
Exercise 2 FYSA120 C++ numerical programming Winter 2015

Email the commented solution code (*.cpp, *hpp) as attachments
to : fysy160(at)gmail.com Subject line: demo2
If you run into trouble, please send questions also to that address.

1. In Kinetic Monte Carlo one executes events in a queue. An event has
the following data:
{double queue time, double execution time, int process number}
and can be coded as a struct (see next page). Here queue time is the
time this event was added to the execution queue, execution time

(≥ queue time) is the time the event is supposed to be executed, and
process number is the number of the process that is executed.

a) Create a std::vector of 100 events with some fake event parameters.
The queue time t is a uniform random time in range [0.0, 10.0), and the
execution time tx is given by tx = t− 1

k
ln(r), where the rate k = 0.1

and r is a uniform random number in range (0, 1] . For testing, use
12 different processes, and pick them at random for each event. In re-
ality each process would have a different k, but that’s easy to add later.

Uniformly distributed random numbers in range [0, 1) can be generated
like this:

#include <iostream>

#include <random>

#include <functional>

int main()

{

std::mt19937 gen{std::random_device{}()};

std::uniform_real_distribution<double> unif_dist(0,1);

auto my_random = std::bind(unif_dist, gen);

// ready to use function my_random()

std::cout<<my_random()<<std::endl; // output one random number

}

To get random integers in range [0, 12] use
std::uniform int distribution<int> unif int dist(0,12)



b) Remove events with execution time in range [6.0, 7.0].
Try std::remove if.

CONTINUES ON THE NEXT PAGE

2. Put events to a std::priority queue. Simulate the execution of the
events, in order of increasing execution time. Executed events are
removed from the queue.
Hint
std::priority queue needs a comparison operator to be able to order
events according to their execution time. This can be done overload-
ing the comparison operator < like this:

struct Event

{

double t_x; // execution time

// rest of event data

//priority queue ordering

bool operator<(const struct Event& rhs) const

{

return t_x < rhs.t_x;

}

}

Minimum requirements: Program at least exercise 1. Continue
with to exercise 2 if you can.


