QM IIA spring 2020

Exercise 6, discussed in the tutorial session Thu Feb 13th, return by Fri Feb 14th at 21h.

- 1. Construct the 3-dimensional vectors $|j=1,m=\pm 1,0\rangle$ in the usual (x,y,z) basis system. Both $J_{\pm}|1,m\rangle$ and $J_z|1,m\rangle$ need to give the right thing, according to the Condon-Shortley covention of course! You know that the photon is a j=1 particle. Using these vectors write down radiation gauge vector potentials $\mathbf{A}(\mathbf{x},t)$ corresponding to the possible helicity states of a photon (helicity is defined as the spin in the direction of motion). In what situation can one have an electromagnetic field that is not a superposition of such photon fields?
- 2. Construct explicitly the matrices J_i for j = 3/2. Check that they obey the commutation relations.
- 3. (Sakurai, Sec 3, prob. 15). A particle in a spherically symmetric potential V(r) has the wave function

$$\psi(\mathbf{x}) = (x + y + 3z)f(r). \tag{1}$$

If one measures the angular momentum of this particle, what are the possible values of ℓ and m and their probabilities?

- 4. An excited one-electron atom is in a $\mathbf{L}^2 = 2(2+1)\hbar^2$, $L_z = 2\hbar$ state. The angular momentum is measured with respect to an axis pointing in the direction $\mathbf{n} = (\sin \beta, 0, \cos \beta)$. What are the probabilities for obtaining the different possible values of $\mathbf{n} \cdot \mathbf{L}$?
- 5. Show that the matrix that rotates 3-dimensional vectors by and angle ω around the axis **n** is

$$R(\mathbf{n},\omega)_{ij} = \cos \omega \delta_{ij} + (1 - \cos \omega) n_i n_j - \sin \omega \varepsilon_{ijk} n_k. \tag{2}$$

The generators here are $(J_i)_{kl} = -i\varepsilon_{ijk}$. Using this result and the vectors from problem 1 calculate $d^1_{m',m}(\theta)$.