FYSH560 spring 2011

Exercise 6, return by Tue Feb 1st at 14.15, discussed Wed March 2nd at 8.15 in FL140

1. Calculate

$$\int_{-\infty}^{\infty} \mathrm{d}k \frac{e^{ikx}}{k^2 + m^2}.$$

This can be done the easy way using the theorem of residues; there is probably also a hard way without it. Then calculate the two dimensional transform needed in the virtual photon-dipole wave function

$$\int d^2 \mathbf{k}_T \frac{e^{i\mathbf{k}_T \cdot \mathbf{r}_T}}{\mathbf{k}_T^2 + m^2}$$

and compare. This is perhaps easiest to do by integrating over the angle first, which leaves you with the Bessel $J_0(|\mathbf{k}_T||\mathbf{r}_T|) = J_0(kr)$. The integral over k then gives a modified Bessel K_0 . Mathematica will do the k-integral for you, maybe even the two-dimensional one directly? Otherwise one probably needs integral representations of J_0 and K_0 .

2. At HERA, a 27.5GeV electron beam collides with a 920GeV proton beam producing diffractively a J/Ψ -meson at $x_{\mathbb{P}}=0.001$ and $Q^2=M_{J/\Psi}^2\approx 10{\rm GeV}^2$ with negligibly small t. What is the angle of the scattered J/Ψ with respect to the incoming proton direction? You can neglect the proton mass.

One possible approach: from Q^2 and $M_{J/\Psi}^2$ you get β and $x=\beta x_{\mathbb{P}}$. Now go to light cone coordinates, where q has a large —-component; P and P' large +-components. You get q^- from P^+ and Q^2 , then q^+ from the requirement that the outgoing electron momentum k'=k-q has $k'^2=0$ and finally \mathbf{q}_T^2 from $q^2=-Q^2$. Neglecting t and m_p means that $P^-=P'^-\approx 0$ and $P_\perp\approx 0$, thus the J/Ψ inherits q^- and \mathbf{q}_T from the virtual photon (not q^+ , why?). Knowing $p_{J/\Psi}^-$, $\mathbf{p}_{TJ/\Psi}^2$ and $M_{J/\Psi}$ gives you the rapidity and then the scattering angle via $p^z=\sqrt{\mathbf{p}_T^2+m^2}$ sinh p. Where did the inelasticity p appear in the calculation?

- 3. Consider a system of 2 massless particles with the same transverse momentum p_{\perp} , in the same azimuthal direction. If the rapidities of the two particles are $y + \Delta/2$ and $y \Delta/2$ calculate
 - (a) The invariant mass of the two particle system
 - (b) The total + momentum of the system.
- 4. The Good-Walker picture of diffraction. Consider a hadronic state $|h\rangle$ scattering off a target (such as another hadron). The scattering is described by a T-matrix, S = 1 + iT. Assume that we have been able to diagonalize the T-matrix, i.e. to find the states $|n\rangle$ such that

$$\langle m|T|n\rangle = i\delta_{mn}A_n$$

Furthermore assume that the scattering amplitudes iA_n are imaginary, i.e. A_n real. The incoming state is

$$|h\rangle = \sum_{n} c_n |n\rangle$$

By the optical theorem the total cross section is

$$\sigma_{\rm tot} = 2\langle h|{\rm Im}T|h\rangle,$$

the elastic cross section

$$\sigma_{\rm el} = |\langle h|T|h\rangle|^2$$

Why is

$$\sigma_{\text{diff}} = \sum_{n} |\langle n|T|h\rangle|^2 - \sigma_{\text{el}}$$

the diffractive cross section? Express these cross sections in terms of the complex coefficients c_n and the amplitudes A_n .