
Exercise 1 FYSA120 C++ numerical programming Winter 2015

NOTE: This is a voluntary exercise! The purpose is to let you get some
practise in C++.

1. Level test: Type in the program

#include <iostream>
#include <cmath>
using namespace std ;
double f (double) ;
int main ()
{

double x ;
x = 1 . 1 2 ;
cout<<"f(x) = "<<f (x)<<endl ;

}
double f (double x) {

// x^3 +2x^4 + 5x^5

return pow (x , 3) +2.0∗pow (x , 4) +5.0∗pow (x , 5) ;
}

compile it, and run it. The result is “f(x) = 13.3637”.
You should understand everything in this program before continuing.
Please ask!

CONTINUES ON THE NEXT PAGE

2. In C++ almost everything is a function, so functions take almost any-
thing as arguments. Here we write a function that solves f(x) = 0 for
any continuous function double f(x). For that you need to pass a
function to a function. Read the lecture notes Chapter 11.4 Four
ways to pass a function to a function.
I recommend method 3, (Pass the function as a function object of the
class template std::function).
The solver is called either

• fail = my::findroot(f, a, b, eps, x)

if the derivative of f(x) is not known. If successful, on exit x is the
approximate root (use x as a reference).

• fail = my::findroot(f,fder,a,b,eps,x)

if the derivative of f(x), f ′(x), is computed in fder(x). If successful,
on exit x is the approximate root.

Here the return value fail is true if the routine fails to find a root, and
eps is the requested accuracy. The name ”findroot” is quite common,
and chances are it’s already used in some library. Put it in your own
namespace, such as my, to avoid name collision.
The algorithm could be:

1. Check that f(a)f(b) < 0 to ensure there is at least one root between
the limits, a ≤ root ≤ b. This case is handled by setting fail = true.
One could throw an exception. Often such a failure is fatal, so it might
be safer stop execution entirely.

2. If f ′(x) is known, try the fast, but potentially unstable, Newton’s
method (Newton–Raphson), which iterates

x = x− f(x)

f ′(x)

The starting point can be x = 1
2
(a + b). If x is blown away outside the

limits [a, b] turn to the mid-point method.

3. As a fail-safe method, or if f ′(x) is not given, use the mid-point method
given below.

x =
1

2
(x1 + x2) ,

where the root is known to be between x1 and x2. if f(x)f(x2) < 0,
replace x1 with x, else replace x2 with x. Iterate a few times, and try
again Newton’s method.

Try, for example, to find a root of sin(x)(x2 + 2x) = 0.

