Exercise 6 FYSA120 C++ numerical programming Winter 2014

Email the commented solution code (*.cpp) to :
address: FYSY160(at)gmail.com Subject-line: demo6
If you run into trouble, please send questions also to that address.

1. The sample code gauss_seidel_serial.hpp uses the iterative Gauss—
Seidel algorithm for solving a linear set of equations Ax=b. The algo-
rithm is from Wikipedia (web link). The code gauss_seidel main.cpp
is for testing. The task is to test the performance of the algorithm and
whether it works well in parallel.

e Parallelize the innermost j-loop in gauss_seidel_serial.hpp using
OpenMP. The sample code numerics/openmp_reduction.cpp shows

how this is done.

e Add a call to this function to gauss_seidel main.cpp, along with the

timing code.

e Compare the timing of the serial vs. parallel code. Didn’'t get any

speedup? Try a larger matrix.

The number of OpenMP threads is set programmatically to 4 using
omp_set_num threads(4); // overrides OMP_NUM_THREADS

or using an environment variable, in the linux shell
export OMP_NUM THREADS=4 (bash)
setenv OMP_NUM_THREADS 4 (csh and tesh) .

Extra:

Before we get carried away by home-made implementations of numer-
ical routines, Armadillo solve() outperforms my Gauss—Seidel code
by a factor of 10. The solve() is "just” a wrapper to library calls to
BLAS and LAPACK. This is actually great, because the BLAS/LA-
PACK interface is hideous, while solve() is nice and simple! If you
are interested, the Armadillo code in calc.phys.jyu.fi is
/usr/local/include/armadillo_bits/glue_solve meat.hpp,

which calls functions in
/usr/local/include/armadillo_bits/auxlib_meat.hpp.

This is what I mean when I emphasize the importance of user—friendly
interfaces and encourage to hide boring details to headers. Armadillo
does it well, that’s why people use it.

https://en.wikipedia.org/wiki/Gauss-Seidel_method

