
FYSS5120 Efficient Numerical Programming - Demo 1

This is a warm up, no need to return any solutions.

1. Start the Python interpreter and import packages

$ python

>>> import numpy as np

>>> import scipy as sc

>>> import matplotlib.pyplot as plt

2. The code demo1_factorials.py. shows a recursive computation of fac-
torials and how it’s converted to an iteration. Try computing the factorial
of 1000.

3. Let’s compute Fibonacci numbers and test cache decorators. The code
demo1_cachedecorator.py shows how the module cProfile is used in a
script (the command line usage is in the lecture notes).
Fibonacci numbers 0, 1, 1, 2, 3, 5, 8 ... are sums of two previous numbers,
and one usually starts from the bottom. The n:th Fibonacci number can
be computed from top down in a recursive function fib(n), but then the
interpreter has to keep track of the tree structure: fib(n) calls fib(n-1)
and fib(n-2) etc. This long call stack makes recursion slow. The n:th
Fibonacci number can be computed iteratively, as in

demo1_fiboiter.py

def fibonacci_iter(n):

i, j = 0, 1 # sequence starts with 0, 1

while n > 0:

i, j, n = j, i+j, n-1

return i

if __name__=='__main__':

for n in range(31):

print(n,fibonacci_iter(n))

The iterative function traverses from bottom to top, and every stage holds
enough information to continue.

Take-home messages:

• Recursion is fine, unless it’s serious a bottleneck and you always stay
below the recursion limit

• If you can, convert recursion to iteration

• Consider using a cache decorator from module functools

Vesa will talk about B-splines (link to scipy.interpolate.BSpline).

1

http://users.jyu.fi/~veapaja/Python_C++_Numerics/demos/demo1/demo1_factorials.py
http://users.jyu.fi/~veapaja/Python_C++_Numerics/demos/demo1/demo1_cachedecorator.py
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BSpline.html

