FYSH300, fall 2013

Parity

Tuomas Lappi tuomas.v.v.lappi@jyu.fi

Office: FL249. No fixed reception hours.

fall 2013

Part 5: Spacetime symmetries

Reminder of quantum mechanics

- ▶ Dynamics (time development) is in the **Hamiltonian** operator \hat{H} \Longrightarrow Schrödinger $i\partial_t \psi = \hat{H}\psi$
- Observable \implies Hermitian operator $\hat{A} = \hat{A}^{\dagger}$
- ► A is conserved quantity (liikevakio), iff (if and only if)

$$[\hat{A}, \hat{H}] = 0 \Longleftrightarrow \frac{d}{dt} \langle \hat{A} \rangle = 0$$

note: Commutation relation $[\hat{A},\hat{H}]=0$ \Longrightarrow state can be eigenstate of \hat{A} and \hat{H} at the same time

► Conserved quantity associated with **symmetry**; Hamiltonian invariant under transformations generated by Â

(What does it mean to "generate transformations"? We'll get to examples in a moment.)

Translations and momentum

Symmetries in QM

- ▶ Define the operation of "translation" D_a as: $\mathbf{x} \stackrel{D_a}{\longrightarrow} \mathbf{x}' = \mathbf{x} + \mathbf{a}$
- ▶ A system is translationally invariant iff $\hat{H}(x') \equiv \hat{H}(x + a) = \hat{H}(x)$ (In particle physics systems usually are; nothing changes if you move all particles by fixed a.)
- ▶ How does this operation affect Hilbert space states $|\psi\rangle$? Define corresponding operator \hat{D}_a (Now with hat, this is linear operator in Hilbert space!):

$$\hat{\mathsf{D}}_{\mathsf{a}}|\psi(\mathsf{x})\rangle = |\psi(\mathsf{x}+\mathsf{a})\rangle$$

Infinitesimal translation, a small, Taylor series

$$|\psi(\mathbf{x} + \mathbf{a})\rangle \approx (1 + i(-i\mathbf{a} \cdot \nabla) + \frac{1}{2}(i(-i\mathbf{a} \cdot \nabla))^2 + \dots)|\psi(\mathbf{x})\rangle \qquad \hat{p} = -i\nabla$$

$$= (1 + i\mathbf{a} \cdot \hat{p} + \frac{1}{2}(i\mathbf{a} \cdot \hat{p}) + \dots)|\psi(\mathbf{x})\rangle = e^{i\mathbf{a} \cdot \hat{p}}|\psi(\mathbf{x})\rangle$$

Translations generated by momentum operator p

- $|\psi(\mathbf{x}+\mathbf{a})\rangle = e^{i\mathbf{a}\cdot\hat{\mathbf{p}}}|\psi(\mathbf{x})\rangle$
- ► Translational invariance ⇒ momentum conservation; [p̂, Ĥ] = 0 (Note: rules out external potential $V(\mathbf{x})$!)

Rotations, angular momentum

Rotation around z axis:

$$\left(\begin{array}{c} x\\ y\\ z\end{array}\right) \to \left(\begin{array}{c} x'\\ y'\\ z'\end{array}\right) = \left(\begin{array}{c} x\cos\varphi - y\sin\varphi\\ x\sin\varphi + y\cos\varphi\\ z\end{array}\right) \underset{\varphi\to 0}{\approx} \left(\begin{array}{c} x - y\varphi\\ y + x\varphi\\ z\end{array}\right)$$

Parity

Wavefunction (scalar) rotated in infinitesimal rotation as

$$\psi(\mathbf{x}) \to \psi(\mathbf{x}') \approx \psi(\mathbf{x}) + i\delta\varphi(-i)(x\partial_y - y\partial_x)\psi(\mathbf{x}) = (1 + i\delta\varphi\hat{L}_z)\psi(\mathbf{x})$$

Rotation around general axis θ

Direction: $\theta/|\theta|$, angle $\theta=|\theta|$.

$$\psi(\mathbf{x}) \longrightarrow e^{i\theta \cdot \hat{\mathbf{L}}} \psi(\mathbf{x})$$

Rotations generated by (orbital) angular momentum (pyörimismäärä) operator L.

L rotates coordinate-dependence the wavefunction.

You know that particles also have **spin**=intrinsic angular momentum.

Total angular momentum is $\hat{\mathbf{J}} = \hat{\mathbf{L}} + \hat{\mathbf{S}}$

- ightharpoonup is one of the generators of the Lorentz group \Longrightarrow conserved in Lorentz-invariant theories
- ► L̂.Ŝ not separately conserved
- For $S \neq 0$ particles also spin rotates in coordinate transformation: $\psi(\mathbf{x}) \longrightarrow e^{i\theta \cdot \hat{\mathbf{J}}} \psi(\mathbf{x})$
- ► Spectroscopic notation ^{2S+1}L_J L often denoted by letter: L = 0: S; L = 1: P; L = 2: D ...

Spin S of composite particle = total J of constituents: examples

 $\Delta^{++} = uuu$ has S = 3/2: S-wave (L = 0), quark spins ${}^4S_{3/2} \mid \uparrow \rangle \mid \uparrow \rangle \mid \uparrow \rangle$ $\chi_c = c\bar{c}$ has $S_{\chi_c} = 0$, resulting from P-wave orbital state L = 1 and quark spins $|\uparrow\rangle|\uparrow\rangle$ for total S=1, but $S \parallel L \implies J=0$. 3P_0

QM of angular momentum

Recall from QMI

- ▶ Commutation relations: $[\hat{J}_i, \hat{J}_i] = i\varepsilon_{iik}\hat{J}_k$, $[\hat{J}^2, \hat{J}_i] = 0$.
- ► Eigenstates of \hat{J}_3 & \hat{J}^2 are denoted $|i, m\rangle$ with

$$\hat{J}_3|j,m\rangle=m|j,m\rangle$$
 $\hat{J}^2|j,m\rangle=j(j+1)|j,m\rangle$

Parity

- ▶ Permitted range m = -i, -i + 1, ..., i
- ▶ Ladder operators $\hat{J}_{+} = \hat{J}_{1} \pm i\hat{J}_{2}$ raise and lower the z-component of the spin:

$$\hat{J}_{+}|j,m\rangle = \sqrt{j(j+1)-m(m+1)}|j,m+1\rangle \implies 0$$
, if $m=j$
 $\hat{J}_{-}|j,m\rangle = \sqrt{j(j+1)-m(m-1)}|j,m-1\rangle \implies 0$, if $m=-j$

Coupling of angular momentum

Recall from QMI

- ▶ How to add two angular momenta $\hat{J} = \hat{J}_1 + \hat{J}_2$?
- ▶ State (tensor) product $|j_1, m_1\rangle \otimes |j_2, m_2\rangle \equiv |j_1, m_1\rangle |j_2, m_2\rangle \equiv |j_1, m_1, j_2, m_2\rangle$.
- Want to express $|j_1, j_2, J, M = m_1 + m_2\rangle$ in terms of $|j_1, m_1\rangle |j_2, m_2\rangle$.
- ► This is done via Clebsch-Gordan coefficients:

$$|j_{1}, j_{2}, J, M\rangle = \left[\sum_{m_{1}=-j_{1}}^{j_{1}} \sum_{m_{2}=-j_{2}}^{j_{2}} |j_{1}, m_{1}\rangle |j_{2}, m_{2}\rangle \langle j_{1}, m_{1}, j_{2}, m_{2}| \right] |j_{1}, j_{2}, J, M\rangle$$

$$= \sum_{m_{1}, m_{2}} \overline{\langle j_{1}, m_{1}, j_{2}, m_{2}| \ j_{1}, j_{2}, J, M\rangle} |j_{1}, m_{1}\rangle |j_{2}, m_{2}\rangle$$

▶ Possible values $J = |j_1 - j_2|, \dots, j_1 + j_2$. $CG \neq 0$ only if $m_1 + m_2 = M$

Not only for angular momentum

Other quantum numbers have similar mathematics: SU(N) group Isospin SU(2) (like angular momentum); Color SU(3) (slightly more complicated).

Properties of Clebsch-Gordan coefficients

Recall from QMI

One can also go the other way

$$|j_1, m_1\rangle|j_2, m_2\rangle = \sum_{M,J} \langle j_1, j_2, J, M|j_1, m_1, j_2, m_2\rangle \quad |j_1, j_2, J, M\rangle$$

Parity

Transformation between orthonormal bases is always unitary

+ Clebsch's are real

⇒ matrix of Clebsch's actually orthogonal.

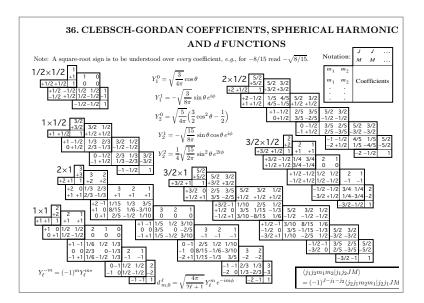
$$\overbrace{\langle j_1, j_2, J, M | j_1, m_1, j_2, m_2 \rangle}^{\text{elem } j_1, m_1, j_2, m_2 \text{ in coupled} \rightarrow \text{ uncoupled}} = \underbrace{\langle j_1, m_1, j_2, m_2 | j_1, j_2, J, M \rangle}^{\text{elem } j_1, m_1, j_2, m_2 \text{ in coupled} \rightarrow \text{ uncoupled}}_{\langle j_1, m_1, j_2, m_2 | j_1, j_2, J, M \rangle}$$

Consequence: probability to find coupled state in uncoupled is the same as probability to find uncoupled in coupled:

$$|\langle j_1, m_1, j_2, m_2 | j_1, j_2, J, M \rangle|^2$$

Clebsch tables

Symmetries in QM



Example

Short notation for representations according to dimension:

- 1 Singlet, j = 0 = m
- **2** Doublet $j = \frac{1}{2}, m = \pm \frac{1}{2}$
- 3 Triplet i = 1, m = -1, 0, 1 ...

Couple two spin-1/2 particles $2 \otimes 2 = 3 \oplus 1$

$$\begin{aligned} & \text{triplet} \left\{ \begin{array}{lll} \left| \frac{1}{2}, \frac{1}{2}, 1, 1 \right\rangle & = & 1 \left| \frac{1}{2}, \frac{1}{2} \right\rangle \left| \frac{1}{2}, \frac{1}{2} \right\rangle \\ \left| \frac{1}{2}, \frac{1}{2}, 1, 0 \right\rangle & = & \frac{1}{\sqrt{2}} \left| \frac{1}{2}, -\frac{1}{2} \right\rangle \left| \frac{1}{2}, \frac{1}{2} \right\rangle + \frac{1}{\sqrt{2}} \left| \frac{1}{2}, \frac{1}{2} \right\rangle \left| \frac{1}{2}, -\frac{1}{2} \right\rangle \\ \left| \frac{1}{2}, \frac{1}{2}, 1, -1 \right\rangle & = & 1 \left| \frac{1}{2}, -\frac{1}{2} \right\rangle \left| \frac{1}{2}, -\frac{1}{2} \right\rangle \\ & \text{singlet} \left\{ \begin{array}{ll} \left| \frac{1}{2}, \frac{1}{2}, 0, 0 \right\rangle & = & \frac{1}{\sqrt{2}} \left| \frac{1}{2}, -\frac{1}{2} \right\rangle \left| \frac{1}{2}, \frac{1}{2} \right\rangle - \frac{1}{\sqrt{2}} \left| \frac{1}{2}, \frac{1}{2} \right\rangle \left| \frac{1}{2}, -\frac{1}{2} \right\rangle \end{array} \right. \end{aligned}$$

- ▶ Interpretation: prepare two particles in $|\frac{1}{2}, -\frac{1}{2}\rangle|\frac{1}{2}, \frac{1}{2}\rangle$ \implies measure J=0,1 with probability $|1/\sqrt{2}|^2=\frac{1}{2}$
- Triplet symmetric in 1 ↔ 2, singlet antisymmetric in 1 ↔ 2 (Why singlet $|J=0, M=0\rangle$ has - and triplet $|J=1, M=0\rangle + ?$ Try operating with $J_{\pm} \dots$)
- ▶ More particles: repeat. E.g. $2 \otimes 2 \otimes 2 = 2 \otimes (3 \oplus 1) = 4 \oplus 2 \oplus 2 \Longrightarrow 3$ spin 1/2 particles can form quadruplet (j = 3/2) or 2 doublets.

Parity transformation

► Flip the signs of all **space**-components of normal (=polar) four-vectors:

$$\mathbf{x} \xrightarrow{P} -\mathbf{x}$$
 $\mathbf{p} \xrightarrow{P} -\mathbf{p}$

Parity

00000

• Cross-products $(\mathbf{a} \times \mathbf{b})^k = \varepsilon^{ijk} a^i b^k$ are not real vectors, but rank 2 P-invariant antisymmetric tensors, i.e. 3 component-pseudovectors. E.g. angular momentum

$$L = x \times p \xrightarrow{P} (-x) \times (-p) = x \times p = L$$

scalar Stays same in both rotations and parity transformations: e.g. $\mathbf{x}^2 \to \mathbf{x}^2$, mass m, charge e etc.

pseudoscalar Stays same in rotations, but changes sign under parity, e.g. $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \varepsilon^{ijk} a^i b^j c^k$

(If you already know the Dirac equation: matrix elements of γ^{μ} are vectors, those of $\gamma^5 \gamma^{\mu}$ pseudovectors. Tr $\gamma^5 \gamma^\alpha \gamma^\beta \gamma^\gamma \gamma^\delta = -4i\varepsilon^{\alpha\beta\gamma\delta}$.

In QM, transformation = operator in Hilbert space. Parity operator P.

Parity conservation

Strong and electromagnetic interactions conserve parity, i.e. $[\hat{P}, \hat{H}] = 0$ Particles that are (1) stable or (2) decay via weak interaction only ⇒ are eigenstates of strong & e.m. Hamiltonian \implies particles are (can be chosen as (*)) eigenstates of \hat{P} . Notation: J^P . E.g. pion π^{\pm} : $J^P = 0^-$; proton $J^P = \frac{1}{2}^+$

Parity

00000

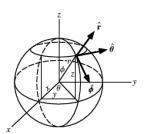
Whole transformation on single particle (a) parity eigenstate

$$\hat{\mathsf{P}}\psi_a(t,\mathbf{x}) \longrightarrow \overbrace{P_a}^{ ext{eigenvalue}} \psi_a(t,-\mathbf{x}).$$
 $\hat{\mathsf{P}}^2 = 1 \Longrightarrow P_a = \pm 1$

 P_a is **intrinsic parity** of particle a, can be ± 1 .

(* Suppose $|\psi\rangle$ is eigenstate of \hat{H} : $\hat{H}|\psi\rangle = E|\psi\rangle$. Because $[\hat{P}, \hat{H}] = 0$ we have $\hat{\mathsf{H}}(\hat{\mathsf{P}}|\psi\rangle) = \hat{\mathsf{P}}(\hat{\mathsf{H}}|\psi\rangle) = \mathcal{E}(\hat{\mathsf{P}}|\psi\rangle)$, so $\hat{\mathsf{P}}|\psi\rangle$ is also eigenstate. Form new linear combinations $|\psi\pm\rangle \equiv (1/\sqrt{2})(|\psi\rangle \pm \hat{P}|\psi\rangle)$ that are eigenstates of both \hat{H} and \hat{P} : $\hat{P}|\psi\pm\rangle = \pm|\psi\pm\rangle$.

Parity of bound state



Recall from QMI: bound state Schrödinger eg. in rotationally invariant potential V(r)

 \implies Solutions eigenfunctions of $\hat{\mathbf{L}}^2 \& \hat{\mathbf{L}}_z$, These are spherical harmonics $Y_{l}^{m}(\theta, \varphi)$. Under parity transformation $\mathbf{x} \rightarrow -\mathbf{x}$:

Parity

000000

$$\theta \to \pi - \theta \implies z = r \cos \theta$$

$$\to -z$$

$$\varphi \to \varphi + \pi \implies (x, y) = r \sin \theta (\cos \varphi, \sin \varphi)$$

$$\to -(x, y)$$

Spatial wavefunction under parity

$$Y_{\ell}^{m}(\theta,\varphi) \stackrel{P}{\longrightarrow} Y_{\ell}^{m}(\pi-\theta,\varphi+\pi) = (-1)^{\ell}Y_{\ell}^{m}(\theta,\varphi)$$

So a (bound) state of particles a and b in an ℓ wave state transforms as

$$|a,b,\ell\rangle \stackrel{P}{\longrightarrow} P_a P_b (-1)^{\ell} |a,b,\ell\rangle$$

Intrinsic parity of elementary particles

Spin 1/2 particles f (fermion) and \overline{f} (corresponding antifermion)

Obey the Dirac equation (details later) \implies one can show

$$P_f P_{\bar{f}} = -1 \implies \text{convention } P_{\ell} = P_q = +1, \quad P_{\bar{\ell}} = P_{\bar{q}} = -1$$

Parity

000000

Photon γ (and gluon) parity

- ▶ Photon: e.m. field A^{μ} . Electric field $\mathbf{E} = -\nabla A^{0} \partial_{t} \mathbf{A}$ satisfies Gauss' law $\nabla \cdot \mathbf{E} = -\nabla^2 A^0 - \partial_t \nabla \cdot \mathbf{A} = \rho$.
- ▶ Vacuum $\rho = 0$ and one can choose (gauge symmetry, see later) $\nabla \cdot \mathbf{A} = 0$ $\Longrightarrow A^0 = 0.$
- ▶ Because $\mathbf{A} \xrightarrow{P} -\mathbf{A}$, the parity of a photon is $\mathbf{P}_{\gamma} = -1$.

Consequence: positronium decay $e^+e^- \rightarrow \gamma\gamma$

- ▶ Para-positronium, $S_{ee} = 0, L_{ee} = 0 \Longrightarrow J = 0.$ $P = -1 \Longrightarrow L_{\gamma\gamma} = 1,$ (Can deduce $S_{\gamma\gamma}=1$, because $(L_{\gamma\gamma}=1)\otimes (S_{\gamma\gamma}=0/2)$ do not include J=0.).
- ▶ Ortho-positronium, $S_{ee} = 1$, $L_{ee} = 0 \Longrightarrow J = 1$. (Decay to $\gamma\gamma$ not allowed because of charge conjugation, as we will see later.)

Intrinsic parity of hadrons

Mesons

Meson is bound state of $q\bar{q}$: parity $P_M = P_q P_{\bar{q}} (-1)^L = -(-1)^\ell = (-1)^{\ell+1}$ Ground state is $\ell = 0 \implies$ lightest mesons usually P = -1.

Parity

000000

Baryon

Baryon is bound state of qqq: parity

$$P_B = P_q P_q P_q (-1)^{L_{12} + L_3} = 1^3 (-1)^{L_{12} + L_3} = (-1)^{L_{12} + L_3}$$

Antibaryon

$$P_{\bar{B}} = P_{\bar{q}}P_{\bar{q}}P_{\bar{q}} = (-1)^3(-1)^{L_{12}+L_3} = -(-1)^{L_{12}+L_3} = -P_B$$

⇒ just like should be for spin 1/2 (Dirac) particle.

Ground states are $L_{12} = L_3 = 0$.

(L_{12} : orbital angular momentum of guarks 1&2. L_3 : guark 3 w.r.t. the other two.)

Meson spin and parity states, examples

Example: pseudoscalar meson

E.g. in π^0 (pion) $u\bar{u}$, $d\bar{d}$ have spin $\sim |q\uparrow\rangle|\bar{q}\downarrow\rangle - |q\downarrow\rangle|\bar{q}\uparrow\rangle$

 \Longrightarrow singlet S=0.

Ground state L = 0; Spectroscopic notation ${}^{2S+1}L_{,l} = {}^{1}S_{0}$.

Example: vector mesons

- Example $J/\Psi = c\bar{c}$. Spin state $|c\uparrow\rangle|\bar{c}\uparrow\rangle$, ground state $\ell=0$ $\implies J = S + I = 1 + 0 = 1.$
- ► Parity $P_{J/\Psi} = (-1)^{\ell=0} P_c P_{\bar{c}} = 1 \cdot 1 \cdot (-1) = -1$.
- ▶ Vector field A^{μ} ; corresponding particle photon has J = 1, P = -1.
- Particles with these quantum numbers are called "vectors". In particular vector meson.

Parity

00000

▶ Practical consequence: very clean decay modes $J/\Psi \rightarrow \gamma^* \rightarrow e^+e^-$

Charge conjugation

Charge conjugation C: change every particle to its antiparticle

Strong and electromagnetic interaction remain invariant, weak interaction not.

Antiparticles have opposite charges.

Electric charge: $Q \xrightarrow{C} -Q$; strangeness $S \xrightarrow{C} -S$ ($s \xrightarrow{C} \bar{s}, \bar{s} \xrightarrow{C} s$).

C-parity

Symmetries in QM

Some particles are their own antiparticles, i.e. eigenstates of Ĉ.

 $\hat{C}|\psi\rangle = C_{\psi}|\psi\rangle, C_{\psi} = \pm 1.$

Examples: photon, neutral mesons $(u\bar{u} \stackrel{C}{\rightarrow} \bar{u}u \sim u\bar{u})$

Photon C-parity is -1

Question: e^- in magnetic field **B**; trajectory bends in one direction. C: $e^- \rightarrow e^+$, does e^+ bend in other direction, e.m. still invariant?

No, because charge conjugation also changes direction of **B**: $\mathbf{A} \stackrel{\mathcal{C}}{\to} -\mathbf{A}$

$$\Longrightarrow$$
 $C_{\gamma}=-1$.

Two particle bound state C-parity

Bound state of particle and its antiparticle is a C eigenstate.

- Orbital $|\Psi(\mathbf{x})\overline{\Psi}(-\mathbf{x})\rangle \sim Y_{\ell}^{m}(\theta,\varphi) \stackrel{\mathcal{C}}{\to} Y_{\ell}^{m}(\pi-\theta,\varphi+\pi) = (-1)^{\ell}Y_{\ell}^{m}(\theta,\varphi)$ (bound state C.M. frame) \implies Action of C on orbital wavefunction of particle-antiparticle state is $(-1)^{L}$, just like parity.
 - Spin Recall 1/2 ⊗ 1/2 coupling:

singlet
$$S=0 \sim |\uparrow\rangle|\downarrow\rangle - |\downarrow\rangle|\uparrow\rangle$$
 antisymmetric, triplet $S=1 \sim |\uparrow\rangle|\downarrow\rangle + |\downarrow\rangle|\uparrow\rangle$ symmetric.

For fermions: spin odd is symmetric, even antisymmetric (See CG table, exercise) factor $(-1)^{S+1}$ in C-parity. Bosons: even S is symmetric: $(-1)^S$

Exchange If particle/antiparticle are **fermions**; additional factor (-1) for exchanging them back after C. (Fermion/antifermion creation/annihilation operators anticommute: $b^{\dagger}d^{\dagger} = -d^{\dagger}b^{\dagger}$, multiparticle wavefunction is antisymmetric w.r.t. particle exchange. Remember Pauli rule.)

All together

- Fermion-fermion (bound) state (e.g. meson) $C = (-1)^{S+L}$
- ▶ Boson-antiboson (bound) state (e.g. $\pi^+\pi^-$ "atom") $C = (-1)^{S+L}$

Pion decay to photons

Symmetries in QM

- ▶ Neutral pion π^0 is its own antiparticle ($u\bar{u} d\bar{d}$, mysterious sign later)
- ▶ It mostly decays via $\pi^0 \to \gamma \gamma$.
- Photon final state, lifetime $c\tau = 25.1$ nm \implies looks like e.m. decay.
- Let us check P and C conservation in the quark model.
 - ▶ Pion is L = S = 0 state (pseudoscalar)
 - $P_{\pi^0} = P_q P_{\bar{q}} (-1)^L = -1$; $C_{\pi^0} = (-1)^{L+S} = 1$
 - $\triangleright \gamma \gamma$: $P_{\gamma \gamma} = (P_{\gamma})^2 (-1)^{L_{\gamma \gamma}} = (-1)^{L_{\gamma \gamma}} = -1$. $C_{\gamma \gamma} = (-1)^{L_{\gamma \gamma} + S_{\gamma \gamma}} = 1$.
 - ▶ This is possible with $L_{\gamma\gamma} = 1$ and $S_{\gamma\gamma} = 1$ coupled into J = 0 \Longrightarrow works.
- Is $\pi^0 \to \gamma \gamma \gamma$ possible? $C_{\gamma \gamma \gamma} = -1 \neq C_{\pi^0}$.
 - ▶ If allowed, expect suppression by $\alpha_{\rm e.m.} \approx 1/137$.
 - Experiment: $B(\pi^0 \to \gamma \gamma \gamma) < 3.1 \times 10^{-8} B(\pi^0 \to \gamma \gamma)$ Much bigger suppression \implies decay conserves C.

Similarly *n* meson ($J^{PC} = 0^{-+}$) decays:

- $\rho \eta \rightarrow \gamma \gamma \ (B = 39\%)$
- $n \to \pi^0 + \pi^0 + \pi^0$ (B = 33%)

Check P.C

 $p \to \pi^0 + \pi^+ + \pi^- (B = 23\%)$

Exercise: Why no $\eta \to \pi^0 \pi^0$?

Back to positronium decay, charge conjugation

Recall positronium decay $e^+e^- \rightarrow n \times \gamma \ (n > 2)$

Para-positronium $S = 0, L = 0 \Longrightarrow J = 0.$

Ortho-positronium $S = 1, L = 0 \Longrightarrow J = 1$

Parity $P = P_{e^+}P_{e^-}(-1)^{L_{e^+e^-}} = -1$ Can we decay to n=2 photons? $P=-1=(-1)^{L_{\gamma\gamma}} \implies L_{\gamma\gamma}=1$.

▶ Para. J = 0: $C = (-1)^{S_{\gamma\gamma} + L_{\gamma\gamma}} = 1$.

- Can get J=0, $L_{\gamma\gamma}=1$ with $S_{\gamma\gamma}=1$ \Longrightarrow Decay to $\gamma\gamma$ possible
- $rac{\bullet} \text{ Ortho } C = (-1)^{S_{\gamma\gamma} + L_{\gamma\gamma}} = -(-1)^{S_{\gamma\gamma}} = -1.$ Combined C and P would require $S_{\gamma\gamma}=0$ or 2 But cannot get total J=1 from $S_{\gamma\gamma}=0$ or 2 and $L_{\gamma\gamma}=1$ $(L_{\gamma\gamma} = 1; S_{\gamma\gamma})$ even is antisymmetric, bosons) $\implies \gamma \gamma$ not possible

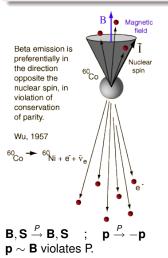
Ortho-positronium can only decay to $\gamma\gamma\gamma$. Lifetimes S = 0 $\tau = 1.244 \times 10^{-10}$ s

 $S = 1 \tau = 1.386 \times 10^{-7} \text{s}.$

 \implies consistent with suppression by $\alpha_{\rm e.m.} \approx 1/137$

C, P violation in weak interaction, experimental evidence

C,P violated "maximally" in weak interactions



Also C transformation $\mathbf{B} \rightarrow -\mathbf{B}$ ⇒ Wu exp does not violate *CP*

SM also has a very small violation of CP

Decay of C-conjugate pair $K^0 = d\bar{s}, \bar{K}^0 = \bar{d}s.$ Can form linear combinations:

- ▶ 2 CP eigenstates: decay into $\pi\pi$ (CP = 1) or $\pi\pi\pi$ (CP = -1)
- ► 2 weak int. eigenstates: $K_S^0 K_L^0$ (short, long: different lifetimes).
- If weak interactions respect CP, these are the same.

Cronin, Fitch 1964: K_I^0 decays mostly to $\pi\pi\pi$, but also to $\pi\pi \implies$ weak and CP eigenstates not same.