
Exercise 6 FYSA120 C++ numerical programming Winter 2014

Email the commented solution code (*.cpp) to :
address: FYSY160(at)gmail.com Subject-line: demo6
If you run into trouble, please send questions also to that address.

1. The sample code gauss seidel serial.hpp uses the iterative Gauss–
Seidel algorithm for solving a linear set of equations Ax=b. The algo-
rithm is from Wikipedia (web link). The code gauss seidel main.cpp

is for testing. The task is to test the performance of the algorithm and
whether it works well in parallel.

• Parallelize the innermost j–loop in gauss seidel serial.hpp using
OpenMP. The sample code numerics/openmp reduction.cpp shows
how this is done.

• Add a call to this function to gauss seidel main.cpp, along with the
timing code.

• Compare the timing of the serial vs. parallel code. Didn’t get any
speedup? Try a larger matrix.

The number of OpenMP threads is set programmatically to 4 using
omp set num threads(4); // overrides OMP NUM THREADS

or using an environment variable, in the linux shell
export OMP NUM THREADS=4 (bash)
setenv OMP NUM THREADS 4 (csh and tcsh) .

Extra:
Before we get carried away by home–made implementations of numer-
ical routines, Armadillo solve() outperforms my Gauss–Seidel code
by a factor of 10. The solve() is ”just” a wrapper to library calls to
BLAS and LAPACK. This is actually great, because the BLAS/LA-
PACK interface is hideous, while solve() is nice and simple! If you
are interested, the Armadillo code in calc.phys.jyu.fi is
/usr/local/include/armadillo bits/glue solve meat.hpp,
which calls functions in
/usr/local/include/armadillo bits/auxlib meat.hpp.
This is what I mean when I emphasize the importance of user–friendly
interfaces and encourage to hide boring details to headers. Armadillo
does it well, that’s why people use it.

https://en.wikipedia.org/wiki/Gauss-Seidel_method

