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4 History

1 History
These are lecture notes about quantum Monte Carlo (QMC) methods. Here are some hallmarks
of QMC1

1940’s E. Fermi: Schrödinger equation can written as a diffusion equation; Physical principles
of Diffusion Monte Carlo (DMC) discovered.

1942 A. A. Frost: evaluation of the energy of few simple molecules by picking few representative
points in the configuration space; Variational Monte Carlo (VMC) is born.

1947 N. Metropolis and S. Ulam: Diffusion Monte Carlo developed into an algorithm; “. . . as
suggested by Fermi . . . ”.

1950’s R. Feynman: Path integral formulation of quantum mechanics; Physical principles of
Path Integral Monte Carlo (PIMC) discovered

1962 M. H Kalos: Solved the Schrödinger equation in the form of an integral equation: Green’s
function Monte Carlo (GFMC) is born.

1964 H. Conroy: Proposed, that points should be picked at random from the configuration
space with probability proportional to Ψ2

T , the square of the trial wave function. Appli-
cation to H+

2 , H−, HeH++, He, H2, and Li - the first application to a fermion system!

1965 W. L. McMillan: Energy of liquid 4He; Applied the Metropolis algorithm to sample points
with probability proportional to Ψ2

T .

1971 R. C. Grim and R. G. Storer: Importance sampling.

1975 J. B. Anderson: First application of DMC to electronic systems

1986 D. M. Ceperley and E. L. Pollock: PIMC calculation of the properties of liquid 4He at
finite temperatures.

1998 N.V. Prokofev, B. V. Svistunov, and I. S. Tupitsyn: Worm algorithm

2009 G. H. Booth, A. J. W. Thom, and A. Alavi: Fermion MC as a game of life in Slater
determinant space

Some more recent developments are mentioned later in these lecture notes. QMC calculations
published in July 2016 (highlighting by me):

1After J. B. Anderson in Quantum Simulations of Complex Many–Body Systems : From Theory to Algo-
rithms, Editors J. Grotendorst, D. Marx, and A. Muramatsu.
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• Quantum Monte Carlo Method for the Ground State of Correlated Fermions, by H
Wang, M Iazzi, P Corboz, M Troyer

• Ab initio Quantum Monte Carlo simulation of the warm dense electron gas in the
thermodynamic limit, by T Dornheim, S Groth, T Sjostrom, FD Malone ...

• Staircase of crystal phases of hard-core bosons on the Kagome lattice, by D Huerga, S
Capponi, J Dukelsky, G Ortiz

• Determinant quantum Monte Carlo algorithm for simulating Hubbard models, by E
Huang, E Nowadnick, Y Kung, S Johnston, B Moritz ...

• Hybrid Monte Carlo simulations of emergent magnetism in graphene in presence of
hydrogen adatoms, by MV Ulybyshev

• A Fast Selected Inversion Algorithm for Green’s Function Calculation in Many-
Body Quantum Monte Carlo Simulations, by C Jiang, Z Bai, R Scalettar

• Impurities near an Antiferromagnetic-Singlet Quantum Critical Point, by T Mendes,
N Costa, G Batrouni, N Curro ...

• Jastrow correlation factor for periodic systems, by TM Whitehead, MH Michael, GJ
Conduit

• Microscopic study of static and dynamical properties of dilute one-dimensional soft
bosons, by M Teruzzi, DE Galli, G Bertaina

• Dimensional modulation of spontaneous magnetic order in quasi-two-dimensional quan-
tum antiferromagnets, by SC Furuya, M Dupont, S Capponi, N Laflorenci ...

• Computational Modelling as a Value Add in Energy Storage Materials, by RR
Maphanga, PE Ngoepe

• J-freezing and Hund’s rules in spin-orbit-coupled multiorbital Hubbard models, by AJ
Kim, HO Jeschke, P Werner, R Valent́ı

• Level spectroscopy in a two-dimensional quantum magnet: linearly dispersing spinons
at the deconfined quantum-critical point, by H Suwa, A Sen, AW Sandvik

• Communication: Convergence of many-body wave-function expansions using a
plane-wave basis in the thermodynamic limit, by JJ Shepherd

• Do positrons measure atomic and molecular diameters?, by J Franz, K Fedus, GP Kar-
wasz
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• Doping evolution of spin and charge excitations in the Hubbard model, by SD Home,
P Charges

• Critical behavior in the presence of an order-parameter pinning field, by FP Toldin,
FF Assaad, S Wessel

• Charged fermions coupled to Z2 gauge fields: Superfluidity, confinement and emergent
Dirac fermions, by S Gazit, M Randeria, A Vishwanath

• A simple fermionic model of deconfined phases and phase transitions, by FF Assaad,
T Grover

• Electron Correlation Effects in All-Metal Aromatic Clusters: A Quantum Monte Carlo
Study, by J Higino Damasceno Jr, JN Teixeira Rabelo ...

• (Book) Interacting Electrons: Theory and Computational Approaches, by RM Martin,
L Reining, DM Ceperley

and all this in just 20 days.

2 Scaling and computational cost
The computational cost of Diffusion Monte Carlo (DMC) is roughly an order of magnitude
larger than the cost of Variational Monte Carlo of the same system.

In atomic and molecular physics the most accurate methods are the fixed-node diffusion
Monte Carlo and the coupled cluster method on the level CCSD(T) (meaning the included
coupled clusters contain singles, doubles, and perturbationally treated triplets). With the
number of electrons N , the fixed node DMC scales as N4, while CCSD(T) scales as N7, so the
latter is practical only for small systems. The computational cost for fixed node DMC increases
as Z5.5−6.5 with the atomic number Z. The situation improves if one uses a pseudopotential,
which is non-singular at the nucleus. 2

The wave function near the nucleus oscillates very rapidly (reflecting the fact that electrons
move rapidly). If one uses a plane-wave basis, the infinite basis is cut off at a prescribed
energy, but these high-frequency oscillations cause the basis set to become too large for practical
purposes. The goal of using the lowest possible cutoff energy for the plane-wave basis set led
to the invention of ultra soft pseudopotentials by Vanderbilt in 1990.3

2M. Burkatzki, C. Filippi, and M. Dolg, Energy-consistent pseudopotentials for quantum Monte Carlo calcu-
lations, J. Chem. Phys. 126, 234105 (2007) .

3Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B41,
7892-7895 (1990).
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3 Basic concepts
Many–body theorists are interested in systems with many degrees of freedom. Often one
encounters multi–dimensional integrals, like the partition function of N classical atoms,

Z ∝
∫
dr1dr2 . . . drN exp [−βV (r1, ...rN)] , (1)

where β = 1/(kBT ) and V (r1, ...rN)) is the potential energy. If one discretises each coordinate
with only ten points, and the machine could do 107 points per second, would the partition
function for twenty particles take 1053 seconds, some 1034 times the age of the universe (at the
moment you start running the program . . . ).

We must evaluate the integrand at some of the points, otherwise the result wouldn’t contain
any information of the integrand. So how to pick the points? Make a compromise: If one
cannot evaluate the integrand in any decent number of discretization points per dimension, one
might as well pick them at random from the multi-dimensional space.

3.1 Simple Monte Carlo
How could one calculate the area of a unit circle with random numbers? First put a box
around the circle, or more economically, a box around the first quadrant. If you take random
coordinates x and y uniformly distributed between 0 and 1, mark this x ∈ U [0, 1] and y ∈ U [0, 1]
4. The probability that the point (x, y) is inside the circle is

P (hit circle) = Area of a quarter unit circle
Area of a box

= π

4
. (2)

You know that you’ve hit the circle, when x2 +y2 ≤ 1, so that’s it: start picking up points (x, y)
and count how many times your hit the circle out of N tries. This is a very ineffective way of
calculating π, and the more space one has that is outside the circle the worse it gets. This is
a very simple example of importance sampling: The better your random picks hit the relevant
region in space (inside the circe), the better the efficiency. After a one night run the result
was π ≈ 3.141592318254839, with only 6 correct decimals. By the way, this stone–throwing
calculation of π is also a simple test for the (pseudo-)random number generator.

This π–problem was inefficient application of MC mostly because the dimensionality was
too low, just two.

Next consider an alternative way to do a one–dimensional integral,

I =
∫ 1

0
dxf(x) . (3)

4We assume that a method to generate (pseudo) random numbers x, x ∈ U [0, 1] is available.
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One can estimate this integral as the average of function f(x) in the integration range,

I ≈ IN = 1
N

N∑
i=1

f(xi) , (4)

where xi are random points evenly distributed in the range xi ∈ [0, 1]. To estimate the error for
arbitrary f we can assume, that it is a random variable; a sensible assumption since we don’t
want to tailor this for some specific f . The variance or the square of the standard deviation is
then

σ2
I ≈ σ2

IN
= 1
N
σ2
f (5)

= 1
N

 1
N

N∑
i=1

f(xi)2 −

(
1
N

N∑
i=1

f(xi)

)2
 , (6)

and it measures how much the random variable deviates from its mean, i.e., from the estimate
of the integral I. The inaccuracy σI is inversely proportional to the square root of the number
of samples,

σI ∼
1√
N

. (7)

The MC error converges slowly, but steadily. The trapezoid rule integration error diminishes as
1/N2 in one dimension, so the comparison is very unfavorable to MC. This rises the question:

When does MC integration become the most effective way to integrate?

If one has to evaluate the integrand N times to calculate a d–dimensional integral, then for
each dimension one has ∼ N1/d points, whose distance is h ∼ N−1/d. The error for every
integration cell of volume hd is in the trapezoid rule ∼ hd+2, so the total error will be N times
that, ∼ N−2/d. For high-dimensional integrals this error diminishes very slowly with increasing
number of evaluation points N .

The error in Monte Carlo is proportional to 1/
√
N regardless of the dimension of

space

In a 4-dimensional space the trapezoid and the MC integration are equally effective, at higher
dimensions MC wins. Why exactly does a naive, deterministic method, such as trapezoid or
Simpson’s rule, become ineffective at higher dimensions? Think about a 3D cube and fill it
with a regular grid of N points. Looking at the 2D projection of these grid points on a square:
you see only N2/3 points, because many points overlap. This means there are gaping holes in
the space where you don’t evaluate your function. One should pick points that try to fill the
holes. This can be done deterministically, it’s goes under the name quasi-Monte Carlo methods,
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”quasi” because the points are not random, but form a clever, space-covering pattern. Also
Monte Carlo random points do better than naive deterministic grid points, because projected
random points don’t overlap and, as a result, the space is sampled more evenly. 5

3.2 Importance sampling
Eq. (6) shows that our new integration method becomes better for flatter functions, it’s exact
for a constant function. The integral of a constant function takes just one function evaluation
anywhere, multiplied by the integration volume, and there is no error at all. So let’s try to
make the integrand flatter. Define a normalized weight function, aka a probability distribution
function (PDF) w, ∫ ∞

−∞
dxw(x) = 1 normalization . (8)

Next we write the original integral in the equivalent form

I =
∫ ∞
−∞

dx w(x) f(x)
w(x)

(9)

and change variables, the cumulative distribution function cdf(x) is

y := cdf(x) =
∫ x

−∞
dx′w(x′) . (10)

Now we have
dy

dx
= w(x) , (11)

and cdf(x = −∞) = 0; cdf(x =∞) = 1, so the integral is,

I =
∫ 1

0
dy
f(x(y))
w(x(y))

. (12)

According to the above strategy this is estimated as the average of the argument evaluated at
random points ri ∈ U [0, 1]:

I ≈ IN = 1
N

N∑
i=1

f(x(ri))
w(x(ri))

. (13)

If we can find a weight function w that approximated f well, then f/w is flatter than f and
the variance is smaller. The applicability of this method relies on the assumptions, that

5Examples of deterministic vs. MC integrations are given in the blog of Yiannis Papadopoulos.

http://www.acenumerics.com/miscellaneous/monte-carlo-supremacy-how-can-randomly-placed-points-perform-better-than-a-regular-grid-for-integral-calculation-in-higher-dimensions
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(i) we know something useful about f , and we can look for a nice weight function w that
approximates f

(ii) we can calculate x(r) for that weight function, i.e., we know how to draw random numbers
from the PDF w.

Since ri ∈ U [0, 1], points xi = x(ri) are distributed as dr(x)/dx = w(x). Therefore more
samples are taken from regions of space where w - and by construction also f - is large, and
little effort is spent in regions where the weight is small. This is called importance sampling.
Notice that importance–sampling method is problem specific.

However, sometimes the importance sampling distribution w can be improved as we collect
data. This is done in the VEGAS code, which collects a histogram of values of f sampled so
far, and updates w to do better sampling.6

3.3 Correlated samples and MC accuracy
The error in MC decreases as 1/

√
N for N measurements. This means about 100 times more

work to get one more significant figure to the result. This is quite normal for Monte Carlo
methods, but actually the convergence is C/

√
N , and the factor C may be fatal to MC.

Samples may be correlated, meaning the chosen points are not quite random. This is the
case if one uses the so-called random walk to generate points: the next point is a random, but
small, step away from the previous one. It can be shown that for correlated sampled

error in mean =
√

2τint

N
σ , (14)

where σ is the variance of N independent samples. The integrated autocorrelation time τint
describes how badly the samples are correlated. The bad news is that close to a critical point
τint diverges. This is known as critical slowing down, and it tends to make MC calculations
slow near phase transitions.

The term ”critical slowing down” can mean two things:

• Decreasing rate of recovery from small perturbations. It signals approaching criticality,
such as an ecological disaster. Used as an early-warning mechanism.

• A Monte Carlo method samples the phase space inefficiently due to long-range correlations
near criticality. This simply means that MC spends long time in very similar situations.
A more clever algorithm does not suffer from critical slowing down. A typical example
is the Ising model simulation, where a single-spin flip algorithm slows down near phase
transition, but a cluster algorithm doesn’t.

6See VEGAS algorithm

https://en.wikipedia.org/wiki/VEGAS_algorithm
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3.4 Sampling from a distribution
Without importance sampling MC is mostly pretty useless, so we’d better find a way how to
generate random numbers that sample a given PDF w. Either analytically or numerically. First
we need to establish a connection between a uniformly distributed variable r and x that has
PDF w. Use again the cumulative distribution function,

y := cdf(x) :=
∫ x

−∞
dx′w(x′) , (15)

which gives

dy

dx
= dcdf(x)

dx
= w(x) . (16)

Apparently, ∫ 1

0
dr =

∫ ∞
−∞

dxw(x) . (17)

In MC, the left integral is evaluated by picking N random points ri ∈ U [0, 1]. The right integral
is evaluated by picking points xi from distribution w. This proves that the values x in Eq. (15)
have distribution w. An obvious solution is to invert r(x), and solve xi for a given ri, but we
shall see there are other ways.
A non–random method
Let’s say we have evenly spaced grid points yi given by

yi = i

N
=
∫ yi

0
dxw(x) , i = 0, 1, ..., N . (18)

The points xi can be solved from the differential equation dy(x)/dx = w(x) using discretization

yi+1 − yi
xi+1 − xi

≈ dy

dx
= w(xi) . (19)

Since yi+1 − yi = 1/N , we obtain the recurrence relation

xi+1 = xi + 1
Nw(xi)

, (20)

where the initial value x0 = 0 can be used. This samples w only approximately.
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Method based on inverse functions

A) Discrete distributions
Let’s assume we want to sample integers k, where 1 ≤ k ≤ N , with probability Pk.

1. Construct the cumulative table of probabilities, Fk = Fk−1 + Pk.
2. Sample r ∈ U [0, 1], find unique k so that Fk−1 < r < Fk. Repeat step 2 as many

times as needed.

B) Continuous distributions
This is sometimes called the mapping method.

1. Calculate the cumulative function of w(x)

F (x) =
∫ x

−∞
dx′w(x′) (21)

either analytically or numerically.
2. Sample r ∈ U [0, 1], solve x from F (x) = r; the solutions x sample w(x).

Solving x from F (x) = r can be made quite fast by tabulating F (x), but it’s approximate,
since the values x are picked from a limited set. A root-finding routine can solve x
accurately.
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Figure 1: Illustration of the rejection method.

Rejection method7

Also known as the hit and miss method, or the acceptance–rejection method. We saw that
using inverse function you need to solve x from F (x) = r. If one solution takes 100 ms, solving
108 values takes 16 minutes – just to get the random numbers. Let’s try something faster. This
is essentially an application of the stone-throwing idea used earlier to compute π.
Special Case
Let’s first assume we know that the distribution is limited from above, w(x) < M, x ∈ [a, b].
A sequence of random numbers that sample w can be generated as follows:

1. Draw r1 ∈ U [a, b] and r2 ∈ U [0,M ]
this picks a random point inside the box around w(x), see Fig. 1

2. If w(r1) ≥ r2, accept x = r1 as the desired random number, else discard both r1 and r2.
Go to 1.

This avoids solving x from F (x) = r, in the expense of throwing out some tries. But why does
this work? Take a look at the identity

w(x) =
∫ M

0
dr2θ(w(x)− r2)

=
∫ b

a

dr1

∫ M

0
dr2δ(x− r1)θ(w(r1)− r2) . (22)

The first equality states the fact that integrating the step function θ (which is 1 if r2 < w(x)) to
w(x) gives w(x); M is there just to make sure we cover the full range of values. See Fig. 2. The
second line uses a Dirac delta to put another random variable to the argument. Apparently,

7John von Neumann in the late 1950’s
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w(x)
0

1

M

Figure 2: The shaded area is w(x).

the algorithm integrates Eq. (22) using MC integration. Notice that we don’t solve x from
w(x) = r2, thanks to the Dirac delta. Piece by piece, the identity as an algorithm is

w(x) =
∫ b

a

dr1︸ ︷︷ ︸
sample r1∈U [a,b]

∫ M

0
dr2︸ ︷︷ ︸

sample r1∈U [0,M ]

δ(x− r1)︸ ︷︷ ︸
suggest r1 as x

θ(w(r1)− r2)︸ ︷︷ ︸
accept, if r2<w(r1)

. (23)

General Case
Sometimes we don’t know M and don’t want to use a and b either. Then we could sample r1
from some other, yet unspecified, PDF g(r1) and find a condition when to accept this r1 as x.
Copying the ideas in the special case,

g(x)h(x) = g(x)
∫ ∞

0
dr2θ(h(x)− r2)

=
∫ ∞

0
dr1g(r1)

∫ ∞
0

dr2δ(x− r1)θ(h(r1)− r2) , (24)

so if h(x) = w(x)/g(x) the integral would equal w(x). The step function makes the integrand
vanish for r2 > max[h(r1)], so if we could make h(r1) ≤ 1 as a probability, then r2 ≤ 1 and we
could sample r2 ∈ U [0, 1]. This can be achieved by an extra factor c: Define h(x) = cw(x)/g(x),
and

w(x) = 1
c
h(x)g(x)

= 1
c

∫ ∞
0

dr1g(r1)
∫ 1

0
dr2δ(x− r1)θ(h(r1)− r2) . (25)

We are almost done, all we need is to find some c that makes h(x) ≤ 1. If max(h) < 1, then
sampling r2 ∈ U [0, 1] would waste some time trying to pick useless numbers between max(h)
and 1. The optimal choice is clearly

max (h) = 1 , (26)

which gives c = [max (w/g)]−1 = min (g/w). Now we are ready to write down the algorithm:
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1. Evaluate

c = min
( g
w

)
(27)

2. Draw r1 ∈ U [0, 1] and r2 from PDF g(x).

3. If

c
w(r1)
g(r1)

≥ r2 , (28)

then accept x = r1 as the desired random number, else discard both r1 and r2. Go to 2.

A trivial case would be g(x) = w(x), which would mean that we already know how to sample
w(x). Then c = 1 and all r1 would be accepted (1 ≥ r2 is always valid): we say that the
acceptance ratio is 1 in that case. If c is small, that is, in some region g(x) � w(x), then
much more trial r1’s would be rejected and the algorithm would be ineffective. This problem
is known as under-sampling, and it can even turn the code useless. In layman’s terms, if one is
nearly overlooking some region where w(x) is large, then w(x) is under-sampled. The function
g(x) acts as an importance sampling function, and picking a bad one can be disastrous.
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3.4.1 Sampling the standard normal distribution

The standard normal distribution Normal(x) is a Gaussian with mean zero and variance one,

Normal(x) = 1√
2π
e−x

2/2 . (29)

This PDF is of special importance in MC, so we give few ways to sample random numbers x
from it. A generalization to arbitrary mean and variance is easy. If you want to sample

Normal(y, µ, σ) = 1√
2πσ

e−(y−µ)2/(2σ2) , (30)

you obviously need to spread the PDF and shift it’s mean to µ: y = σx+ µ. Sampling from a
multivariate Gaussian is beyond the present scope.

• Crude algorithm
Draw N random numbers ri ∈ U [0, 1] and calculate the sum

x =
√

12
N

N∑
i=1

(ri −
1
2

) (31)

As N increases this approaches the standard normal distribution, a consequence of the
Central Limit Theorem (proved later). This gives a rather good Normal(x) already with
small N . Values N = 6 or N = 12 can be quite useful, if only a crude normal distribution
is sufficient. You can’t get the large-x tails right, though.

• Box-Müller algorithm I8

1. Draw r1 and r2 ∈ U [0, 1]
2. Evaluate θ = 2πr1 and R =

√
−2 ln r2

3. (x1, x2) = (R cos(θ), R sin(θ))
4. Go to step 1.

You get two random numbers (x1 and x2) per round. The downside is that the four
special functions are slow, so use this algorithm only if you need accurate values x from
Normal(x).

8G. Box and M. Müller, Ann. Math. Stat. 38 (1958) 610
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• Box-Müller algorithm II
A modified version of the previous algorithm, uses the rejection method to avoid trig.
functions.

1. Draw r1 and r2 ∈ U [0, 1]
2. Make R1 = 2r1 − 1 and R2 = 2r2 − 1, they sample ∈ U [−1, 1]
3. If R = R2

1 +R2
2 > 1 reject the pair and go to step 1

4. Result:

(x1, x2) =
√
−2 lnR
R

(R1, R2) (32)

5. Go to step 1

Again, we get two random samples per round. The acceptance ratio of this algorithm is
π/4, the ratio of the area of a unit circle to the area of the 2-by-2 box around it.

• Fernandéz–Rivero algorithm9

A very fast algorithm. Highly recommended! This is actually a small Maxwell-Boltzmann
gas simulation, with fictitious, energy-conserving collisions, carried out by the velocity
exchange in step 5. The velocities become very fast normally distributed, and gives as
results in step 8.

1. Initialise vi = 1, i = 1, . . . , N (N is about 1024) and set j = 0
2. Draw K (about 16) values θk ∈ U [0, 2π];compute ck = cos(θk) and sk = sin(θk).
3. Set j = (j + 1) mod N , draw i ∈ IU [0, N − 1] so that i 6= j

4. Draw k ∈ IU [0, K − 1]
5. Set tmp = ckvi + skvj and vj = −skvi + ckvj

6. Set vi = tmp

7. If still in thermalization go to step 3
8. Result: vi and vj

9. Go to 3

Here IU [0, N ] means random integer between 0 and N .

The Box-Müller and Fernandéz–Rivero algorithms are accurate also at the tail of Normal(x),
while the crude algorithm clearly can get only as far from the origin as N steps allow.

9J. F. Fernandéz and J. Rivero, Comp. in Phys. 10 (1996) 83-88.
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Proof of the Box-Müller algorithm
The algorithm is based on a common trick to integrate a Gaussian: the product of two Gaussians
with Cartesian coordinates x and y can be most easily integrated in circular coordinates using

x2 + y2 = r2 . (33)

We start the proof from the end. The Box-Müller algorithm calculates the integral∫ 1

0
dr1

∫ 1

0
dr2δ(x1 −

√
−2 ln r1 cos(2πr2)) δ(x2 −

√
−2 ln r1 sin(2πr2))

=
∫ 1

0
dr1

∫ 1

0
dr2δ(r1 − e−(x1+x2)2/2) δ(r2 −

1
2π

arctan(x2

x1
))
∣∣∣∣ ∂(r1, r2)
∂(x1, x2)

∣∣∣∣
= 1

2π
e−(x2

1+x2
2)/2 = 1√

2π
e−x

2
1/2

1√
2π
e−x

2
2/2 = Normal(x1) Normal(x2) .

The key point is the Jacobian of the transformation, which is exactly the desired product of
the two Gaussians. These algorithms are always mappings from one or more random numbers
∈ U [0, 1] to another distribution. The last line shows that both x1 and x2 are sampling the
standard normal distribution, while the algorithm computes lhs integral using MC integration.

Principle of the Fernandéz-Rivero algorithm
This algorithm has it’s roots in physics, and it is appearently a simulation. As a first step,
take a look at how exponentially distributed random numbers can be generated. Consider a
collection of N classical particles, that can exchange energy with each other but not with the
rest of the world. From statistical physics we know that this ensemble will equilibrate to a
state, where the energies are distributed according to the Gibbs law,

P (E) ∼ e−E/T , (34)

where T is the temperature. Let the N–dimensional table E hold the energies of the particles.
Initialise this table to unity, Ei = 1 for 1 ≤ i ≤ N . Next introduce an interaction between the
particles in such a way, that the total energy is conserved. Let the particles interact pairwise,
pick two particles i and j at random. To conserve the total energy the sum Ei + Ej must be
kept constant, mark S = Ei + Ej. Next let the interaction to transfer a random amount of
energy from particle i to particle j. The algorithm is

1. Initialise Ei = 1 for 1 ≤ i ≤ N and set j = 0

2. Set j = (j + 1) mod N and draw an integer i 6= j from i ∈ int [N U [0, 1]]

3. Set S = Ei + Ej

4. Draw r ∈ U [0, 1], set Ei = rEi and after that set Ej = S − Ei
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5. If still in thermalization go to step 2

6. Result: two random numbers Ei and Ej

7. Go to step 2

According to Fernandéz and Rivero, N ∼ 1000 is enough for generations of about 1015 expo-
nentially distributed random numbers. The energies have to be thermalised before they become
Gibbs distributed, so one has to run the algorithm about 10 × N times to let the dust settle.
After that, each round produces two independent random numbers, Ei and Ej, distributed as
w(E) = e−E. The modulo operation can be done fast with logical and if N is a power of 2:
N = 1024 is just fine.

Normal distributed random numbers can be generated in a related fashion. From statistical
mechanics we know that in equilibrium velocities have the Maxwell distribution, which is a
Gaussian. This time we keep track of the velocities of the particles, and to conserve energy
their squares must be conserved. Let the velocities of the interacting particles be vi and vj.
Think of them as components of a two–dimensional vector, whose length squared v2

i + v2
j must

be conserved in the interaction. Thus the interaction should rotate the vector; To speed up
the rotation one can compute a finite set of rotation matrices beforehand. Although plausible,
the actual proof that the algorithm does what it promises is beyond the scope of these lecture
notes
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3.5 Central Limit Theorem
The Central Limit Theorem states that

Given a distribution with a mean µ and variance σ2, the sampling distribution of
the mean approaches a normal distribution with a mean µ and a variance σ2/N as
the sample size N increases.

This is almost magic: taking the mean value of variables x with almost any probability distri-
bution function (PDF) f(x),

z = x1 + x2 + . . .+ xN
N

(35)

the sampling distribution g(z) of the mean value approaches a normal distribution! Even more
amazingly, this seems to happen already for a rather small N .

What is exactly N and a ”sampling distribution”? In principle, the number of samples xi
is infinite, but we are not going to add them all up to get the mean. So we sample the mean
by taking a finite size specimen (of size N) and gather the mean values of those N points to
get an idea of the true mean value.

Proof:
We wish to find g(z) for large N . The PDF of N arbitrary values xi is the product of the
individual probabilities, you just add the constraint that their mean is z – a job for the Dirac
delta –

g(z) =
∫
dx1dx2 . . . dxNf(x1)f(x2) . . . f(xN)δ(z − x1 + x2 + . . .+ xN

N
). (36)

Write the Dirac delta in integral form,

δ(x) = 1
2π

∫
dkeikx , (37)

to get

g(z) = 1
2π

∫
dkdx1dx2 . . . dxNf(x1)f(x2) . . . f(xN) (38)

× exp
[
ik

(
z − x1 + x2 + . . .+ xN

N

)]
. . .×

[∫
dxNf(xN) exp

[
ik

(
z − xN
N

)]]
= 1

2π

∫
dk

[∫
dxf(x) exp

[
ik

(
z − x
N

)]]N
. (39)



Central Limit Theorem 21

For large N the value of (x1 + x2 + . . .+ xN)/N is going to be close to µ, so it’s a good idea to
add and subtract it:

g(z) = 1
2π

∫
dk

[∫
dxf(x) exp

[
ik

(
z − µ+ µ− x

N

)]]N
(40)

= 1
2π

∫
dkeik(z−µ)

∫ dxf(x) exp
[
ik

(
µ− x
N

)]
︸ ︷︷ ︸

I


N

. (41)

The integral in the brackets can be expanded in powers of the small deviation µ− x,

I =
∫
dxf(x)

[
1 + ik(µ− x)

N
− k2(µ− x)2

2N2 + . . .

]
(42)

= 1 + ik
µ−

∫
dxf(x)x
N

− k2

2N2

∫
dxf(x)(µ− x)2 + . . . (43)

= 1− k2σ2

2N2 + . . . , (44)

where the first order term (red) is zero by definition (see Eq. (48) below). For large N ,

g(z) ≈ 1
2π

∫
dkeik(z−µ)

[
1− k2σ2

2N2

]N
= 1

2π

∫
dkeik(z−µ)

[
1− x

N

]N
, x := k2

2/(σ/
√
N)2

, (45)

and since [
1− x

N

]N
≈ e−x, for large N , (46)

the integral is a Fourier transform of a Gaussian, and we get the result

CENTRAL LIMIT THEOREM

z := x1 + x2 + . . .+ xN
N

g(z) ≈ 1
√

2π
[
σ/
√
N
]e− (z−µ)2

2[σ/
√
N]2 distribution of z . (47)

In words: with large N , the distribution of mean values is a normal distribution with variance
σ/
√
N . This is one way to see why MC results converge as ∼ 1/

√
N . What is remarkable

in this result is that the probability distribution f(x) of values x is present only as the two



22 Basic concepts

momenta,

µ =
∫
dxf(x)x (48)

σ2 =
∫
dxf(x)(x− µ)2 . (49)

Figure 3 illustrates how fast the distribution of mean approaches the normal distribution. The
underlying distribution f(x) is box-shaped, 1 between -0.5 and 0.5, zero elsewhere (that’s
x ∈ U [−0.5, 0.5]). The average of two values, z = (x1 + x2)/2, is limited to −1 ≤ z ≤ 1, so the
tails of the normal distribution are beyond reach. Still, the triangular shape already resembles
Normal(z). The average of 12 numbers is so close to Normal(z) that it’s hard to see the
difference. Still, the values are limited to −6 ≤ z ≤ 6, so the tails are wrong – this tail error is
common to all distributions f(x) that have a limited domain.

Cauchy distribution
Not all PDF’s satisfy the Central Limit Theorem. As an example, consider the (standard)
Cauchy distribution

w(x) = 1
π(1 + x2)

, (50)

which looks a bit like the standard normal distribution (see Fig. (4)). It’s a PDF,∫ ∞
−∞

w(x) = 1 . (51)

However, the mean value

µ =
∫ ∞
−∞

xw(x) , (52)

is a problem. The argument is antisymmetric, so contributions from x < 0 and x > 0 cancel
exactly giving µ = 0. However, the separate integrals for x < 0 and x > 0 diverge. If
one samples N points x1, . . . , xN from the Cauchy distribution and computes their average, it
cannot converge to any value because the points are not chosen symmetrically about x = 0:
the Cauchy distribution has no statistical mean. The variance is even worse,∫ ∞

−∞
x2w(x) =∞ . (53)

The non–existence of these momenta pulls the carpet from under the central limit theorem.
Even though you can sample the Cauchy distribution, and – with a great deal of wishful thinking
– calculate the mean over a set of points, still no matter how many data points you collect,
your statistical estimate for the mean is as ”accurate” as with just one point!
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Figure 3: The distribution of the mean value of N random numbers ∈ U [−0.5, 0.5] for N =
2, 3, 4, 5, 12, 100 (Eq. (31)) (red markers), compared with the normal distribution (solid blue
line). The input distribution has variance σ2

0 = 1/12, and the plotted normal distribution
variance is σ2 = σ2

0/N .
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Figure 4: The standard Cauchy probability distribution compared with the standard normal
distribution.

One often uses the Cauchy distribution as a test distribution to see how sensitive a method is
to contributions from tails. Off-topic, the distribution of the ratio of two Gaussian-distributed
random variables with µ = 0 is a Cauchy distribution, hence another name normal ratio
distribution.
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3.6 Detailed balance condition
The detailed balance condition is a sufficient, but not necessary, condition that the
system reaches the equilibrium.

With the equilibrium I mean the correct equilibrium, it is the one where the states appear with
correct weights π(S); There are numerous ways to reach a wrong “equilibrium”! To put it
another way, we want to make certain that after repeating moves according to some transition
probability P (S → S ′) the asymptotic distribution of states S is π(S). This is the usual starting
premise: The weights of the states π(S) are known and the task is to construct the transition
probability P (S → S ′) that will lead to equilibrium. The detailed balance condition gives the
first quideline to follow. What makes it so pleasing, is that any transition probability that
satisfies the detailed balance condition with the weights π(S) is acceptable!

The detailed balance condition, known also as microscopic reversibility, states that

Detailed balance condition
P (S → S ′)π(S) = P (S ′ → S)π(S ′) . (54)

where π(S) is the weight of state S. This equality assures that there is no net traffic between
the states S and S ′, but it does more than that.10 The origin of the detailed balance condition
can be traced to the so–called master equation, which states how the probability of a state
π(S) varies as a function of the simulation time (treated as continuous) :

dπ(S ′)
dt

=
∑
S

P (S → S ′)π(S)−
∑
S

P (S ′ → S)π(S ′) , (55)

where the terms sum the changes of getting to S ′ minus changes of getting out of S ′. Perhaps the
easiest way to interpret the terms in the sums is to think of them as “probability of being in the
initial state times the transition rate from the initial to the final state”. The master equations
is a continuity equation for the probability. It’s also characteristic to Markov processes, because
the future depends only on the present state, not on the earlier history.

Now the connection between the detailed balance condition and the equilibrium of the
system becomes more transparent. In equilibrium there are no net changes in probabilities,
dπ(S′)
dt

= 0, and the master equation reduces to∑
S

P (S → S ′)π(S) =
∑
S

P (S ′ → S)π(S ′) . (56)

This has an infinite number of solutions, but one is exceptionally simple: Obviously this equality
is valid if the terms in the sums are equal, term by term, P (S → S ′)π(S) = P (S ′ → S)π(S ′).
This is the detailed balance condition (54) - the two sums are in balance term by term:

10A bad simulation can get permanently stuck to state S, so there is definitely no net traffic between any
states – but usually at finite temperatures this is not the correct equilibrium! Another form of false equilibria
are limit cycles, which also result from irreversible changes made in a poor simulation.
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Balance every process between a pair of states,
Transition S → S ′ is in balance with the reverse transition S ′ → S.

Of course the two sums in (56) can give the same value even though the terms are not the
same term by term: The detailed balance condition is not the only solution that is compatible
with the equilibrium condition. With some imagination you may add a kind of running weight
to the terms, so that once the sum is done the extras cancel. In short, Monte Carlo doesn’t
need detailed balance, but it’s simple and safe.

Finally, to wrap up the discussion about detailed balance we need to show that after a
repeated application of transitions with probability P (S → S ′), that satisfy the detailed balance
condition, the asymptotical distribution is π(S ′). We set out to prove that

π(S ′) =
∑
S

π(S)P (S → S ′) . (57)

In matrix notation this reads π = πP , which states that π is the (left) eigenvector of transition
matrix P with eigenvalue 1.
Proof11: ∑

S

π(S)P (S → S ′) =
∑
S

π(S ′)P (S ′ → S) (58)

= π(S ′)
∑
S

P (S ′ → S) = π(S ′) .

The first equality follows from detailed balance, the last one from the fact that P is a stochastic
matrix. This means that the sum of row elements of P is unity and all elements are non-
negative: the probability that state S ′ is followed by some state S (includes the case where S ′
remains S ′) is one.
Example: Transitions in a two-state system Let the weights in a two–state system be
π(1) = 5 and π(2) = 3. The detailed balance conditions says

P (1→ 2)
P (2→ 1)

= π(2)
π(1)

= 3
5
. (59)

Mark P12 = P (1 → 2) and P21 = P (2 → 1). This fixes the ratio of the two off–diagonal
elements of P , and using the fact that this is a stochastic matrix we get the missing elements:

P =
(
P11 P12
P21 P22

)
=
(

1− 3x 3x
5x 1− 5x

)
. (60)

11This is not a rigorous proof, to give credit to the statement that this is asymptotically valid one would have
to discuss the simulation time t.
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Any x will do, as long as the elements are non-negative. A neat choice would be x = 1/5,

P =
(

2/5 3/5
1 0

)
. (61)

First test that the distribution π is a left eigenvector with eigenvalue 1. Indeed,

πP =
(
5 3

)(2/5 3/5
1 0

)
=
(
5 3

)
= π . (62)

Next, successive applications of P give

P 10 ≈ 1
8

(
5.01614 2.978186
4.96977 3.03023

)
(63)

P 20 ≈ 1
8

(
5.00011 2.99989
4.99982 3.00018

)
, (64)

so it really seems that the rows go asymptically to π – the factor 1/8 is the normalization of π.
Another choice is interesting: x = 1/8. Then

P =
(

5/8 3/8
5/8 3/8

)
= 1

8

(
5 3
5 3

)
, (65)

and P 2 = P , meaning the matrix is idemponent, and shows the eigenvector π as rows.

4 Markov Chain Monte Carlo

4.1 Metropolis–Hastings algorithm
In year 1953 Metropolis et al.12 published an algorithm, which can be used to sample an almost
arbitrary, multidimensional distribution π(S). Here S can be, for example, described by a set
of particle coordinates R = {r1, r2, . . . , rN} or a set of occupation numbers {n1, n2, . . .} of
quantum mechanical states 1, 2, . . .. The algorithm generates the set of random numbers by
means of a random walk. The sequence of points gone through is an example of a Markov
chain, after the russian mathematician A. A. Markov (1856-1922). A Markov chain is defined
as a process containing a finite number of states for which the probability of being in each state
in the future depends only on the present state of the process. 13

12N. Metropolis, N. Rosenbluth, A. W. Rosenbluth, A. H. Teller and E. Teller, Equation of state calculations
by fast computing machines, J. Chem. Phys. 21 (1953) 1087-1092. An earlier form was published by Metropolis
and Ulam 1949. Allegedly the algorithm was invented at a Los Alamos dinner party.

13Jeremy Kun’s blog: Markov Chain Monte Carlo Without all the B...s....

https://jeremykun.com/2015/04/06/markov-chain-monte-carlo-without-all-the-bullshit
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It was Hastings14 who generalised the algorithm to account for nonsymmetric transfer matri-
ces, and showed how the asymmetry in proposals is compensated in the acceptance probabilities.

The original Metropolis algorithm
Consider two states of the system, S and S ′. In its original form the Metropolis algorithm
samples the Boltzmann distribution, where the weight of the state S depends on its energy
E(S) according to

π(S) = 1
Z
e−E(S)/T . kB := 1 . (66)

Metropolis et al. chose the acceptance probability from S to S ′ to be

A(S → S ′) =

{
e−∆E/T , if ∆E = E(S ′)− E(S) > 0 ”uphill”
1 , else ”downhill”

(67)

Usually this is written in equivalently as

A(S → S ′) = min
[
1, e−∆E/T ] , (68)

where min means ”smaller of the two arguments”. The detailed balance condition boils down
to a very simple relation,

P (S → S ′)
P (S ′ → S)

= T (S → S ′)A(S → S ′)
T (S ′ → S)A(S ′ → S)

= π(S ′)
π(S)

= e−∆E/T . (69)

The first two equalities go also under the name Metropolis–Hastings due to the explicit transfer
matrix in the formula. The original Metropolis algorithm assumes a symmetric transfer matrix,
T (S → S ′) = T (S ′ → S), so the T ’s cancel out from Eq. (69) and we might as well have written

P (S → S ′) = min
[
1, e−∆E/T ] . (70)

If we are going uphill (E(S ′) > E(S)), then

P (S → S ′)
P (S ′ → S)

= e[E(S)−E(S′)]/T

1
= e−∆E/T , (71)

and if we are going downhill then

P (S → S ′)
P (S ′ → S)

= 1
e[E(S′)−E(S)]/T = e−∆E/T , (72)

14W.K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika
57, 97-109 (1970). His PhD student Peskun derived the conditions for efficient sampling using Markov chains
(Peskun ordering).
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so the detailed balance condition is satisfied and this P (S → S ′) leads asymptotically to the
Boltzmann distribution.

Pay attention to the fact that in the detailed balance condition (69) the ratio does not involve
the partition function Z, which is the normalization factor of the Boltzmann distribution. Thus
we can construct the transition matrix without ever bothering to compute Z. A similar situation
occurs in quantum Monte Carlo: There is no need to normalize the wave function explicitly.
Great relief!

The algorithm is

• If e−∆E/T > 1 then P (S → S ′) = 1 and the move is always accepted.

• If e−∆E/T < 1 interpret it as a probability and compare it with a random number r ∈
U [0, 1]; accept it if r < e−∆E/T .

This means

1. Propose a move S → S ′

2. If the energy decreases, accept the move: always go downhill

3. If the energy increases, accept the move with probability e−∆E/T : go uphill if the tem-
perature allows you. Go to 1.
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Off–lattice Metropolis algorithm for almost any π(R)
This is exactly what variational Monte Carlo is doing, just replace π(R) with the square of the
trial wave function, |ϕT (R)|2. Start with the ”walker” at point R. This represents one possible
configuration or state of the system. Here is a Metropolis algorithm to sample the next point,
and so on:

1. Pick randomly a trial point R′ from the neighbourhood of R. You can choose, for example,
a random point within some distance δ of the original point.

2. calculate

ratio = π(R′)
π(R)

(73)

3. If ratio > 1
accept R′ as the next point; set R = R′ (move the walker)

else
Draw z ∈ U [0, 1].

if ratio > z
accept R′ as the next point

(in a program, set R = R′, because there is no need to store the old point).
else

reject R′, the ”next point” is the old point R.

4. Go to 1.

Step 3 is the Metropolis question. A common mistake is to forget the last part of step 3 and
not count rejected moves as old points. Obviously one must now and then use the same point
more than once if the walker is in a region where π(R) is large to describe that the walker now
and then refuses to step out of high–weight regions 15

The free parameter δ dictates the acceptance ratio and the effectivity of sampling. The
walker is supposed to move around the phase space where π(R) is nonzero within reasonable
time. Hence there are two reasons why sampling can be ineffective:

• Walker tries to take too long steps ; In a region with large π(R) most of the trial steps
would be rejected.

• Walker tries to take too short steps and almost all of them are accepted.

In both cases the walker is not moving around as it should. A rule of thumb says that for most
effective sampling the acceptance ratio should be about 60 percent.

15Random walkers are like drunkards; once the lost soul has landed in his favorite pub you may need more
than one persuation to make him leave for another, nice pub.
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The other free parameter in the algorithm is the starting point of the walk. In principle it
can be chosen freely, but it’s better to start it from a point where π(R) is fairly large to make
the walk thermalize (loose memory of it’s origin) faster.

The Metropolis algorithm can be used, for example, to evaluate expectation values

〈f〉w =
∫
dRπ(R)f(R)∫
dRπ(R)

. (74)

One just takes the average value of f over the points produced by the random walk. The points
in the random walk are not statistically independent, therefore the statistical error of the result
is not given by Eq. (6).

Example
Look again at the two–state system with weights π(1) = 5 and π(2) = 3. Assume that
the transfer matrix is symmetric; The Metropolis acceptance probability is the same as the
transition probability,

P (S → S ′) = A(S → S ′) = min

[
1, π(S ′)
π(S)

]
. (75)

so the corresponding matrix is (don’t use the above formula for S → S)

P =
(

2/5 3/5
1 0

)
. (76)

This happens to be the matrix from chosen in the previous example, the x = 1/5 case of P
given in Eq. (60).

Example
One Markov chain generated by the stochastic matrix given above is shown in Fig. 5. It starts
with state 1, moves to 2 with probability 3/5. Transition 2→ 1 is always accepted (downhill).
A change of state is always proposed, so the transfer matrix (proposal matrix) was

T =
(

0 1
1 0

)
, (77)

which is symmetric. The Metropolis choice of acceptances is the most effective, with

P (x = 1/5) =
(

2/5 3/5
1 0

)
. (78)

It’s interesting to notice that earlier we found the idempotent matrix

P (x = 1/8) = 1
8

(
5 3
5 3

)
, (79)

which shows the result immediately! How can Metropolis P (x = 1/5) beat this?
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The Metropolis acceptance is the most efficient in the sense that it moves between
states most effectively, and the Markov chain converges fastest toward π.

The choice 1/8 is less efficient if applied to a Markov chain, but yes, it shows the result
immediately. Small stochastic system are often better solved as eigenvalue problems and not
with Markov chains, but for large stochastic systems finding an eigenvalue solution may be a
very slow process.

Example
A three–state system has the stochastic matrix

P =

0.6 0.1 0.3
0.2 0.6 0.2
0.0 0.2 0.8

 (80)

What is the underlying distribution? By random walk and counting the frequencies as in the
previous example gives π = (0.2408, 0.4815.0.8427) (normalized to 1), some three decimals have
converged. In this case it’s a lot faster to compute matrix powers,

P 30 =

0.240771708282918 0.481543412582873 0.842700970860107
0.240771704899532 0.481543415038322 0.842700971788043
0.240771706755404 0.481543411654936 0.842700973315557

 (81)
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 4.99

 5

 5.01

 0  5e+06  1e+07

Metropolis => x=1/5
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Figure 5: Upper figure: A Markov chain for the two–state system with π = (5, 3), lines are
quides to the eye. The frequencies states 1 and 2 occurred during the depicted simulation were
5.20 and 2.82, respectively. After 108 steps the frequencies were 5.00010832 and 2.99989176.
Lower figure: The convergence toward π(2) = 5 for three choises of x in equation (60) (three
distinct transition matrices) gives a visual confirmation that the Metropolis matrix has smallest
fluctuations.
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5 Variational Monte Carlo
Eq. (74) can be readily applied to quantum many-body physics. The most straightforward
application is the variational Monte Carlo (VMC), the simplest of quantum Monte Carlo
(QMC) methods. If the method applies a Markov chain, then sometimes the name Markov
chain Monte Carlo is also used.

Let ϕT (R) be any trial wave function, R = (r1, r2, . . . , rN) is the set of d ×N coordinates
of the N particles in the d-dimensional system. The energy in that state is

ET = 〈ϕT |H|ϕT 〉
〈ϕT |ϕT 〉

=
∫
dRϕ∗T (R)HϕT (R)∫

dR|ϕT (R) |2
(82)

=
∫
dR|ϕT (R) |2

[
ϕT (R)−1HϕT (R)

]∫
dR|ϕT (R) |2

. (83)

The highlighted quantity

w(R) = |ϕT (R)|2∫
dR|ϕT (R)|2

(84)

is a perfectly good PDF and the quantity we are averaging is the local energy,

EL(R) = ϕ−1
T (R)HϕT (R) Local Energy . (85)

The energy in state ϕT is

ET =
∫
dRw(R)EL(R) ≈ 1

M

M∑
i=1

EL(Ri) , (86)

the average of the local energy calculated over M points Ri sampled from the distribution ϕT .
One can use the Metropolis algorithm to pick up these points as a random walk

R1 → R2 → . . .→ RM . (87)

According to the Rayleigh-Ritz variational principle the true ground state energy is

E0 ≤ ET , (88)

so by making a good guess for the trial wave function one can easily calculate the upper bound
of the ground-state energy.
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Metropolis VMC algorithm
This is for a N -particle system with trial wave function ϕT (R).

1. Pick up an initial configuration R1. For a smooth start, the wave function squared,
|ϕT (R1)|2, should not be too small. A lattice is usually a good starting configuration.

2. Choose the initial step size step.

3. Set i = 1.

4. Pick i:th particle.

5. Draw three random numbers dx, dy and dz ∈ U [−1
2 ,

1
2 ] (this is just U [0, 1] − 1

2). These
make the displacement vector d = (dx, dy, dz).

6. Compute new attempted particle position r′i = ri + step d

7. Compute

ratio =
∣∣∣∣ϕT (R′)
ϕT (R)

∣∣∣∣2
8. Metropolis question: If ratio > 1 accept move. Else draw t ∈ U [0, 1] and if ratio > t

accept move. These amount to accepting the move with probability

P = min [1, ratio] .

If move was accepted set ri = r′i, else keep old ri.

9. Keep count Naccept on how many of the moves have been accepted out of Ntry attempted
moves.

10. Set i = i+ 1. If i < N go to 4.

11. Control the step size: If 100 ∗ Naccept/Ntry < 40 set decrease step, if 100 ∗
Naccept/Ntry > 60 increase step.

12. If still in thermalization, go to 3.

13. Accumulate averages. Print out progress.

14. If still collecting data, go to 3
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Properties of VMC

• What goes in comes out: you only get the properties of the trial wave function ϕT (R).

• Optimization of ϕT (R) is time consuming, but better ϕT (R) means lower variance and
faster converge.

• You see almost immediately if the property you added to ϕT (R) has the desired effect.

– Squeezed liquid: first get liquid properties right (such as atom-atom repulsion), then
multiply with a constraint (atom-wall repulsion). Properties on top of properties,

ϕT (R) = ϕatom-wall(R)ϕatom-atom(R) . (89)

The atom-atom part includes all many-body effects, the atom-wall part single parti-
cle effects. The latter can be solved very accurately, knowing the atom-wall potential.

• If |ϕT 〉 is the ground state, it has zero variance in VMC.
Every |ϕT 〉 gives an upper limit to the energy (Rayleigh-Ritz variational principle).

• There is no way to know how close to the true ground state your |ϕT 〉 is.

• Integrated quantities with few degrees of freedom, such as energy, are easy to evaluate.
Functions with more degrees of freedom, such as the pair distribution function, need more
time.

• Human bias induces error: Humans favor simple wave functions over complicated ones:
solid over liquid, and polarised over unpolarised. 16

• Only ratios of weights matter ⇒
∫
dR|ϕT (R)|2 is irrelevant !

Computation of the norm would be another error-prone task, so this is excellent. We
sampled the trial wave function as a Markov chain, which moves from R to R′ based on
the ratio of weights, new vs. old.

16Humans also tend to pick simple passwords like 12345 and qwerty.
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5.1 Optimization of the trial wave function
Optimization comes in two flavours,17

1. Energy optimization

2. Variance optimization

Both energy and variance ”measure” the distance of the trial wave function from the eigenstate
we want. As we shall see, they disagree. With this we can live with, just keep in mind this
imperfection. The big problems are more on the technical side. The trial wave function usually
has many parameters, and the optimization problem is non-linear. The non-linearity comes
from the fact that each parameter tries to quantify a certain property of the wave function, and
the properties are inter-related in a non-linear fashion. Sugar and honey don’t taste the same,
but both add sweetness, so you can’t add honeyness to your cake as much as you want without
getting to add negative amount of sugar to compensate the sweetness – there are limitations
to a certain parametrization.

After a lengthy evaluation there will be some error in each energy, and from the energy-
vs-parameter plot it will be very hard – if not impossible – to determine the location of the
minimum accurately. In MC calculations, correlations of samples are often mentioned with a
negative tone, but in optimization they can actually give us means to determine the location of
the minimum, energy or variance. Let’s introduce correlated sampling with a positive impact.

Correlated sampling
Direct minimization may be too inaccurate due to statistical fluctuations of data. One can
hope that there is some ”systematics” behind the fluctuations and that the trial wave function
with different parameters α give rise to ”similar” fluctuations. If this is the case, then the
cause of our trouble with fluctuations is that using different configurations R for different α
mixes this systematics. The idea of using the same set of configurations {R} to evaluate the
expectation values of a several version of the same quantity is known as correlated sampling.
If the fluctuations are somehow systematic, then

The differences of the correlated averages can be
much more accurate than the averages themselves.

Sometimes minute energy differences matter, like in dealing with 3He impurities in liquid
4He, or in pinpointing the Wigner crystallization or paramagnetic-to-ferromagnetic transitions
in electron gas. Separate computation of electron gas and Wigner crystal energies as a function
of density easily lead to large uncertainties in the Wigner crystallization density.

17See also Assaraf and Caffarel Phys. Rev. Lett. 83, 4682 (1999), and Umrigar and Filippi Phys. Rev. Lett. 94,
150210 (2005).
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To elucidate correlated sampling, consider the expectation value of the local energy with
different parameters α. It can be written in the form

〈E(α)〉 :=
∫
dR|ϕT (R, α)|2EL(R;α)∫

dR|ϕT (R, α)|2
=

∫
dR|ϕT (R, α0)|2

[
|ϕT (R,α)|2
|ϕT (R,α0)|2EL(R;α)

]
∫
dR|ϕT (R, α0)|2 |ϕT (R,α)|2

|ϕT (R,α0)|2
.

While these expressions are mathematically equivalent (unless dividing by zero), their stochas-
tically evaluated MC values are not. Approximating the integrals as sums over M samples we
get

w(Ri, α0) := |ϕT (Ri;α0)|2∫
dR|ϕT (Ri;α0)|2

(90)

〈E(α)〉 ≈

∑M
i=1 |ϕT (Ri;α0)|2

[
|ϕT (Ri,α)|2
|ϕT (Ri,α0)|2EL(Ri;α)

]
∑M

i=1 |ϕT (Ri;α0)|2
[
|ϕT (Ri,α)|2
|ϕT (Ri,α0)|2

] (91)

=

∑M
i=1w(Ri;α0)

[
|ϕT (Ri,α)|2
|ϕT (Ri,α0)|2EL(Ri;α)

]
∑M

i=1w(Ri;α0)
[
|ϕT (Ri,α)|2
|ϕT (Ri,α0)|2

] (92)

The configurations Ri are sampled from w(Ri;α0): In correlated sampling you re-use the same
configurations for all α, so the values 〈E(α)〉 will be correlated. Their variances are larger than
for uncorrelated sampling, but - if we are lucky - the fluctuations may ”cancel in the same
direction”, and the differences

〈E(α1)〉 − 〈E(α2)〉 , (93)

come out more accurate than the absolute values of either of them. This is a welcome property,
for in optimization we just want to know if we are going upward or downward, not how high
we are.

One general notion is very useful, namely that the fluctuations of 〈ab〉 are usually much larger
than those of 〈ab〉−〈a〉〈b〉 (“covariance”). This is especially true if a and b are uncorrelated, in
which case the covariance is zero. Umrigar and Filippi (a footnote) used this idea and subtract
terms like 〈a〉〈b〉 that will vanish for an infinite sample to get expressions that contain only
covariances.

Objective functions
The zero variance property can be used as an optimization criteria in finding a better trial
wave function. It is often a more stable process to optimize the variance of the energy, not the
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energy itself. One possible quantity to minimise — the objective function — is18

σ2
opt =

∑Nopt
i=1

∣∣∣ ϕT (Ri;α)
ϕT (Ri;α0)

∣∣∣2 [EL(Ri)− Eguess]2∑Nopt
i=1

∣∣∣ ϕT (Ri;α)
ϕT (Ri;α0)

∣∣∣2 , (94)

Instead of taking a new set of randomly picked configurations one is using the same set of con-
figurations Ri = {R1,R2, . . . ,RNopt}, which sample a fixed ϕT (R;α0). This is again correlated
sampling.

Let us test the process for the hydrogen atom, where we can compute σ2
opt exactly for the

trial wave function in the limit Nopt →∞ in (94). We use the trial wave function

ϕT (R) = e−αr , (95)

where r is the distance of the electron from the proton (at origin). The local energy in atomic
units is

EL(R) = −1
2
α2 + α− 1

r
, (96)

so the exact ground-state energy is E0 = −0.5 (Hartrees) at α = 1. Simple integration gives

σ2
opt = 5

4
α4 − 3α3 + α2(2− Eguess) + 2αEguess + E2

guess . (97)

Figure 6 shows σ2
opt as function of α for few guessed energies Eguess. Notice that if Eguess > E0

there is another, lower minimum at low α, and in this case the optimization process is unstable
and even infinite number of configurations won’t help!

In short, the process of finding the minimum of σ2
opt can be unstable if Eguess > E0, and the

proposal by Umrigar et al. cited above should be applied with care. Even so, the variance σ2
opt

does have an absolute minimum at the exact ground state, because then EL(R) = E0 for all R
and

σ2
opt ≥

∑Nopt
i=1 [E0 − Eguess]2w(Ri)∑Nopt

i=1 w(Ri)
(98)

= (E0 − Eguess)2 ≥ 0 .

Hence the limiting value σ2
opt = 0 requires also Eguess = E0. This can be seen also in the case of

hydrogen in Fig. 6, where the zero value at α = 1 corresponds to exactly Eguess = E0 = −0.5.
One point worth remembering is, that if your trial wave function has exactly the correct

form with n unknown parameters, then you need just n independent configurations to find out
18For other objective functions and further discussion, see P. R. C. Kent, R. J. Needs, and G. Rajagobal,

Phys. Rev. B59 (1999) 12344.
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Figure 6: The exact objective function (94) in the limit Nopt → ∞ as a function of α
for a hydrogen atom with trial wave function (95). The guessed energies are Eguess =
0.1, 0.0,−0.1, . . . ,−0.8, the curves for Eguess > E0 are those with another minimum at small α.
The bold line shows the case Eguess = E0 = −0.5.
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Figure 7: The figure illustrates the serious misconception that energy optimization and variance
optimimization are equivalent ways to find the best parameters. The first 25000 steps are VMC
data from energy optimised Padé-Jastrow wave function of He atom with just one parameter
(a = 0.1437): The energy is E = −2.878 and the variance σ2 = 0.11. The last 25000 step are
variance optimised data (a = 0.3334): E = −2.869 and σ2 = 0.08. So the higher energy result
has lower variance and vice versa!
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their values! Just solve the set of linear equations. With imperfect trial wave functions there is
no guarantee that the parameters giving smallest variance of some form, like σ2

opt, correspond
to the best trial wave function. This can be seen by considering an optimization process, where
one of the configurations happens to give a much larger contribution than the rest. In that case
the variance would be close to zero, but the parameters would be very poor indeed! In some
cases — one is the helium atom problem with two 1S orbitals — your optimization process may
fail to converge to the “best” value. In that case you might try another objective function. If
the potential energy diverges for some configurations, then you’d better take care of the cusp
conditions (see appendix). See section 6.7 for more details about the He-atom problem.

Figure 7 shows how energy optimization and variance optimization may disagree about what
state is closest to the true ground state. The fact that a lower energy state may have higher
variance does not contradict the zero-variance property, it merely indicates that the search
of the “best” wave function in the limited Hilbert space spanned by the possible trial wave
functions has local minima in either energy or variance or both.

5.2 He atom wavefunction with e-e cusp
The 1S trial wave function satisfy the electron-nucleus Kato cusp condition (appendix), but
not the electron-electron cusp condition, because there’s nothing that cancels the e-e coulomb
potential singularity. One should add a r12 := |r1 − r2| -dependent part to the trial wave
function. One popular choice is the Padé form,

ϕT := eU = eUen+Uee (99)
Uen = −α(r1 + r2) 1S part (100)

Uee =

{
r12

2(1+βr12) parallel spins
r12

4(1+βr12) anti-parallel spins
. (101)

These Uee’s look a bit odd because the dimensions don’t match, but they are valid for dimen-
sionless quantities in Hartree atomic units. Another popular choice is, credited to Ceperley and
Alder,

Uee = A

r12

(
1− e−r12/F

)
(102)

F =

{√
A parallel spins√
2A parallel spins

. (103)

The e-e cusp conditions for factor e−u(r), derived in the appendix, are

du

dr

∣∣∣∣
r=0

=

{
−1

2 parallel spins
−1

4 anti-parallel spins
, (104)
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and both choices of Uee satisfy them. For example,

u(r) = − r

2(1 + βr)
(105)

⇒du

dr
= − 1

2(1 + βr)
+ 2βr

(2(1 + βr))2 = −2(1 + βr) + 2βr
(2(1 + βr))2 = − 2

(2(1 + βr))2 (106)

→ −1
2
, as r → 0 , (107)

so the chosen form satisfies the e-e cusp condition. 19 The fact that the e-e cusp condition is
satisfied can be seen below in the local energy, where the 1/r12 singularities cancel.

For two electrons and Z protons in the nucleus (He atom has Z = 2) the Hamiltonian is

Ĥ = −1
2

2∑
i=1

∇2
i −

Z

r1
− Z

r2
+ 1
r12

(108)

in the Born-Oppenheimer approximation. The local energy is

EL = ϕ−1
T ĤϕT = −1

2
[
(∇1U)2 + (∇1U)2 +∇2

1U +∇2
2U
]

︸ ︷︷ ︸
TL

+
[
−Z
r1
− Z

r2
+ 1
r12

]
︸ ︷︷ ︸

V

. (109)

For the local kinetic energy calculation we need some help results,

∇1r1 = r1

r1
∇1 · r1 = 3 (in 3 dimensions) (110)

∇1 ·
r1

r1
= 3
r1
− 1
r2

1
r1 ·∇1r1 = 2

r1
(111)

∇1r12 = r12

r12
(112)

∇1 · r12 = ∇1 · (r1 − r2) = 3 (113)

∇1 ·
(

r12

r12

)
= 3
r12
− 1
r2

12
r12 ·∇1r12 = 2

r12
. (114)

First,

∇1U = −αr1

r1
+
[

1
2(1 + βr12)

− βr12

2(1 + βr12)2

]
r12

r12
= −αr1

r1
+ 1

2(1 + βr12)2
r12

r12
, (115)

and from this we get

(∇1U)2 = α2 + 1
4(1 + βr12)4 −

α

(1 + βr12)2
r1

r1
· r12

r12
,

19The choice Uee = r12
2 would also satisfy the e-e cusp condition, but the correlations would increase with

increasing e-e distance unlike their Coulomb interaction.
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so

(∇1U)2 + (∇2U)2 = 2α2 + 1
2(1 + βr12)4 −

α

(1 + βr12)2
r1 + r2

r12

(
1− r1 · r2

r1r2

)
, (116)

and

∇2
1U = −2α 1

r1
− 2β

2(1 + βr12)3 + 1
2(1 + βr12)2

2
r12

, (117)

so

∇2
1U +∇2

2U = −2α
(

1
r1

+ 1
r2

)
− 2β

(1 + βr12)3 + 1
(1 + βr12)2

2
r12

. (118)

Now we can collect TL,

TL = −1
2

[(∇1U)2 + (∇2U)2 +∇2
1U +∇2

2U ] (119)

= −α2 − 1
4(1 + βr12)4 + α

2(1 + βr12)2
r1 + r2

r12

(
1− r1 · r2

r1r2

)
+ α

(
1
r1

+ 1
r2

)
+ β

(1 + βr12)3 −
1

(1 + βr12)2
1
r12

= −α2 + α

(
1
r1

+ 1
r2

)
the old 1S part (120)

+ 1
2(1 + βr12)2

[
− 1

2(1 + βr12)2 + α(r1 + r2)
r12

(
1− r1 · r2

r1r2

)
+ 2β

1 + βr12
− 2
r12

]
, (121)

and the local energy is

EL = −α2 + (α− Z)
(

1
r1

+ 1
r2

)
+ 1
r12

+ 1
2(1 + βr12)2

[
− 1

2(1 + βr12)2 + α(r1 + r2)
r12

(
1− r1 · r2

r1r2

)
+ 2β

1 + βr12
− 2
r12

]
(122)

At r12 → 0 the 1/r12 singularities cancel and the e-e cusp condition is satisfied; β is a free
parameter. Notive how choosing the denominator with the factor 2 in 2(1 + βr12) cancels the
2 in the singular term −2/r12. The e-n cusp condition requires α = Z. See the Python code
vmc-Heatom_cusp.py.
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The general case is also fairly similar. The wave function is

ϕT = eU (123)

U =
∑
i

−αri + 1
2
∑
i 6=j

rij
(4|2)(1 + βrij)

(124)

∇kU = −αrk
rk

+
∑
i(6=k)

1
(4|2)(1 + βrki)2

rki
rki

(125)

∇2
kU = −2α

rk
+
∑
i(6=k)

1
(4|2)(1 + βrki)3

2
rki

, (126)

where 4 applies to anti-parallel and 2 to parallel spins of indices, i and j, or i and k, Collect,

TL = −1
2
∑
k

[(∇kU)2 +∇2
kU ] . (127)

In code it’s easier to compute the vector ∇kU and square it and sum over k, avoiding a triple
sum. In DMC ∇kU is needed anyhow for drift.

To conclude, optimization is not a black box that always produces the optimal parameters.
But if it does, then you have the best possible trial wave function and your DMC code will be
much more efficient.
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6 Diffusion Monte Carlo
The Schrödinger equation in imaginary time turns into a diffusion equation. Diffusion is classical
motion we surely can simulate. Replace it/~ with τ to get the imaginary time Schrödinger
equation,

−∂|Ψ(τ)〉
∂τ

= Ĥ|Ψ(τ)〉 . (128)

If the Hamiltonian is time independent, the formal solution is

|Ψ(τ)〉 = e−Ĥτ |Ψ(0)〉 projection . (129)

Starting from an initial guess |Ψ(0)〉 one projects with the operator e−Ĥτ to get |Ψ(τ)〉.
What does this projection project? As so often in quantum mechanics, the eigenstate

expansion reveals the details. 20 The eigenstates |φi〉 of Ĥ are solutions of

Ĥ|φi〉 = Ei|φi〉, E0 < E1 < E2 < . . . . (130)

We can expand any N -body state in the basis of eigenstates of Ĥ. Especially

|Ψ(0)〉 =
∑
i

ci|φi〉 , (131)

where the sum is over all eigenstates. We have then

|Ψ(τ)〉 =
∑
i

cie
−Eiτ |φi〉 . (132)

This reveals that in imaginary time all states with Ei > 0 decay exponentially, the ground
state with energy E0 ≤ Ei has the slowest decay rate (for bound systems highest growth
rate). Now you see what the replacement it/~ to τ does: it changes oscillations to exponential
decay/growth, ∑

i

cie
−it Ei/~|φi〉 changes to

∑
i

cie
−Eiτ |φi〉 (133)

Write down the first terms of the sum, starting with the ground state 0, first excited state, etc.,

|Ψ(τ)〉 = c0e
−E0τ |φ0〉+ c1e

−E1τ |φ1〉+ ...

= c0e
−E0τ

[
|φ0〉+ c1

c0
e−(E1−E0)τ |φ1〉+ ...

]
. (134)

20The eigenstate expansion is remarkable. We have no way of knowing if we can ever solve the eigenstates,
we just go ahead and use them!
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If we project with the operator e−τĤ to large τ , meaning far to ”future” in imaginary time,
the factors e−(E1−E0)τ become exponentially small (for a non-degenerate ground state). The
projection leaves only

|Ψ(τ)〉 → c0e
−E0τ |φ0〉 as τ →∞ . (135)

The factor c0e
−E0τ is just a number, which goes to the normalization of the wave function.

What we have now is a procedure that will project out all excited state contributions
from an initial wave function. There are a couple of snags:

1. You have to project to a large τ to kill the first excited state, it only decays as e−(E1−E0)τ .
In practise you keep on projecting until nothing changes and you hope you have reached
the bottom.

2. If your initial wave function is orthogonal to the ground state, you have c0 = 0. Then the
first term is zero and you may have overlap with the first excited state, so the bottom is
at the first excited state instead. This may actually be desirable, if you wanted to find
E1, but new problems arise, as we shall see.

3. The evolution is numerically unstable, since also the amplitude of the ground state decays.
This is easy to solve, and we do it promptly.

We can stabilise the evolution by subtracting a trial or reference energy ET from all energies.
This merely shifts the energy scale; the energy-shifted equation

−∂|Ψ(τ)〉
∂τ

= (Ĥ − ET )|Ψ(τ)〉 (136)

has the solution

|Ψ(τ)〉 = e−(Ĥ−ET )τ |Ψ(0)〉 =
∑
i

cie
−(Ei−ET )τ |φi〉 . (137)

Now all states with energy above ET will decay, and those with energy below ET are amplified
in (imaginary) time. This means that if we choose ET ≈ E0, the asymptotic state that survives
is proportional to the ground state |φ0〉. We can then start with whatever state |Ψ(0)〉 and it
will evolve into the ground state, provided it’s not orthogonal to it; a snag mentioned above. In
the course of the evolution ET is updated toward E0, which is known more and more accurately.

Now we know in principle what the final outcome is. We still have to conceive a method
to evolve Ψ(R, 0) in practise, since we have neither the eigenvalues nor the eigenfunctions. We
start again from Eq. (137). The operator responsible for the time evolution is Green’s function

Ĝ(τ) = e−(Ĥ−ET )τ , (138)
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which satisfies the operator equation

−∂Ĝ(τ)
∂τ

= (Ĥ − ET )Ĝ . (139)

Numerics can’t handle abstract operators (same way abstract vectors are intangible), so we
have to fix a representation in some space. We can pick any complete basis, a convenient one
is the sets of all N -body coordinates {|R〉}. It’s complete,∫

dR|R〉〈R| = 1 , the unit operator, (140)

and it’s continuous – ”the sum over all states” is
∫
dR – and orthonormal,

〈R′|R〉 = δ(R′ −R) (Dirac delta) . (141)

We already used the basis {|R〉}, the wave function in coordinate space is a projection of the
state vector to it:

Ψ(R; τ) := 〈R|Ψ(τ)〉 definition . (142)

The unit operator can be inserted to many places,

|Ψ(τ)〉 = 1|Ψ(τ)〉 =
∫
dR|R〉〈R|Ψ(τ)〉 =

∫
dR|R〉Ψ(R; τ) . (143)

The coordinate space representation of Ĝ is a matrix,

Ĝ = 1Ĝ1 =
[∫

dR′|R′〉〈R′|
]
Ĝ

[∫
dR|R〉〈R|

]
=
∫
dRdR′|R〉〈R′| 〈R′|Ĝ|R〉 , (144)

with matrix elements

〈R′|Ĝ(τ)|R〉 = 〈R′|e−(Ĥ−ET )τ |R〉 := G(R′,R; τ) . (145)

The many-body Hamiltonian is often of the form

Ĥ = T̂ + V̂ (146)
T̂ Ψ(R; τ) = −D∇2

RΨ(R; τ) kinetic operator (147)
V̂Ψ(R; τ) = V (R) potential operator , (148)
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with the notations ∇2
R =

∑N
i=1∇2

i (sum over all N particles) and D = ~2/(2m) 21. Green’s
function is the solution of the equation

− ∂

∂τ
G(R′,R; τ) =

[
Ĥ − ET

]
G(R′,R; τ) =

[
−D∇2

R + V (R)− ET
]
G(R′,R; τ) . (149)

Remembering that

〈R|Â|Ψ〉 = Â〈R|Ψ〉 = ÂΨ(R) , (150)

the coordinate representation the calculation goes like this:

− ∂

∂τ
G(R′,R; τ) = − ∂

∂τ
〈R′|e−τ(Ĥ−ET )|R〉 = 〈R′|(Ĥ − ET )e−τ(Ĥ−ET )|R〉 (151)

=
[
Ĥ − ET

]
〈R′|e−τ(Ĥ−ET )|R〉 =

[
Ĥ − ET

]
G(R′,R; τ) . (152)

6.1 Short-time estimates of Green’s function
At first glance Eq. (149) doesn’t look any more promising than the original Schrödinger equation
(128). But for short time intervals τ we may solve it approximately. A theorem by Trotter22

says, that while the kinetic and the potential parts T and V of the Hamiltonian do not commute,

[T̂ , V̂ ] 6= 0⇔ T̂ V̂ 6= V̂T̂ (153)
obvious because ∇2

R[V (R)Ψ(R)] 6= V (R)∇2
RΨ(R) for arbitrary Ψ(R) , (154)

we may ignore this for a very brief moment, and evolve from time 0 to τ , where τ is small.
The reason why we would like to separate T̂ and V̂ is that we can deal with either ”kinetic

evolution” GT (τ) (diffusion) or ”potential evolution” GV (τ) (an amplitude factor), but not with
both happening ”simultaneously”. We can expand Ĝ as

G(τ) = e−(Ĥ−ET )τ = e−(T̂ +V̂−ET )τ = e−T̂ τ︸︷︷︸
GT (τ)

e−(V̂−ET )τ︸ ︷︷ ︸
GV (τ)

+O(τ 2) . (155)

The operator V̂ is diagonal in coordinate space (doesn’t move particles),

〈R′|V̂|R〉 = V (R)δ(R′ −R) , (156)
21”D” for “diffusion constant”.
22H. F. Trotter, Proc. Am. Math. Soc. 10 (1959) 545.
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so

GV (R′,R; τ) = e−(V (R)−ET )τδ(R′ −R) . (157)

Operate on a wave function with ĜV (τ),

ĜV (τ)Ψ(R, τ) = e−(V̂−ET )τΨ(R, τ) = e−(V (R)−ET )τΨ(R, τ) , (158)

so potential-induced evolution in coordinate space only multiplies the amplitude by a factor
e−(V (R)−ET )τ . In other words, GV (τ) satisfies the rate equation

∂GV (R′,R, τ)
∂τ

= −(V (R)− ET )GV (R′,R, τ) . (159)

The kinetic evolution is not diagonal in coordinate space, because it takes the derivative
∇2

R. However, in momentum space GT (τ) is diagonal, because of momentum conservation. 23

Define the momentum space by specifying it’s relation to coordinate space,

〈R|K〉 = 1√
Ω
e−iK·R definition of momentum space , (160)

where Ω is the (normalization) volume. Next we can prove that {|K〉} is complete,

∫
dK|K〉〈K| = 1 (continuum) (161)∑
K

|K〉〈K| = 1 (discrete) . (162)

23Conversely, in momentum space GV (τ) is not diagonal, because the potential changes particle momenta.
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Completeness of {|K〉}
Momentum states |K〉 := |k1, ...,kN〉 are eigenstates of the kinetic operator,

T̂ |K〉 =
N∑
i=1

− ~2

2mi

∇2
i |K〉 =

N∑
i=1

− ~2

2mi

|K|2|K〉 , (163)

and the set of all eigenstates is complete. Dirac delta can be expressed as (using notation of
discrete momentum space)

δ(R−R′) = 1
Ω
∑

K

e−iK·(R−R′) , (164)

which is here understood as the product of d-dimensional Dirac deltas,

δ(R−R′) =
N∏
i=1

δd(ri − r′i) (165)

δ3(ri − r′i) = δ(xi − x′i)δ(yi − y′i)δ(zi − z′i) in 3 dimensions . (166)

The completeness of {|K〉} and the completeness of {|R〉} are related,∑
K

|K〉〈K| =
∑

K

1|K〉〈K|1

=
∑

K

∫
dR|R〉〈R|K〉〈K|

∫
dR′|R′〉〈R′|

= 1
Ω
∑

K

∫
dR|R〉e−iK·R

∫
dR′eiK·R′〈R′|

=
∫
dRdR′|R〉〈R′|

[
1
Ω
∑

K

e−iK·(R−R′)
]

=
∫
dRdR′|R〉〈R′|δ(R−R′) =

∫
dR|R〉〈R| = 1 . (167)
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An elegant way to derive the matrix elements of the kinetic evolution is to use eigenfunction
expansion —this is the house rule of finding any Green’s function in physics. The eigenfunctions
of T̂ are plane waves, and the eigenvalues are kinetic energies. With K = |K| in a box with
side L (remember K is a 3N -dimensional vector),

T̂ φK(R) = (−D∇2
R)φK(R) = DK2φK(R) (168)

φK(R) = 〈R|K〉 = 1√
L3N

e−iK·R , (169)

one gets (use completeness of {K})

GT (R′,R; τ) := 〈R′|e−τ T̂ |R〉 =
∑

K

〈R′|e−τ T̂ |K〉〈K|R〉 (170)

=
∑

K

〈R′|e−τDK2|K〉φ∗K(R) =
∑

K

φK(R′)φ∗K(R)e−τDK2 (171)

= 1
L3N

∑
K

e−iK·(R
′−R)e−τDK

2
. (172)

The momentum values are 2π/L apart, and for large L the sum can be converted to an integral,∑
K

≈ L3N

(2π)3N

∫
dK (173)

1
L3N

∑
K

e−iK·(R
′−R)e−τDK

2 ≈ 1
(2π)3N

∫
dKe−iK·(R

′−R)e−τDK
2
, (174)

where the integral is a Fourier transform of a Gaussian, leading to the nice result

GT (R′,R; τ) = (4πDτ)−3N/2e−
(R−R′)2

4Dτ . (175)

This is usually an excellent approximation, so I left out the ”≈”. In DMC there is practically
never any need to fall back to the sum (172). We’ll soon see that in Path Integral Monte Carlo
(PIMC) τ is replaced by β, and pushing to a too low temperature eventually makes the integral
approximation invalid. In other words, at a low enough temperature the deBroglie wave length
of particles becomes larger than the box and one must evaluate the sum in Eq. (172).

The kinetic Green’s function GT corresponds to a 3N -dimensional Gaussian spreading dur-
ing time τ , because GT (τ) satisfies the diffusion equation

∂GT (R′,R; τ)
∂τ

= −D∇2
RGT (R′,R; τ) . (176)

To summarise, the short-time Green’s function with error O(τ 2) is

G(R′,R; τ) = (4πDτ)−3N/2e−
(R−R′)2

4Dτ e−(V (R)−ET )τ ”primitive approximation” . (177)
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Free particle diffusion: MC evaluation of integrals with GT (R′,R; τ)
We know how the sample random numbers that have the normal (Gaussian) distribution

1√
2πe
−x2/2 (see the Box-Müller or the Fernandéz-Rivero algorithm in section 3.4). Then MC

estimate with M samples is

1√
2π

∫ ∞
−∞

dxe−x
2/2f(x) ≈ 1

M

M∑
i=1

f(xi) , xi sampled from 1√
2π
e−x

2/2 . (178)

If numbers η have the distribution 1√
2πe
−x2/2, then obviously numbers ησ have the distribution

1√
2πσ2 e

−x2/(2σ2). In GT (R′,R; τ) the exponent is a product of N one-body Gaussians in 3
dimensions,

GT (R′,R; τ) = (4πDτ)−3N/2e−
(R−R′)2

4Dτ = (4πDτ)−3N/2
N∏
i=1

e−
(ri−r′i)

2

4Dτ (179)

= (4πDτ)−3N/2
N∏
i=1

[
e−

(xi−x
′
i)

2

4Dτ e−
(yi−y

′
i)

2

4Dτ e−
(zi−z

′
i)

2

4Dτ

]
(180)

= (4πDτ)−3N/2
N∏
i=1

∏
d=x,y,z

e−
(di−d

′
i)

2

4Dτ . (181)

Hence we can write GT as product of independent one-dimensional Gaussians. This is hardly
surprising because this is free particle diffusion, so each particle diffuse independently to three
directions. The value of σ can be found by comparing the exponents,

2σ2 = 4Dτ ⇒ σ =
√

2Dτ . (182)
Evolving the state from 0 to τ with only the kinetic operator is

|Ψ(τ)〉 = GT (τ)|Ψ(0)〉 = e−τ T̂ |Ψ(0)〉 , (183)
which in coordinate space is (use

∫
dR|R〉〈R| = 1 and 〈R′|τ〉 := ψ(R′; τ))

ψ(R′; τ) = 〈R′|e−τ T̂ |0〉 =
∫
dR〈R′|e−τ T̂ |R〉〈R|0〉 =

∫
dRGT (R′,R; τ)ψ(R; 0) . (184)

The goal is to sample points R′ from ψ(R′; τ), which is known only via the integral equation.
Assuming we can sample points R from ψ(R; 0), then after time τ they will be at R′ given by

R′ = R + η
√

2Dτ , (185)

where η is a 3N -dimensional vector of Gaussian-distributed random numbers. Just move a
particle in x direction as

x′ = x+ η
√

2Dτ , (η is a Gaussian-distributed random number) (186)
and repeat for y and z directions; do this for all particles, one by one. This is the most efficients
way to evaluate the integral

∫
dRGT (R′,R; τ)ψ(R; 0) using MC.
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Special case: τ → 0 limit
In the limit τ → 0 the Gaussian becomes narrower and approaches a Dirac delta, so this
approximate G satisfies the boundary condition

G(R′,R, 0) = 〈R′|e−0 Ĥ|R〉 = 〈R′|1|R〉 = 〈R′|R〉 = δ(R′ −R) . (187)

This is a natural requirement for the time evolution, since τ = 0 evolution shouldn’t evolve
anything. Specifically,

|Ψ(τ)〉 = e−τ(Ĥ−ET )|Ψ(0)〉 → |Ψ(0)〉 as τ → 0 . (188)

Ideally τ should be so small, that the approximation to Green’s function is more accurate
than the statistical uncertainty. In practise one calculates the desired quantities with several
values of τ in multiple MC runs, and in the end extrapolates the result to τ = 0. Later Fig. 11
will demonstrate this procedure for a set of He-atom results.
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With G(τ) accurate to second order, the energy is accurate only to first order
In one dimension the small-τ expansion of Green’s function can be easily found with the aid of
a sufficiently smooth function f(x)24. The Taylor expansion of f(x) around x = 0 gives (f (n)(x)
stands for the nth derivative at x)∫ ∞

−∞
dx

1√
4πDτ

e−
x2

4Dτ f(x) =
∫ ∞
−∞

dx
1√

4πDτ
e−

x2
4Dτ

∞∑
n=0

xn

n!
f (n)(0)

=
∞∑
n=0

f (n)(0)
∫ ∞
−∞

dx
1√

4πDτ
e−

x2
4Dτ

xn

n!
. (189)

From symmetry one sees immediately that only even n contribute. The formula∫ ∞
−∞

dx
1√

4πDτ
e−

x2
4Dτ

x2n

(2n)!
= (Dτ)n

n!
(190)

gives ∫ ∞
−∞

dx
1√

4πDτ
e−

x2
4Dτ f(x) =

∞∑
n=0

f (2n)(0)(Dτ)n

n!
(191)

=
∫ ∞
−∞

dxδ(x)
∞∑
n=0

f (2n)(x)(Dτ)n

n!
. (192)

where the integral form was recoved using Dirac delta. After partial integrations that shift the
derivatives from f (2n) to the Dirac delta in each term one finds, by comparing the factors of
f(x) in the integrals, that

GT (τ) = 1√
4πDτ

e−
(x−x′)2

4Dτ = δ(x− x′) +Dτδ′′(x− x′) +O(τ 2) . (193)

Combined with GV , the time evolution of the wave function is

Ψ(x, τ) = Ψ(x, 0) + [ET − V (x)]τΨ(x, 0) +DτΨ′′(x, 0) +O(τ 2) , (194)

so after stability has been reached, Ψ(x, τ) = Ψ(x, 0), we are left with the first-order terms that
give back the Schrödinger equation

−DΨ′′(x, 0) + V (x)Ψ(x, 0) = ETΨ(x, 0) +O(τ) . (195)

In the zero-τ limit ET is one of the eigenvalues of the Hamiltonian. A second order Green’s
function gives energies that are correct only to first order in τ .

24R. Guardiola, Lecture Notes in Physics: Microscopic Quantum Many-Body Theories and Their Applications,
Eds. J. Navarro and A. Polls, (Springer Verlag, Berlin 1998); Valencia lecture notes 1997.
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Representation of the many-body wave function
We need to figure out how to represent the many-body wave function Ψ(R, 0) numerically.
There are N particles somewhere in the continuous space 3N dimension space. Choosing a
single R1 doesn’t represent Ψ(R, 0) well, the particles could be elsewhere. We take the Monte
Carlo way and state that since we cannot possible keep an infinite number of positions, we
take a ”representative” sample and represent Ψ(R, 0) as an ensemble of NC configurations
{R1,R2, ...,RNC}. Each Ri is contains N walkers, which represent quantum particles. The
evolution evolves the NC configurations. In each of these NC configurations we have N walkers
(see Fig. 8).

Green’s function (177) evolves the system via two processes:

Basic DMC algorithm with only branching and diffusion

1. Branching due to GV (τ): The wave function Ψ(R, 0) is multiplied by the factor
e−(V (R)−ET )τ . So we calculate V (R) for each configuration and see whether this fac-
tor is more or less than one, and create/destroy configurations accordingly. Walkers are
not moving.

2. Diffusion due to GT (τ): Move walkers from R→ R′ diffusively, in other words move each
walker according to

r′i = ri + η
√

2Dτ ,

where η is a d-dimensional Gaussian random variable with zero mean and unit variance.

In practise this algorithm is never used, because it has one big problem. Often the potential
is not bound from above. Walkers can easily diffuse into positions where the potential practically
blows up. In step 1 we would need to create/destroy very many configurations and thus their
total number would fluctuate wildly. This is the DMC version of the large variance problem
we encountered earlier in crude Monte Carlo. We need importance sampling to keep walkers
away from the infinities of the potential, and to concentrate our efforts to regions of moderate
V (R).
Importance sampling in DMC
Instead of Ψ(R; τ), we seek to evolve

f(R; τ) = ϕT (R)Ψ(R; τ) , (196)

where ϕT (R) is a time-independent trial wave function used for importance sampling. We know
the evolution of Ψ(R; τ), it’s given by the imaginary-time Schrödinger equation (136). So use
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Figure 8: The wave function is represented by an ensemble of configurations.
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that to find out how f(R; τ) evolves 25:

−∂Ψ(R; τ)
∂τ

= (Ĥ − ET )Ψ(R; τ) (197)

⇔ − 1
ϕT (R)

∂f(R; τ)
∂τ

=
[
−D∇2

R + V (R)− ET
] f(R; τ)
ϕT (R)

(198)

⇔ −∂f(R; τ)
∂τ

= −DϕT (R)∇2
R

[
f(R; τ)
ϕT (R)

]
+ [V (R)− ET ] f(R; τ) (199)

⇔ −∂f(R; τ)
∂τ

= −D∇2
Rf(R; τ) + 2D∇RϕT (R)

ϕT (R)
· ∇Rf(R; τ)

− 2D
(
∇RϕT (R)
ϕT (R)

)2

f(R; τ) +D
∇2

RϕT (R)
ϕT (R)

f(R; τ)

+ [V (R)− ET ] f(R; τ) (200)
= −D∇2

Rf(R; τ) +D∇R · [F (R)f(R; τ)][
−D∇

2
RϕT (R)
ϕT (R)

+ V (R)− ET
]
f(R; τ) , (201)

so finally we have

−∂f(R; τ)
∂τ

= −D∇2
Rf(R; τ) +D∇R · [F(R)f(R; τ)] + [EL(R)− ET ] f(R; τ) . (202)

Here we have defined the drift force (or drift velocity, quantum force)

F(R) := ∇R ln |ϕT (R)|2 = 2∇RϕT (R)
ϕT (R)

, (203)

and the local energy (this was used also in VMC)

EL(R) := ϕT (R)−1ĤϕT (R) . (204)

Notice that these are calculated from the trial state ϕT (R), so the expressions for F(R) and
EL(R) are usually derived in analytic form before starting the DMC time evolution. In the
appendix we show how to evaluate the local energy and the drift force for the McMillan trial
wave function designed for two- or three-dimensional liquid 4He. The first term in Eq. (202) is
the usual diffusion term. The drift force guides the diffusion process to regions where ϕT (R) is
large (direction of gradient).

Green’s function corresponding to Eq. (202) is a modification of Eq. (177). One possible
solution is

G(R′,R; τ) = (4πDτ)−3N/2e−
(R−R′−F(R)Dτ)2

4Dτ e−τ(EL(R)−ET ) +O(τ 2) . (205)

25We exclude points where ϕ(R) = 0, particles simply can’t get there.
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This is not unique: Should we drift the walkers before or after we’ve diffused them (F(R) or
F(R′))? This is once again a non-commutatitivity problem, drift and diffusion don’t commute.
Sometimes one uses 1

2 [F(R)+F(R′)] and similarly in the local energy 1
2 [EL(R)+EL(R′)]. We’ll

talk about modifications later.
Notice that (205) has no explicit dependence on V (R); It’s up to our trial wave function

ϕT (R) to lead to a drift force which guides the walkers to positions where EL(R) has low values
and where V (R) is not blowing up.
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6.2 A working DMC algorithm
The Diffusion Monte Carlo (DMC) algorithm corresponding to Green’s function (205) has now
drift, diffusion and branching, Here is one possible procedure26:

1. Initialise many (∼ 100 − 500) configurations, where walkers are distributed according
to |ϕT (R)|2. We don’t want them all destroyed in the branching process, so we need
to generate as diverse a set as possible. You can pick from a VMC run that samples
|ϕT (R)|2 positions R now and then to a zeroth generation of configurations. The
total number of configurations in a generation is its population.

2. In each configuration of the present generation, move the ith walker with

rnew
i = ri +DτF(R) + η

√
2Dτ , (206)

where η is a 3-dimensional Gaussian random vector.

3. Calculate a weight for the move,

ratio = |ϕT (R′)|2G(R′,R; τ)
|ϕT (R)|2G(R,R′, τ)

, (207)

and accept the move R→ R′ with probability min[1, ratio] (”Metropolis question”) 27.

4. Take each configuration in turn and make Ncopies copies of it,

Ncopies = int
[
e−τ(EL(R)−ET ) + ξ

]
ξ ∈ U [0, 1] , (208)

5. Estimate the ground-state energy E0 by taking the average of the local energies of current
generation.

6. Keep the population healthy by adjusting the trial energy ET . One way is to use a
feedback mechanism,

ET = E0 + κ ln NCtarget

NC

, (209)

where E0 is the best guess for the ground-state energy we have so far, NCtarget is the
population we’d like to have, and NC is the one we have now. The positive parameter κ
should have the smallest value that does the job.

7. go back to step 2
26P. Reynolds, D. Ceperley, B. Alder, W. Lester Jr, J. Chem. Phys. 77(11), 5593 (1982).
27Green’s function in the ratio is the transfer matrix in the Metropolis-Hastings detailed balance formula,

Eq. (69)
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Step 3 with acceptance/rejection guarantees that the algorithm satisfies the detailed balance
condition. Moreover, it is the only way to make sure that we really are sampling the correct
distribution at finite τ . This accept-reject test is easy to convert back to VMC by leaving
out the G’s - a very useful property. Sometimes this acceptance/rejection step is left out, the
rational being that the acceptance has to be very close to 100 percent. Another reason is that
acceptance/rejection may lead to a new problem of ”persistent configurations”, configurations
that get stuck. These lead to erraneous energy vs. τ results and to wrong extrapolations to
zero τ .

Step 4: We want to have on average e−τ(EL(R)−ET ) copies of the configuration R. This
number not an integer and we treat the remainder as a probability: if it’s bigger than ξ, round
the number upward. In math,

〈e−τ(EL(R)−ET )〉 = 〈int
[
e−τ(EL(R)−ET ) + ξ

]
〉 . (210)

In case Ncopies = 0 that configuration is killed; This is one reason why we start with large NC .
Another reason is that a small number of configurations introduces bias to the result, because
the wave function is poorly represented.

Bias means that something is causing non-randomness.

The source of bias may be statistical (e.g. a bad pseudo-random number generator) or
systematic (non-random choices made somewhere or the algorithm is imperfect).

One way to avoid replicating is reweighting. Instead of actually making copies or killing
configurations, we give them a weight, which describes essentially the relative number of de-
scendants that configuration would have had in the replicating algorithm up to that moment.
We give that weight to all quantities measured from that configuration. In a reweighting-DMC
one computes

wi = wie
−(EL(Ri)−ET )τ update weight

E = E + wiEL(Ri) weighted contribution of a configuration

This method will be applied in section 6.7 to a 4He atom. Reweighting is known to lead to
slightly larger variances than replicating.

The problem with reweighting is that the cumulative weights tend to either decrease toward
zero or to increase without limit. A configuration that has a tiny weight is useless to the
computation and one with extremely high weight will dominate over all other configurations
leading to poor statistics. Hence in a longer DMC run one has to renormalize the weights
in some fashion, which is not causing serious bias. You cannot simply split half configurations
whose weight exceeds a fixed value, say 2. A rule of thumb is that unless every configuration
has some chance to be split your algorithm is badly biased. You can choose the configurations
to be split by favouring the high-weight ones. This can be done, for example, by a wheel of
fortune depicted in Fig. 9, where the change that you hit a high-weight configuration is large.
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Pick up at random any other configuration and replace it with the chosen configuration and let
both configurations now carry half of the weight the chosen configuration had before splitting.

1 2

3

4

5

7

6

Figure 9: A way to choose a configuration, so that every one has a change, but higher-weight
ones are more probable. The lengths of the angular segments are the weights of the configura-
tions. The angle of the pointer is chosen at random.

Commonly one starts with just one configuration, runs VMC for a while and picks up the
NC representative configurations. These too are run for a while using only VMC to get a good
estimate for the energy of the trial wave function,

EVMC = 〈ϕT |H|ϕT 〉 . (211)

VMC steps are much faster to do than DMC steps, because the Gaussian step η can be much
larger: τ can be much larger, because VMC doesn’t have to worry about any Green’s function:
no short time estimates are used.

The DMC evolution needs to be run for a while to let the excited states die out. The estimate
E0 will be fluctuating around a fixed value and your subsequent generations will (hopefully)
be sampling the distribution f(R; τ) = ϕT (R)Ψ(R; τ). It’s imaginary time to start collecting
data for ground-state averages.
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6.3 Mixed and pure estimators
Let’s take a closer look at how averages are calculated using an importance sampling DMC
algorithm. We need to be cautious, because the algorithm is not sampling the ground state
directly, but the product state f(τ) = ϕTΨ(τ) that approaches ϕTφ0 as τ →∞.

At time τ the average of the local energy EL(τ) is (I’ll drop the R’s in the arguments to
simplify notation)

Emixed =
∫
dRf(τ)EL∫
dRf(τ)

=
∫
dRf(τ)

[
ϕ−1
T HϕT

]∫
dRf(τ)

(212)

→
∫
dRφ0HϕT∫
dRφ0ϕT

.

This called a mixed estimator, because it is not the expectation value 〈φ0|H|φ0〉, but the
mixed matrix element 〈ϕT |H|φ0〉. We still get the correct ground-state energy directly out of
importance sampling DMC, because

Emixed =
∫
dRφ0

∑
i aiEiφi∫

dRφ0
∑

i aiφi
= E0 ,

where the last step follows from orthogonality of the energy eigenstates. So the mean value of
EL is the ground-state energy also if importance sampling is used. What about the variance?
We have

σ2
E = 〈E2

L〉 − E2
0 =

∫
dRf(τ)E2

L∫
dRf(τ)

− E2
0 (213)

→
∫
dRϕTφ0[ϕ−1

T ĤϕT ][ϕ−1
T ĤϕT ]∫

dRϕTφ0
− E2

0

=

∫
dRφ0

(
ĤϕT

)
ϕ−1
T

(
ĤϕT

)
∫
dRϕTφ0

− E2
0

=
∫
dRφ0 (

∑
i aiEiφi)

2 (
∑

i aiφi)
−1

a0
− E2

0 .

If we have the perfect trial wave function (ϕT = φ0; ai = 0 for i 6= 0) , then σ2
E = 0. Same

thing happens if you are evaluating the energy of an excited state and use exactly the correct
wave function as ϕT . This is the famous zero variance property:

The variance in the DMC energy will vanish for a trial wave function, which coin-
cides with any eigenstate of the Hamiltonian.

This is valid also for VMC. For a trial wave function that is an exact eigenstate this is trivial:
The local energy will be just a constant, so no matter how you move your walkers you will —
of course — always get that constant as the energy.
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The better the trial wave function, the smaller the error bars.

Let’s see what happens if you try to evaluate a quantity Â that does not commute with the
Hamiltonian. Then you get also

Amixed =

∫
dRf(τ)

[
ϕ−1
T ÂϕT

]
∫
dRf(τ)

(214)

=
∫
dRφ0ÂϕT∫
dRφ0ϕT

=
∫
dRφ0Â

∑
i aiφi

a0
,

but this is where the road ends, because φi’s are not eigenstates of Â. In this situation one
commonly uses the so-called extrapolated estimator

〈φ0|A|φ0〉 ≈ 2〈ϕT |Â|φ0〉 − 〈ϕT |A|ϕT 〉 , (215)

which assumes that the mixed estimator is “halfway” between the true ground-state and the
VMC expectation values. Then one does a kind of linear extrapolation. More rigorously, one
makes a (functional) Taylor expansion of the DMC and VMC estimators in terms of ∆ =
φ0 − ϕT ,

〈φ0|Â|ϕT 〉 = 〈φ0|Â|φ0〉+
∫
dRψ0

[
〈φ0|Â|φ0〉 − Â

]
∆ +O(∆2) (216)

〈ϕT |Â|ϕT 〉 = 〈φ0|Â|φ0〉+ 2
∫
dRψ0

[
〈φ0|Â|φ0〉 − Â

]
∆ +O(∆2) ,

so a combination of these gives

〈φ0|Â|φ0〉 = 2〈φ0|Â|ϕT 〉 − 〈ϕT |Â|ϕT 〉+O(∆2) . (217)

Extrapolated estimators are needed very frequently, you cannot even determine the kinetic
and potential energies directly: Ĥ commutes neither with T̂ nor with V̂ .

There is also a way to get more accurate ground-state expectation values for quantities that
don’t commute with Ĥ, known as pure estimators. A pure estimator means any estimator
that is unbiased , i.e., not affected by the choise of the trial wave function. The total energy in
DMC is independent of ϕT , so it is already a pure estimator. But quantities that don’t commute
with the Hamiltonian (kinetic energy, potential energy, spatial distributions etc.) need special
attention. I’m not going to describe the method in any detail, just mention that one needs to
keep account of how long the configurations in the DMC run survive and how many descendants
they have28.

28See, for example, Jordi Boronat’s work in the 90’s, published in Phys. Rev. B.
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Growth estimator
In DMC, the ground state energy can be obtained at least from two sources: (i) as the average
of local energies, 〈EL〉 as in VMC or (ii) from the so-called growth estimator. The latter is
based on the notion, that after the excited states have died out, the population (number of
configurations) evolves during time τ according to the equation

N(τ) = e(E0−ET )τN(0) . (218)

Solving for E0 one finds

E0 = ET + 1
τ

ln N(τ)
N(0)

. (219)

This looks like the population control equation (209), just inverted to give E0. Indeed, one has
to refrain from adjusting the population manually during the evaluation period in Eq. (219).
In practical application of the growth estimator it is profitable to have populations N(τ) and
N(0) evaluated at as distinct times as possible. The relation to the local energy is clear, since
the population changes via branching, which is in controlled by the local energy. The growth
estimator is unpopular due to the large fluctuations in the population during a simulation,
resulting in a large variance.

The significance of branching in the DMC algorithm
In the importance sampling algorithm the total energy is the average over local energies eval-
uated at points R generated by the DMC algorithm,

E0 = 〈EL〉R = 〈ϕ−1
T ĤϕT 〉R with importance sampling . (220)

The functional form of EL is completely determined by the trial wave function. The reason why
averaging over EL in DMC does give the true ground-state energy is that the configurations R
where one evaluates EL(R) are biased due to branching. 29

To bring in the significance of branching even more dramatically, let’s do a most simple
importance sampling and set ϕT = 1 — a perfectly admissible choise for bosons. Now we get
zero drift,

F(R) = 2∇ϕT (R)
ϕT (R)

= 2∇(1)
1

= 0 , (221)

and the ground state energy is

E0 = 〈EL〉R = 〈1−1Ĥ1〉R = 〈−D∇2
R(1) + V (R)〉R = 〈V (R)〉R ! (222)

Now branching has a huge job in biasing the positions R so that the average of potentials
V (R) gives the total ground-state energy. Essentially we get the correct ground-state energy
by computing the value of the potential energy at well-chosen points ! Conversely, if ϕT (R) is
perfect (an eigenstate), there is no branching at all. 30

29Of course, reweighting can be used to achieve the same effect.
30If ϕT = 1, the only energy measure available is the potential energy. You have to get every energy-related
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6.4 Fixed node and released node methods
The ground state of a many-body Bose system can always be chosen to be real and positive, so
the quantity f(R) = ϕT (R)φ0(R) can be safely interpreted as density in the diffusion process.
Excited states and Fermi systems are more problematic, because the exact wave function has
nodes (zeros) 31. The negative areas themselves are not bothering us, because one can define

φ(R) = φ+(R)− φ−(R) , (223)

where both φ+ and φ− are positive and and use them as densities. The Schrödinger equation
can be written separately for both parts. Similar decomposition is done for the trial wave
function, too. Eq. (223) is trivially satisfied by, for example,

φ±(R) = 1
2

[|φ(R)| ± φ(R)] . (224)

Now that I mentioned Fermi systems, it would seem appropriate to give an example of what
the trial wave function might look like. The Slater-Jastrow wave function is given by

ϕT (R) = det(A↑) det(A ↓)eU(R) , (225)

where A↑ and A ↓ are Slater matrices made of spin up and spin down single-particle orbitals;
the Slater matrix is

A =


ϕ1(r1) ϕ1(r2) . . . ϕ1(rN)
ϕ2(r1) ϕ2(r2) . . . ϕ2(rN)

... ... . . . ...
ϕN(r1) ϕN(r2) . . . ϕN(rN)

 . (226)

Orbitals ϕi can be, e.g., plane waves or molecular orbitals. The term eU(R) is the Jastrow factor
(see the appendix for details).

The problem is that we usually have very little or no idea where the nodes of φ are. The
trial wave function is supposed to approximate the true solution, so we can choose one which
has nodes. But this choice is forced upon the final solution:

ϕT (R0) = 0⇒ f(R0, τ) = ϕT (R0)ψ(R0, τ) = 0 , (227)

and no amount of imaginary time evolution will make the zeroes to change a bit. If, as usual,
the nodes of ϕT and φ do not coincide, then near the nodes we would be badly undersampling
φ; the result will certainly be biased and unreliable. Anyhow, this is exactly what is done in
the fixed node method32.
quantity out of V (R).

31We really need to impose those nodes somehow, without them the Bose case will converge to the ground
state and the Fermi case will not obey the Pauli principle and cease to be a Fermi case.

32This section relies heavily on Jordi Boronat’s section in Valencia lecture notes (1997).
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One can see how the walkers avoid the nodes by looking at the drift force F(R), see Fig. 10.
The drift is away from the nodes (nodal surfaces); At the nodes F(R) is infinite and walkers
shouldn’t be able to cross nodal surfaces. Due to the finite time step τ some walkers do cross,
and usually one just deletes such spurious configurations from the set. This is not the best
way, and in literature it’s argued that it would be better just to reject moves that would cross
a nodal surface. Of course, if the nodes of ϕT happened to coincide with the exact ones, then

φ+ φ+

φ-

φ- φ-
0

F(R)

Figure 10: The drift force near the nodes of the wave function (trial or exact) and the decom-
position proposed in Eq.(224).

φ would also be correctly sampled in the fixed node DMC. Until recently it was believed, that
with the fixed-node DMC one always gets a variational upper bound for the exact eigenvalues.
However, Foulkes, Hood and Needs33 showed that this is true only if the state in question is
non-degenerate or has only accidental degeneracy.

Many of the shortcomings of the fixed node method has been known ever since it was first
applied, and something had to be done to somehow let the nodes of ϕT move towards the
true nodes of φ as the computation progresses. In the released node method one lets the
walkers to cross nodal surfaces. One assigns a “colour” (red/blue) or a sign (±1) to each walker,
which keeps track of whether the walker has crossed the nodal surface odd or even times. Each
walker crossing a nodal surface “pulls” the surface with it to some extent. Only to some extent,
because a single walker has only statistical significance, and a red walker in the midsts of blue
ones does not mean the true nodal surface makes a wild loop to engulf that solitary walker.
Thus we need to restrict the effect of a single walker, and usually it is done by letting the walker
carry it’s original colour only for a finite “lifetime” τr. Just like a hot chicken cooling in a box
of icy chickens.

Next one must let the walkers to cross nodal surfaces, not only spuriously but in honest.
One way is to use a slightly modified trial function, such as

ϕ′T (R) =
√
|ϕT (R)|2 + a2 . (228)

33W. M. C. Foulkes, R. Q. Hood and R. J. Needs, Phys. Rev. B 60, 4558 (1999).
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With proper value of a this approaches ϕT far away from the nodes. Parameter a controls the
amount of flow across nodal surfaces, and for larger a we take shorter lifetime τr and vice versa.

The fact that we have tinkered with our trial wave function can be compensated by attaching
to each walker a weight

W (R) = σ(R) |ϕT (R)|
ϕ′T (R)

, (229)

where the sign carried by the walker, σ(R), is +1 (−1) for even (odd) number of crossings. It
can be shown that using ϕ′T (R) affects only the variance, and not the mean of the total energy.
The released node energy has also the lifetime τr as a parameter, and it’s customary to define

ERN(τr) =
∑

τ≤τr EL(R)W (R)∑
τ≤τr W (R)

, (230)

where the sums are over walkers that have survived and have lifetime less than τr. We are
interested in the asymptotic region of large τr, and one usually plots the sequence of energies
for τ 1

r < τ 2
r < . . . < τmax

r , which reveals the systematic error in the released-node energy.

6.5 Excited states
Here we take a closer look at how excited-state eigenvalues could be obtained from a DMC
run. The list is by no means complete, the question has no satisfactory solution and is under
constant research.

Using orthogonality 〈ϕT |φ0〉 = 0 If the trial wave function is orthogonal to the ground
state, the DMC process stabilises to an excited state with proper choice of the trial energy ET .
In the large-τ limit all high-energy states have died out and we are left with the two lowest
ones. According to (223) we have

Ψ(τ →∞) = φ = φ+ − φ− , (231)

where the two components are

φ± = c0φ0e
(E1−E0)τ ± c1φ1 . (232)

This form reveals where the problem lies. The difference (φ+ − φ−) depends only on the first
excited state, so the expectation value of the local energy will be stabilising to E1. The variance,
however, depends on (ΨH)2, so the orthogonality 〈ϕT |φ0〉 = 0 does not eliminate the ground
state contribution from the variance. And that contribution is increasing exponentially, as
(232) shows. The strategy is then to achieve a quick decay to the first excited state before the
ground-state “noise” overwhelms the signal. This is happening only if our trial state is very
close to the true first excited state.
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Using decay curves In principle, we could extract excited-state information from the decay
curves. By fitting

E(τ) =
∑
ciaie

−(Ei−ET )τEi∑
ciaie−(Ei−ET )τ (233)

to the DMC energy we could get Ei. However, this has turned out to be impractical, because
E(τ) depends on two exponentially decaying functions and the data is dominated by statistical
noise. It would be more easy to fit, instead, the expectation value of the Green’s function,
which has only one exponent function:

I(τ) = 〈ϕT |e−(H−ET )τ |ϕT 〉 . (234)

This function can be sampled during the random walk by evaluating the cumulative branch-
ing weight

I(τ) = 〈ϕT |
N∏
k=0

e−(EL−ET )τ |ϕT 〉 . (235)

The time dependence is simply

I(τ) =
∑

a2
i e
−(Ei−ET )τ , (236)

which is much easier to fit. But again, the data is governed by statistical noise34. Fitting to
exponentially decaying curves is an inverse Laplace transform - a perfectly stable task in the
absence of statistical noise. If the dat ais noisy, the Laplace problem can be regularised by the
use of a statistical maximum entropy method, in which prior knowledge is used to bias the
inversion35. One faces a similar situation in path integral Monte Carlo (PIMC) calculations of
the dynamic structure function, where the numerical inaccuracy shows up as rounded peaks in
S(k, ω)36

Using the zero variance property One way to search for the excited states owes to the
fact that they are eigenstates of the Hamiltonian, which means that they have lower (zero)
variance than other energies. In theory, one could take a sweep through the energies above
the ground-state energy and look for minima in the variance. Unfortunately, statistical noise
deems this method prohibitively expensive37.

Matrix Monte Carlo method by Ceperley and Bernu38 Take m states, which hopefully
have large overlap with the first m excited states of the system. Then McDonald’s theorem

34D. Ceperley and B. Bernu. J. Chem. Phys. , 89 (1988) 6316.
35M. Caffarel and D. Ceperley, J. Chem. Phys. 97 (1992) 8415.
36M. Boninsegni and D. Ceperley, J. Low Temp. Phys. 104 (1996) 339.
37A. J. Williamson, PhD thesis, Cavendish Laboratory, September 1996.
38D. M. Ceperley and B. J. Bernu, J. Chem. Phys. 89 (1988) 6316.
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states, that if you simultaneously diagonalise both the overlap matrix and the Hamiltonian,
then the nth eigenvalue is an upper limit to the exact energy of the nth state. One can then
use the DMC states f(τ) to construct these matrices, and it can be shown that the eigenvalues
approach the exact ones exponentially fast. Unfortunately, also the statistical noise increases
exponentially fast. The method has been applied to small molecules and two-dimensional
electron gas. There is a nice, short introduction to the method in the Valencia lecture notes by
J. Boronat.

6.6 Second order DMC algorithms
A DMC algorithms is said to be first order, if the timestep error in the total energy is linear,
E(τ) = E0 + aτ . It would be desirable to find a second order algorithm, E(τ) = E0 + bτ 2, so
that larger timesteps could be used, possibly without any τ → 0 extrapolations. This section
will follow closely the discussion given by Chin39.

In section 6.1 we made a short-timestep approximation to the Green’s function. To begin
with, the Campbell-Baker-Hausdorff formula states that

eAeB = eA+B+ 1
2 [A,B]+ 1

12 [A−B,[A,B]]+... . (237)

This shows that the exact Green’s function40

G = e−(H−ET )τ = e−(T+V−ET )τ (238)

can be approximated as

G ≈ e−(H′−ET )τ , (239)

where

H ′ = H − 1
2
τ [H,V ] + 1

12
τ 2[H − 2V, [H,V ]] + . . . . (240)

But this is just the exact Hamiltonian H plus a small perturbation, and one can formally
compute the result of the DMC calculation. Keeping only the first two terms in (240) leads
to the short-time approximation to the Green’s function derived earlier in these lecture notes.
The ground state of that H ′ is

|φ′0〉 = |φ0〉+ 1
2
τV |φ0〉+ . . . . (241)

The first order term in (240) vanishes between eigenstates,

〈φi|[H,V ]|φi〉 = 0 , (242)
39S. A. Chin, Phys. Rev. A42 (1990) 6991.
40Chin thinks of the Hamiltonian as a matrix, hence G is a transfer matrix.
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so althought the eigenstates are first order in τ , the eigenvalues are quadratic in τ :

E ′0 = E0 −
1
24
τ 2〈φ0|[V, [H, V ]]|φ0〉+ . . . . (243)

This means that without importance sampling the primitive approximation to the Green’s
function (as it will be called in the PIMC section 7) is already quadratic. Still, the energy
(243) is not showing the τ -dependence of the energy that really comes out from an importance
sampling DMC code. If this surprises you, remember that if one introduces a trial wave function
one is not sampling |φ0|2, but φ0ϕT . Hence the energy that is the average local energy over the
distribution φ0ϕT behaves as

EDMC := 〈φ0|H|ϕT 〉
〈φ0|ϕT 〉

(244)

= E0 + 1
2
τ
〈φ0|[H, V ]|ϕT 〉
〈φ0|ϕT 〉

+ . . . ,

which is just first order.
Quadratic EDMC can be rather easily found by looking at the Campbell-Baker-Hausdorff

formula. The undesired first order term will cancel if one takes a product of operators at half
the timestep and and another set with reversed order. One such approximate Green’s function
would be

G ≈ e−
1
2 τV e−

1
2 τT e−

1
2 τT e−

1
2 τV , (245)

which approximates the Hamiltonian

H ′ = H + 1
24
τ 2[(2H − V ), [H, V ]] + . . . , (246)

and the corresponding importance sampled DMC energy is

EDMC = E0 + 1
24
τ 2
[
〈φ0|∆H|φ0〉 −

〈φ0|∆H|φ0〉
〈φ0|φ0〉

]
, (247)

where

∆H = [(2H − V ), [H,V ]] . (248)

Now we have at hand an approximate Green’s function that leads to a quadratic DMC energy.
However, the implementation of the Langevin algorithm that is used to solve the underlying
Fokker-Planck equation can still turn the code first order. I will not discuss the subject at
length, for more details see Chin’s 1990 article. I just remind you what was noted below
Eq. (205), that the way one combines the deterministic drift force to the stochastic Gaussian
move is not unique. It is easy to imagine that a non-symmetrical way of doing this will give
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rise to a first order DMC algorithm. The recipe is similar as in the Green’s function: take
intermediate steps, very much like in solving differential equations using Runge-Kutta and the
kind.

At first glance it would seem that developing an even higher order DMC algorithm is an
easy task. But Suzuki showed 199141, that in the expansion

e(T+V )τ =
N∏
i=1

eaiTτebiV τ (249)

one can go only up to second order without having some of the coefficients ai and bi negative.
But a negative ai would mean diffusion backwards in time, which is impossible to simulate!

Suzuki’s “no-go theorem” means only that higher than secon order algorithms must be
based on a different kind of operator splitting than the one in Eq. (249).

Expansion of the Green’s function is not just a Monte Carlo task. Recently Auer, Krotscheck
and Chin published an application of fourth order algorithm (error O(τ 4)) to solve non-trivial,
three-dimensional Schrödinger equations42

Second order algorithm The following five stage algorithm will give a second order energy
convergence. In the following r(k,i) is the kth coordinate of ith walker in configuration j
(not marked):

1. Take a half-size timestep with a Gaussian of variance Dτ :

r(k,i) = r(k,i) + sqrt(D*tau)*gauss()

2. Compute the drift force using the new coordinates, F(R).

3. Move walkers according to that drift for half a timestep; keep the old configuration R in
memory for later use:

rp(k,i) = r(k,i) + 0.5d0*D*tau*F(k,i)

This gives you the configuration R′.

4. Compute the drift force F(R′); I call it FRP.

5. In configuration R (not in R′!), take a half-size Gaussian step and move walkers full step
with drift force F(R′):

rp(k,i) = r(k,i)+D*tau*FRP(k,i)+sqrt(D*tau)*gauss()
41M. Suzuki, J. Math. Phys. 32, 400 (1991).
42J. Auer, E. Krotscheck, and S. A. Chin, J. Chem. Phys. 115 (2001) 6841.
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This gives you a new configuration R′, which not the same as in step 3! That old R′ is
not needed any more, and I make use of the memory space.

This algorithm is Eq. (25) in Chin’s article, where it was given in the form

yi = xi +
√

∆t/2 ξi (250)

x′i = yi + ∆t Gi((y + 1
2

∆tG(y)) +
√

∆t/2 ξi , (251)

where ξ is Gaussian random number with unit variance (as our η before). In the algorithm xi
and yi are both R, because xi is not needed later and it’s unnecessary to keep it in store. Also
G is half our drift force and D = 1/2. After these changes one recovers the algorithm given
above.

After these steps you have a new trial configuration R′ that you can accept or discard
(use the modified Metropolis question with the Green’s functions). These steps are done for
each coordinate, each walker and in the outmost loop, for each configuration in the present
generation. Only after all the steps are done you have the next generation ready.

6.7 DMC Example: the ground state of a He atom
The He atom can be used to show how DMC works in practise. The He ion is in the origin
(with infinite mass in the present approximation) and the coordinates of the two electrons are
r1 and r2. Their spins are assumed to be antiparallel. If ∇i operates on the ith particle, the
Schrödinger equation for bound states of helium in atomic units reads43[

−1
2
∇2

1 −
1
2
∇2

2 −
2
r1
− 2
r2

+ 1
r12

]
ϕ(r1, r2) = Eϕ(r1, r2) , (252)

where r12 = |r1 − r2| is the distance between the electrons.
Next you need to write down the trial wave function and find the expression for the local

energy. A simple choice would be the product of two 1S hydrogen orbitals,

ϕT (r1, r2) = e−αr1e−αr2 , (253)

which gives the local energy

EL = ϕT (r1, r2)−1HϕT (r1, r2)

= eαr1eαr2

[
−1

2
∇2

1 −
1
2
∇2

2 −
2
r1
− 2
r2

+ 1
r12

] (
e−αr1e−αr2

)
= −α2 + α

r1
+ α

r2︸ ︷︷ ︸
kinetic part

− 2
r1
− 2
r2

+ 1
r12︸ ︷︷ ︸

potential part

. (254)

43Atomic units: energy in Hartrees (1 Ha = 2 Ry), distance in Bohr radia.
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Notice that the “kinetic part” is not the kinetic energy of the trial state: The “kinetic part”
can be negative for some choices of r1 and r2! It has only a statistical meaning, the averages
give the kinetic and the potential energy, but one has to remember that since [H,T ] 6= 0 and
[H,V ] 6= 0, one gets by straightforward averaging only their mixed estimates. The “kinetic
part” is an approximate energy contribution brought into the local energy by the use of a trial
wave function, and it’s sole purpose is to try to cancel potential energy fluctuations when r1,
r2 and r12 are changing. In real world large negative potential energy is compensated by large
positive kinetic energy.

Variance optimization is tricky, because this 1S-orbital trial state is so far from the true
ground state of He. For example, this trial wave function won’t keep the electrons apart.
Minimum energy will be reached with α = 1.6875, but the variance is at minimum at a slightly
higher value. This value depends on the (fixed) set of configurations you happen to be using for
optimization: If the set has many electrons near the origin, the variance optimization will try
to make the Coulomb terms cancel as well as it can and at the same time try to minimise the
energy, hence α would be between 1.6875 and 2.0. On the other hand, if your configurations
happen to be such that the potential energies are moderate, then the Coulomb cancellation will
seem less acute and the optimal value of α would be closer to 1.6875.

I applied the reweighting algorithm with the wheel-of-fortune type of weight renormalization.
All attempted moves were accepted, so the algorithm did not rigorously satisfy the detailed
balance condition. As is evident from Fig. 11, characteristic to the used algorithm is that the
timestep error is linear for small τ , but for larger time steps this linearity breaks down. Not
shown in the figure is that a long computation with α = 1.6875 has large jumps in the variance
due to electrons coming too close to the nucleus. Although this parameter gives the lowest
trial-state energy, it is not the most stable when it comes to energy variance. Fig. 11 also shows
the results for α = 2, with some very large timesteps. The energy fluctuations are now in better
control, as Fig. 12 shows. The negative spikes are characteristic to the α = 1.6875-calculation,
and even larger ones occur now and then causing sudden jumps to the energy variance. Smaller
positive spikes are seen in the α = 2.0 data; they originate from the 1/r12 electron repulsion,
but they are less catastrophic to the variance.

The kinetic and potential energies of the trial state with α = 2.0 are 〈ϕT |T |ϕT 〉 = 4.0007±
0.0009 and 〈ϕT |V |ϕT 〉 = −6.7507 ± 0.0008, respectively. The DMC calculation gave, after
extrapolation to zero timestep, 〈φ0|T |ϕT 〉 = 3.375 and 〈φ0|V |ϕT 〉 = −6.280 (no error analysis
was made). Hence the extrapolated estimators are Ekin = 2.750 and Epot = −5.809 (unknown
error). The total energy computed from these is −3.059 with much larger error bars than in
the total energy computed directly (-2.90465 in the present simulation vs. the exact value
-2.903724). Deviations between the trial state energies and the DMC values give some measure
to how close the trial state is to the true groung state: quite far in the present case. For
the record, the total energy of the trial state was Etrial = −2.7500 ± 0.0002 from the same
simulation. As always, the total energy comes out more accurately than the kinetic or the
potential energy. Part of the potential energy fluctuations has been cancelled by the kinetic
energy fluctuations.
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Figure 11: The dependence of the calculated total energy of a He atom of the time step in
DMC. The error bars are obtained via block averaging. The upper panel show the results
for α = 1.6875, the lower for α = 2.0. The extrapolated zero time step result from the upper
panel data is -2.90374 Ha (four correct desimals).

Fig. 13 shows the DMC energy as a function of the time step obtained using the quadratic
DMC algorithm given earlier. The error bars show the statistical error estimated using block
averaging. The computation was continued until the σ of all data was 0.0005, therefore the
small-time-step results have larger error bars. The least square fit shown in the figure is
f(τ) = −2.90286 − 2.1263 τ 2, the horizontal line is the exact energy -2.903724. The shown
results are obtained after a set of short runs, and the error bars are too large for serious use.
However, the overall quadratic behaviour of the time-step error is evident.
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Figure 12: Plots of the local energy averages taken over 2000 configurations during over a set of
generations for α = 1.6875 (upper panel) and α = 2.0 (lower panel). The time step was 0.001.
The plot shows only a tiny fraction of the data collected for the results given in Fig. 11.

Figure 14: Some He atom data from Quantum Chemistry by D. A. McQuarrie. As indicated,
nuclear motion and relativistic corrections are needed to reach the experimental values. Today,
the He atom ground state energy is known to 15 decimals.
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Figure 13: Time-step error in the quadratic DMC code, with a trial state that has 2S orbital
states.

7 Path Integral Monte Carlo

Path Integral Monte Carlo (PIMC) is a Monte Carlo application of Feynman’s path integral
formulation of quantum mechanics. It is very powerful and leads to in principle exact results at
finite temperature. I shall be talking about bosons in equilibrium, but some remarks on fermion
will be made in the end. The main reference to ideas presented in this section are from the
review article by David Ceperley44

Our task is to sample the coordinate space so, that the energy eigenstates are visited ac-
cording to the Maxwell–Boltzmann probability e−βEN . The basic quantity at finite temperature
T is the (thermal) density operator,

ρ̂(β) := e−βĤ (255)

β := 1
kBT

. (256)

44D. Ceperley, Path integrals in the theory of condensed helium, Rev. Mod. Phys. 67 (1995) 279.
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In coordinate space representation (|R〉 =
∑

n φn(R)|φn〉) this is the density matrix,

ρ(R,R′; β) := 〈R|e−βH |R′〉 =
∑
n

φn(R)∗φn(R′)e−βEn , (257)

where the sum is over all states n and φn(r) are the eigenfunctions of the Hamiltonian with
energy En. Since these eigenstates are unknown for N–body systems, we must find a more
practical way to compute the density matrix. But let’s first list what we can do with the
density matrix.

All static properties of the system can be computed from the density matrix. The expecta-
tion value of an arbitrary operator Â is

〈Â〉 := Z(β)−1
∑
n

〈φn|Â|φn〉e−βEn (258)

= Z(β)−1
∫
dRdR′ρ(R,R′; β)〈R|Â|R′〉 , (259)

where the normalization is the partition function,

Z(β) =
∑
n

e−βEn =
∑
n

〈n|e−βH |n〉 (260)

=
∫
dR〈R|e−βH |R〉 =

∫
dRρ(R,R; β) . (261)

Notice, how Z depends only on the diagonal part of the density matrix: there’s only one R.
From statistical physics we know that

F = −kBT lnZ Helmholtz free energy (262)

〈E〉 = − ∂

∂β
lnZ internal energy , (263)

and from these we get the pressure,

P = −
(
∂F

∂V

)
N,T

(264)

7.1 First ingredient: products of density matrices
From the PIMC point of view the single most important property of the density operators is
that the product of two density operators is also a density operator:

ρ̂(β1)ρ(β2) = e−β1Ĥe−β2Ĥ = e−(β1+β2)Ĥ = ρ̂(β1 + β2) , (265)
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or in terms of temperatures,

ρ̂(T1)ρ̂(T2) = ρ̂( T1T2

T1 + T2
) . (266)

If we take, for example, M temperatures T1 = T2 = . . . = TM = T , then (265) states that

ρ̂(T )ρ̂(T ) . . . ρ̂(T ) = ρ̂(T )M = ρ̂( T
M

) , (267)

so the product property makes it possible to express a low temperature density operator (rhs) as
a product of higher temperature density operators. In coordinate space (265) is a convolution
integral

ρ(R1,R3, β1 + β2) =
∫
dR2ρ(R1,R2, β1)ρ(R2,R3, β2) . (268)

Let us define the time step τ , 45

τ := β

M
. (269)

The density matrix can be divided into a M -segment, discrete path:

ρ(R0,RM ; β) =
∫
dR1dR2 . . . dRM−1ρ(R0,R1; τ)ρ(R1,R2; τ) (270)

. . . ρ(RM−2,RM−1; τ)ρ(RM−1,RM ; τ) .

This is a multidimensional integral, exactly what Monte Carlo can do well.
Decomposing the partition function (260) into M path segments gives

Z =
∫
dR〈R|e−βĤ|R〉 (271)

=
∫
dRdR1 . . . dRM−1〈R|e−τĤ|R1〉〈R1|e−τĤ|R2〉

. . . 〈RM−2|e−τĤ|RM−1〉〈RM−1|e−τĤ|R〉 . (272)

So the partition function is a path integral over all closed loops. If Â is diagonal in coordinate
space, the thermal average is computed as a trace

〈A〉 = Z−1
∫
dRdR1 . . . dRMρ(R,R1; τ)ρ(R1,R2; τ) . . . ρ(RM ,R; τ)〈R|A|R〉 . (273)

There is a clear analogy to classical polymers, each particle being one polymer. The above
trace corresponds to a ring polymer. The lower the temperature, the longer the polymer.

45The time evolution of a state is given by the operator e−iĤt/~, while now we are interested in e−βĤ. The
relation of these is t ∼ −i~β, which gives the idea to call β/M a ”time step”.
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7.2 Second ingredient: the high-temperature density matrix
We wouldn’t be any much wiser if we couldn’t evaluate the individual segments of the paths.
It turns out, however, that the density matrix at high temperature can be found, at least
approximately. With Ĥ = T̂ + V̂ we have

e−τĤ = e−τ(T̂ +V̂) = e−τ T̂ e−τ V̂e
τ2
2 [V̂,T̂ ] (274)

≈ e−τ T̂ e−τ V̂ for small τ .

The last line is called the primitive approximation. In coordinate space it is

ρ(R0,R2; τ) ≈
∫
dR1〈R0|e−τ T̂ |R1〉〈R1|e−τ V̂ |R2〉 . (275)

Now you should hear a bell ringing: but we’ve done this already! Indeed, in section 6.1 we
evaluated exactly the matrix elements of the kinetic and potential operators and called them
Green’s functions. I just copy the results here:

〈R1|e−τ T̂ |R2〉 = (4πλτ)−3N/2e−
(R1−R2)2

4λτ , (276)

and

〈R1|e−τ V̂ |R2〉 = e−τV (R1)δ(R1 −R2) . (277)

Here λ = ~2

2m replaces the diffusion constant D. The spreading of these Gaussians is given by
the thermal (de Broglie) wavelength,

λdeB =

√
2π~2

mkBT
. (278)

If you take a look at the derivations of these formulae, you notice that something could go wrong
because of the finite size of the simulations system. The k–space is not actually continuous,
and in (174) we approximated the k–space sums with integrals. This is accurate only if

λdeBτ � L2 (279)

in a simulation box with sides L. If this condition is not met, the Gaussian (276) will reach
across the simulation box, leading to spurious effects.

Using the primitive approximation Eq. (270) can be put into following form:

ρ(R0,RM ; β) ≈
∫
dR1dR2 . . . dRM−1(4πλτ)−3NM/2

× exp

[
−

M∑
m=1

(
(Rm−1 −Rm)2

4λτ
+ τV (Rm)

)]
.

(280)
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7.3 Connection to path integral formulation of quantum mechanics
From Eq. (280) we can easily get to Feynman’s path integral formulation of quantum mechanics.
First, shift from the thermal Green’s function to a dynamic Green’s function used in DMC by
replacing λ→ D = ~2/(2m). Next, shift back to real time and take the limit M →∞ in (280).
Then

(Rm−1 −Rm)2

4λτ
∼ (Rm−1 −Rm)2

4 ~2

2m
i∆t
~M

(281)

→ − i
~

1
2
m

(
dR
dt

)2

dt , as M →∞ ,

so the exponent term in (280) corresponds to

exp

{
i

~

∫
dt

[
1
2
m

(
dR
dt

)2

− V (R)

]}
= exp

{
i

~
S(R, t)

}
, (282)

where S =
∫
dtL is the classical action, time integral of the Lagrangian L. We recover the

famous Feynman-Kac formula of quantum mechanics,

〈x′, t′|x, t〉 =
∫
De

i
~S[x(t)] , (283)

which states that the probability amplitude of a point particle to get from point (x, t) to point
(x′, t′) is obtained by integrating over all possible paths between the points, attaching to each
path a weight e i~S. The measure D is just a commonly used shorthand for “all paths and proper
normalization”. The normalization, by the way, is in many cases the tricky part!

Fig. 15 shows two possible paths from point (x, t) to point (x′, t′). Time is discretised to
time slices of finite width, like in a simulation.

Eq. (283) is not only the most straightforward connection between classical and quantum
mechanics, it is also an excellent starting point of the whole quantum mechanics of point–like
particles (quantum field theory gives the rest). The classical limit (Ehrenfest’s theorem) is easy
to derive. For ~→ 0 the integrand oscillates very rapidly and only paths with stationary S will
contribute: we get δS = 0, the classical least action principle. Schrödinger equation follows,
too, by considering a case where one makes a small variation to the path keeping the starting
point (x, t) fixed. The path–integral formulation of quantum mechanics has been reviewed by
its inventor, Richard Feynman46

Visualization of paths Paths can be visualised by drawing world–line plots that resemble
Minkowski diagrams used in special relativity (see Ceperley’s review for examples). One must

46R. P. Feynman, Space–time approach to non–relativistic quantum mechanics, Rev. Mod. Phys. 20 (1948)
367.
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Figure 15: Two possible paths connecting fixed end points. The time scale is divided into
discrete time slices. The quantum amplitude 〈x′, t′|x, t〉 is calculated by adding all possible
paths with classical weight exp {iS[x(t)]/~}.

remember, however, that the imaginary time axis is now a thermal quantity and not related
to the true dynamics of the particles. Coordinate space plots that cover some fixed amount
of time steps are also useful. There one must remember, that the discretization to time slices
is entirely artificial, and a plot obtained by simply connecting all the beads (points visited
at discrete times) does not give full credit to the real situation. A more realistic picture can
be obtained by taking into account, that a particle may visit all points within the thermal
wavelength of any calculated bead.
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7.4 Link action
A link is the pair of adjacent time slices, {Rm−1,Rm}, in Eq. (280). The link action is minus
the logarithm of the exact density matrix:

Sm := − ln [ρ(Rm−1,Rm; τ)] . (284)

Thus the exact density matrix reads

ρ(R0,RM ; β) =
∫
dR1 . . .RM−1 exp

[
−
∑

m=1,M

Sm

]
. (285)

It is customary to separate the actions coming from the kinetic and potential parts of the
Hamiltonian, which are

Km = 3M
2

ln(4πλτ) + (Rm−1 −Rm)2

4λτ
(286)

and the “inter-action” Um = Sm − Km, which is often used in the symmetrised form. Put
together, the primitive approximation for the link action is

Sprim.m = 3M
2

ln(4πλτ) + (Rm−1 −Rm)2

4λτ︸ ︷︷ ︸
“Spring term′′

+ τ

2
[V (Rm−1) + V (Rm)]︸ ︷︷ ︸

“Potential term′′

. (287)

In polymer analogy the spring term holds the polymer together and the potential term gives the
inter–polymer interaction. For many quantities thermal averages translate to ring polymers.

7.5 Improving the action
The superfluid temperature is only 2.172 K for 4He liquid, and the number of time slices to
reach the superfluid region turns out to be M ∼ 1000 if one uses the primitive approximation.
A better action is needed, which allowes to take longer time steps. The path is a fractal,
so finding better actions is not the same thing as finding a better integrator of a differential
equation (e.g. leap-frog in MD). The strategy is to use exact properties of the action as a
guidance.

The Feynman–Kac formula gives the inter–action as the average over all free–particle paths,

e−Um := e−U(Rm−1,Rm;τ) =
〈

exp
[
−
∫ τ

0
dtV (R(t))

]〉
RW

, (288)

where 〈. . .〉RW denotes average over all random walk paths from Rm−1 to Rm. Often we have
(or know) only the pair potential between particles, so we have

e−U(Rm−1,Rm;τ) =
〈∏
i<j

exp
[
−
∫ τ

0
dtV (rij(t))

]〉
RW

, (289)
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where rij(t) is the distance between particles i and j. If one neglects three–body and higher
correlations between particles, the product can be taken out of the average,

e−U(Rm−1,Rm;τ) ≈
∏
i<j

〈
exp
[
−
∫ τ

0
dtV (rij(t))

]〉
RW

. (290)

Now the average is the interaction of a pair of particles - a quantity that can be computed
beforehand. This is the core idea of the pair–product action, and the improvement upon
the primitive action is significant. Furthermore, it applies also to Coulomb and hard–core
potentials, while many other improved action methods fail for nonintegrable potentials. A
short list of possible improved actions:

• Pair–product action

• Cumulant action

• Harmonic action

• WKB action (semiclassical)

7.6 Bose Symmetry
In the beginning of the PIMC section I stated without hesitation that the energy eigenstates
are visited according to the Maxwell–Boltzmann probability e−βEN . This is correct only for dis-
tinquishable particles. Bose-Einstein statistics requires that we symmetrise the density matrix
(subindex B refers to bosons),

ρB(R0,R1; β) = 1
N !
∑
P

ρ(R0, PR1; β) , (291)

where the sum is over all particle–label permutations P . The permutation of coordinates
can be done on either the first or the second argument of the density matrix, or to both; it
makes no difference. This involves the summation of N ! terms and is a computational burden.
Fortunately all terms in the sum are positive and we can evaluate it by sampling: the bosonic
simulation is a random walk through both the coordinate space and the permutation space.
This cannot be done for fermions, because even and odd permutations have large cancellation
and a MC evaluation of the sum is out of the question. I’ll return to this problem later.

The partition function is a sum over all closed paths; Bose–symmetrised partition function
is obtained by letting the paths close to any permutation of the starting points.

Superfluidity Partition function is obtained by taking all closed paths. Adding the Bose
symmetrization, this gives rise to exchange paths, where, say, particle 1 takes the place of
particle 2 and vise verca. A special situation arises, when the exchance involves the periodic
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image of the other particle, because then the extended plot (all periodic boxes side by side)
shows that the looping path goes through the entire system. The finite size of the simulation
box causes finite size effects, but the idea of winding paths, paths that span across the entire
system, remains valid. Thus the superfluid transition can be seen visually in PIMC. The best
theoretical value of the lambda transition 47 in 4He is 2.19±0.02 K at SVP (saturated vapor
pressure), very close to the experimental value 2.172 K. Via his path integral formulation of
quantum mechanics, Feynman48 has answered two important questions:

• Does the strong inter–particle potential invalidate the idea of Bose–Einstein condenzation
in helium? (No, it is still ok).

• Why should there be a transition at low temperature? (Feynman divides exchange paths
into polygons and shows that at some low temperature large polygons that involve of the
order of N particles start to contribute in the partition function).

7.7 Sampling paths
As Eq. (285) shows, we want to sample paths from the distribution

w(R0, . . . ,RM−1) = 1
Z

exp

[
−
∑

m=1,M

Sm

]
, (292)

where the normalization is again the partition function.
Consider first how to sample a single point in the path, the elementary operation in PIMC.

We wish to move a bead R at time τ , which is connected to two fixed beads R0 and R2, at
times 0 and 2τ , respectively. The simplest choise would be the classical sampling, where the
bead is displaced uniformly inside a cube, whose size is adjusted to get near 50 % acceptance.
In the free-particle sampling the new position is sampled from

w(R) = exp
[
−(R−Rmid)2

2λτ
− U(R,R1)− U(R,R2)

]
, (293)

where Rmid = 1
2(R1 +R2), so this is a Gaussian centered at Rmid with width

√
λτ . If there is a

repulsive potential between the particles, the moves suggested by the free–particle sampling will
be rejected whenever the beads become too close; Further improvement would be for example
a correlated Gaussian.

Unfortunately the computer time needed for a free–particle path to diffuse a fixed distance
will scale as M3. Hence large values of M will be needed and this fact combined with a
non–efficient action (primitive action) can easily ruin the whole PIMC routine.

47E. L Pollock and K. J. Runge, Phys. B46 (1992) 3535.
48R. P. Feynman, Phys. Rev. 90 (1953) 1116; Phys. Rev. 91 (1953) 1291; Phys. Rev. 91 (1953) 1301.
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Moving the whole path at once is likely to be inefficient, as most of the attempted moves
will be rejected. It is better to move path segments. One speaks of multi-level Metropolis
algorithms that uses bisection. Their further description is beyond the scope of these
lecture notes.

7.8 Fermion paths: The sign problem
For fermions indistinquishability is imposed by summing again over all permutations, but now
terms which come from odd number of permutations have negative sign (compare with (291)):

ρF (R0,R1; β) = 1
N !
∑
P

(−1)ζP ρ(R0, PR1; β) , (294)

where ζP is the parity of permutation P . For bosons the factor is simply (+1)ζP = 1.
Now we can prove for both bosons and fermions the statement made earlier, namely that

the permutation of coordinates can be done on either the first or the second argument of the
density matrix, or to both. (Anti)symmetrising with respect to both arguments gives

ρB/F (R0,R1; β) := 1
(N !)2

∑
P

(±1)ζP
∑
P ′

(±1)ζP ′ρ(PR0, P
′R1; β) . (295)

Taking a particular pair of permutations P and P ′ we can always find a third one such that
P ′′ = PP ′, and ζP ′′ = ζP + ζP ′ . Thus we can write the above equations in the form

ρB/F (R0,R1; β) = 1
(N !)2

∑
P

(±1)ζP
∑
PP ′′

(±1)ζP+ζP ′′ρ(PR0, PP
′′R1; β) . (296)

Sum over all permutations PP ′′ while P is fixed is the same as summing over all permutations
P ′′, so we get

ρB/F (R0,R1; β) = 1
(N !)2

∑
P

∑
P ′′

(±1)ζP ′′ρ(PR0, PP
′′R1; β) . (297)

Now P is applied to both coordinates, so it merely relabels dummy variables. Hence all N !
terms give the same contribution and we can reduce this to

ρB/F (R0,R1; β) = 1
N !
∑
P ′′

(±1)ζP ′′ρ(R0, P
′′R1; β) . (298)

This completes our poof that permuting both arguments is equivalent with permuting one
argument.
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The expectation value of operator O in a Fermi system is

〈O〉 = Tr[ρFO] = 1
N !
∑
P

(−1)ζP
∫
dRdR1 . . . dRM−1 (299)

ρ(R,RM−1, τ) . . . ρ(R1,R′, τ)O(R′,R)|R′=PR . (300)
The Fermi antisymmetrization is a sum of alternating series of large terms of slowly decreasing
magnitude. We have no precise formula available for any of the terms, and already Feynman
himself found impractical any attempts to analytically rearrange the terms in such way that
they are positive. In Bose case one could rather easily sample the symmetrization sum, but now
one faces the problem of how to sample an alternating sum. Ceperley has given arguments, that
the signal–to–noise ratio of such samplings vanishes exponentially. In particular, the efficiency
of a direct-fermion method (straighforward sampling as in the Bose case) scales a e−N ,
where N is the number of fermions. Clearly the method is useless for all physically interesting
systems. The Restricted Path Integral Monte Carlo (RPIMC) is one of the attempts to organise
the terms in the sum is related to the fixed node DMC. Here one imposes an approximate nodal
structure, with the aid of a trial density matrix ρT , to the density matrix ρF , and if this is
correct, then the solution is exact. The theory behind RPIMC is beyond the scope of these
lecture notes, I just mention that the free energy obtained using RPIMC satisfies the variational
principle49

7.9 The excitation spectrum and the dynamic structure function
Consider liquids, which are homogeneous and isotropic (same density everywhere and no di-
rection dependences), therefore only one wave vector k appears. Neutron scattering measures
directly the dynamic structure function S(k, ω),

S(k, w) = − 1
π
=mX (k, ω) , (301)

where X (k, ω) is the Fourier transform of the real space density–density correlation function,
X (r1, r2, t). Explicitly, S(k, ω) is given by

S(k, ω) = 1
2πN

∫ ∞
−∞

dteiωt〈ρ̂k(t)ρ−k(t)〉 (302)

= 1
NZ

∑
m,n

δ(ω − Em − En)e−βEn|〈m|ρ̂k|n〉|2 , (303)

where the density operator ρ̂k 50 ,

ρ̂k =
N∑
i=1

eik·ri (304)

49The RPIMC free energy is equal or larger than the exact free energy.
50Just a Fourier transform of a sum of Dirac deltas.
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computed at the particle coordinates ri. The quantity that comes out of PIMC is written in
imaginary time and it is the Laplace transform of the dynamic structure function,

F (k, t) =
∫ ∞
−∞

dωe−ωtS(k, ω) (305)

= 1
NZ

Tr
{
ρ̂−ke

−Htρ̂ke
−H(β−t)} . (306)

Mathematically there is no harm done, because F (k, t) and S(k, ω) contain exactly the same
information and a Laplace inversion is well defined. The problem arises because the simulated
F (k, t) always has some noise, which makes a perfect inversion impossible. The time–domain
structure function F (k, t) is an exponentially decaying curve plus tiny features on top. And it
is these small feature that give all S(k, ω), so very little noise can cover the useful part of the
information. Even sharp features in S(k, ω), such as delta–function peaks, will show only as
unimpressive humps in F (k, t).

7.10 Fermion PIMC methods
Fixed-node DMC can do fermions by using an antisymmetric trial wave function. Path integrals
work with density matrices and do not use any trial guess at all - this makes it trickier to force
antisymmetry upon a PIMC simulation. I list here a few attempts with comments.

1. RPIMC (Restricted Path Integral Monte Carlo)51

This could be called fixed-node PIMC. The paths are restricted so that the density matrix
ρ(R,R0; τ) with a fixed R0 doesn’t change sign.
- Does not recover the exact ideal fermi gas limit at rs → 0 52. 53

2. CPIMC (Configuration Path Integral Monte Carlo)54

Instead of coordinate space, consider occupation of e.g. momentum orbitals |k〉, and work
using second quantization. - Built to be good at rs → 0 - Systematic deviations from
RPIMC results for uniform electron gas

3. PB-PIMC (Permutation Blocking Path Integral Monte Carlo)
55

51D. Ceperley, Phys. Rev. Lett. 69 331 (1992).
52Density is measured with rs = r̄/aB , where r̄ the mean interparticle distance, n−1 = 4

3πr̄
3, aB is the Bohr

radius.
53S. Filinov, J. Phys. A: Math. Gen. 34, 1665-1677 (2001).
54T. Schoof, S. Groth, J. Vorberger, and M. Bonitz, Phys. Rev. Lett. 115 130402 (2015).
55T. Dornheim, S. Groth, A. Filinov, and M. Bonitz, ”Permutation blocking path integral Monte Carlo: A

highly efficient approach to the simulation of strongly degenerate non-ideal fermions,” New J. Phys. 17, 073017
(2015).
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8 The fermion sign problem
Monte Carlo methods can give exact results for boltzmannons and bosons up to particle numbers
∼ 103, sometimes 104. Let’s see what makes fermions so different.

The bosonic ground state wave function has no nodes, and the wave function is real and
positive everywhere (shown by R. Penrose). With the Hamiltonian

Ĥ = − ~2

2m
∇2

R + V (R) , (307)

it’s a simple matter to prove that any imaginary part of the wave function increases energy,
hence parting from the ground state. The are no nodes, so the wave function cannot change
sign, and we may as well choose it to be positive everywhere. For bound states, such a wave
function is a good propability density and we can sample it using MC methods.

The problem lies with fermions. The Hamiltonian (307) doesn’t make any distinction of
bosons or fermion. The lowest energy state is symmetric, so the search converges easily to the
bosonic ground state, or rather the arbitrary symmetry state. Antisymmetry has to be forced
upon the solution, and the lowest antisymmetric state – the ground state of the fermion system
– is higher in energy than the bosonic one. The antisymmetry means that exchange of two
identical fermions changes the sign of the wave function. so there must be nodes.

A function with both positive and negative values doesn’t make an admissible probability
density. In VMC one samples the function (Eq. (84))

w(R) = |ϕT (R)|2∫
dR|ϕT (R)|2

. (308)

This is always positive, also for fermions. For fermions, one must maintain antisymmetry
in ϕT (R), which for N identical fermions (same spin) means there must be nodes, and the
dimension of the nodal surface is 3(N − 1). According to the variational principle, ϕT (R) with
wrong nodal surface gives energy above the true fermion ground state value. In fixed-node DMC
one keeps the nodal surface as is, and improves numerically the correlation part of the wave
function. This leads to correlations with lowest energy, but the nodal surface is not improved.
In short, the reason is that zero times anything is zero: DMC with importance sampling evolves
the product (see Eq. (196))

f(R; τ) = ϕT (R)Ψ(R; τ) , (309)

and where ϕT (R) is zero, there also f(R; τ) is zero, no matter how far in τ we evolve. This is
again a variational problem, better nodes evolve in DMC to a lower energy fermion state, but
fixed-node DMC won’t evolve the nodes. The released-node DMC tries to shift the nodes a bit,
but the price of the small gain is high: the computational burden is extreme and the algorithm
may not even obey the variational principle.



90 The fermion sign problem

Let’s consider the general case of evaluating an average over arbitrary weights. The expec-
tation value of some quantity A is

〈A〉w =
∑

iwiAi∑
wi

, (310)

but the weigts wi may be negative we cannot sample them using MC. Separate the sign as
wi = sgn(wi)|wi|,

〈A〉w =
∑

iwiAi∑
wi

=
∑

i sgn(wi)|wi|Ai∑
sgn(wi)|wi|

=

∑
i |wi|sgn(wi)Ai∑

i |wi|∑
i |wi|sgn(wi)∑

i |wi|

. (311)

This contains a good probability density

pi := |wi|∑
i |wi|

, (312)

so can evalute two averages,

〈A〉w =
∑

i pi sgn(wi)Ai∑
i pisgn(wi)

=
〈signA〉|w|
〈sign〉|w|

. (313)

Evaluation of this is perfectly doable in MC, but there’s a catch. The denominator is related
to the partition function Z of weights wi, and another one of weights |wi|,

〈sign〉|w| =
∑
i

pisgn(wi) =
∑

iwi∑
i |wi|

= Zw
Z|w|

= e−βFw

e−βF|w|
= e−β(Fw−F|w|) , (314)

where the free energy is F = − 1
β

lnZ (from thermodynamics). As always in MC, the error of
the mean diminishes as 1/

√
M with M samples, but there is a factor that grows,

∆(〈sign〉|w|)
〈sign〉|w|

= 1√
M

√
〈sign2〉|w| − 〈sign〉2|w|

〈sign〉|w|
∼ eβ(Fw−F|w|)

√
M

= eβN(fw−f|w|)
√
M

. (315)

The difference fw − f|w| (free energies per particle, F is extensive) is positive (because the
boson energy with weights |w| is below the fermion energy with weights w). The factor grows
exponentially both with decreasing temperature, and with increasing number of fermions N .
This is the fermion sign problem.

F. Pederiva 56 gives a discussion of what happens, if one has an antisymmetric trial wave
function ϕAT (R) and the exact antisymmetric ground state wave function is φA0 (R), and com-
putes the energy,

〈E〉 = 〈φ
A
0 |Ĥ|ϕAT 〉
〈φA0 |ϕAT 〉

=

∫
dRφA0 (R)ϕAT (R) Ĥϕ

A
T (R)

ϕAT (R)∫
dRφA0 (R)ϕAT (R)

. (316)

56In An Advanced Course in Computational Nuclear Physics, Ed. Hjorth-Jensen, Lombardo, and van Kolck
(2017).
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Assuming the nodal surfaces of ϕAT (R) are the same as those of φA0 (R), one could try to invent
a way to sample the integrals using MC. As such, ϕAT (R) is not positive definite, so one cannot
directly sample from it, but let’s split it to positive and negative regions,

φA0 (R)ϕAT (R) = f+(R+)︸ ︷︷ ︸
≥0

− f−(R−)︸ ︷︷ ︸
≥0

, (317)

and by linearity, both positive densities, f+ and f−, satisfy the imaginary-time Schrödinger
equation with the same eigenvalue. The expectation value is now

〈E〉 =

[∫
dR+f+(R+) Ĥϕ

A
T (R+)

ϕAT (R+)

]
−
[∫

dR−f−(R−) Ĥϕ
A
T (R−)

ϕAT (R−)

]
[∫

dR+f+(R+)
]
−
[∫

dR−f−(R−)
] , (318)

which can be sampled using MC. However, both f+ and f− satisfy the same imaginary-time
Schrödinger equation, so as τ increases, they converge to the same ground state probability
density, and the result approaches indeterminate

〈E〉 = 0
0
. (319)

As Pederiva points out, this shows up during a MC simulation as exponentially increasing
variance of energy, so the signal-to-noise ratio gets terribly small. This is another way to
express the fermion sign problem.

Troyer and Wiese 57 argue that the fermion sign problem is nondeterministic polynomial
(NP) hard. This implies that a generic solution of the sign problem would also solve all problems
in the complexity class NP in polynomial time, which hints that there maybe isn’t one.

Are we out of luck? If we could solve the eigenstates and eigenvalues of Ĥ, Ĥ|i〉 = Ei|i〉,
we could calculate finite temperature expectation values from the density matrix ρ̂ = 1

Z
e−βĤ,

〈Â〉 = Tr(ρ̂Â) =
∑

i e
−βEi〈i|Â|i〉∑
i e
−βEi

. (320)

Here the weights e−βEi are positive, so there is no sign problem. Alas, solving Ĥ|i〉 = Ei|i〉 is
an exponentially hard problem in itself.

A question one should next ask is, just how accurately do we need to know the solution to
Ĥ|i〉 = Ei|i〉 in order to avoid the sign problem? Is it enough to have the approximate solution
hidden in an evolution algorithm?

Chin 58 argues that the sign problem is purely a consequence of a poor approximation to
the exact propagator (Green’s function) e−τĤ and ”not intrinsic to solving a fermion problem”.

57M. Troyer and U-J Wiese, Phys. Rev. Lett. 94, 170201 (2005)
58S. A. Chin, Phys. Rev. E91, 031301(R) (2015).
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His opinion is based on the observation, that the culprit is the free fermion propagator e−τ T̂ ,
which appears as a factor in commonly applied approximations to the exact propagator. In
coordinate representation the free fermion propagator is antisymmetrized diffusion,

GT (R1,R2; τ) =
∑
P

(−1)P 〈R1|e−τT |PR2〉 (321)

= (4πDτ)−3N/2
∑
P

(−1)P e−
(R1−PR2)2

4Dτ = (4πDτ)−3N/2 detM (322)

Mij = e−
(r(1)
i
−r(2)
j

)2

4Dτ matrix elements of M , (323)

where R1 = (r(1)
1 , r(1)

2 , ..., r(1)
N ) and R1 = (r(2)

1 , r(2)
2 , ..., r(2)

N ). For two fermions this is diffusion of
particles 12 to 12 minus diffusion of 12 to 21 (exchange),

2
2

1

2

1 2

1

1

R R R R1 12 2

GT (R1,R2; τ) = (4πDτ)−3
[
e−

(r(1)
1 −r(2)

1 )2

4Dτ e−
(r(1)

2 −r(2)
2 )2

4Dτ − e−
(r(1)

1 −r(2)
2 )2

4Dτ e−
(r(1)

2 −r(2)
1 )2

4Dτ

]
(324)

= (4πDτ)−3

∣∣∣∣∣∣e
−

(r(1)
1 −r(2)

1 )2

4Dτ e−
(r(1)

1 −r(2)
2 )2

4Dτ

e−
(r(1)

2 −r(2)
1 )2

4Dτ e−
(r(1)

2 −r(2)
2 )2

4Dτ

∣∣∣∣∣∣ = (4πDτ)−3 detM . (325)

where r(k)
i is the position of particle i in Rk. The antisymmetrized 〈R1|e−τ T̂ |R2〉 is not positive

definite, and the more frequently one applies free fermion diffusion, the more sign problem one
spawns. Chin’s idea is that if one can get close enough to the ground state with less than
10 free fermion propagators in the approximation of e−τĤ, one obtains the solution before the
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sign problem kicks in. He demonstrates the feasibility by computing the properties of up to 20
spin-polarized electrons in a two-dimensional quantum dot.
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9 Error estimation

9.1 Some definitions and clarifications
Consider evaluating quantity A and a sample of size N . The mean value over the sample - or
sample average - is

ĀN := 1
N

N∑
i=1

Ai . (326)

This is not the expectation value (ensemble average or the mean) of A, marked 〈A〉, because
the sample is finite. The expectation value is the sum over every possible value of Ai,

〈A〉 :=
∑
i

piAi , (327)

where pi is the probability of Ai. For a continuous distribution this is

〈A〉 :=
∫
dxp(x)A(x) . (328)

The difference is that

• ĀN is a random variable that depends on the chosen sample

• 〈A〉 is a fixed number

According to the law of large numbers the mean and the expectation value coincide for an
infinitely large sample,

lim
N→∞

ĀN = 〈A〉 . (329)
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9.2 Biased and unbiased estimators of variance
The variance σ2 is the mean square deviation from the mean value

The standard deviation σ is the reported error.
Monte Carlo results are given as

result = 1.234︸ ︷︷ ︸
mean value

± 0.002︸ ︷︷ ︸
σ

. (330)

First, one must be clear about what mean value is used in evaluation of σ2. If one uses the
mean over N samples, ĀN , then we get the biased estimator of the variance,

σ2
biased := 1

N

N∑
i=1

(Ai − ĀN)2 biased estimator of the variance . (331)

On the other hand, the unbiased estimator of the variance is the mean square deviations from
the true expectation value,

σ2
unbiased := 1

N

N∑
i=1

(Ai − 〈A〉)2 unbiased estimator of the variance . (332)

Obviously, the biased and unbiased estimators are related. Start from the definition of the
biased estimator and add and subtract the constant 〈A〉:

σ2
biased = 1

N

N∑
i=1

(Ai − ĀN)2 = 1
N

N∑
i=1

[Ai − 〈A〉 − (ĀN − 〈A〉)]2

= 1
N

N∑
i=1

[Ai − 〈A〉]2︸ ︷︷ ︸
σ2
unbiased

−2 1
N

N∑
i=1

(Ai − 〈A〉)(ĀN − 〈A〉)︸ ︷︷ ︸
no i

+ 1
N

N∑
i=1

(ĀN − 〈A〉)2︸ ︷︷ ︸
no i

= σ2
unbiased − 2(ĀN − 〈A〉)

1
N

N∑
i=1

(Ai − 〈A〉)︸ ︷︷ ︸
ĀN−〈A〉

+(ĀN − 〈A〉)2 (333)

= σ2
unbiased − (ĀN − 〈A〉)2 . (334)

Statistical error estimation is based on the central limit theorem, Eq. (47). We collect the
average of data, which has unbiased variance σ2

unbiased. In the central limit theorem the mean
µ is over all values, so it equals the expectation value

µ := 〈A〉 . (335)
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Assuming the central limit theorem is valid for our data, we know that

(ĀN − 〈A〉)2 = (ĀN − µ)2 =
[
σunbiased√

N

]2

= σ2
unbiased

N
. (336)

Inserting this gives the relation

σ2
biased = σ2

unbiased

[
1− 1

N

]
. (337)

This can be interpreted as a finite sample size correction to variance. To conclude, the bias-
corrected Monte Carlo standard deviation, the ”error”, is

σ = σunbiased√
N

= (ĀN − 〈A〉)2 =

√√√√ 1
N(N − 1)

N∑
i=1

(Ai − ĀN)2 . (338)

A few notions about the result so far:

• Without bias correction finite sampling underestimates variances
⇒ Susceptibilities (response functions) are underestimated by factor 1− 1

N

Ok, so what? Just collect more data and get smaller 1/N .
True, but now comes the real bad news:

• N = number of statistically independent (!) samples

• Near criticality (e.g. near Tc in Ising model) sampling may become inefficient
⇔ Autocorrelation times increase
⇔ more computational time needed to increase N

• N is related to the integrated autocorrelation time τint by relation (τint given in measument
time intervals)

Nstatistically independent samples = Nall samples

1 + 2τint
, (339)

so if the integrated autocorrelation time for some reason increases dramatically you need
a lot more Monte Carlo steps to reach the same accuracy an the same N .

In addition to correcting the sample bias we need to discuss about correlations in samples.
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9.3 Integrated autocorrelation time
The integrated autocorrelation time τint jumped in the discussion without derivation. Correla-
tions are expected die out exponentially, meaning the measured values at MC-time i and i+ t
satisfy

〈AiAi+t〉 − 〈A〉2 ∝ e−t/τexp , (340)

where τexp is the exponential correlation time, specific to the quantity A, is the correlation
decay rate. The index i vanished by the assumption of translational invariance in simulation
time, meaning that we can consider an arbitrary simulation step i,

〈AiAi+t〉 = 〈A0A0+t〉 . (341)

Naturally this is valid only in equilibrium, that is, after the thermalization steps are done. The
normalized autocorrelation function of A is defined

φ(t) = 〈AiAi+t〉 − 〈A〉
2

〈A2〉 − 〈A〉2
∀i . (342)

A better average is obtained by integrating - or rather summing - the autocorrelation function.
One defines the integrated autocorrelation time

τint :=
∑∞

t=1(〈AiAi+t〉 − 〈A〉2)
〈A2〉 − 〈A〉2

. (343)

The infinite limit in the summation is not practical, and only a finite data window is available
for evaluation of τint. How is τint related to MC error estimate?

The MC error estimate tells how far the sample mean is from the true mean. We got the
formula (338)

σ2 = σ2
unbiased

N
= (ĀN − 〈A〉)2 , (344)

so let’s see how large this is expected to be and evaluate

〈σ2〉 = 〈(ĀN − 〈A〉)2〉 (345)

There’s a sum squared, so maybe it can be expressed as a convolution such as the integrated
autocorrelation time in Eq. (343). Let’s work out the details,59

〈σ2〉 = 〈(ĀN − 〈A〉)2〉 =

〈(
1
N

N∑
i=1

(Ai − 〈A〉)

)2〉
(346)

=

〈(
1
N

N∑
i=1

(Ai − 〈A〉)

)(
1
N

N∑
j=1

(Aj − 〈A〉)

)〉
. (347)

59D. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, Cambridge Univ.
Press 2009, p. 91.
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The idea is to assume that N is large, so that

1
N

N∑
i=1

Ai = 〈A〉+ small deviation , (348)

and see how significant the small deviation is in the square. A lonely Ai can be replaced with
〈A〉, but the square has terms with AiAj. Separate cases j = i and j < i and j > i (the latter
two give the same result)

〈σ2〉 = 1
N2

N∑
i=1

〈(Ai − 〈A〉)2〉+ 2
N2

N∑
i=1

N∑
j=i+1

〈
AiAj − 〈A〉2

〉
, (349)

In the second sum j > i, so it’s useful to define j = i+ t,

〈σ2〉 = 1
N2

N∑
i=1

〈(Ai − 〈A〉)2〉+ 2
N2

N∑
i=1

N−i∑
t=1

(〈AiAi+t〉 − 〈A〉2) . (350)

Assuming the t-sum converges long before t = N − i, we may extend the sum to infinity,

〈σ2〉 ≈ 1
N2

N∑
i=1

〈(Ai − 〈A〉)2〉+ 2
N2

N∑
i=1

∞∑
t=1

(〈AiAi+t〉 − 〈A2〉) (351)

= 1
N2

N∑
i=1

〈(Ai − 〈A〉)2〉+ 2
N
τint(〈A2〉 − 〈A〉2) (352)

= 〈A
2〉 − 〈A〉2

N
(1 + 2τint) . (353)

This means that the so-called statistical inefficiency given by the factor (1 + 2τint) changes the
number of statistically independent samples from all samples N to a smaller amount N/(1 +
2τint).

Analysing the autocorrelations in data gives valuable information about how efficient the
MC sampling algorithm is, which is a relevant question in designing Markov chain MC. However,
if the algorithm is not debatable, then the discussion about autocorrelations may not be that
fruitful, and there are more practical ways to estimate the error in MC results.

9.4 Block averaging
The averages of sufficiently large blocks of data are statistically independent.

How large is ”sufficiently large” needs to be established. Split the collected data, N values, to
blocks of size n. Say there are Nb blocks,

N = Nb × n, (354)
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so we work with Nb mean values Bi computed for each block i:

A1 A2 . . . An︸ ︷︷ ︸
mean B1

An+1 An+2 . . . A2n︸ ︷︷ ︸
mean B2

A2n+1 . . .︸ ︷︷ ︸ . . . AN︸ ︷︷ ︸
mean BNb

. (355)

If n is sufficiently large, spanning over simulation time longer than the integrated autocorrela-
tion time τint, then the values Bi are stochastically independent. If this is the case, the error is
given by the unbiased standard deviation,

σ =

√√√√ 1
Nb(Nb − 1)

Nb∑
i=1

(
Bi − B̄Nb

)2
. (356)

If the blocks cover the whole sample of N values, then of course the average of blocks is the
total average, B̄Nb = ĀN . A equivalent, cleaner form is obtained by evaluating the square in
the previous formula,

error =
√

1
Nb − 1

(
(B2)Nb − (B̄Nb)2

)
. (357)

This method can be used to both primary variables, such as energy, that are measured directly
from MC simulation, and to secondary variables, such as the specific heat, computed from
energy data.

9.5 Resampling methods
The original set of data is collected by taking samples of a quantity during the simulation.
That is sampling. In resampling one takes samples from the data that has been collected, so
it’s sampling from a sample.

9.5.1 Jackknife

Von Mises applied the jackknife resampling method in some form already in the pre–computing
era (1930’s), but the main work was done by Quenouille (1949) (who wanted to find a way to
estimate bias) and Tukey (1958).

• Divide the data to N blocks, block size > τint
⇒ blocks are independent

• Omit the first, 2nd, 3rd, ... block from the sample of size N . The decimated set A(i) has
ith block omitted. Case N = 5:
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Full set of blocks 1 2 3 4 5 average ĀN
averages of blocks ā1 ā2 ā3 ā4 ā5
A(1) 2 3 4 5 average Ā(1)
A(2) 1 3 4 5 average Ā(2)
A(3) 1 2 4 5 average Ā(3)
A(4) 1 2 3 5 average Ā(4)
A(5) 1 2 3 4 average Ā(5) .

• The standart deviation can be computed using

σ =

√√√√N − 1
N

N∑
i=1

(
Ā(i) − ĀN

)2
. (358)

The factor N−1
N

can be made plausible by noticing that

Ā(i) = 1
N − 1

∑
j(6=i)

āj , (359)

so one recovers the standart deviation of block data,

σ =

√√√√ 1
N(N − 1)

N∑
i=1

(
āi − ĀN

)2
. (360)

The resampled sets in jackknife are not really new measurements, and have less data than the
original set, so their variance is smaller than the variance in the full data. The resampled sets
deviate from the original set by only one data point, so in this sense jackknife is probing the
near vicinity of the original set.

Don’t use jackknife to estimate the median, it will fail miserably. Median - the middle
value of the data - has what one calls ”non-smooth statistics”: a small change in the data set
can make a big change in the median. This can be considered a sort of non-differentiability.
Another quantity that is non–smooth is the maximum value of data.

9.5.2 Bootstrap

I’m not positive, but I suppose the name comes from baron von Münchausen’s incredible account
on avoiding drowning in a swamp by pulling from his own boot straps. Our bootstrapping is a
generalization of the jackknife resampling, suggested by Efron (1979).

• Resample, with replacement, the existing data to get a new data set. Compute the
statistics from this resampled set.
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•

Original Sample : 1 2 3 4 5
1st bootstrap replica : 1 1 2 5 4

2nd bootstrap replica : 5 2 2 1 3
3rd bootstrap replica : 4 1 1 3 4

etc.

• About Nboot = 1000 replicas are often enough.

• Compute error using

error =
√

1
N − 1

[
(A2)N − (ĀN)2

]
, (361)

notice that one doesn’t divide by (Nboot − 1)60

• You may block data to get independent samples but it’s not necessary. Some blocking is
usually done anyhow, because storing all data on disk is ineconomical.

No theoretical calculations are needed, the method works no matter how mathematically com-
plicated the chosen estimator (such as variance) is. Just like the jackknife, the bootstrap can
be used to estimate simultaneously bias, kurtosis, and other statistical properties of the data.

The boostrap resampled sets deviate from the original one more than the jackknife resampled
sets, so in this sense the bootstrap samples further away from the original set.

60The number of bootstrap replicas is unlimited, so having 1/(Nboot − 1) as a factor would lead to ever
diminishing error, which cannot be correct.
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Figure 16: The convergence of the bootstrap error estimate as a function of number of bootstrap
replicas. The original data set is {1,2,3,4,5}.

Jackknife or bootstrap ?

• Jackknife requires as many resampled sets as there are original data points
⇒ For over 100 data points bootstrap becomes more effective.

• But for bootstrap you need about 1000 samples to get decent estimate for variance
⇒ Jackknife seems to be a better up to about 1000 data points. If you have
more data, use bootstrap .

• If you don’t block the data before error analysis, but choose to use statistically dependent
data (=data picked more frequently that τint) you probably have lots of data ⇒ use
bootstrap.

How to debug error–estimation subroutines ?

• Program all three: blocking, jackknife, bootstrap

• Pick a simple set of five data points: 1,2,3,4,5

• Compare error estimates to the exact value σ = 1/
√

2 = 0.70717

• If you get “NaN” in bootstrap, your Ā2 − (Ā)2 is negative. Check that you divide with
correct integer counts. Ā should be close to 3.
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• If your bootstrap error won’t converge with increasing number of replicas, you haven’t
divided Nboot in computing the averages Ā2 or Ā.

• If your bootstrap converges to σ =
√

2 = 1.414, you forgot to multiply with 1/(N − 1)
under the sqrt. In this case N = 5 (but don’t hardwire N to 5 ;).

• After all seems to work, generate N data points using your old reliable gaussian random
number generator. Analyse the data: the average should go toward 0, and the error of
average should diminish as

σ = σinput/
√
N = 1/

√
N ,

because the standard normal distribution the code produces has σinput = 1.
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10 Large-time-step propagators

10.1 Propagators with fourth or higher order accuracy
Suzuki: there is no 4th order splitting

e−τ(Â+B̂) =
N∏
i=1

e−τaiÂe−τbiB̂ (362)

without some ai < 0 and bi < 0. 61

This we cannot have in DMC, because a negative ti means 〈R′|e−τtiT̂ |R〉 is inverse diffusion
(backward in time), which cannot be simulated. Something has to be added, and the that’s
some commutator(s) of T̂ and V̂ . A convenient one to keep is related to the classical force on
particle i, 62

[V̂ , [T̂ , V̂ ]] = 2λ|∇RV (R)|2 = 2λ
N∑
i=1

|fi(R)|2 , fi = −∇iV. (363)

The commutator is evaluated like this, T̂ = −λ∇2
R, V := V (R),

[V̂ , [T̂ , V̂ ]]φ(R) = [−V 2T̂ − T̂ V 2 + 2V T̂ V ]φ (364)
= λ[V 2∇2φ+∇2(V 2φ)− 2V∇2(V φ)]

= λ

[
V 2∇2φ+ ∇ · [2V (∇V )φ+ V 2∇φ]

− 2V∇ · [(∇V )φ+ V∇φ]
]

(365)

= λ

[
V 2∇2φ+ 2(∇V )2φ+ 2(V∇2V )φ+ 2V (∇V ) ·∇φ

+ 2V∇V ·∇φ+ V 2∇2φ

−2V∇2V φ−2V∇V ·∇φ−2V∇V ·∇φ−2V 2∇2φ

]
coloured terms cancel, only 2nd term survives
= 2λ(∇V )2φ . (366)

61M. Suzuki, J. Math. Phys. 32, 400 (1991).
62The operator [V̂, [T̂ , V̂]] acts on some φ(R).
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A caleidoscope of 4th order methods (incomplete list):

• Trotter 63 (divide τ to infinitely many pieces)

e−τĤ = lim
M→∞

[
e−

τ
M
T̂ e−

τ
M
V̂
]M

, (367)

• Ruth-Forest (Ruth (1983, private channels), Forest and Ruth (1990), re-discovered sev-
eral times around 1990 by Campostrini and Rossi and by Candy and Rozmus) 64

• Takahashi-Imada (1984)65 and Li-Broughton (1987)66

• Chin (1997)67

Forest-Ruth

ĜFR(τ) = e−v3τ V̂e−t3T̂ e−v2V̂e−t2τ T̂ e−v1τ V̂e−t1τ T̂ e−v0τ V̂ , (368)

with s = 21/3 = 1.25992,

v0 = v3 = 1
2

1
2− s

(> 0) , v1 = v2 = −1
2
s− 1
2− s

(> 0) (369)

t1 = t3 = 1
2− s

(> 0) , t2 = − s

2− s
(< 0!) . (370)

From right to left, the potential will be evaluated at times 0, t1τ ,(t1 + t2)τ (< 0!), and τ .
Suzuki was right, there are negative coefficients. These make the application quite tricky. The
good thing about FR is that it only needs 6 FFT’s to propagate time τ ,

Takahashi-Imada ”not fully fourth order”

ĜTI(τ) = e−τ T̂ e−τ V̂−
1

24 τ
3[V̂,[T̂ ,V̂]]e−τ T̂ (371)

63H. F. Trotter, Proc. Am. Math. Soc. 10, 545 (1959)
64E. Forest and R. D. Ruth , Physica D. 43, 105 (1990)
65M. Takahashi and M. Imada, J. Phys. Soc. Jpn.53, 3765 (1984)
66X. P. Li and J. Q. Broughton, J. Chem. Phys.86, 5094 (1987)
67S. A. Chin, Phys. Lett. A 226, 344 (1997) and S. A. Chin and C. R. Chen, J. Chem. Phys. 117, 1409

(2002)
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Chin Several possible forms, one is

ĜChin(τ) = e−v0τ V̂e−t1τ T̂ e−v1τŴe−t2τ T̂ e−v1τŴe−t1τ T̂ e−v0τ V̂ (372)

Ŵ := V̂ + u0

v1
τ 2[V̂ , [T̂ , V̂ ]] , (373)

v0 = 6t1(t1− 1) + 1
12(t1− 1)t1

, t2 = 1− 2t1 (374)

v1 = 1
2
− v0 u0 = 1

48

(
1

6t1(1− t1)2 − 1
)
, (375)

and t1 is tunable, 0 ≤ t1 ≤ 1− 1/
√

3. Even 5th order errors may cancel with t1 = 0.35023. All
coefficients are positive.

We have a good approximation for Ĝ(τ) = e−τĤ, such as

ĜChin(τ) = Ĝ(τ) +O(τ 5). (376)

Nothing prevents us from overextending the validity, as long as we know that we are improving.
Take a trial wave function ϕT (R) and propagate it,

〈R|ϕT (τ0)〉 = ϕT (R; τ0) =
∫
dR′〈R|GChin(τ0)|R′〉ϕT (R′) . (377)

We can use VMC to see how far in τ0 we can go until the energy begins to increase: find τ0
were

E(τ0) = 〈ϕT (τ0)|Ĥ|ϕT (τ0)〉
〈ϕT (τ0)|ϕT (τ0)〉

(378)

is at minimum (approximately).68 The propagation can now be viewed as a multi-dimensional
integral,

ϕT (R; τ0) =
∫
dR′dR1dR2e

−v0τ0V (R)〈R|e−t1τ0T̂ |R2〉e−v1τ0W (R2) (379)

〈R2|e−t2τ0T̂ |R1〉e−v1τ0W (R1)〈R1|e−t1τ0T̂ |R′〉e−v0τ0V (R′)ϕT (R′) .

Notice that this applied one GChin for a single, long time step τ0. The integrated coordinates
can also be thought of as ”shadow coordinates”, as in the variational shadow wave function by
L. Reatto, F. Pederiva et al. Large τ means fast projection and less correlated points in DMC.
69

68In VMC the normalization is irrelevant.
69H. A. Forbert and S. A. Chin, Phys. Rev. B 63, 144518 (2001).
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Figure 17: He4 liquid at equilibrium density, obtained by applying the single long time step
propagation on various trial wave functions, from Rota et al., Physical Review E 81, 016707
(2010).

Following R. E. Zillich, J. M. Mayrhofer, and S. A. Chin, 70 the ”work horse” 2nd order
propagator71

G2(τ) := e−
τ
2V e−τT e−

τ
2V , (380)

can be combined to a (2n)th order propagator,

G2n(τ) =
n∑
i=1

ciG
ki
2 ( τ
ki

) (381)

ci =
n∏

j=1(6=i)

k2
i

k2
i − k2

j

. (382)

For PIMC, suitable ki sequences are {12} (result 4th order), {124} (result 6th order), and
{1236} (result 8th order). Here ”suitable” means that terms have the same amount of free

70R. E. Zillich, J. M. Mayrhofer, and S. A. Chin, J. Chem. Phys. 132, 044103 (2010).
71Other choises can be made, too.
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Figure 18: Liquid He4 : Timesteps 0.01 (dots), 0.05 (small points) and 0.2 (large points).
Getting to the ground state takes 10 times more updates with a 2nd order propagator than
with a 4th order one. From H. A. Forbert and S. A. Chin, Phys. Rev. E 63, 016703 (2000).

propagators with the same timestep τ , or those that can be made ”commensurate” by exact
splitting, e.g. e−2τT = e−τT e−τT . If the sequence is commensurate, the free propagators can be
neatly factored out. For example, the 6th order propagator is

G6(τ) = 1
45
G2(τ)− 4

9
G2

2(τ/2) + 64
45
G4

2(τ/4) . (383)

which can be written as

G6(12345; 4τ) = G0(12; τ)G0(23; τ)G0(34; τ)G0(45; τ) (384)

[64
45
e−

τ
2 (V1+2V2+2V3+2V4+V5) − 4

9
e−

τ
2 (V1+2V3+V5) + 1

45
e−

τ
2 (V1+V5)] .

Let’s show that the last term reduces to 1
45G2(15; 4τ) and un-split the free propagator,

1
45
G0(12; τ)G0(23; τ)G0(34; τ)G0(45; τ)e−

τ
2 (V1+V5) (385)

= 1
45
G0(15; 4τ)e−

τ
2 (V1+V5) = 1

45
〈1|e−

4τ
2 V̂e−4τ T̂ e−

4τ
2 V̂ |5〉 . (386)

Similarly, an 8th order propagator is

G8(τ) = − 1
180

G2(τ) + 2
15
G2

2(τ/2)− 27
40
G3

2(τ/3) + 54
35
G6

2(τ/6) , (387)
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so

G8(1234567; 6τ) = G0(12; τ)G0(23; τ)G0(34; τ)G0(45; τ)G0(56; τ)G0(67; τ) (388)

[54
35
e−

τ
2 (V1+2V2+2V3+2V4+2V5+2V6+V7) − 27

40
e−

τ
2 (V1+2V3+2V5+2V7)

+ 2
15
e−

τ
2 (V1+2V4+V7) − 1

180
e−

τ
2 (V1+V7)] .

With negative coefficients, these weights are obviously not positive definite. If used in MC, the
rare negative weight moves can be systematically rejected, but the accuracy is questionable.
Varying coefficients is further visualized in figure 19, where the coefficients giving a 120th order
propagator are plotted. Normalizing the largest c to unity, the last one is c120 = 1.37697×10−10.
A nominally larger time step is achieved in expense of intermediate time steps. Just like in
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Figure 19: Taking ki = i (not commensurate, i = 1, 2, 3, ..., 120), the figure shows the coefficients
ci, with the largest value normalized to 1.

solving differential equations, a larger time-to-time accuracy is achieved evaluating derivatives
at intermediate times (think about, for example, the 4th order Runge-Kutta method). At about
4th order the gain and computational effort are in balance, beyond that it’s a losing game.
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10.2 Propagators with no time step error
So far the time slices have been equidistant or at least fixed. Relaxing the restriction can give
”infinite order” propagators, such as the old perturbation theory expansion 72,

e−τĤ = e−τ T̂
[
1−

∫ τ

0
dτ1V̂(τ1) + 1

2

∫ τ

0
dτ1

∫ τ

0
dτ2T̂τ [V̂(τ1)V̂(τ2)]...

]
,

often written in the time-ordered form

e−τĤ = e−τ T̂ T̂τ
[
e−

∫ τ
0 dτ V̂(τ)

]
, V̂(τ) := eτ T̂ V̂e−τ T̂ . (389)

Writing the operator in coordinate space reveals a structure similar to previous combined G2(τ)
propagators, (mark Rk = k for shortness)

G(1, X; τ) = G0(1X; τ)−
∫ τ

0
dτ2

∫
d2G0(12; τ − τ2)V2G0(2X; τ2) (390)

+ 1
2

∫ τ

0
dτ2

∫ τ

0
dτ3

∫
d2d3T̂τ [G0(12; τ − τ2)V2G0(23; τ2 − τ3)V3G0(3X; τ3)]... ,

where 1 is on the time imaginary time τ and X is on imaginary time 0. The expansion suffers
from the common perturbation theory weakness, namely the sum doesn’t converge at large τ .
The problem arises because of the so-called secular terms, which - contrary to the assumption -
don’t decrease term after term in the expansion. Even with known finite result, the perturbation
expansion may diverge, so it’s purely a technical weakness. Let’s approximate this by keeping
n terms and split the free propagators to a ”commensurate” sequence,

G(1X; τ) ≈ τ−(n−1)
∫ τ

0
dτ2...dτn

∫
d2d3...dnT̂τ [G0(12; τ − τ2)G0(23; τ2 − τ3)...G0(nX; τn)][

1− τV2 + τ 2

2!
V2V3 − ...+

(−τ)n−1

(n− 1)!
V2V3...Vn

]
. (391)

This has the familiar structure with free propagations and a potential factor, but now the time
slices move around between the limits 0 and τ . Compared to the earlier finite order potential
factors, this one is very bad: the potentials scale with particle number, and the convergence of
the whole factor is poor at best. As often, perturbation expansions require heavy re-summation
of terms to be of any use. Large-V occurrences are perilous, they are not suppressed as in
exp(−τV ) terms. As n → ∞ time-slices form a continuous mass with constant density, and
G0’s are almost Dirac deltas, with potential changing continuously between 0 and τ .

72A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems (1971), R. P. Feynman, Sta-
tistical Mechanics, A set of lectures (1972-1982). The expansion can be viewed as the interaction picture
representation wrt. V̂, and the expanded form does perturbation theory wrt. V̂. One way to derive is to find
the integral equation for Û(τ) with e−τĤ = e−τ T̂ Û(τ)⇒ Û(τ) = eτ T̂ e−τĤ, and derive this wrt. τ .
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11 Appendix

11.1 McMillan trial wave function for liquid 4He
In his 1965 PhD thesis William L. McMillan made an early application of Monte Carlo to study
the ground state of liquid and solid helium73. In lack of better knowledge, back then the He-He
potential was taken to be the 6-12 Lennard-Jones potential,

V (r) = 4ε
[(σ

r

)1
2−

(σ
r

)6
]
, (392)

where ε = 10.22 K and the hard core radius of He atoms is σ = 2.556 Å, and it’s customary to
express distances in units σ. Sorry about overloading the standard deviation notation σ, but
this length σ has long traditions. In order to keep the potential energy at bay and get a low
energy, the trial wave function should keep atoms apart. McMillan chose the form

ϕT (R) =
N∏

i<j=1

f(rij) , rij = |ri − rj| , (393)

with two–body correlations

f(r) = e−
1
2 (β/r)µ . (394)

McMillan found that the best values are β ∼ 2.6 − 2.7 and µ = 5. This wave function is
computationally cheap to evaluate. The exponential form is also quite convenient, since one
needs mostly the ratio

|ϕT (R′)|2

|ϕT (R)|2
= e−

∑N
i<j=1(β/r′ij)µ

e−
∑N
i<j=1(β/rij)µ

= exp
[
−βµ

N∑
i<j=1

[
1

(r′ij)µ
− 1

(rij)µ

]]
. (395)

Local energy The Hamiltonian is

H = − ~2

2m

N∑
i=1

∇2
i +

∑
i<j

V (rij), (396)

so the local energy is

EL(R) = − ~2

2m

N∑
i=1

∇2
iϕT (R)
ϕT (R)

+
∑
i<j

V (rij) . (397)

73W. L. McMillan, Phys. Rev. 138 (1965) A442-A451.
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This form gives some hint of what is not meant by ”local energy”: The potential part of it
is just the ”classical” potential energy of particles located at R, hence the first term should
describe the kinetic energy of that system. Right? No, because thinking that way the ”kinetic
energy of i:th particle” can be negative! For some configurations the total kinetic part can be
negative, too. This is just a warning that one shouldn’t consider the terms too seriously as the
kinetic and the potential energy.

Let’s do the job for a slightly more general case. Use a one–body correlation function
u(ri) for inhomogeneous cases and a two–body correlation function to keep particles apart:

ϕT (R) = e
1
2 [∑i u(ri)+

∑
i<j u(ri,rj)] . (398)

where McMillan had u(ri, rj) = −(β/rij)µ. If only the two–body correlation part is present,
then this is called a Jastrow trial wave function. It is much used in any strongly interacting
many–body problems, not just liquid helium. To simplify calculations we assume that u(ri, rj)
depends only on the length rij and not on the spatial direction, hence u = u(rij).

The following formulas come handy; I’ll write intermediate steps in 2D, final forms are valid
in any dimension. First of all, we introduce the shorthand notation uij = u(rij). Let ∇k denote
the gradient with respect to the position vector of particle k. We have

∇krij =
(
∂

∂xk
,
∂

∂y k

)√
(xi − xj)2 + (yi − yj)2 (399)

= r−1
ij (xi − xj, yi − yj) (δik − δjk)

= r̂ij(δik − δjk) ,

where the hat signifies a unit vector. Similarly,

∇k · rij =
(
∂

∂xk
,
∂

∂y k

)
· (xi − xj, yi − yj) (400)

= D(δik − δjk) .

From these we get

∇2
krij = ∇k · r̂ij(δik − δjk) = ∇k ·

[
r−1
ij rij

]
(δik − δjk)

= −r−2
ij ∇krij · rij(δik − δjk) +Dr−1

ij (δik − δjk)2

= (D − 1)r−1
ij (δik − δjk)2 = (D − 1)r−1

ij (δik + δjk) .

Then

∇kui = u′i∇kri = u′kr̂k (401)
∇kuij = u′ij∇krij = u′kj r̂kj − u′ikr̂ik (402)

(403)
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and

∇2
kui = u′′k (404)

∇2
kuij = u′′ij(∇krij)2 + u′ij∇2

krij

=
[
u′′ij + u′ij(D − 1)r−1

ij

]
(δik + δjk)

= u′′ik + u′ik(D − 1)r−1
ik + (i↔ j) . (405)

Here u′(rij) stands for the derivative duij/drij, and D is the dimension.
Back to the main task. Define

ϕT (R) := eU(R) , U(R) := 1
2

[∑
i

ui +
∑
i<j

uij

]
(406)

to get

∇kϕT = ϕT∇kU(R) , (407)

and so

ϕ−1
T ∇

2
kϕT = ϕ−1

T ∇k · [ϕT∇kU(R)] (408)
= [∇kU(R)]2 +∇2

kU(R) .

The gradient is now

∇kU(R) = 1
2

u′kr̂k +
∑
j(>k)

u′kj r̂kj −
∑
i(<k)

u′ikr̂ik

 (409)

= 1
2

u′kr̂k +
∑
i(6=k)

u′kir̂ki

 , (410)

and the laplacian is

∇2
kU(R) = 1

2

u′′k + (D − 1)u′kr−1
k +

∑
i(6=k)

u′′ik + (D − 1)u′ikr−1
ik

 . (411)

From these we can collect the local energy

EL(R) = − ~2

2m
∑
k

[
[∇kU(R)]2 +∇2

kU(R)
]

+
∑
i<j

V (rij) , (412)
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and the drift (”quantum force”) defined in Eq. (203),

Fk(R) = 2∇kU(R) . (413)

The local energy can be now computed from the drift,

EL(R) = − ~2

2m
∑
k

[
1
4
F2
k + 1

2
∇k · Fk

]
+
∑
i<j

V (rij) , (414)

If the trial wave function is the exact eigenstate, then this simplifies to

EL(R)exact = ~2

8m
∑
k

F2
k +

∑
i<j

V (rij) for an exact eigenstate , (415)

because you can partially integrate the ∇k · Fk away. An unchecked idea: evaluate both local
energies and get a measure for how far the trial wave function is from an eigenstate? For a
good trial wave function the local energy should be as close to a constant as possible; that’s
variance optimization.

Let’s see what comes out with a two-body correlation function uij. The local energy is

EL = − ~2

2m
∑
k

[
1
4

(
∑
i(6=k)

u′kir̂ki)2 + 1
2
∑
i(6=k)

u′′ik + (D − 1)u′ikr−1
ik

]
+
∑
i 6=j

1
2
V (rij) (416)

= − ~2

2m
1
4
∑
k

(
∑
i(6=k)

u′kir̂ki)2 +
∑
i 6=j

[
− ~2

2m

(
1
2
u′′ij + 1

2
(D − 1)u′ijr−1

ij

)
+ 1

2
V (rij)

]
.

The first term is a square of a sum,∑
k

(
∑
i( 6=k)

u′kir̂ki)2 =
∑
k

(
∑
i(6=k)

u′kir̂ki)(
∑
j( 6=k)

u′kj r̂kj) =
∑
k 6=i

(u′ki)2 +
∑
i 6=j 6=k

u′kiu
′
kj r̂ki · r̂kj

=
∑
i 6=j

[
(u′ij)2 +

∑
k(6=i,j)

u′kiu
′
kj r̂ki · r̂kj

]
=
∑
i 6=j

[
(u′ij)2 +

∑
k( 6=i,j)

∇kuki ·∇kukj

]
. (417)
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Putting all together,

EL =
∑
i 6=j

[
− ~2

2m
∑
k(6=i,j)

∇kuki ·∇kukj −
~2

2m

(
(u′ij)2 + 1

2
u′′ij + 1

2
(D − 1)u′ijr−1

ij

)
+ 1

2
V (rij)

]
.

The ∇kuki ·∇kukj is actually a three-body function, which gain importance at high density
when three particles are probable to get close. Some density dependence is present already in
the two-body correlation part, in coordinates i and j. For a repulsive potential u′(r) is large
at small distances, so the three–body term gets largest contributions from nearest neighbours,
which are arranged to a suitable stacking structures at elevated densities.

The question what correlation function really belongs to n-body correlations is answered by
the cluster condition:

If one pulls far any number of particles from 1 to n− 1, then the n-body correlation
function un goes to zero.

This tries to say the function goes to zero unless the n particles form a tight cluster in space.
For example,

u2(rij) := uij = −
(

β

|ri − rj|

)µ
(418)

is a two-body correlation function as indicated, because pulling i far from j reduces this to
zero. Similarly, using this u2 as a ”seed”,

∇kuki ·∇kukj + cyclic permutations of (i, j, k) (419)

is a three-body correlation function. Why do we need a three-body correlation function? Look-
ing back at the EL resulting from u2 only, there’s no way to get∑

i 6=j 6=k

∇kuki ·∇kukj 6= constant ∀R (420)

The only way to get EL more constant is to add a u3 that cancels this culprit term. So let’s
assume you do exactly that, and write an improved trial wave function,

ϕ(R) = exp[−1
2
∑
i<j

uij + 1
3!
∑
i<j<k

uijk] := eU2(R)+U2(R) (421)

uijk = ∇kuki ·∇kukj + cyclic permutations of (i, j, k) . (422)
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and re-compute the local energy. But computing gradients you add more to EL than you
bargained for,∑

k

∇2
kU =

∑
k

∇2
kU2 +

∑
k

∇2
kU3 2- and 3-body corr. functions (423)∑

k

(∇kU)2 =
∑
k

(∇kU2 + ∇kU3)2

=
∑
k

(∇kU2)2

︸ ︷︷ ︸
part of this is the original culprit

+ 2
∑
k

∇kU2 ·∇kU3︸ ︷︷ ︸
up to 4-body

+
∑
k

(∇kU3)2

︸ ︷︷ ︸
up to 5-body

, (424)

so cancelling the original cuplrit, we got new non-constant culprits, up to a five-body correlation
term. This goes out of hand.

j

i

k

Figure 20: The three–body term generated by two–body correlations in the [∇kU(R)]2 local
energy term.

Forgetting this term one would get

EL(R) ≈
∑
i 6=j

[
− ~2

2m

(
1
4

(u′ij)2 + 1
2
u′′ij + 1

2
(D − 1)u′ijr−1

ij

)
+ 1

2
V (rij)

]
, (425)

so obviously choosing u(r) that solves the equation

− ~2

2m

(
1
4

(u′(r))2 + 1
2
u′′(r) + 1

2
(D − 1)u′(r)r−1

)
+ 1

2
V (r) = C (426)
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one gets nearly a constant local energy for every R,

EL(R) ≈
∑
i 6=j

C = N(N − 1)C = N(E0/N) . (427)

where the last equality target the assumed ground state energy per particle E0/N . Practise
shows that this two–body correlation keeps atoms too far apart, and the three–body term that
gains importance at increasing density. This determines an approximate u(r) up to a constant,
which doesn’t matter since it will be absorbed to the wave function normalization.

Specifically, the local energy of the McMillan trial wave function is

u′ij = ∂

∂rij

[
−
(
β

rij

)µ]
= µβµr−µ−1

ij (428)

u′′ij = −µ(µ+ 1)βµr−µ−2
ij ,

so

EMcMillan
L (R) = 2 ~2

8m

[
µ (µ+ 2− d) βµ

∑
i 6=j

r−µ−2
ij

]
︸ ︷︷ ︸

T1

− ~2

8m
(µβµ)2

∑
i

∑
j(6=i)

r−µ−2
ij rij

2

︸ ︷︷ ︸
T2

+
∑
i<j

V (rij)

= 2T1(R)− T2(R) +
∑
i<j

V (rij) .

(429)

The kinetic part of the local energy has two terms, which correspond to evaluating the expec-
tation values 〈ϕT |∇2

R|ϕT 〉 and 〈∇RϕT |∇RϕT 〉. Although mathematically equivalent, these two
forms give different variance in Monte Carlo. Sometimes mathematical manipulations may lead
to increase of variance. A rule of thumb says, that one should evaluate expressions in their
most basic form. The mathematical equivalence of the two forms of the kinetic energy ensures
that their mean values should be the same. This is a very useful test: Evaluate expectation
values of both forms and see if they approach the same value. If not, then either expression
has programming error or the derivatives are not correct.

For completeness we spell out also the drift force corresponding to the McMillan trial wave
function :

[F(R)]i = µβµ
∑
j(6=i)

r−µ−2
ij rij . (430)

For a repulsive potential the quantity in the exponent has to be negative to keep walkers apart.
The choice µ = 5 pulls them strongly apart: the He-He potential is very repulsive in short
range.
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Figs. 21 and 22 show some selected results for the McMillan correlation factor. For com-
parison we show the fully optimised uij, as given by the HyperNetted Chain (HNC) theory.
Clearly the McMillan two–body correlation function is able to keep atoms apart, but it doesn’t
describe the structure near 5 Å , and hence the radial distribution oscillates with smaller am-
plitude than the experimental one. The DMC radial distribution by Boronat and Casulleras74

is practically identical to the experimental one.
The local energy of the Slater-Jastrow trial wave function (225) is also fairly simple to

evaluate, if we define

L(R) = ln [det(A↑) det(A↓)]U(R) , (431)

so that again

∇2
RϕT (R) =

[
∇2

RL(R) + (∇RL(R))2]ϕT (R) . (432)

The gradient of the Slater determinant is obtained using the identity

∂

∂xk
ln det(A) = Tr

[
A−1 ∂

∂xk
A

]
. (433)

11.2 Cusp conditions in Coulomb systems
We must make sure that the trial wave function satisfies the so–called cusp condition, so that
the infinities of the potential energy are cancelled by those of the kinetic energy77. Here we
deal with the conditions for an N -electron system78

The Hamiltonian of N electrons is

H = −1
2

N∑
i=1

∇2
i + V (R) . (434)

Move electrons 1 and 2 so that other electrons and the total center of mass RCM are fixed. The
N -electron wave function is

Ψ(R) := Ψ(r1, . . . , rN) = Ψ′(r,RCM , r3, . . . , rN) , (435)

where r := r1 − r2. Assume next that the trial wave function is of the Jastrow form,

Ψ′(r,RCM , r3, . . . , rN) ∝ e−u(r)f(r) , (436)

where f obeys the following rules:
74J. Boronat and J. Casulleras, Phys. Rev. B49 (1994) 8920.
77T. Kato, Comm. Pure Appl. Math. 10, 151 (1957).
78This appendix follows closely the one given by M. L. Stedman in his PhD thesis.
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1. f(0) 6= 0, if the spins at r1 and at r2 are anti-parallel

2. f(0) = 0 , if the spins at r1 and at r2 are parallel

3. f(−r) = −f(r) , if the spins at r1 and at r2 are parallel.

First we need to rewrite the Hamiltonian using r and RCM . One has

∇2
1 +∇2

2 = 2∇2
r + 1

2
∇2

Rcm
, (437)

where ∇i on the left hand side operates on ith particle.
Proof:
We have

X = r1 + r2

2
(438)

x = r1 − r2 ,

so

∂

∂(r1)k
= ∂Xk

∂(r1)k
∂

∂Xk

+ ∂xk
∂(r1)k

∂

∂xk
(439)

= 1
2

∂

∂Xk

+ ∂

∂xk
∂

∂(r2)k
= 1

2
∂

∂Xk

− ∂

∂xk
,

and further

∇2
1 =

3∑
k=1

∂2

∂(x1)2
k

(440)

=
3∑

k=1

(
1
2

∂

∂Xk

+ ∂

∂xk

)2

(441)

=
3∑

k=1

1
4
∂2

∂X2
k

+ ∂2

∂Xk∂xk
+ ∂2

∂x2
k

.

Similarly we get

∇2
2 =

3∑
k=1

1
4
∂2

∂X2
k

− ∂2

∂Xk∂xk
+ ∂2

∂x2
k

, (442)
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hence

∇2
1 +∇2

2 =
∑
k

1
2
∂2

∂X2
k

+ 2 ∂2

∂x2
k

= 1
2
∇2

RCM
+ 2∇2

r , (443)

what we set out to prove.
The Hamiltonian reads now

H = −
(

1
4
∇2

RCM
+∇2

r

)
− 1

2

N∑
i=3

∇2
i + V (r,RCM , r3, . . . , rN) . (444)

Our goal is to keep the local energy EL = ϕ−1
T HϕT finite as r→ 0. The potential part diverges

as 1/r.

lim
r→0

1
e−u(r)f(r)

(
−∇2

r + 1
r

)
e−u(r)f(r) <∞ , (445)

and the expanding the operator gives(
−∇2

r + 1
r

)
e−u(r)f(r) =

(
2u′

r
+ u′′ − u′2

)
e−u(r)f(r) + e−u(r)

r
f(r) (446)

+ 2u′e−u(r)r̂ · ∇rf(r)− e−u(r)∇2
rf(r) ,

where u′ := du/dr.

Electrons with anti–parallel spins Since now f(0) 6= 0 there is only one singular terms in
(447) and the cusp condition reduces to

lim
r→0

2u′ + 1
r

<∞ , (447)

so we must have
du

dr

∣∣∣∣∣
r=0

= −1
2
. (448)

Electrons with parallel spins Taking into account the antisymmetry of f(r), the Taylor
expansion of f(r) around zero is

f(r) = a · r +O(r3) , (449)
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so the derivatives are

∇rf(r)
∣∣∣∣
r=0

= a (450)

∇2
rf(r)

∣∣∣∣
r=0

= 0 .

The operator in the local energy (445) is(
−∇2

r + 1
r

)
e−u(r)f(r) =

(
4u′

r
+ u′′ − u′2 + 1

r

)
e−u(r)f(r) , (451)

so the only singular terms in the cusp condition give

lim
r→0

(
4u′

r
+ 1
r

)
<∞ , (452)

which gives the cusp condition for two electrons with parallel spins:

du

dr

∣∣∣∣∣
r=0

= −1
4
. (453)
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Figure 21: The McMillan correlation factor for few parameters, compared with the two–body
correlations optimised fully using the HNC theory and the Aziz (1979) He-He potential at
saturation density ρ = 0.02185Å−3.
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Figure 22: The radial distribution function corresponding to the McMillan wave function using
N walkers with periodic boundary conditions of 3D liquid helium at saturation density. For
comparison we show the experimental results by Svensson et al.76
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