
Query Execution Plans and Semantic Errors: Usability and
Educational Opportunities

Toni Taipalus
toni.taipalus@jyu.fi

University of Jyväskylä
Finland

ABSTRACT
Syntax errors are typically separated from semantic errors in query
formulation, the former being detected by the database manage-
ment system (DBMS), and the latter seemingly not. On the other
hand, query execution plans are typically utilized in query optimiza-
tion, and not interconnected with syntax errors, as a syntactically
invalid query produces no execution plan. In this study, we show
and argue for breaking the confound between execution plans and
error messages for better query formulation usability and education.
We show how several popular DBMSs detect semantic errors and
complications in queries, yet often do not inform the user of such
problems. This study is a demonstration of how decades old tech-
nology could be used more effectively in novel contexts of usability
and software engineering education with little effort by showing
query writers not merely syntax errors, but also semantic errors
and complications detected by DBMSs.

CCS CONCEPTS
• Information systems→ Information retrieval query processing; •
Human-centered computing→Human computer interaction
(HCI).

KEYWORDS
query execution plan, error, usability, database management system,
SQL
ACM Reference Format:
Toni Taipalus. 2023. Query Execution Plans and Semantic Errors: Usabil-
ity and Educational Opportunities. In Extended Abstracts of the 2023 CHI
Conference on Human Factors in Computing Systems (CHI EA ’23), April
23–28, 2023, Hamburg, Germany. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3544549.3585794

1 INTRODUCTION
Database management systems (DBMS) are a multi-billion industry,
where some of the industry leaders have been around for over four
decades. The DBMS industry has only recently begun to address
usability concerns to gain a marketing edge or cater for the needs
of ubiquitous computing. These efforts have been realized in more
effortless installation, configuration, and load management, yet

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHI EA ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9422-2/23/04.
https://doi.org/10.1145/3544549.3585794

usability concerns have not been addressed in query language com-
pilers [15]. Although there has been a myriad of scientific efforts
in facilitating the development of programming language usability
through studying compiler error messages [3], query languages
have remained in the sidelines in this regard. In fact, some DBMSs
use largely the same error messages now as in the 1990s [15].

When a Structured Query Language (SQL) query is being exe-
cuted by a DBMS, a DBMS component called the query optimizer
formulates one or several query execution plans [20]. An execution
plan consists of lower level operations, such as choices concerning
the implementation of joins, utilization of indices, and reduction of
arithmetic [5, 9]. These operations are consequently used to retrieve
the dataset the user requires. If the DBMS deems that the query is
not syntactically valid, an error message is returned instead, and no
execution plan is formulated. Intuitively, syntax error messages, al-
beit often lacking in terms of usability, have been shown to facilitate
error discovery and successful query formulation [16]. As querying
a relational database with SQL is typically text-based activity, in
this study by usability we refer to the communication of errors via
textual prompts, even though usability is a much larger concept.

Query execution plans are a treasure trove to increased usabil-
ity and potential support for effective query formulation. Namely,
DBMSs identify certain semantic errors and complications in
queries, but since these problems are often syntactically valid SQL,
the DBMS does not directly inform the (human) query writer about
said problems. For example, the query SELECT * FROM t WHERE c

> 0 AND c < 0; is syntactically valid SQL and thus produces no
errors, but it is obvious that such a query will always produce an
empty result table (as the value of c cannot be both less than and
greater than zero). Rather, these problems are often hidden in query
execution plans, which in turn are often both relatively difficult to
read [8, 21], as well as something a query writing novice is seldom
even aware of, despite the fact that a novice arguably needs more
support when compared to a professional. Therefore, it is arguably
educationally counter-productive that a query plan is only shown
if the user explicitly requests one, even though the query plan
contains information on detected problems in query formulation.

In this study, we show how PostgreSQL, Oracle Database and
SQL Server identify and handle semantic errors and complications,
and argue why and how the identification of a semantic error or
a complication should also be communicated to the user writing
the query. We also describe a software tool which utilizes query
execution plans to communicate problems in queries to the end-
user in a more readable form and without the need for the user to
consult query execution plans.

https://orcid.org/0000-0003-4060-3431
https://doi.org/10.1145/3544549.3585794
https://doi.org/10.1145/3544549.3585794

CHI EA ’23, April 23–28, 2023, Hamburg, Germany Taipalus

2 RELATEDWORK
Previous, tangential works have focused on either errors in query
formulation, or query optimization through interpreting query
execution plans. As query optimization is recognized as one of the
more complex issues in database system research [2, 8], it is not
surprising that several tools have been developed to facilitate the
interpretation of query execution plans [6, 10, 19, 21]. Furthermore,
the errors in query formulation have been studied, but these two
lines of research and practice are yet to converge.

Query formulation errors have been divided into syntax, logical,
and semantic errors, as well as complications [4, 18]. In short, syntax
errors are caused by statements that violate a DBMS’s interpretation
of the SQL standard, halting the query execution and resulting in an
error message instead of a result table. Queries with logical errors
are syntactically valid, yet retrieve a result table that is incorrect for
a particular data demand, e.g., the query SELECT * FROM customers;

is logically incorrect if the data demand is something other than
“find all information on all customers”. In contrast, statements with
semantic errors are “always incorrect” [4], regardless of the data
demand. Such statements may, for example, always return all data,
or always return no data, regardless of the database data, often due
to inconsistent or tautological expressions. Finally, complications
do not affect the result table, but cause a query to be more complex
than the data demand requires. Complications are not concerned
with subjective aspects such as code style, but rather complications
such as unnecessary joins or unnecessary ordering.

A previous study [4] reported over 40 different semantic errors
and complications, and a subsequent study [18] complemented
these errors with several new ones. Using these categorizations,
several educational studies have shown that both semantic errors
and complications are prominent in query formulation [11–13], and
particularly difficult to fix when compared to syntax errors [14].
However, previous studies have simply listed and studied semantic
errors without connecting the dots between query execution plans
and semantic errors, and how these two aspects could be used in
facilitating successful query formulation.

Even though previous studies have demonstrated that DBMS
errormessages often disregard common usability guidelines [15, 16],
it seems reasonable to argue that the presence of any error message
is a clear indication that a query should be fixed. Therefore, it seems
intuitive that if a DBMS can recognize an error, this should also be
communicated to the user executing the query. However, this is
not always the case, as we will show in this study.

3 EVALUATION
3.1 Test Suite
We demonstrate how three popular relational DBMSs (PostgreSQL
9.6, SQL Server 2019 Developer and Oracle Database 19c) handle
SQL queries with six different semantic errors or complications
[4, 18] using a simple database (Fig. 1) and simple SELECT statements.
For the evaluation, we inserted 250 customers and 500 orders into
the tables. The data were generated with Mockaroo. No secondary
indices were created. Among the dozens of semantic errors and
complications presented in prior scientific literature, we selected six
errors for this preliminary evaluation. This selection of six errors
among the dozens on potential candidates was dictated by both

1 CREATE TABLE customers (
2 customer_id INT
3 , fname VARCHAR (50) NOT NULL
4 , sname VARCHAR (50) NOT NULL
5 , type CHAR (1) NOT NULL
6 CHECK (type IN ('C', 'B')) -- C = private , B = business
7 , PRIMARY KEY (customer_id)
8);
9
10 CREATE TABLE orders (
11 order_id INT
12 , order_total_eur DECIMAL (6,2) NOT NULL
13 , customer_id INT NOT NULL
14 , PRIMARY KEY (order_id)
15 , FOREIGN KEY (customer_id)
16 REFERENCES customers (customer_id)
17);

Figure 1: Test suite database

brevity as well as selecting errors of different nature to demonstrate
the different nature of different DBMSs. We demonstrate the test
suite queries and their execution in different DBMSs in the next
section.

3.2 Results
The query execution plans were obtained using EXPLAIN ANALYZE
in PostgreSQL, SET SHOWPLAN_TEXT ON in SQL Server, and by
querying the V$SQL view in Oracle Database. Table 1 summarizes
how the selected DBMSs handle the selected semantic errors and
complications. An empty circle represents that the DBMS executes
the query and returns a (sometimes empty) dataset without any
other output. A half circle means that the DBMS returns a dataset
(again, sometimes empty) without any other output, but executes
an alternative version of the query. We explain this in more detail
in the following subsections. Finally, a full circle means that the
semantic error halts the query execution similarly to a syntax er-
ror. In this regard, some DBMSs consider some semantic errors or
complications as violations of syntax.

3.2.1 Implied expression. An implied expression is something that
is already enforced (or alternatively, implied against) by the table,
e.g., via a primary or foreign key, or by a CHECK constraint. For
example, the expression in Fig. 2a, line 3, is already enforced by the
test suite table definition described in Fig. 1, lines 5-6. Therefore,
the result set is empty regardless of the data, making this a semantic
error (cf. e.g., [4, 18]). According to the execution plans, SQL Server
executes the query, but both PostgreSQL’s (Fig. 3a, line 1: rows=0)
and Oracle Database’s (Fig. 3b, line 12: filter(NULL IS NOT NULL))
execution plans show that the expression was not evaluated against
database data, but rather skipped completely.

3.2.2 Tautological expression. A tautological expression – such
as 100 = 100 in Fig. 2b – could simply be replaced with TRUE. In
the same figure, bound to the logical operator OR, the whole WHERE

clause could be replaced with TRUE. Naturally, such expressions
are unnecessary complications to anyone reading the query, as
well as potential problems in query execution if the DBMS cannot
identify the tautology. As can be seen in all the execution plans in
Fig. 4a, Fig. 4b and Fig. 4c, none of the DBMSs evaluate either of
the expressions, but simply perform a sequential scan on the entire
table.

Query Execution Plans and Semantic Errors: Usability and Educational Opportunities CHI EA ’23, April 23–28, 2023, Hamburg, Germany

Table 1: How different DBMSs address SQL queries with different semantic errors or complications; = the query is executed,
= the query is seemingly executed, = the query execution halts to an error

Semantic error or complication PostgreSQL SQL Server Oracle Database

Implied expression
Tautological expression
Inconsistent expression
ORDER BY in a subquery
IN/EXISTS can be replaced by comparison
Join on incorrect column (matches impossible)

1 SELECT customer_id , fname , sname
2 FROM customers
3 WHERE type = 'A';

(a) Query with an implied expression

1 SELECT *
2 FROM customers
3 WHERE type = 'C' OR 100 = 100;

(b) Query with a tautological expression

Figure 2: Queries with semantic errors

1 Seq Scan on customers (cost =0.00..5.12 rows=1 width =18) (
actual time =0.049..0.049 rows=0 loops =1)

2 Filter: (type = 'A':: bpchar)
3 Rows Removed by Filter: 250
4 Planning Time: 0.125 ms
5 Execution Time: 0.057 ms
6 (5 rows)

(a) PostgreSQL query execution plan

1 --
2 | Id | Operation | Name | E-Rows| Cost (%CPU)|
3 --
4 | 0 | SELECT STATEMENT | | | 1 (100) |
5 |* 1 | FILTER | | | |
6 |* 2 | TABLE ACCESS FULL| CUSTOMERS| 1 | 3 (0) |
7 --
8
9 Predicate Information (identified by operation id):
10 ---
11
12 1 - filter(NULL IS NOT NULL)
13 2 - filter ("TYPE"='A')

(b) Oracle query execution plan

Figure 3: Query execution plans produced by the query in
Fig. 2a

3.2.3 Inconsistent expression. An inconsistent expression is an ex-
pression or a set of expressions that could be reduced to FALSE, as
the two expressions in Fig. 6b connected with the logical operator
AND can never evaluate to TRUE. Both PostgreSQL and Oracle Data-
base show in their query execution plans that while the query is
run, the expressions are not evaluated against database data. Post-
greSQL (Fig. 6a, lines 2-3) reads One-Time Filter: false and never
executed, describing that PostgreSQL identifies the WHERE clause as

1 Seq Scan on customers (cost =0.00..4.50 rows =250 width =20) (
actual time =0.021..0.047 rows =250 loops =1)

2 Planning Time: 0.073 ms
3 Execution Time: 0.057 ms
4 (3 rows)

(a) PostgreSQL query execution plan

1 ---
2 | Id | Operation | Name | E-Rows | Cost (%CPU)|
3 ---
4 | 0 | SELECT STATEMENT | | | 3 (100) |
5 | 1 | TABLE ACCESS FULL|CUSTOMERS | 1 | 3 (0) |
6 ---

(b) Oracle query execution plan

1 |--Clustered Index Scan(OBJECT :([TestDB].[dbo].[customers].[
PK__customer__CD65CB859E0B7BB4]))

2 (1 rows affected)

(c) SQL Server query execution plan

Figure 4: Query execution plans produced by the query in
Fig. 2b

1 SELECT *
2 FROM orders
3 WHERE order_total_eur = 0 AND order_total_eur = 100;

(a) Query with an inconsistent expression

1 SELECT *
2 FROM customers c
3 WHERE EXISTS
4 (SELECT *
5 FROM orders o
6 WHERE c.customer_id = o.customer_id
7 ORDER BY o.customer_id);

(b) Query with an ORDER BY clause in a subquery

Figure 5: Queries with semantic errors

inconsistent, and the result set empty regardless of the data. Oracle
Database (Fig. 6b, line 12) executes the query in a similar fashion.

3.2.4 ORDER BY in a subquery. An ORDER BY clause in a subquery
(Fig. 5b) is considered an unnecessary complication. While such
clause should not affect the results of a query, and is syntactically
valid in PostgreSQL, PostgreSQL merely performs a grouping oper-
ation rather than sorting (Fig. 7a, line 7), and executes the query. In

CHI EA ’23, April 23–28, 2023, Hamburg, Germany Taipalus

1 Result (cost =0.00..9.25 rows=1 width =14) (actual time
=0.001..0.001 rows=0 loops =1)

2 One -Time Filter: false
3 -> Seq Scan on orders (cost =0.00..9.25 rows=1 width =14) (

never executed)
4 Filter: (order_total_eur = '0'::numeric)
5 Planning Time: 0.106 ms
6 Execution Time: 0.008 ms
7 (6 rows)

(a) PostgreSQL query execution plan

1 ---
2 | Id | Operation | Name | E-Rows | Cost (%CPU)|
3 ---
4 | 0 | SELECT STATEMENT | | | 1 (100) |
5 |* 1 | FILTER | | | |
6 |* 2 | TABLE ACCESS FULL| ORDERS | 1 | 3 (0) |
7 ---
8
9 Predicate Information (identified by operation id):
10 ---
11
12 1 - filter(NULL IS NOT NULL)
13 2 - filter (" ORDER_TOTAL_EUR "=0)

(b) Oracle query execution plan

Figure 6: Query execution plans produced by the query in
Fig. 5a

1 Hash Join (cost =14.22..21.84 rows =221 width =20) (actual time
=0.274..0.378 rows =221 loops =1)

2 Hash Cond: (c.customer_id = o.customer_id)
3 -> Seq Scan on customers c (cost =0.00..4.50 rows =250 width

=20) (actual time =0.004..0.043 rows =250 loops =1)
4 -> Hash (cost =11.46..11.46 rows =221 width =4) (actual time

=0.267..0.267 rows =221 loops =1)
5 Buckets: 1024 Batches: 1 Memory Usage: 16kB
6 -> HashAggregate (cost =9.25..11.46 rows =221 width =4) (

actual time =0.233..0.248 rows =221 loops =1)
7 Group Key: o.customer_id
8 Batches: 1 Memory Usage: 48kB
9 -> Seq Scan on orders o (cost =0.00..8.00 rows =500 width

=4) (actual time =0.004..0.051 rows =500 loops =1)
10 Planning Time: 0.182 ms
11 Execution Time: 0.411 ms
12 (11 rows)

(a) PostgreSQL query execution plan

1 ORA -00907: missing right parenthesis

(b) Oracle error message

1 Msg 1033, Level 15, State 1, Server testserver , Line 1
2 The ORDER BY clause is invalid in views , inline functions ,

derived tables , subqueries , and common table expressions
, unless TOP , OFFSET or FOR XML is also specified.

(c) SQL Server error message

Figure 7: Query execution plans and errormessages produced
by the query in Fig. 5b

contrast, SQL Server (Fig. 7c) and Oracle Database (Fig. 7b) return
an error message and refuse to execute the query. SQL Server suc-
ceeds in communicating what causes the query execution to halt,
but Oracle Database returns a seemingly detached error message.

3.2.5 IN/EXISTS can be replaced by comparison. Sometimes, a sub-
query may be reduced to a simple expression. Such a complication

1 SELECT *
2 FROM customers c1
3 WHERE EXISTS
4 (SELECT *
5 FROM customers c2
6 WHERE c2.fname LIKE 'A%'
7 AND c1.customer_id = c2.customer_id);

(a) Query in which a subquery could be replaced with a comparison

1 SELECT *
2 FROM customers c
3 JOIN orders o ON (c.fname = o.order_total_eur);

(b) Query with a join on incorrect column with impossible matches

Figure 8: Queries with semantic errors

1 ERROR: operator does not exist: character varying = numeric
2 LINE 4: ON (c.fname = o.order_total_eur);
3 ^
4 HINT: No operator matches the given name and argument types.

You might need to add explicit type casts.

(a) PostgreSQL error message

1 ORA -01722: invalid number

(b) Oracle error message

Figure 9: Query execution plans produced by the query in
Fig. 8b

is demonstrated in Fig. 8a, and the subquery’s expression with
LIKE could be moved to the upper level query while dropping the
subquery altogether. Regardless, all three DBMSs performed two
sequential scans in total, one for table c1 and one for table c2.

3.2.6 Join on incorrect column (matches impossible). Lastly, joining
tables using columns with different data types often results in a sit-
uation where none of the rows satisfy the join condition, which in
turn causes an empty result set. Naturally, the data types in question
play a crucial role, and comparing a column with decimal num-
bers to a column with integers potentially yields more results than
comparing integers to character strings, as some DBMSs implicitly
perform type conversions. For this semantic error, we constructed
a join using columns in which matches are very likely impossible
(Fig. 8b). Again, while the error categorization [18] does not con-
sider this a syntax error, neither PostgreSQL (Fig. 9a) nor Oracle
Database (Fig. 9b) execute the query, and return syntax errors. SQL
Server, however, executes the query.

4 DISCUSSION AND A SOLUTION PROPOSAL
Previous studies have shown that novices are prone to writing
queries with semantic errors and complications [18], and that these
errors are relatively easy to miss and be left unfixed, possibly due to
the DBMS not informing the user of these problems, as opposed to
syntax errors, which produce an error message [17]. Furthermore,
it has been shown that as the complexity of the database increases,
the number of unfixed complications in queries also increase [13].
Therefore, it seemed reasonable to explore possibilities on how the
user could be informed of possible problems in queries. For brevity,

Query Execution Plans and Semantic Errors: Usability and Educational Opportunities CHI EA ’23, April 23–28, 2023, Hamburg, Germany

we selected three DBMSs and six semantic errors or complications
to evaluate in this work, with the intention of demonstrating that
DBMSs are able to identify certain problems in queries without
communicating these problems to the user.

In summary, the results of this study are presented in Table 1,
where white circles represent query formulation problems that are
not identified by the DBMS, and therefore cannot be communicated
to query writers as of yet. Half circles represent the untapped
opportunities for usability considerations and education, as these
problems are detected by the DBMS, yet not communicated to the
query writers. Finally, black circles represent problems that are
detected and communicated, yet some of these communications
could be improved in terms of readability (cf. e.g., [7]), as query
execution plans are not targeted for novices, and not necessarily
intended for query formulation as much as for query optimization.

Given the fact that several DBMSs can detect several problems
without communicating them to the user, implementing the prop-
agation of information should not be an arduous task. Execution
plan operations such as One-Time Filter: false in PostgreSQL, Con-
stant scan in SQL Server, or NULL IS NOT NULL in Oracle Database
would simply need to be rephrased as more readable, and shown to
the user. In the case that professional users deem such warnings
distracting, or that the generation of warnings is computationally
expensive [1] in production environments, DBMS vendors could
give users the option to disable such warnings. All in all, it has
been argued that ease-of-use of DBMSs in educational contexts
benefits both novices and DBMS vendors who can provide experts
systems that are relatively easy to learn [15]. Additionally, fixing
complications in queries also benefits software industry by making
queries more readable and computationally faster to execute, in the
case the DBMS does not identify said complications.

To show that such problems in queries could be communicated
to the end-user with relative ease, we are currently developing a
wrapper for PostgreSQL called pg4n, to be available as a free, open-
source project. Thewrapper analyzes syntactically valid queries and
provides hints (Fig. 10) to the end-user of detected problems. The
wrapper is text-based to provide cross-application compatibility
to different development and learning environments. At the time
of writing, the wrapper identifies approximately a dozen common
problems in queries.

5 CONCLUSION AND FUTUREWORK
In this study, we showed how different relational DBMSs address
semantic errors and complications in queries, and proposed a so-
lution for communicating these problems to the end-user in an
user-friendly fashion. This work could be extended in several ways.
As explained in Section 2, previous studies [4, 18] have identi-
fied several dozen semantic errors and complications that are not
demonstrated in this study. Additionally, a scientific evaluation of
the potential benefits of informing the user of semantic errors or
complications in queries is warranted to justify the additional cog-
nitive load to the user presented by such warnings. Furthermore,
what constitutes a better SQL error message remains a scientifi-
cally unexplored avenue that needs to be investigated before the
work can continue, and we plan to test the extension with a simple

=>
SELECT c.customer_id
FROM customers c
WHERE (
sname LIKE 'S%'
AND EXISTS
(SELECT *
FROM orders o
WHERE c.customer_id = o.customer_id
AND o.order_total_eur > 5000)

)
AND (
sname LIKE 'T%'
AND EXISTS
(SELECT *
FROM orders o
WHERE c.customer_id = o.customer_id
AND o.order_total_eur < 10000)

);
customer_id

(0 rows)

Hint: you have written a query that will always return an
empty result table. Please check your expressions.
Perhaps you have used the logical operator AND instead
of OR somewhere?

Figure 10: A simple example of our wrapper for PostgreSQL
which reads the query execution plans of syntactically valid
queries, and communicates found problems to the end-user
in a more user-friendly wording and without the need to
consult query execution plans; the figure consists of an SQL
query with a semantic error, an empty result table, and a hint
section added by the wrapper

wrapper first, hoping to acquire knowledge whether such infor-
mation benefits novice query writers by steering them away from
semantic errors and complications. If such information is indeed
useful, we plan to develop the extension to account for the future
work suggested in the previous points. In summary, we believe that
by utilizing already implemented semantic error discovery, sev-
eral DBMSs would achieve increased usability that would facilitate
query formulation in both education and industry.

REFERENCES
[1] Andrei Alexandrescu. 1999. Better template error messages. C/C++ Users Journal

17 (03 1999), 37–47.
[2] Brett Allenstein, Andrew Yost, Paul Wagner, and Joline Morrison. 2008. A Query

Simulation System to Illustrate Database Query Execution. SIGCSE Bull. 40, 1
(2008), 493–497. https://doi.org/10.1145/1352322.1352301

[3] Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bouvier,
Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-Michael
Osera, Janice L. Pearce, and James Prather. 2019. Compiler Error Messages
Considered Unhelpful. In Proceedings of the Working Group Reports on Innovation
and Technology in Computer Science Education. ACM. https://doi.org/10.1145/
3344429.3372508

[4] Stefan Brass and Christian Goldberg. 2006. Semantic errors in SQL queries:
A quite complete list. Journal of Systems and Software 79, 5 (2006), 630–644.
https://doi.org/10.1016/j.jss.2005.06.028

[5] Surajit Chaudhuri. 1998. An Overview of Query Optimization in Relational
Systems. In Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems (Seattle, Washington, USA) (PODS
’98). Association for Computing Machinery, New York, NY, USA, 34–43. https:
//doi.org/10.1145/275487.275492

[6] Peng Chen, Hui Li, Sourav S. Bhowmick, Shafiq R. Joty, and Weiguo Wang.
2022. LANTERN: Boredom-Conscious Natural Language Description Generation
of Query Execution Plans for Database Education. In Proceedings of the 2022
International Conference onManagement of Data (Philadelphia, PA, USA) (SIGMOD
’22). Association for Computing Machinery, New York, NY, USA, 2413–2416.
https://doi.org/10.1145/3514221.3520165

https://doi.org/10.1145/1352322.1352301
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1016/j.jss.2005.06.028
https://doi.org/10.1145/275487.275492
https://doi.org/10.1145/275487.275492
https://doi.org/10.1145/3514221.3520165

CHI EA ’23, April 23–28, 2023, Hamburg, Germany Taipalus

[7] Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and Jacob Hendrickx. 2011.
Understanding the syntax barrier for novices. In Proceedings of the 16th Annual
Joint Conference on Innovation and Technology in Computer Science education -
ITiCSE '11. ACM Press. https://doi.org/10.1145/1999747.1999807

[8] Mrunal Gawade andMartin Kersten. 2012. Stethoscope: A Platform for Interactive
Visual Analysis of Query Execution Plans. Proceedings of the VLDB Endowment
5, 12 (2012), 1926–1929. https://doi.org/10.14778/2367502.2367539

[9] Joseph M. Hellerstein, Michael Stonebraker, and James Hamilton. 2007. Archi-
tecture of a Database System. Foundations and Trends in Databases 1, 2 (2007),
141–259. https://doi.org/10.1561/1900000002

[10] Siyuan Liu, Sourav S. Bhowmick, Wanlu Zhang, Shu Wang, Wanyi Huang, and
Shafiq Joty. 2019. NEURON: Query Execution Plan Meets Natural Language
Processing For Augmenting DB Education. In Proceedings of the 2019 International
Conference on Management of Data. ACM, Amsterdam Netherlands, 1953–1956.
https://doi.org/10.1145/3299869.3320213

[11] Daphne Miedema, Efthimia Aivaloglou, and George Fletcher. 2021. Identifying
SQL Misconceptions of Novices: Findings from a Think-Aloud Study. Association
for Computing Machinery, New York, NY, USA, 355–367. https://doi.org/10.
1145/3446871.3469759

[12] Daphne Miedema, George Fletcher, and Efthimia Aivaloglou. 2022. Expert Per-
spectives on Student Errors in SQL. ACM Transactions on Computing Education
(2022). https://doi.org/10.1145/3551392

[13] Toni Taipalus. 2020. The effects of database complexity on SQL query formulation.
Journal of Systems and Software 165 (2020), 110576. https://doi.org/10.1016/j.jss.
2020.110576

[14] Toni Taipalus. 2020. Explaining Causes Behind SQL Query Formulation Errors.
In 2020 IEEE Frontiers in Education Conference (FIE). 1–9. https://doi.org/10.1109/
FIE44824.2020.9274114

[15] Toni Taipalus and Hilkka Grahn. 2023. NewSQL Database Management Sys-
tem Compiler Errors: Effectiveness and Usefulness. International Journal of
Human–Computer Interaction (2023), 1–12. https://doi.org/10.1080/10447318.
2022.2108648 arXiv:https://doi.org/10.1080/10447318.2022.2108648

[16] Toni Taipalus, Hilkka Grahn, and Hadi Ghanbari. 2021. Error messages in re-
lational database management systems: A comparison of effectiveness, useful-
ness, and user confidence. Journal of Systems and Software 181 (2021), 111034.
https://doi.org/10.1016/j.jss.2021.111034

[17] Toni Taipalus and Piia Perälä. 2019. What to Expect and What to Focus on in
SQL Query Teaching. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education (SIGCSE) (Minneapolis, MN, USA) (SIGCSE ’19). ACM,
New York, NY, USA, 198–203. https://doi.org/10.1145/3287324.3287359

[18] Toni Taipalus, Mikko Siponen, and Tero Vartiainen. 2018. Errors and Complica-
tions in SQL Query Formulation. ACM Transactions on Computing Education 18,
3, Article 15 (August 2018), 29 pages. https://doi.org/10.1145/3231712

[19] Jess Tan, Desmond Yeoh, Rachael Neoh, Huey-Eng Chua, and Sourav S.
Bhowmick. 2022. MOCHA: A Tool for Visualizing Impact of Operator Choices in
Query Execution Plans for Database Education. Proc. VLDB Endow. 15, 12 (2022),
3602–3605. https://www.vldb.org/pvldb/vol15/p3602-bhowmick.pdf

[20] Florian Waas and César Galindo-Legaria. 2000. Counting, enumerating, and
sampling of execution plans in a cost-based query optimizer. ACM SIGMOD
Record 29, 2 (2000), 499–509. https://doi.org/10.1145/335191.335451

[21] Weiguo Wang, Sourav S. Bhowmick, Hui Li, Shafiq Joty, Siyuan Liu, and Peng
Chen. 2021. Towards Enhancing Database Education: Natural Language Gen-
eration Meets Query Execution Plans. In Proceedings of the 2021 International
Conference on Management of Data. Association for Computing Machinery, New
York, NY, USA, 1933–1945. https://doi.org/10.1145/3448016.3452822

https://doi.org/10.1145/1999747.1999807
https://doi.org/10.14778/2367502.2367539
https://doi.org/10.1561/1900000002
https://doi.org/10.1145/3299869.3320213
https://doi.org/10.1145/3446871.3469759
https://doi.org/10.1145/3446871.3469759
https://doi.org/10.1145/3551392
https://doi.org/10.1016/j.jss.2020.110576
https://doi.org/10.1016/j.jss.2020.110576
https://doi.org/10.1109/FIE44824.2020.9274114
https://doi.org/10.1109/FIE44824.2020.9274114
https://doi.org/10.1080/10447318.2022.2108648
https://doi.org/10.1080/10447318.2022.2108648
https://arxiv.org/abs/https://doi.org/10.1080/10447318.2022.2108648
https://doi.org/10.1016/j.jss.2021.111034
https://doi.org/10.1145/3287324.3287359
https://doi.org/10.1145/3231712
https://www.vldb.org/pvldb/vol15/p3602-bhowmick.pdf
https://doi.org/10.1145/335191.335451
https://doi.org/10.1145/3448016.3452822

	Abstract
	1 Introduction
	2 Related work
	3 Evaluation
	3.1 Test Suite
	3.2 Results

	4 Discussion and a Solution Proposal
	5 Conclusion and Future Work
	References

