
FYSH560 spring 2011
Exercise 4, return by Tue Feb 15th at 14.15, discussed Wed Feb 16th at 8.15 in FL140

1. In the lecture we skipped over the proper color projector algebra. We have an amplitude
with 4 external colored legs Aij,lk. We project out the color singlet and octet parts using the
projectors defined as
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Show that these are properly normalized projectors, i.e. P1
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decompose the color structure in the imaginary and real part of the one loop amplitude into
color components as
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Calculate I1, R1 and R8. It is a bit more difficult to compute I8, can you do it?

2. The Lipatov vertex (below) is Cρ = (C+, C−,CT ) = (k+
1 +kT
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(this has now the corrected sign). The outgoing gluon has momentum p = k1 − k2

(a) Using the approximations in multi-Regge kinematics, express Cρ in terms of p+, p− and
kT 1,kT 2.

(b) Remembering that p2 = 0 show that pρCρ(k1, k2) = 0

(c) Calculate Cρ(k1, k2)Cρ(k1, k2)

3. Calculate the transverse momentum integrand appearing in the real part of the α3
s amplitude:

Cρ(k1, k2)Cρ(q − k1, q − k2)
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4. Show how a Laplace transform deconvolutes the nested rapidity integrals in the BFKL ladder.
I.e. if
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∫ y

0

dy1

∫ y1

0

dy2 · · ·
∫ yn−1

0

dyne(y−y1)(ε(k1)+ε(q−k1))e(y1−y2)(ε(k2)+ε(q−k2))×

· · · e(yn−1−yn)(ε(kn)+ε(q−kn))eyn(ε(kn+1)+ε(q−kn+1))

calculate the Laplace transform f(ω) =
∫∞
0

dye−ωyf(y). Hint: take the rapidity differences
yn − yn+1 as integration variables.
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Left: Lipatov vertex. Right: Real contribution to the imaginary part of the α3
s amplitude


