Ray Casting

- Forward & Backward Ray Tracing
- Ray Casting
- Ray-Surface Intersection Testing
- Barycentric Coordinates
Light is Bouncing Photons

• **Light sources send off photons in all directions**
 – Model these as particles that bounce off objects in the scene
 – Each photon has a wavelength and energy (color and intensity)
 – When photons bounce, some energy is absorbed, some reflected, some transmitted

• **If we can model photon bounces we can generate images**

• **Technique: follow each photon from the light source until:**
 – All of its energy is absorbed (after too many bounces)
 – It departs the known universe
 – It strikes the image and its contribution is added to appropriate pixel
Forward Ray Tracing

- Rays are the paths of these photons
- This method of rendering by following photon paths is called *ray tracing*
- *Forward* ray tracing follows the photon in direction that light travels (from the source)
- BIG problem with this approach:
 - Only a tiny fraction of rays will not reach the image
 - Extremely slow
- Ideal Scenario:
 - we’d like to magically know which rays will eventually contribute to the image, and trace only those
Backward Ray Tracing

- The solution is to start from the image and trace backwards - *backward* ray tracing
 - Start from the image and follow the ray until the ray finds (or fails to find) a light source
 - People actually used to believe vision worked this way
Backward Ray Tracing

• Basic ideas:
 – Each pixel gets light from just one direction - the line through the image point and focal point
 – Any photon contributing to that pixel’s color has to come from this direction
 – So head in that direction and find what is sending light this way
 – If we hit a light source - we’re done
 – If we find nothing - we’re done
 – If we hit a surface - see where that surface is lit from

• At the end we’ve done forward ray tracing, but only for the rays that contribute to the image
Ray Casting

• This version of ray tracing is often called *ray casting*
• The algorithm is:

\[
\text{loop } y \\
\quad \text{loop } x \\
\quad \quad \text{shoot ray from eye point through pixel } (x,y) \text{ into scene} \\
\quad \quad \text{intersect with all surfaces, find first one the ray hits} \\
\quad \quad \text{shade that point to compute pixel } (x,y)\text{'s color} \\
\quad \quad \text{(perhaps simulating shadows)}
\]

• A ray is \(p+td \): \(p \) is ray origin, \(d \) the direction
 – \(t=0 \) at origin of ray, \(t>0 \) in positive direction of ray
 – typically assume \(||d||=1 \)
 – \(p \) and \(d \) are typically computed in world space

• This is easily generalized to give recursive *ray tracing*...
Recursive Ray Tracing

- We’ll distinguish four ray types:
 - Eye rays: originate at the eye
 - Shadow rays: from surface point toward light source
 - Reflection rays: from surface point in mirror direction
 - Transmission rays: from surface point in refracted direction
- Trace all of these recursively. More on this later.
Writing a Simple Ray Caster

Raycast() // generate a picture
 for each pixel x,y
 color(pixel) = Trace(ray_through_pixel(x,y))

Trace(ray) // fire a ray, return RGB radiance // of light traveling backward along it
 object_point = Closest_intersection(ray)
 if object_point return Shade(object_point, ray)
 else return Background_Color

Closest_intersection(ray)
 for each surface in scene
 calc_intersection(ray, surface)
 return the closest point of intersection to viewer
 (also return other info about that point, e.g., surface normal, material properties, etc.)

Shade(point, ray) // return radiance of light leaving // point in opposite of ray direction
 calculate surface normal vector
 use Phong illumination formula (or something similar)
 to calculate contributions of each light source
Ray-Surface Intersections

• Ray equation: (given origin p and direction d)
 $$x(t) = p + td$$

• Surfaces can be represented by:
 – Implicit functions: $f(x) = 0$
 – Parametric functions: $x = g(u,v)$

• Compute Intersections:
 – Substitute ray equation for x
 – Find roots
 – Implicit: $f(p + td) = 0$
 » one equation in one unknown – univariate root finding
 – Parametric: $p + td - g(u,v) = 0$
 » three equations in three unknowns (t,u,v) – multivariate root finding
 – For univariate polynomials, use closed form soln. otherwise use numerical root finder
The Devil’s in the Details

- Solving these intersection equations can be tough...
 - General case: non-linear root finding problem
 - Simple surfaces can yield a closed-form solution
 - But generally a numerical root-finding method is required
 » Expensive to calculate
 » Won’t always converge
 » When repeated millions of times, errors WILL occur

- The good news:
 - Ray tracing is simplified using object-oriented techniques
 » Implement one intersection method for each type of surface primitive
 » Each surface handles its own intersection
 - Some surfaces yield closed form solutions:
 » quadrics: spheres, cylinders, cones, elipsoids, etc...
 » polygons
 » tori, superquadrics, low-order spline surface patches
Ray-Sphere Intersection

- Ray-sphere intersection is an easy case
- A sphere’s implicit function is: \(x^2 + y^2 + z^2 - r^2 = 0 \) if sphere at origin
- The ray equation is:
 \[
 \begin{align*}
 x &= p_x + t d_x \\
 y &= p_y + t d_y \\
 z &= p_z + t d_z
 \end{align*}
 \]
- Substitution gives:
 \[
 (p_x + t d_x)^2 + (p_y + t d_y)^2 + (p_z + t d_z)^2 - r^2 = 0
 \]
- A quadratic equation in \(t \).
- Solve the standard way:
 \[
 A = d_x^2 + d_y^2 + d_z^2 = 1 \quad \text{(unit vec.)}
 \]
 \[
 B = 2(p_x d_x + p_y d_y + p_z d_z)
 \]
 \[
 C = p_x^2 + p_y^2 + p_z^2 - r^2
 \]
- Quadratic formula has two roots:
 \[
 t = \frac{-B \pm \sqrt{B^2 - 4C}}{2}
 \]
 - which correspond to the two intersection points
 - negative discriminant means ray misses sphere
Ray-Polygon Intersection

• Assuming we have a planar polygon
 – first, find intersection point of ray with plane
 – then check if that point is inside the polygon

• Latter step is a point-in-polygon test in 3-D:
 – inputs: a point \(x \) in 3-D and the vertices of a polygon in 3-D
 – output: INSIDE or OUTSIDE
 – problem can be reduced to point-in-polygon test in 2-D

• Point-in-polygon test in 2-D:
 – easiest for triangles
 – easy for convex \(n \)-gons
 – harder for concave polygons
 – most common approach: subdivide all polygons into triangles
 – for optimization tips, see article by Haines in the book *Graphics Gems IV*
Ray-Plane Intersection

- **Ray:** $x = p + td$
 - where p is ray origin, d is ray direction. we’ll assume $||d||=1$ (this simplifies the algebra later)
 - $x=(x,y,z)$ is point on ray if $t>0$

- **Plane:** $(x-q)\cdot n=0$
 - where q is reference point on plane, n is plane normal. (some might assume $||n||=1$; we won’t)
 - x is point on plane
 - if what you’re given is vertices of a polygon
 » compute n with cross product of two (non-parallel) edges
 » use one of the vertices for q
 - rewrite plane equation as $x\cdot n + D = 0$
 » equivalent to the familiar formula $Ax + By + Cz + D = 0$, where $(A,B,C)=n$, $D=-q\cdot n$
 » fewer values to store

- **Steps:**
 - substitute ray formula into plane eqn, yielding 1 equation in 1 unknown (t).
 - solution: $t = -(p\cdot n + D)/(d\cdot n)$
 » note: if $d\cdot n = 0$ then ray and plane are parallel - REJECT
 » note: if $t<0$ then intersection with plane is behind ray origin - REJECT
 - compute t, plug it into ray equation to compute point x on plane
Projecting A Polygon from 3-D to 2-D

• Point-in-polygon testing is simpler and faster if we do it in 2-D
 – The simplest projections to compute are to the xy, yz, or zx planes

 – If the polygon has plane equation $Ax+By+Cz+D=0$, then
 » $|A|$ is proportional to projection of polygon in yz plane
 » $|B|$ is proportional to projection of polygon in zx plane
 » $|C|$ is proportional to projection of polygon in xy plane
 » Example: the plane $z=3$ has $(A,B,C,D)=(0,0,1,-3)$, so $|C|$ is the largest and xy projection is best. We should do point-in-polygon testing using x and y coords.

 – In other words, project into the plane for which the perpendicular component of the normal vector n is largest

• Optimization:
 – We should optimize the inner loop (ray-triangle intersection testing) as much as possible
 – We can determine which plane to project to, for each triangle, as a preprocess
Interpolated Shading for Ray Tracing

• Suppose we know colors or normals at vertices
 – How do we compute the color/normal of a specified point inside?

• Color depends on distance to each vertex
 – Want this to be linear (so we get same answer as scanline algorithm such as Gouraud or Phong shading)
 – But how to do linear interpolation between 3 points?
 – Answer: *barycentric coordinates*

• Useful for ray-triangle intersection testing too!
Barycentric Coordinates in 1-D

• Linear interpolation between colors C_0 and C_1 by t
 $$C = (1 - t)C_0 + tC_1$$

• We can rewrite this as
 $$C = \alpha C_0 + \beta C_1 \quad \text{where} \quad \alpha + \beta = 1$$
 C is between C_0 and $C_1 \iff \alpha, \beta \in [0,1]$

• Geometric intuition:
 – We are weighting each vertex by ratio of distances (or areas)

\[
\begin{array}{c}
\bullet \quad C_0 \quad \bullet \\
\bullet \quad C \quad \bullet \\
\bullet \quad C_1 \quad \bullet \\
\end{array}
\]

\[
\begin{array}{c}
\beta \\
\alpha \\
\end{array}
\]

• α and β are called *barycentric* coordinates
Barycentric Coordinates in 2-D

• Now suppose we have 3 points instead of 2

• Define three barycentric coordinates: \(\alpha, \beta, \gamma \)

\[
C = \alpha C_0 + \beta C_1 + \gamma C_2 \quad \text{where} \quad \alpha + \beta + \gamma = 1
\]

C is inside \(C_0 C_1 C_2 \) \(\iff \) \(\alpha, \beta, \gamma \in [0,1] \)

• How to define \(\alpha, \beta, \) and \(\gamma \)?
Barycentric Coordinates for a Triangle

- Define barycentric coordinates to be ratios of triangle areas

\[\alpha = \frac{\text{Area}(\text{CC}_1 \text{C}_2)}{\text{Area}(\text{C}_0 \text{C}_1 \text{C}_2)} \]

\[\beta = \frac{\text{Area}(\text{C}_0 \text{C}_1 \text{C}_2)}{\text{Area}(\text{C}_0 \text{C}_1 \text{C}_2)} \]

\[\gamma = \frac{\text{Area}(\text{C}_0 \text{C}_1 \text{C})}{\text{Area}(\text{C}_0 \text{C}_1 \text{C}_2)} = 1 - \alpha - \beta \]
Computing Area of a Triangle

• in 3-D

\[\text{Area}(ABC) = \text{parallelogram area} / 2 = \frac{\| (B-A) \times (C-A) \|}{2} \]

– faster: project to \(xy \), \(yz \), or \(zx \), use 2D formula

• in 2-D

\[\text{Area}(xy-projection(ABC)) = \frac{[(b_x-a_x)(c_y-a_y) - (c_x-a_x)(b_y-a_y)]}{2} \]

project A,B,C to \(xy \) plane, take \(z \) component of cross product
– positive if ABC is CCW (counterclockwise)
Computing Area of a Triangle - Algebra

That short formula,

\[\text{Area}(ABC) = \frac{1}{2} \left| \begin{array}{ccc} a_x & b_x & c_x \\ a_y & b_y & c_y \\ 1 & 1 & 1 \end{array} \right| \]

Where did it come from?

\[
\text{Area}(ABC) = \frac{1}{2} \left((b_x - a_x)(c_y - a_y) - (c_x - a_x)(b_y - a_y) \right) / 2
\]

| \[
\text{Area}(ABC) = \left((b_x \ c_y - c_x \ b_y + c_x \ a_y - a_x \ c_y + c_x \ a_y - a_x \ c_y) / 2
\]

The short & long formulas above agree.

Short formula better because fewer multiplies. Speed is important!

Can we explain the formulas geometrically?
Computing Area of a Triangle - Geometry

\[\text{Area}(ABC) = \frac{1}{2} [(b_x - a_x)(c_y - a_y) - (c_x - a_x)(b_y - a_y)] \]

is a sum of rectangle areas, divided by 2.

\[\frac{(b_x - a_x)(c_y - a_y)}{2} + \frac{(c_x - a_x)(a_y - b_y)}{2} \]

\(= \frac{1}{2} \]

since triangle area = base*height/2

\text{it works!}
Uses for Barycentric Coordinates

- **Point-in-triangle testing!**
 - point is in triangle iff $\alpha, \beta, \gamma > 0$
 - note similarity to standard point-in-polygon methods that use tests of form $a_ix+b_iy+c_i<0$ for each edge i

- Can use barycentric coordinates to interpolate *any* quantity
 - Gouraud Shading (color interpolation)
 - Phong Shading (normal interpolation)
 - Texture mapping ((s,t) texture coordinate coordinate interpolation)