FYSH560, spring 2011

Tuomas Lappi tuomas.lappi@jyu.fi

Office: FL249. No fixed reception hours.

kl 2011

Dates, times

- Lectures: Mon, Wed at 12h15, FYS2
- Excercises: Wed at 10h15, FL140 (downstairs)
 - Questions handed out Wed, Return Tuesday by 14 o'clock to T.L.'s mailbox (next to copy machine on 2nd floor corridor)

Changes to previously announced

No lecture Wed March 2nd (T.L. at workshop) — replacement ?

Passing the course:

- Exercises: 40% of grade
- Exam: 60% of grade

Change in exercise time?

Suggestions?

	ma	ti	ke	to	ре
8 – 10					
10 – 12	astro	ydin	astro, harj?	ydin	
12 – 14	luento	suht. t.	luento	suht. t.	
14 – 16	materiaali	qft/QMII	materiaali	qft/QMII	

These slides and handwritten, scanned, lecture notes will be available on the course web page (link from Korppi)

Especially beginning of the course will loosely follow the books:

- V. Barone and E. Predazzi, High-Energy Particle Diffraction (Springer 2002) should become available in FYS4, otherwise will have scans/copies
- J. R. Forshaw and D. A. Ross, Quantum Chromodynamics and the Pomeron (Cambridge 1997) available in FYS4

Literature, review articles

- E. lancu and R. Venugopalan, "The color glass condensate and high energy scattering in QCD," arXiv:hep-ph/0303204.
- ► F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, "The Color Glass Condensate," arXiv:1002.0333 [hep-ph].
- F. Gelis, T. Lappi and R. Venugopalan, "High energy scattering in Quantum Chromodynamics," Int. J. Mod. Phys. E 16 (2007) 2595 [arXiv:0708.0047 [hep-ph]].
- S. J. Brodsky, H. C. Pauli and S. S. Pinsky, "Quantum Chromodynamics and Other Field Theories on the Light Cone," Phys. Rept. 301 (1998) 299 [arXiv:hep-ph/9705477].
- C. Marquet, "Chromodynamique quantique à haute énergie, théorie et phénoménologie appliqué aux collisions de hadrons," PhD thesis, in French, http://tel.archives-ouvertes.fr/tel-00096416/fr/

Contents

This course has never been lectured before, no canonical content. Will hopefully **not** be calculationally intensive.

Contents, outline

Tentative schedule, will be updated as we go along.

- Preliminaries Collider experiments partons, hadrons cross section and scattering amplitude — chromodynamics — Feynman rules (L1)
- High energy kinematics classical optics eikonal scattering eikonal vertex — the relativistic S-matrix — optical theorem (L2-3), [BP chap 2]
- 3. Pre-QCD models (L4) [FR chap. 1]
- 4. The QCD pomeron (L5-6), [BP chap 8, FR chap 3& 4]
- 5. DIS at low x (L7), [BP chap 9, FR chap 6]
- 6. Light front quantization (L8) [Brodsky review]
- 7. Diffraction (L9), [BP chap 10]
- 8. Gluon radiation (L10-11)
- 9. Color Glass Condensate (L12-13)

Detailed contents, present plan

- 1. **Preliminaries** Collider experiments partons, hadrons cross section Feynman rules chromodynamics (L1)
- High energy kinematics classical optics eikonal scattering eikonal vertex — the relativistic S-matrix — optical theorem (L2-3), [BP chap 2]
- 3. **Pre-QCD models** analyticity, unitarity Regge trajectories the pomeron (L4), [FR chap. 1]
- 4. The QCD pomeron scattering via 2-gluon exchange the Lipatov vertex ladder diagrams (L5-6), [BP chap 8]
- 5. **DIS at low x** Infinite momentum frame vs. dipole frame dipole scattering (L7), [BP chap 9]
- 6. Light front coordinates quantization virtual photon wave function (L8)
- Diffraction Diffractive DIS diffraction in pp DDIS as elastic dipole scattering — Good-Walker (L9), [BP chap 10]
- 8. Gluon radiation idea of RGE DGLAP BK (L10-11)
- Color Glass Condensate Timescales effective theory DIS on classical color field — gluon production in AA, glasma (L12-13)

High energy collider experiments

Total collision energy s

- Fixed target $s = ((m, \mathbf{0}) + (|\mathbf{k}|, \mathbf{k}))^2 \approx 2m|\mathbf{k}|$
- Collider $s = ((|\mathbf{k_1}|, \mathbf{k_1}) + (|\mathbf{k_2}|, \mathbf{k_2}))^2 \approx 4|\mathbf{k_1}||\mathbf{k_2}|$

(We assume m = 0 whenever possible)

Assuming $|\mathbf{k}| \sim \$$ this means $\$ \sim s$ (fixed target), $\$ \sim \sqrt{s}$ (collider)

This is a course on high s. What are the experiments?

Hadronic

CERN SPS (Super Proton Synchrotron), 1976 –

- $p\bar{p}$ collider $\sqrt{s} = 630 \text{GeV} \implies 900 \text{GeV}$
- p, A-fixed target
- p injector for LHC at 450GeV
- Experiments: UA1, UA2, ... UA9, NAxx, WAxx
- ► Tevatron: 1983-2010 (?) pp̄ @ √s ≈ 1000GeV ⇒ 1960GeV

RHIC:

- ▶ $pp @ \sqrt{s} = 500 \text{GeV}$ (even more, not politically correct)
- ► AuAu @ √s = 200AGeV
- LHC: 2010
 - $pp @ \sqrt{s} = 7 \text{TeV} \Longrightarrow 14 \text{TeV}$
 - ► AuAu @ $\sqrt{s} = 2.76ATeV \implies 5.5TeV$

With leptons

Lepton-lepton (less important for this course)

- SLAC SLD: $e^+e^- @ \sqrt{s} = 90$ GeV
- ► LEP: 1989-2000: e⁺e⁻ @ √s = 91GeV ⇒ 209GeV
- ILC $\sqrt{s} \sim \text{TeV}$?
- Lepton-proton/hadron DIS
 - ► Fixed target, highest energy 2√1GeV × 465GeV = 30GeV at Fermilab muon beam.
 - HERA, final \sim 30GeV on \sim 900GeV $\Longrightarrow \sqrt{s} \sim$ 320GeV

Future:

► EIC

- ► Electron to collide with RHIC p/A beam 30GeV on 100AGeV / 250GeV $\implies \sqrt{s} \approx 100$ AGeV/ 170GeV
- ▶ p/A beam to collide with JLab 12GeV e⁻ beam.
- ► LHeC
 - ▶ electron 80GeV? to collide with LHC. $\sqrt{s_{pe}} = 1.5$ TeV

Is there a next one?

\sqrt{s} > 50GeV colliders

Is there a next one?

Still doing HE physics

Partons and hadrons

Elementary particles

In this course

- Light quarks
- Heavy quarks
- gluons

Other hadrons

Mesons qq Mesons are bosonic hadrons. There are about 140 types of mesons.							
Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin		
π^+	pion	ud	+1	0.140	0		
K⁻	kaon	sū	-1	0.494	0		
$ ho^+$	rho	ud	+1	0.770	1		
B ⁰	B-zero	db	0	5.279	0		
η_{c}	eta-c	cτ	0	2 .980	0		

Baryons qqq and Antibaryons qqq

Baryons are fermionic hadrons. There are about 120 types of baryons.

Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin
р	proton	uud	1	0.938	1/2
p	anti- proton	ūūd	-1	0.938	1/2
n	neutron	udd	0	0.940	1/2
Λ	lambda	uds	0	1.116	1/2
Ω-	omega	SSS	-1	1.672	3/2

16

Partons, IMF

Inifinite Momentum Frame:

J.D. Bjorken: Hadrons consist of pointlike constituents: "partons".

- Longit. momentum fraction x: k = xK
- Transverse momentum p_T or Q

Seen in Deep Inelastic Scattering

$$Q^{2} = -(k - k')^{2} = -q^{2}$$
$$x = \frac{Q^{2}}{2P \cdot (k - k')}$$

Bj scaling:

Q²-dependence is just like for a point-like particle. Later: partons are quarks and gluons; small deviations from scaling.

Success of partonic picture

Bjorken scaling in inclusive ($ep \rightarrow anything$) DIS cross section:

Lines horizontal: free partons.

Small deviations: understood in pQCD (perturbative QCD)

Not everything is so simple

Total cross section not calculated from QCD!

(Why is $\gamma\gamma$ on same plot? We will learn that γ is a hadron ...)

matters in this course. (T = scattering amplitude.)

19

Next

Review basic contents from particle physics course:

- Cross section and scattering amplitude
- Feynman rules and diagrams
- QCD Lagrangian, color
- Light cone, rapidity variables