atoms in the excited states. The basic feature that makes this possible is that the ground state
atoms all have smaller wavenumbers and hence slower velocities than the other states. So if you
remove the magnetic trap, the atoms will start to spread, with the ground state atoms spreading
more slowly. Thus the atoms' positions after a short time indicate their initial velocities. The
scientists photographed (i.e. illuminated the system with a resonant laser pulse) the system after
t= 100ms and found a high density of atoms that had not moved very far:

Figure 6. Observation of a Bose-Einstein condensate

In this �gure, from Weimann and Cornell's group at the JILA laboratory in Boulder, we
see the distribution of atoms in the BEC at di�erent temperatures. The critical temperature is
Tc � 170nK. Above this temperature (left), the distribution is pretty smooth, consistent with a
Maxwell-Boltzmann velocity distribution. Below the critical temperature you can clearly see the
higher density corresponding at an anomalously large occupancy of the ground state, consistent
with expectations from a BEC. The right image shows the BEC at even lower temperature, where
the occupancy is even higher. Direct observation of thermodynamic properties of the system,
such as the energy density and heat capacity (particularly by Ketterle's group at MIT), further
con�rmed that this system was a BEC.

Since their discovery BECs have continued to exhibit some amazing and unusual properties.
Because of their coherence (all the atoms are in the same state), they can manifest quantum
phenomena at larger scales than electrons and are in many ways more controllable than electrons.
A number of groups at Harvard and MIT study BECs.

For example, Prof. Greiner (Harvard) uses lasers to localize rubidium atoms in an optical lattice.
By controlling the spacing and lattice properties, he can �ne tune the system, essentially choosing
whatever Hamiltonian he wants. Once the rubidium atoms form a BEC, they exhibit strongly
correlated behavior that can be connected to the properties of the Hamiltonian. Such an approach
may lead the way to building quantum computers with longer coherence times, or to understanding
what material properties might be most likely to produce room-temperature superconductors.

Another example is from Prof. Hau's lab (also at Harvard). In 1999 Prof. Hau constructed a
BEC of sodium atoms. Normally, a laser tuned to a hyper�ne splitting of the sodium levels would
be absorbed and so sodium appears opaque to this frequency. However, Hau was able to entangle
the ground and excited states of sodium using photons of a di�erent laser in such a way that she
could adjust the transparency of sodium to the �rst laser. The result is that she could manipulate
the dispersion relation of light propagating through the sodium BEC and achieve arbitrarily small
group velocities. In her �rst paper on the subject, she slowed light down to 17m

s
with this technique.

Subsequently, she was able to get light to stop completely.
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The BECs produced in laboratories have carefully controlled properties, and very restricted
interactions. A BEC of rubidium or sodium is unstable to condense in solid form and be held apart
with some careful tricks using magnetic �elds and optical traps. Helium is a noble gas that naturally
has very weak interactions and will only solidify at very high pressure. At low temperature and
pressure, it forms a Bose-Einstein condensate called a super�uid. Liquid 4He is a BEC of helium
atoms. Although 3He is fermionic, pairs of 3He atoms are bosonic, so liquid 3He can be thought of as
forming due to the pairing of helium atoms. Super�uids have zero viscosity. This is closely related
to the bosons all being in the same state, but in this case, the state is not the zero-momentum
state but one of non-zero momentum since there is a density current �owing through the �uid.

Bose Einstein condensation is also related to superconductors. In a superconductors, like
solid mercury at T < 4.2K, there is no resistivity. In the BCS theory, the superconductivity is
explained through the condensation of pairs of electrons called cooper pairs. These pairs act
like bosons and form a condensate at low temperature. Because electrons are charged, so are the
cooper pairs. The condensation of charged pairs screens the magnetic �eld in the superconductors,
allowing the charged current to �ow with zero resistance. Thus superconductors are much like
super�uids with charged bosons instead of neutral ones.
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