
Framework for SQL Error Message Design: A Data-Driven Approach

TONI TAIPALUS and HILKKA GRAHN, University of Jyväskylä, Finland

Software developers use a signiicant amount of time reading and interpreting error messages. However, error messages have

often been based on either anecdotal evidence or expert opinion, disregarding novices, who arguably are the ones who beneit

the most from efective error messages. Furthermore, the usability aspects of Structured Query Language (SQL) error messages

have not received much scientiic attention. In this mixed-methods study, we coded a total of 128 error messages from eight

database management systems (DBMS), and using data from 311 participants, analysed 4,796 queries using regression analysis

to ind out if and how acknowledged error message qualities explain SQL syntax error ixing success rates. Additionally, we

performed a conventional content analysis on 1,505 suggestions on how to improve SQL error messages, and based on the

analysis, formulated a framework consisting of nine guidelines for SQL error message design. The results indicate that general

error message qualities do not necessarily explain query ixing success in the context of SQL syntax errors and that even

some novel NewSQL systems fail to account for basic error message design guidelines. The error message design framework,

and examples of its practical applications shown in this study, are applicable in educational contexts, as well as by DBMS

vendors in understanding novice perspectives in error message design.

CCS Concepts: · Software and its engineering → Compilers; · Information systems → Relational database query

languages; · Human-centered computing→ Empirical studies in HCI.

Additional Key Words and Phrases: Structured Query Language, SQL, compiler, error message, database management system,

human-computer interaction, human factor, usability, readability

1 INTRODUCTION

A common view is that computer error messages are confusing and unhelpful, even for professionals [9, 27], and
that the diiculty of reading error messages is similar to the diiculty of reading source code [5]. As developers
use a signiicant amount of time reading and interpreting error messages [5], it seems natural that both the
software industry and academia are interested in the qualities of error messages. Consequently, several studies
have shown that a more usable software development environment results in increased productivity [36, 38], and
that end-users beneit from increased usability in general [17]. From a pedagogical point of view, feedback ś or
formative assessment - during the learning process is a powerful way to improve novices’ sense of achievement
and motivation [e.g., 13]. Furthermore, feedback is efective especially in focusing on treating mistakes or errors
as learning opportunities. This view of seeing mistakes as opportunities means that novices are shown regularly
occurring mistakes and errors they make and then, utilizing feedback, are advised how to ix these mistakes [13].
Explaining mistakes and errors encourages learning [23].

Several studies agree that learning Structured Query Language (SQL) can be challenging, possibly due to the
declarative nature [44, 63]. Since feedback is seen vital in learning, the database management systems (DBMS) that
novices use to learn SQL should provide constructive and useful feedback in their error messages. Unfortunately,
SQL compiler error messages are rarely clear or helpful from a novice viewpoint, although there are diferences
between DBMSs [53, 54]. In contrast to a professional, a novice often sees a particular error message for the irst
time, which makes the quality of the error message even more important [60]. Hence, previous literature has

Authors’ address: Toni Taipalus, toni.taipalus@jyu.i; Hilkka Grahn, hilkka.grahn@jyu.i, University of Jyväskylä, P.O. Box 35, Jyväskylä,

Finland, FI-40014.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

1049-331X/2023/7-ART

https://doi.org/10.1145/3607180

ACM Trans. Softw. Eng. Methodol.

HTTPS://ORCID.ORG/0000-0003-4060-3431
HTTPS://ORCID.ORG/0000-0001-7567-7807
https://orcid.org/0000-0003-4060-3431
https://orcid.org/0000-0001-7567-7807
https://doi.org/10.1145/3607180
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3607180&domain=pdf&date_stamp=2023-07-05


2 • Toni Taipalus and Hilkka Grahn

made attempts to examine [7] and enhance [40] error messages of programming language compilers, or system
error messages in general [47]. However, literature regarding SQL error messages is still almost entirely lacking.
Additionally, research dealing with programming language compiler error messages is often based on either
anecdotal evidence, or expert opinions [7], yet it has been questioned whether experts can reliably understand
novice viewpoints [44]. This study attempts to fulill the needs for both the data-driven approach and the novice
perspective for SQL error message design.
In this study, we explore if and how general error message guidelines apply in the context of SQL error

messages and query ixing success rates. This study also presents a framework speciically for SQL error message
design. The guidelines in the framework are based on an analysis of novice feedback on the sixteen most common
SQL syntax errors and corresponding syntax error messages from eight DBMSs. Additionally, we apply our
framework to present examples of modiied SQL error messages.

The structure of this study is as follows. In the next section, we discuss the theoretical background behind SQL
query formulation, error messages in the context of general system messages as well as programming language
compilers, and error message qualities. In Section 3, we describe our research goals, methods, and data collection.
Sections 4 and 5 as well as Appendix A present the results of the study, i.e., results from the statistical analyses,
the error message design framework, and some applications of said framework. In Section 6, we discuss the
implications of our results in light of previous studies, as well as the implications for industry and education.
Section 7 concludes the study.

2 THEORETICAL BACKGROUND

2.1 uery Execution

A query writer usually communicates with a relational database via a DBMS. Depending on the scenario, a
query may be written, e.g., by using a DBMS interface, or by embedding SQL into a host language such as Java.
When the DBMS receives the query, the query is processed and executed, and then a set of data or some form of
feedback is returned. How the query is processed and executed is dependent on a particular DBMS internals
[21, 22]. Because of these diferent internals, a query may be deemed erroneous by one DBMS, while executed by
another [42]. It follows that the feedback the DBMS provides to the query writer is dependent on the DBMS.

After the query is sent, the query processing done by the DBMS is largely a black box to a novice query writer
[61]. After the query writer receives an error message instead of a result table or a result table that does not meet
the query writer’s expectations, the process typically repeats. This is called a feedback loop between the query
writer and the DBMS. Apart from the query written, the DBMS has limited means to help the query writer to
formulate the query they want to formulate. Although the query writer usually cannot communicate with the
DBMS in natural language, the DBMS can relate natural language messages to the query writer, bridging the gap
between the two. This is typically done in one of two ways. First, if the DBMS deems the query syntactically
incorrect, the DBMS outputs a natural language syntax error message [1, 11], which usually helps the query writer
to pinpoint the error and even ix it. Second, if the query is deemed syntactically correct, the query writer may
obtain more information on how the query was executed through a query execution plan [58]. As reading query
execution plans requires both that the query is syntactically correct, as well as considerable knowledge on DBMS
internals and physical database design [20, 61], they are typically used by developers for query optimization,
and not by novices in undergraduate database courses [58]. For these reasons, this study focuses on syntax error
messages as the means of communication between the user and the DBMS.

2.2 SQL Syntax Errors

Diferent SQL errors have received growing scientiic attention, especially in computing education research [56].
Current research [11, 57] divides SQL errors regarding data retrieval into (i) syntax errors, which are identiied

ACM Trans. Softw. Eng. Methodol.



Framework for SQL Error Message Design • 3

by the DBMS, and which result in a syntax error message, (ii) semantic errors, which are typically not identiied
by the DBMS, and which result in incorrect data in the result table regardless of what the query is supposed to
retrieve, (iii) logical errors, which are not identiied by the DBMS, and which result in incorrect data in the result
table when the intent of the query is considered, and (iv) complications, which may be identiied by the DBMS,
and which do not result in incorrect data in the result table, but unnecessarily complicate the query.
Syntax errors have been shown as the most common errors, especially in novice query formulation [1, 55].

Depending on the study, common syntax errors are caused by e.g., references to undeined tables and columns
[49], problems with grouping [43, 45], data type mismatches [1], misspellings [62], omitting mandatory clauses
[49], as well as illegal aggregate function placement and duplicate clauses [57]. The identiication of the most
common SQL syntax errors is challenging due to the fact that, with a few exceptions, studies categorize SQL
syntax errors depending on the DBMS used, making results incomparable to studies with a diferent DBMS.
Furthermore, it has been shown that, rather intuitively, diferent SQL concepts such as grouping, joins or ordering
invite diferent types of syntax errors [55], making, e.g., syntax errors common for queries involving a table join
uncommon for queries involving grouping and a single table.
Despite their commonness over other types of errors, and probably because syntax errors are caught by the

DBMS, syntax errors have been shown to be easier to ix than other types of errors [2, 55]. This is arguably
intuitive, as a syntax error halts the execution of a query and prevents the query writer from receiving a result
table, while e.g., a logical error does not. A query with a logical error may return a result table with even seemingly
correct data, yet this data do not adhere to the query writer’s intent. Causes behind query formulation errors in
general have been explained by both human factors such as cognitive load theory [49], diferent misconceptions
regarding the language or generalizations [28], self-induced complexity [30], procedural ixedness [51], and
simple sloppiness [29, 49], as well as environmental considerations such as database structure complexity [50]
and database normal form [10].

2.3 Error Message ualities

As syntax errors are typically the only type of errors identiied by a DBMS, it follows that a natural way to enhance
the communication between the query writer and the DBMS is with more efective syntax error messages. Despite
the scientiic attention given to SQL errors and programming language error messages, SQL error messages have
not received much scientiic attention. For this reason, we discuss programming language error message research
here. It is worth noting that the declarative nature, as well as the purpose of SQL, is diferent from programming
languages such as C# or Python, which poses challenges to the comparison of the results of programming
language compiler error messages and SQL error messages.
Previous studies have shown that programming language compiler error messages are often considered

confusing and unhelpful [7, 8], and that users are likely to feel inadequate and anxious when encountering error
messages [48]. The role of error messages in the feedback loop is even more crucial when the user is a novice, yet
as the quality of error messages afects the overall user experience, better error messages beneit professionals as
well [25].

For the reasons above, previous literature has formed guidelines for designing error messages [7, 47, 60].
These guidelines have focused on either general system error messages or programming language compiler
error messages, but not on SQL or query language error messages. However, since the domains are related, and
previous SQL error message guidelines are unavailable in scientiic literature, it is reasonable to inspect those
related guidelines here.

The renowned guidelines for designing computer system messages by Shneiderman in 1982 [47] consists of ive
suggestions that system messages should meet: (i) be brief, (ii) be positive, (iii) be constructive, (iv) be speciic,
and (v) be comprehensible. Later, other authors have formed guidelines for programming language compiler

ACM Trans. Softw. Eng. Methodol.



4 • Toni Taipalus and Hilkka Grahn

error messages as well. For instance, Traver [60] suggested eight programming language error message qualities,
relected against Nielsen’s heuristics [34, 35] and his own experience as a programmer and an educator, for error
message design. In addition, Becker et al. [7] published a comprehensive review of papers on programming
language error messages, categorizing the studies to historical, anecdotal, or empirical research, and presenting a
compilation of ten guidelines for programming language error message design.

These three guidelines, understandably, share similarities. Shneiderman’s irst suggestion, be brief, is discussed
by both Traver [60] as clarity and brevity as well as Becker et al. [7] as reduce cognitive load. This guideline is,
depending on the source, efectively realised by aesthetic and minimalist design [34, 35], meaning that error
messages should not be cryptic, long, or hard to interpret [60], and also by enhancing simplicity in the error
messages [7]. It also has many other meanings in the literature, such as removing jargon, using complete sentences,
and using simple vocabulary [16].
Second, be positive, more broadly expressed as proper phrasing [60] is related to Nielsen’s heuristic of match

between system and the real world, which refers to the positive tone of the error message, guidance to help ix the
error, use of simple language, as well as using similar words in the system when referring to similar concepts
in the real world. In the compiled guidelines [7], the counterpart is phrased as use a positive tone, referring to
avoiding negative words, such as illegal, incorrect, or invalid.

Third, Shneiderman’s [47] be constructive is included under proper phrasing as constructive guidance in Traver’s
guidelines [60], and broadly interpreted counterparts in Becker et al. [7] are called provide scafolding and show

solutions or hints. Efectively, these guidelines suggest that the error message should provide explanations to the
user on why they received the error message and giving support on how to proceed, rather than simply stating
that there is an error. The error message should also suggest solutions for how the error can be ixed.

Fourth, be speciic is formulated as speciicity by Traver [60], and is related to two of Nielsen’s [34, 35] heuristics,
recognition rather than recall, and help user to recognize diagnose, and recover from errors. Speciically, the guideline
means that error messages should not be too general, since a general error message makes locating the erroneous
position diicult. Traver’s [60] locality is related to this guideline, suggesting that the error message should
indicate the true origin of the error. Related to this guideline, Becker et al. [7] suggest that the error message
should provide context, meaning that there should be information about the programming code relevant to the
error which helps understand and address the error.

Fifth, the guideline be comprehensible can be mapped to clarity and brevity [60], and increase readability [7]. This
is perhaps one of the more subjective guidelines, as comprehensibility is closely dependent on the user reading the
message. In addition to Shneiderman’s [47] ive guidelines and their broadly interpreted counterparts, subsequent
studies have suggested additional or more precise guidelines for programming language error messages. For
example, it has been suggested that error messages should be context-insensitive, meaning that the same error
results in the same error message [60], and that the error message conveys a logical train of thought to the user
of why the error occurred by using logical argumentation [7] and nonanthropomorphic messages [60]. That is,
the message should not use language which implies that the syntax was checked by a human-like actor.
Furthermore, Traver [60] suggests that the error message is divided into three levels: a short message irst,

then Ð if the user needs Ð a brief explanation or examples regarding the error message, and inally, possible
corrective actions. Additionally, the environment in general should use colors and fonts to notify the user of
errors as early in the writing process as possible [7, 60]. Finally, the message should show the user examples
of similar errors to improve the understanding of why the error occurred [7]. As can be seen, all these above
guidelines share similarities with Shneiderman’s [47] renowned guidelines regarding computer system messages,
as well as with each other.

ACM Trans. Softw. Eng. Methodol.



Framework for SQL Error Message Design • 5

Table 1. Sixteen most common syntax errors [57] and corresponding tests [54]

Test Syntax error name Test Syntax error name

T01 ambiguous column T09 failure to specify column name twice

T02 omitting quotes around character data T10 using an aggregate function outside SELECT or HAVING

T03 IS where not applicable T11 grouping error: extraneous grouping column

T04 confusing the syntax of keywords T12 nonstandard operators

T05 confusing the logic of keywords T13 using WHERE twice

T06 too many columns in subquery T14 nonstandard keywords or standard keywords in wrong context

T07 undeined column T15 synonyms

T08 misspellings T16 curly, square or unmatched brackets

3 RESEARCH SETTING

3.1 Research Scope and Goals

Based on the research gaps identiied in the previous sections, we formulated four research goals (RG), and
collected both quantitative and qualitative data to reach these goals. We chose to limit the scope of our study to
the sixteen most common syntax errors reported in a previous study [57] (cf. Table 1).
We chose four łtraditionalž RDBMS as well as four NewSQL [39] RDBMS syntax error messages. NewSQL

systems are RDBMSs built from the ground up in the 2010s to account for the innovations and technical
development introduced by NoSQL systems, while also catering to the needs of RDBMS users by, e.g., using SQL
and a strong consistency model [39]. The reason for including these eight DBMSs was that we wanted to inspect
the state of error messages in long-running DBMSs as well as DBMSs developed in the 2010s, while limiting the
study to DBMSs that can execute SQL to the degree the test suite requires. The test suite and the selected DBMSs
are detailed in the next section.

As discussed in Section 2.3, scientiic literature has made many recommendations and guidelines on how user
interfaces and system messages in general, or programming language error messages in particular should be
formulated. We chose to use the guidelines for system messages proposed by Shneiderman [47], because they are
general, as opposed to guidelines proposed for programming language error messages [e.g., 7, 60], which are
particular for a diferent purpose. Furthermore, with our choice of older guidelines, we wished to highlight how
even some modern DBMSs disregard guidelines proposed in the early 1980s.

RG1: Find out if and how previously identiied system message qualities (i.e., whether the message is

brief, positive, constructive, speciic, and comprehensible) afect SQL query ixing success in the error

messages of the eight selected DBMSs. The results are presented in Section 4.

RG2: Formulate an SQL error message design framework consisting of guidelines derived from the

collected data. The framework is presented in Section 5.1.

RG3: Investigate how query writers would improve syntax error messages of eight relational DBMSs

both in general, and speciic to each of the most common syntax errors. The results are introduced in
Section 5.2 and presented in detail in Appendix A.

RG4: Based on the formulated framework, propose examples of error messages pertaining to the sixteen

most common syntax errors. The examples are presented in Appendix A.

3.2 Data Collection

We created our data collection form around a previously reported syntax error test suite [54], which was in
turn based on the sixteen most common SQL syntax errors detailed in Table 1. This test suite provided us with

ACM Trans. Softw. Eng. Methodol.



6 • Toni Taipalus and Hilkka Grahn

a concrete database structure, sixteen SQL data demands, and the corresponding erroneous queries. We then
ran the erroneous queries on eight DBMSs (MySQL 8.0.12 with InnoDB storage engine, Oracle Database 19c
Enterprise Edition 19.5.0.0, PostgreSQL 12.1, SQL Server 2019 Developer, CockroachDB 19.2.2, SingleStore 7.0.10
with InnoDB storage engine, NuoDB 4.0.4-2, and VoltDB Community 9.2.2) to capture corresponding syntax
error messages. These versions were the most recent, stable available versions at the time of data collection.
Based on the error messages, we created eight data collection forms Ð one for each DBMS Ð consisting of the
database schema, a data demand, a corresponding erroneous SQL query, and the corresponding syntax error
message, and two free text input ields in which the participant was asked to write a ixed SQL query, and with
their own words describe how to improve the error message. All eight data collection forms were the same with
the exception of the syntax error messages, and each data collection form consisted of sixteen pages, one for
each syntax error detailed in Table 1.

We recruited study participants from a database course given in the authors’ university. Prior to participation,
the participants were given lectures and mandatory exercises on topics recommended in AIS/ACM curriculum
guidelines [59] for an undergraduate database course. Each topic (separated by semicolons) included approximately
4 hours of lectures and 7 hours of exercises: conceptual modeling; the relational model; relational calculus; data
manipulation language using SQLite with simple operators, inner and outer joins, and ordering; data manipulation
language using SQLite with aggregate functions, grouping, and correlated and uncorrelated subqueries; and
data deinition language using SQLite. After these topics, this study was introduced. After this study, the course
continued with topics such as transaction management and normalization theory. When a participant decided
to participate in the study, they were randomly presented with one of the eight data collection forms, e.g., a
participant assigned to a data collection form with syntax errors from SQL Server illed out the input ields
based on their perceptions of SQL Server error messages. For each participant, the sixteen pages were shown in
random order. Participation was voluntary, and the participants were shown a data privacy statement prior to
their decision on whether to participate. Out of the 363 respondents, 311 (86%) chose to participate.

3.3 Data Preparation

We coded the 128 syntax error messages (16 tests × 8 DBMSs) according to the ive system message guidelines
described by Shneiderman [47], according to which a system message should be brief, positive, constructive,
speciic, and comprehensible. Because the message qualities given by Shneiderman are general regarding the scope
of our study (systemmessages, as opposed to SQL error messages), and because Shneiderman gives no example on,
e.g., what is a brief message, we deined a rubric (Table 2) according to which we coded the SQL error messages.
We coded the same subset (20%) of the error messages individually using the rubric, and compared our results. All
the codings were similar. The irst author then coded the rest of the error messages. The original error messages
of the eight DBMSs and respective coding are reported in Appendix B.
After data collection, we executed the 4,976 SQL queries (311 participants × 16 tests) the participants had

attempted to ix on the corresponding DBMS, e.g., if a participant had been shown VoltDB error messages, and
therefore attempted to ix erroneous queries based on VoltDB error messages, we executed their ixed queries on
VoltDB. Additionally, the syntactically correct queries were manually checked to determine if they were also
logical equivalents to the corresponding data demand. MySQL tolerated the syntax errors in tests T05 and T09,
and SingleStore tolerated the syntax errors in tests T09 and T11. In these data collection forms, the error messages
were made up by us, and the corresponding participant answers were omitted from the analyses. This left a total
of 124 error messages for coding, and 4,796 SQL queries for statistical analyses.

ACM Trans. Softw. Eng. Methodol.



Framework for SQL Error Message Design • 7

Table 2. The rubric created for error message coding; the numerical codes were converted to empty (white), half, and full

circles (black) for readability; the cutofs for the brevity of the messages were determined based on tertiles of the length of

the messages studied

Quality Code Description

brief

More than 171 characters, not counting the possibly replicated query or parts thereof, or parts replicated from

environmental variables.

Between 100 and 171 characters, not counting the possibly replicated query or parts thereof, or parts replicated

from environmental variables.

99 characters or less, not counting the possibly replicated query or parts thereof, or parts replicated from

environmental variables.

positive
Tone is negative, aggressive, dramatic or discouraging, using words such as illegal, invalid, error, or incorrect.

Tone is positive or neutral, the message contains no negative words.

constructive

Ofers no advice.

Ofers advice on what causes the error.

Ofers constructive advice on how to ix the error. General advice such as łrefer to manualž or łsee help on

SELECTž was not considered constructive advice.

speciic

Provides no error position.

Replicates a relatively large part of the erroneous query or replicates the query in full, or otherwise provides

an approximate error position.

Speciically shows the position of the error.

comprehensible

The error message is almost incomprehensible or generally unhelpful.

The error message contains unnecessary jargon.

Not including error codes, SQL keywords, or common relational database terms, the message reads closely to

plain English.

3.4 Data Analyses

In order to analyze the efects of error message qualities, we constructed binomial logistic regression models for
each of the sixteen tests. The data contained 311 answers per test, with the limitations concerning MySQL and
SingleStore described in Section 3.3. The independent variables in the model were the error message qualities,
i.e., whether the error message was brief, positive, constructive, speciic, and comprehensible. The dependent
variable in the model was query ixing success, which was binomial, 0 meaning that the query was not ixed, and
1 meaning that the participant succeeded in ixing the query.

Participants also suggested improvements for the error messages using a free text input ield. Some participants
did not suggest improvements for all error messages, while others suggested several improvements for each of
the sixteen error messages they were shown. In total, the participants gave 1,505 answers, which we analysed
using conventional content analysis [24]. Efectively, the method groups similar content, or themes, into groups
that are derived from the data rather than theory or prior literature. The goal of the method is to generalize or
reduce data to a form that is easier to interpret. The participant answers were interpreted as is, resulting in both
general themes that span across most error messages, and themes that are speciic to a given error message.

We irst collectively analyzed approximately 5% of the 1,505 answers, and derived example codes from the data,
such as error message should show line number and error message should suggest a ix. We then chose a portion of
10% which we both then coded individually. After the individual coding, we compared our results and deemed
that all our codings were similar. These agreements most likely stemmed from the fact that all the answers were
relatively short, typically containing one or two sentences. The irst author then proceeded to code the rest of
the data. After this step, we convened to discuss whether the more speciic categories should be merged, and

ACM Trans. Softw. Eng. Methodol.



8 • Toni Taipalus and Hilkka Grahn

categorized the most frequent codings into a higher-level framework for SQL error message design. That is, our
results show three levels of abstraction. On the lowest level, we show suggestions for improvements per error
message for the 16 tests. On the middle level, we show suggested improvements regarding all error messages. On
the highest level, we categorize these suggested improvements regarding all error messages into themes.

4 FACTORS AFFECTING ERROR MESSAGE EFFECTIVENESS

Only in three tests, the binomial logistic regression model was statistically signiicant (alpha level .05). In test
T01 (χ 2(3) = 13.339, p = .004), the model explained 8.0% (Nagelkerke R2) of the variance of ixing the query and
correctly classiied 87.8% of cases. Of the ive predictor variables (i.e., error message qualities), only one was
statistically signiicant: speciicity of the error message (p = .012). Error messages being speciic had 2.03 higher
odds of being ixed successfully.
In test T11 (χ 2(5) = 14.003, p = .016), the model explained 7.3% (Nagelkerke R2) of the variance of ixing the

query and correctly classiied 82.6% of cases. Of the ive predictor variables, only one was statistically signiicant:
error message being brief (p = .020). The errors with long error messages had 1.79 higher odds of being ixed
successfully.
In test T16 (χ 2(4) = 10.243, p = .037), the model explained 6.9% (Nagelkerke R2) of the variance of ixing the

query and correctly classiied 90.4% of cases. Of the ive predictor variables, only one was statistically signiicant:
error message being positive (p = .010). The errors with positive error messages had 1.95 lower odds of being
ixed successfully. In the rest of the tests, the binomial logistic regression models did not identify the result as
statistically signiicant (signiicance levels ranging from p = .101 to p = .969).

5 ERROR MESSAGE DESIGN FRAMEWORK AND MODIFIED ERROR MESSAGES

5.1 Error Message Design Framework

Using conventional content analysis, and regardless of the test, we identiied nine recurring suggestions for
error message improvements in the data. Five suggested, general improvements received more than one hundred
mentions in the 1,505 answers: specify the line number of the erroneous part (191 mentions, approximately 13%),
suggest how to ix the error (181, 12%), remove unnecessary information (141, 9%), explain what causes the error and

why (141, 9%), and specify the error position (111, 7%). It is worth noting that these mentions are only general
mentions, not counting e.g., more speciic suggestions on how to ix an error (e.g., łsuggest single quotes around
character stringsž or łsuggest replacing IS with =ž). Among others, these abstracted suggestions comprise the SQL
error message design framework presented in Table 3. The following list shows some selected quotations from
the data.

• [on CockroachDB, T04] łThe error message tries to say that the LIKE operator does not understand lists, but it

says this in a very diicult way. A typical those-who-know-just-know type of message. Isn’t the point of error

messages to help us, rather than further separate us from professional users?ž
• [on MySQL, T08] łIt is unnecessary to state multiple times, or even once, that the query is erroneous. If it

weren’t erroneous, I would receive results instead of a message.ž
• [on MySQL, T08] łIt is astounding how the message cannot pinpoint such an obvious typo.ž
• [on VoltDB, T09] łSimply providing a line number would have been more helpful than this long error message.ž
• [on NuoDB, T10] łThe error was easy to locate, but ixing it just requires skill which I do not have, and the

error message is not helpful in this regard.ž
• [on NuoDB, T12] łThe error message was so comprehensive it almost ixed the error for me.ž
• [on Oracle Database, T13] łPerhaps the message is technically the correct way to describe the error, but from a

human perspective, this seems incomprehensible.ž

ACM Trans. Softw. Eng. Methodol.



Framework for SQL Error Message Design • 9

Table 3. The SQL error message design framework consists of three high-level themes consisting of a total of nine guidelines

Where
Provide line number: as accurately as possible, show the user on which line the error is.

Specify the error position: point to the position of the error on the erroneous line.

What

Explain what causes the error: describe what is missing, extraneous, ill-placed, or incorrect.

Explain why the error occurs: describe what principle is violated.

Place the most important information irst: let the user choose whether to read further.

How
Provide suggestions on how to ix the error: use reserved wording, as the intent of the user is unknown.

Provide working examples of similar query concepts: show how a query concept is used as a part of a query.

Remove unnecessary elements: remove error codes, host names etc., or move them to the end of the message.

Use plain English: use well-understood terms, or explain complex terms using simple natural language words.

First, two guidelines in the framework are closely related to where the error occurs. The data suggest that
providing the line number (and providing it correctly) was one of the most frequent suggestions for improvements.
Additionally, and while line breaks are not something SQL enforces, the data suggest that a line number is not
always enough to specify the error position accurately. One solution to such suggestion (also suggested by the
data) is to replicate the erroneous query or parts thereof, and specify the erroneous position using a free-standing
circumlex like some DBMSs already do (e.g., PostgreSQL in Fig. 17).

Second, three guidelines are closely associated with what elements should form the body of the error message.
The data suggest that novices want to know what causes the compiler to halt the interpretation of the query,
and providing the position of the error is not informative enough. Additionally, a frequent suggestion for
improvements was that the error message should explain why the error occurs. For example, placing a semicolon
in the middle of a query should result in an error message showing the line number and exact position of the error,
stating that there is a semicolon in the middle of a query (the what), and explaining that a semicolon is used to
terminate an SQL statement, and that placing a semicolon in the middle of a query is against this principle (the
why). Finally, the error message should be structured in a way that the most important parts for the user are
placed irst. This arguably helps professional users, who are arguably not as interested in hints or SQL examples
as novices.

Third, two guidelines concern how the user could or should proceed in ixing the erroneous query. The error
message should suggest how the user could ix the error. As the DBMS does not understand the intent of the user,
the wording in these suggestions should be reserved, as a suggested ix may point the user towards a ix that is
not the correct ix for the particular intent. Next, the error message should show examples of correctly using the
SQL concepts associated with the error, e.g., an erroneous expression should result in an error message showing
examples of correctly written expressions.

Finally, general themes in the data were the removal of unnecessary elements and the use of plain English (or
whatever the language is if the error messages are provided in some other language). For example, error codes,
host names, and the statement that the query is erroneous were seen as unnecessary information. The use of plain
English was also frequently suggested, as the environment is complex even without seemingly unnecessarily
convoluted sentences.

5.2 Suggested Improvements and Modifications

We present the results from the conventional content analysis for each of the sixteen tests in Appendix A
due to their length. Each of these igures consists of subigures illustrating (a) the erroneous query with the
erroneous part highlighted for readability, (b) respective ixed query, (c) suggested improvements derived with
conventional content analysis, with the number of occurrences, and (d) an example of how an error message

ACM Trans. Softw. Eng. Methodol.



10 • Toni Taipalus and Hilkka Grahn

could be reformulated based on the proposed error message design framework. It is worth noting that suggestions
with fewer than two mentions are not reported, as we deemed that one mention did not constitute a category.
Despite the highlights in Appendix A, the erroneous parts were not highlighted for the study participants, and
that the typographic details concerning, e.g., line breaks may difer from the tests proper due to horizontal space
limitations here. The example queries shown in the modiied error messages are intended as static examples, i.e.,
we do not intend the DBMS to generate dynamic examples based on the underlying database schema, although
with recent advances in large language models, this might be a feature to consider. All corresponding error
messages are presented in Appendix B.

6 DISCUSSION

6.1 General Discussion

This study pursued to examine what qualities of error messages explain the rate the participants succeeded to
correct the query they were shown and how would they improve the error messages. Utilizing the participants’
suggestions, we modiied the error messages used in this study and compiled a set of guidelines for error message
design (Table 3).
As can be observed, the queries with common syntax errors are simple in the test suite. Additionally, as the

test suite is based on previously identiied common syntax errors, the empirical observations underneath also
show that novices commit simple syntax errors [57]. Despite this, the error messages do not relect the simple
nature of the errors. Based on the error messages listed in Appendix B, it seems justiied to argue that many error
messages fail to identify the nature of the error correctly, identify the error position incorrectly, or both. This
arguably highlights the rather unfortunate state of error messages in many modern DBMSs, instead of begging
the question of why the test suite only considers simple syntax errors. Despite what a reader thinks about the
error message guidelines presented in this study or of those presented previously in scientiic literature, we
argue that all the DBMSs subject to this study have error messages that contain at least some elements that seem
unintuitive in facilitating query ixing. Table 4 lists characteristics typical to each DBMS. The table arguably
shows that many (if not all) of the design guidelines presented in this study have been implemented in at least
one of the DBMSs studied.

Research Goal 1, presented in Section 3.1, was concerned with previously identiied system message qualities
and how they afect SQL query ixing success. This was analyzed with binomial logistic regression. The results
of the regression analyses presented in Section 4, with three exceptions, failed to reject the null hypothesis.
This may indicate, at least with the data available, that general error message qualities do not explain SQL error
ixing, i.e., the general guidelines fail to particularize. In addition, it should be noted that all the percentages of
how much the three statistically signiicant models explained the success rate were very low. The results from
the qualitative analysis, however, suggest that the participants value the error message qualities proposed by
Shneiderman [47], with the exception that error messages should be positive. In a sense, the results from the
quantitative analyses are not in line with the results from the qualitative analyses. That is, the regression analyses
suggest that general system error message qualities do not afect query ixing, but nevertheless the results from
the content analyses rather uniformly suggest that if the error message qualities tested in the regression model
were not present in the error messages, the participants suggested adding these qualities.

Research Goal 2 was to formulate an SQL error message design framework derived from the data. Table 5
compares the guidelines presented in this study to those presented by Shneiderman [47], Traver [60], and Becker
et al. [7]. The table shows that most of our guidelines map to most of the guidelines presented in previous
studies, indicating that our study participants suggest improvements for error messages presented in previous
studies unknown to them. The only clear omission in our guidelines is that the error message should be positive.
According to our coding of the eight DBMS error messages, all DBMSs had at least one error message that was

ACM Trans. Softw. Eng. Methodol.



Framework for SQL Error Message Design • 11

Table 4. Typical characteristics of the SQL error messages of eight DBMSs; it is worth noting that these are typical

characteristics based only on the sixteen types of errors studied

DBMS Characteristics of SQL error messages

MySQL (with InnoDB) Sometimes contain error codes at the beginning of the message; both brief and wordy messages; general

suggestions to check the manual; line numbers sometimes present; sometimes replicates a part of the query;

non-uniform error messages.

Oracle Database Error codes at the beginning of the message; brief messages; no line numbers; general messages.

PostgreSQL No error codes; line numbers; speciic error position is indicated by a free-standing circumlex; sometimes

provides hints; replicates the erroneous line; complete sentences.

SQL Server Error codes and additional environmental variable information at the beginning of the message; line numbers;

a single message may identify multiple errors; replicates the erroneous position.

CockroachDB No error codes; does not explicitly state that there is an error; both brief and wordymessages; no line numbers;

sometimes the speciic error position is indicated by a free-standing circumlex; sometimes provides general

hints; sometimes replicates the query up to the position of the error.

SingleStore (with InnoDB) Error codes at the beginning of the message; general suggestions to check the manual; line numbers

sometimes present; sometimes replicates a part of the query.

NuoDB Error codes at the beginning of the message; sometimes replicates parts of the query; sometimes the speciic

error position is indicated by a free-standing circumlex; sometimes explains what was expected at the

erroneous position.

VoltDB No error codes; no line numbers; replicates the whole query; sometimes provides hints; sometimes explains

what was expected at the erroneous position.

not positive, meaning that all 311 participants were exposed to at least one non-positive error message. Our
data contained only three mentions (all from a single participant, approximately 0.3% of all participants) that
the error message could be rephrased without the use of dramatic words. This observation may be biased due
to the fact that the participants were recruited from a single university. Becker et al. [7] summarize that in the
context of programming language error messages, the efects of a positive tone have been empirically tested
by merely two studies, while 14 studies on the subject are of historical or anecdotal nature. A closer inspection
of the two studies reveals that in the irst study [31], 29% of the 77 participants observed that the word illegal

may intimidate the user. In the second study [32], six of the thirteen participants claimed that the error messages
under observation were friendly, yet it was not further discussed whether friendly was considered helpful. Both
our quantitative and qualitative results contest the recommendation that error messages should be positive. In
fact, in test T16, a positive tone even reduced the odds of successful query ixing. Our interpretation of this result
is that the positive error messages in test T16 simply had some other quality which hindered query ixing, rather
than positive tone being detrimental to query ixing.

Research Goal 3 was to investigate how the error messages should be improved according to the participants,
and Research Goal 4 was to propose examples of modiied error messages based on the suggested improvements.
The modiied error messages are presented in Appendix A. We listed specify the error position as one of the
guidelines. It seems both crucial and needless to expand that the error message must provide the error position
correctly, something that both programming language error messages [60] as well as SQL error messages (e.g.,
VoltDB in Fig. 24 in Appendix B) sometimes fail to do. In cases when reliably pinpointing the error is not possible,
the error message should provide a near position like some DBMSs already do, although even these positions
are not always accurate, or replicate a part of the query which does not contain the error (e.g., SingleStore in
Fig. 24 in Appendix B). As demonstrated with a quotation in Section 5.1, at least one participant raised a concern
that simply providing the line number of the erroneous part would be more informative than the error message
provided. Although the consensus view seems to be that feedback with examples is more useful than binary
feedback (correct/incorrect) [14], even this might not hold true when the error message provides unnecessary

ACM Trans. Softw. Eng. Methodol.



12 • Toni Taipalus and Hilkka Grahn

Table 5. The SQL error message design framework guidelines and their broadly interpreted counterparts in previous literature

SQL error message design

guidelines (this study)

General system message guide-

lines described by Shneiderman

[47]

Programming language error

message guidelines presented by

Traver [60]

Programming language error

message guidelines compiled by

Becker et al. [7]

Provide line number Speciic Speciicity; Locality Provide context

Specify the error position Speciic Speciicity; Locality Provide context

Explain what causes the error Constructive (not present) Provide scafolding

Explain why the error occurs (not present) (not present) Allow dynamic interaction; Pro-

vide scafolding; Use logical ar-

gumentation

Place the most important infor-

mation irst

(not present) Extensible help Reduce cognitive load

Provide suggestions on how to

ix the error

Constructive Constructive guidance Show solutions or hints

Provide working examples of

similar query concepts

(not present) Extensible help Show examples

Remove unnecessary elements Brief Clarity and brevity Reduce cognitive load

Use plain English Comprehensible Clarity and brevity; Programmer

language

Increase readability

(not present) Positive Positive tone Use a positive tone

(not present) (not present) (not present) Provide errors at the right time

(not present) (not present) Context-insensitivity; Nonan-

thropomorphism; Consistency;

Visual design

(not present)

or incorrect feedback. For example, the error message of VoltDB shown in Fig. 22 in Appendix B replicates the
erroneous query in its entirety, yet does not provide the error position, demonstrating an error message that is
neither brief nor speciic. Also from the perspective of speciicity and comprehensiveness, the error messages of
VoltDB and SQL Server in Fig. 22 in Appendix B are diferent. Considering that the error in the query in Fig. 22(a)
is that the subquery returns too many columns for the IN operator which is in this case only expecting values
from one column, the cause of the error in VoltDB in Fig. 22 in Appendix B is ambiguous, stating łrow column
count mismatchž, which seems to imply that that the error is somehow related to rows. The error can be ixed
by making sure that there is the same number of columns in the upper-level query’s expression concerning IN,
as in the subquery’s SELECT clause. The error message of SQL Server in Fig. 22 in Appendix B, however, uses a
complete sentence and conveys the cause of the error more accurately.

Regarding suggestions on how to ix errors, Marceau et al. [26] suggest that novices can follow suggestions on
how to ix an error without understanding what causes the error and whether the suggestion is even the right ix.
This may be problematic from an educational perspective, as the goal is arguably not to ix an error per se but to
learn how to write queries. Although making mistakes is part of any learning process, simply committing errors
for the sake of receiving hints and suggestions on how to correctly write a query seems counterproductive to
learning. We believe that by explaining what causes the error and why the error occurs, the error message can

ACM Trans. Softw. Eng. Methodol.



Framework for SQL Error Message Design • 13

provide a more deep-rooted understanding to a novice, as opposed to merely providing a suggestion on how to
ix the error.

Both Shneiderman [47] and Traver [60] have suggested that error messages should be brief, and the need for
brevity is usually argued with the need to reduce cognitive load [46, 51]. Four of our guidelines, provide line
number, specify the error position, place the most important information irst, and remove unnecessary elements can
be viewed as means to reduce cognitive load, yet it is worth noting that our data suggest very few observations
on error message brevity per se. Based on the data, it seems reasonable to argue that brevity in itself is not a
desirable goal for an SQL error message, as it can be seen to contradict guidelines such as using plain English
with complete sentences, or with the guidelines of providing hints and suggestions. Additionally, some errors
arguably cannot be described with both clarity and brevity, as the situations in which the errors occur, or why
the error occurs may be complex. Therefore, we present that cognitive load should be reduced with other means
such as the removal of unnecessary elements and ordering of information, rather than with brief error messages.

Previous results from scientiic eforts toward more efective programming language error messages have been
inconclusive, or not implemented by the industry, which somewhat diminishes the framework presented in this
study. For example, some studies have tested enhanced error messages with novices, yet concluded that there
are no positive efects [15, 40]. In contrast, at least one study has shown that the utilization of enhanced error
messages results in fewer errors, and fewer repetitions of a similar error [6]. Nevertheless, it has been criticized
that over several decades, error message guidelines revolve around similar themes, and despite the rise of new
programming languages, the same problems persist [7]. In our opinion, there have also been exceptions, such
as the error messages presented in the programming language Rust. From a critical perspective, this study is
also yet another one proposing guidelines for error message design, albeit in the novel context of SQL. Despite
the criticism presented about programming language error messages, Table 5 shows that there are fundamental
diferences between the error messages in diferent DBMSs and that the efects of these diferences have also
been shown to afect the perceived usefulness for error inding and ixing [54]. Therefore, it seems reasonable to
argue that enhancing SQL error messages is a desirable goal for both industry and education, even though our
quantitative analysis does not support the view that some error message qualities afect query ixing success rates.
In other words, the efects of enhanced error messages may be explained with other variables besides success,
not captured in our data or regression model.

Additionally, online learning environments have been proposed for SQL learning for decades [12], and several
learning environments that provide enhanced error messages have been studied in programming education
[8, 40]. Implementing enhanced error messages into learning environments seems like a natural and relatively
fast way of helping novices, as well as acquiring empirical indings on the efectiveness of said error messages.
The potential problems with such learning environments are the maintenance overhead and the fact that many of
such environments are closed or proprietary, and to our knowledge not widely utilized in industry. Furthermore,
in terms of SQL, which can be implemented by one of several diferent DBMSs with diferent internals, either the
maintenance of the learning environment is even more laborious than that of programming language learning
environments, or the SQL learning environment only supports a small subset of DBMSs. One workaround to
maintenance could be to check the query syntax on the learning environment’s side, which in turn risks the
situation where the learning environment evaluates the query syntax error-free, yet the underlying DBMS detects
a syntax error (or vice versa). Given these considerations, we deem it beneicial for education that the DBMS
vendors undertake the task of enhancing SQL error messages to consider design guidelines. That being said,
the task is not as straightforward as changing the character strings provided by the compiler [4], and arguably
requires refactoring of the query parsing process with, e.g., reclassiication [64] or perhaps by utilizing the work
done on automatic error correction in SQL [37], or with large language models. However, it is unclear how
DBMSs identify error messages, how diferent these implementations are between diferent DBMSs [52], and how
technically diicult it is to implement modiied error messages. Finally, industry may be (rightfully) concerned

ACM Trans. Softw. Eng. Methodol.



14 • Toni Taipalus and Hilkka Grahn

about investing in enhancing error messages which have not been scientiically shown to afect the general user
experience.

6.2 Limitations and Threats to Validity

The limitations concerning the scope of this study are that the error message design framework is solely based
on data retrieval, and not on other types of SQL statements such as data insertion or updating and that we only
considered the sixteen most common syntax errors. The main reason behind limiting the scope of this study
is the extent of previous studies. In terms of diferent SQL statements, data retrieval is the most well-studied
in human-centered contexts [56], and provided us with a limited yet scientiically justiied starting point with
reports on which errors are the most common [57], and how these common errors can be tested [54]. Another
limitation is that many of the syntax errors can be interpreted in multiple ways (e.g., T08 misspellings), yet we
only tested each syntax error with one query. Furthermore, all the syntax errors were tested with relatively
simple queries. Arguably, more complex queries emphasize the error message qualities even more, e.g., specifying
the error position in the error message is more valuable in a query spanning 50 lines when compared to a query
spanning 5 lines. Finally, we only tested the syntax errors using novice participants. This could be seen as a
limitation afecting the generalizability of the results, yet given that many previously reported guidelines have
been based on expert opinion [47, 60], and that this expert opinion has been critiqued [7], we believe the use
of novices is a justiied approach towards illing an identiied research gap, rather than a limitation. The use of
appropriate study participants has been argued for in detail in several studies [18, 19].
Regarding the regression analyses, it is possible that there may be a hidden factor or factors (i.e., predictors)

not present in the data that afect query ixing success. Furthermore, the dependent variable (i.e., query ixing
success) may not be a itting metric for error message efectiveness. In the context of programming languages, it
has been speculated that time taken to ix an error might be such a metric [3, 41], but time was not measured in
this study due to the shortcomings of our data collection instrument. In hindsight, measuring time would have
been informative and should be taken into account in further studies if the efects of the modiied error messages
are studied. Finally, it is possible that our coding of the error messages (Appendix B) captures Shneiderman’s
[47] error message qualities incorrectly. We have explained the general nature of said guidelines in Section 3.3,
and based our coding on a rubric reported in the same section to mitigate this threat and make the coding more
transparent.
Another threat to validity is the unnatural environment in which the participants ixed their queries. As

explained in Section 2.1, the user typically engages in a feedback loop with the compiler. In this study, however,
the participants ixed queries written by someone other than themselves (i.e., us), and received no feedback on
whether their ixes were at least syntactically correct. As we wanted to base the error message design framework
on previously identiied common syntax errors, designing the research setting in another way would have
introduced other threats to validity. Nevertheless, the results should be interpreted while taking the environment
into account.

6.3 Future Directions

Although our framework was constructed based on empirical indings, this study provides no empirical evidence
if these modiied error messages actually facilitate, e.g., error ixing success rate, the time required to ix errors
or user experience in general. For this reason, we have refrained from calling the new error message examples
enhanced or improved. An intuitive topic for future research is to test the efectiveness of these messages using
several metrics and iterate the messages based on empirical indings.
A potential Ð and to our knowledge little studied Ð topic is the suggestions given by compilers. In our data,

several participants criticized the error messages for giving misleading suggestions, or identifying the erroneous

ACM Trans. Softw. Eng. Methodol.



Framework for SQL Error Message Design • 15

position incorrectly. Although we did not systematically examine such situations in our data, it seems justiiable
to speculate whether certain error messages are even detrimental to error ixing. Future research could categorize
the queries the participants had ixed as, e.g.,more incorrect, still incorrect, incorrect in a diferent way,more correct,
and correct, and examine whether the error message plays a part in the evolution of the originally erroneous
query.

Finally, both Becker et al. [7] and Traver [60] briely discuss the interaction between the human user and the
compiler through a more interactive user interface than plain text. For example, such a simple modiication as
hyperlinks in the error message pointing to more extensive documentation is something our participants also
suggested. External online documentation would also make ixes and updates to error messages more efortless,
without requiring updating the DBMS. Additionally, the error messages may be provided in a form other than
textual, if the environment allows [33]. While more rich feedback may arguably present problems in development
contexts (as opposed to learning contexts) when, e.g., the DBMS error message is replicated in a plain text error
stack, from an educational and human-computer interaction perspective, such richer error messages are an
interesting future topic.

7 CONCLUSION

In this study, we set out to investigate if and how general system error message qualities explain SQL syntax
error ixing success rates. The results indicate, at least in the scope of this study, that the general error messages
qualities do not explain query ixing success. We also analyzed qualitative data regarding suggestions on how
to improve SQL error messages, and formulated a framework for SQL error message design. The framework
guides error message design towards specifying where the error occurs, what causes the error and why, providing
suggestions on how to ix the error, and showing examples of similar query concepts. Additionally, the framework
emphasizes the ordering of information in the error message, the removal of unnecessary elements, and the use of
plain English. Finally, and based on the formulated framework, we applied the framework and showed examples
of how to design error messages for the sixteen most common SQL syntax errors. We suggest the industry to
follow either these or previously published general system message guidelines.

ACKNOWLEDGMENTS

The authors thank all who participated in the study, as well as the anonymous reviewers for their insights on
how to improve the paper.

REFERENCES

[1] Alireza Ahadi, Vahid Behbood, Arto Vihavainen, Julia Prior, and Raymond Lister. 2016. Students’ Syntactic Mistakes in Writing Seven

Diferent Types of SQL Queries and its Application to Predicting Students’ Success. In Proceedings of the 47th ACM Technical Symposium

on Computing Science Education (SIGCSE). ACM Press, New York, New York, USA, 401ś406. https://doi.org/10.1145/2839509.2844640

[2] Alireza Ahadi, Julia Prior, Vahid Behbood, and Raymond Lister. 2016. Students’ Semantic Mistakes in Writing Seven Diferent Types of

SQL Queries. In Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer Science Education (ITiCSE). ACM

Press, New York, New York, USA, 272ś277. https://doi.org/10.1145/2899415.2899464

[3] Umair Z. Ahmed, Renuka Sindhgatta, Nisheeth Srivastava, and Amey Karkare. 2019. Targeted Example Generation for Compilation Errors.

In 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE. https://doi.org/10.1109/ase.2019.00039

[4] Andrei Alexandrescu. 1999. Better template error messages. C/C++ Users Journal 17 (1999), 37ś47.

[5] Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emerson Murphy-Hill, and Chris Parnin. 2017. Do Developers

Read Compiler Error Messages?. In 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE). IEEE. https://doi.org/

10.1109/icse.2017.59

[6] Brett A. Becker. 2016. An Efective Approach to Enhancing Compiler Error Messages. In Proceedings of the 47th ACM Technical Symposium

on Computing Science Education (SIGCSE). ACM Press. https://doi.org/10.1145/2839509.2844584

[7] Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bouvier, Brian Harrington, Amir Kamil, Amey Karkare,

Chris McDonald, Peter-Michael Osera, Janice L. Pearce, and James Prather. 2019. Compiler Error Messages Considered Unhelpful.

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/2839509.2844640
https://doi.org/10.1145/2899415.2899464
https://doi.org/10.1109/ase.2019.00039
https://doi.org/10.1109/icse.2017.59
https://doi.org/10.1109/icse.2017.59
https://doi.org/10.1145/2839509.2844584


16 • Toni Taipalus and Hilkka Grahn

In Proceedings of the Working Group Reports on Innovation and Technology in Computer Science Education (ITiCSE). ACM. https:

//doi.org/10.1145/3344429.3372508

[8] Brett A. Becker, Graham Glanville, Ricardo Iwashima, Claire McDonnell, Kyle Goslin, and Catherine Mooney. 2016. Efective compiler

error message enhancement for novice programming students. Computer Science Education 26, 2-3 (2016), 148ś175. https://doi.org/10.

1080/08993408.2016.1225464

[9] Brett A. Becker, Cormac Murray, Tianyi Tao, Changheng Song, Robert McCartney, and Kate Sanders. 2018. Fix the First, Ignore the Rest:

Dealing with Multiple Compiler Error Messages. In Proceedings of the 49th ACM Technical Symposium on Computer Science Education

(SIGCSE ’18). Association for Computing Machinery, New York, NY, USA, 634ś639. https://doi.org/10.1145/3159450.3159453

[10] A. Faye Borthick, Paul L. Bowen, S.T Liew, and Fiona H. Rohde. 2001. The efects of normalization on end-user query errors: An

experimental evaluation. International Journal of Accounting Information Systems 2, 4 (2001), 195 ś 221. https://doi.org/10.1016/S1467-

0895(01)00023-9

[11] Stefan Brass and Christian Goldberg. 2006. Semantic errors in SQL queries: A quite complete list. Journal of Systems and Software 79, 5

(2006), 630ś644. https://doi.org/10.1016/j.jss.2005.06.028

[12] Peter Brusilovsky, Sergey Sosnovsky, Michael V. Yudelson, Danielle H. Lee, Vladimir Zadorozhny, and Xin Zhou. 2010. Learning SQL

Programming with Interactive Tools: From Integration to Personalization. ACM Transactions on Computing Education 9, 4, Article 19

(2010), 15 pages. https://doi.org/10.1145/1656255.1656257

[13] Kathleen M. Cauley and James H. McMillan. 2010. Formative Assessment Techniques to Support Student Motivation and Achievement.

The Clearing House: A Journal of Educational Strategies, Issues and Ideas 83, 1 (2010), 1ś6. https://doi.org/10.1080/00098650903267784

[14] Loris D’antoni, Dileep Kini, Rajeev Alur, Sumit Gulwani, Mahesh Viswanathan, and Björn Hartmann. 2015. How Can Automatic

Feedback Help Students Construct Automata? ACM Transactions on Computer-Human Interaction 22, 2, Article 9 (2015), 24 pages.

https://doi.org/10.1145/2723163

[15] Paul Denny, Andrew Luxton-Reilly, and Dave Carpenter. 2014. Enhancing Syntax Error Messages Appears Inefectual. In Proceedings of

the 2014 Conference on Innovation & Technology in Computer Science Education (ITiCSE). Association for Computing Machinery, New

York, NY, USA, 273ś278. https://doi.org/10.1145/2591708.2591748

[16] Paul Denny, James Prather, Brett A. Becker, Catherine Mooney, John Homer, Zachary C Albrecht, and Garrett B. Powell. 2021. On

Designing Programming Error Messages for Novices: Readability and its Constituent Factors. In Proceedings of the 2021 CHI Conference

on Human Factors in Computing Systems. ACM. https://doi.org/10.1145/3411764.3445696

[17] G.M. Donahue. 2001. Usability and the bottom line. IEEE Software 18, 1 (2001), 31ś37. https://doi.org/10.1109/52.903161

[18] Davide Falessi, Natalia Juristo, Claes Wohlin, Burak Turhan, Jürgen Münch, Andreas Jedlitschka, and Markku Oivo. 2017. Empirical

software engineering experts on the use of students and professionals in experiments. Empirical Software Engineering 23, 1 (2017),

452ś489. https://doi.org/10.1007/s10664-017-9523-3

[19] Robert Feldt, Thomas Zimmermann, Gunnar R. Bergersen, Davide Falessi, Andreas Jedlitschka, Natalia Juristo, Jürgen Münch, Markku

Oivo, Per Runeson, Martin Shepperd, Dag I. K. Sjùberg, and Burak Turhan. 2018. Four commentaries on the use of students and

professionals in empirical software engineering experiments. Empirical Software Engineering 23, 6 (2018), 3801ś3820. https://doi.org/10.

1007/s10664-018-9655-0

[20] Mrunal Gawade and Martin Kersten. 2012. Stethoscope: A Platform for Interactive Visual Analysis of Query Execution Plans. Proceedings

of the VLDB Endowment 5, 12 (2012), 1926ś1929. https://doi.org/10.14778/2367502.2367539

[21] Goetz Graefe. 1993. Query Evaluation Techniques for Large Databases. Comput. Surveys 25, 2 (1993), 73ś169. https://doi.org/10.1145/

152610.152611

[22] Joseph M. Hellerstein, Michael Stonebraker, and James Hamilton. 2007. Architecture of a Database System. Foundations and Trends in

Databases 1, 2 (2007), 141ś259. https://doi.org/10.1561/1900000002

[23] Richard Higgins, Peter Hartley, and Alan Skelton. 2002. The Conscientious Consumer: Reconsidering the role of assessment feedback in

student learning. Studies in Higher Education 27, 1 (2002), 53ś64. https://doi.org/10.1080/03075070120099368

[24] Hsiu-Fang Hsieh and Sarah E Shannon. 2005. Three Approaches to Qualitative Content Analysis. Qualitative Health Research 15, 9

(2005), 1277ś1288. https://doi.org/10.1177/1049732305276687

[25] E. Kantorowitz and H. Laor. 1986. Automatic generation of useful syntax error messages. Software: Practice and Experience 16, 7 (1986),

627ś640. https://doi.org/10.1002/spe.4380160703

[26] Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. 2011. Mind Your Language: On Novices’ Interactions with Error Messages.

In Proceedings of the 10th SIGPLAN Symposium on New Ideas, New Paradigms, and Relections on Programming and Software. Association

for Computing Machinery, New York, NY, USA, 3ś18. https://doi.org/10.1145/2048237.2048241

[27] Davin McCall and Michael Kölling. 2019. A New Look at Novice Programmer Errors. ACM Transactions on Computing Education 19, 4,

Article 38 (2019), 30 pages. https://doi.org/10.1145/3335814

[28] Daphne Miedema, Efthimia Aivaloglou, and George Fletcher. 2021. Identifying SQL Misconceptions of Novices: Findings from a

Think-Aloud Study. In Proceedings of the 17th ACM Conference on International Computing Education Research. Association for Computing

Machinery, New York, NY, USA, 355ś367. https://doi.org/10.1145/3446871.3469759

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1080/08993408.2016.1225464
https://doi.org/10.1080/08993408.2016.1225464
https://doi.org/10.1145/3159450.3159453
https://doi.org/10.1016/S1467-0895(01)00023-9
https://doi.org/10.1016/S1467-0895(01)00023-9
https://doi.org/10.1016/j.jss.2005.06.028
https://doi.org/10.1145/1656255.1656257
https://doi.org/10.1080/00098650903267784
https://doi.org/10.1145/2723163
https://doi.org/10.1145/2591708.2591748
https://doi.org/10.1145/3411764.3445696
https://doi.org/10.1109/52.903161
https://doi.org/10.1007/s10664-017-9523-3
https://doi.org/10.1007/s10664-018-9655-0
https://doi.org/10.1007/s10664-018-9655-0
https://doi.org/10.14778/2367502.2367539
https://doi.org/10.1145/152610.152611
https://doi.org/10.1145/152610.152611
https://doi.org/10.1561/1900000002
https://doi.org/10.1080/03075070120099368
https://doi.org/10.1177/1049732305276687
https://doi.org/10.1002/spe.4380160703
https://doi.org/10.1145/2048237.2048241
https://doi.org/10.1145/3335814
https://doi.org/10.1145/3446871.3469759


Framework for SQL Error Message Design • 17

[29] Daphne Miedema, George Fletcher, and Efthimia Aivaloglou. 2022. Expert Perspectives on Student Errors in SQL. ACM Transactions on

Computing Education (2022). https://doi.org/10.1145/3551392

[30] Daphne Miedema, George Fletcher, and Efthimia Aivaloglou. 2022. So Many Brackets! An Analysis of How SQL Learners (Mis)Manage

Complexity during Query Formulation. In Proceedings of the 30th IEEE/ACM International Conference on Program Comprehension (ICPC

’22). Association for Computing Machinery, New York, NY, USA, 122ś132. https://doi.org/10.1145/3524610.3529158

[31] Rolf Molich and Jakob Nielsen. 1990. Improving a Human-Computer Dialogue. Commun. ACM 33, 3 (1990), 338ś348. https:

//doi.org/10.1145/77481.77486

[32] Christian Murphy, Eunhee Kim, Gail Kaiser, and Adam Cannon. 2008. Backstop: A Tool for Debugging Runtime Errors. In Proceedings

of the 39th SIGCSE Technical Symposium on Computer Science Education (SIGCSE). Association for Computing Machinery, 173ś177.

https://doi.org/10.1145/1352135.1352193

[33] Emerson Murphy-Hill and Andrew P. Black. 2012. Programmer-Friendly Refactoring Errors. IEEE Transactions on Software Engineering

38, 6 (2012), 1417ś1431. https://doi.org/10.1109/TSE.2011.110

[34] Jakob Nielsen. 1994. Enhancing the Explanatory Power of Usability Heuristics. In Conference Companion on Human Factors in

Computing Systems (Boston, Massachusetts, USA) (CHI ’94). Association for Computing Machinery, New York, NY, USA, 210. https:

//doi.org/10.1145/259963.260333

[35] Jakob Nielsen and Rolf Molich. 1990. Heuristic Evaluation of User Interfaces. In Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems (Seattle, Washington, USA) (CHI ’90). Association for Computing Machinery, New York, NY, USA, 249ś256.

https://doi.org/10.1145/97243.97281

[36] Marie-Hélène Nienaltowski, Michela Pedroni, and Bertrand Meyer. 2008. Compiler error messages. ACM SIGCSE Bulletin 40, 1 (2008),

168ś172. https://doi.org/10.1145/1352322.1352192

[37] Shunsuke Otawa, Kento Goto, and Motomichi Toyama. 2021. Automatic Correction of Syntax Errors in SuperSQL Queries. In Proceedings

of the 22nd International Conference on Information Integration and Web-Based Applications & Services (iiWAS ’20). Association for

Computing Machinery, New York, NY, USA, 28ś33. https://doi.org/10.1145/3428757.3429131

[38] J.F. Pane, B.A. Myers, and L.B. Miller. 2002. Using HCI techniques to design a more usable programming system. In Proceedings IEEE 2002

Symposia on Human Centric Computing Languages and Environments. IEEE Computing Society. https://doi.org/10.1109/hcc.2002.1046372

[39] Andrew Pavlo and Matthew Aslett. 2016. What’s Really New with NewSQL? SIGMOD Record 45, 2 (2016), 45ś55. https://doi.org/10.

1145/3003665.3003674

[40] Raymond S. Pettit, John Homer, and Roger Gee. 2017. Do Enhanced Compiler Error Messages Help Students? Results Inconclusive.

In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education (Seattle, Washington, USA) (SIGCSE ’17).

Association for Computing Machinery, New York, NY, USA, 465ś470. https://doi.org/10.1145/3017680.3017768

[41] James Prather, Raymond Pettit, Kayla HolcombMcMurry, Alani Peters, John Homer, Nevan Simone, andMaxine Cohen. 2017. On Novices’

Interaction with Compiler Error Messages: A Human Factors Approach. In Proceedings of the 2017 ACM Conference on International

Computing Education Research (Tacoma, Washington, USA) (ICER ’17). Association for Computing Machinery, New York, NY, USA,

74ś82. https://doi.org/10.1145/3105726.3106169

[42] Gary B. Randolph. 2003. The Forest and the Trees: Using Oracle and SQL Server Together to Teach ANSI-standard SQL. In Proceedings

of the 4th ACM Conference on Information Technology Curriculum (CITC) (CITC4 ’03). ACM, New York, NY, USA, 234ś236. https:

//doi.org/10.1145/947121.947174

[43] Phyllis Reisner. 1977. Use of Psychological Experimentation as an Aid to Development of a Query Language. IEEE Transactions on

Software Engineering SE-3, 3 (1977), 218ś229. https://doi.org/10.1109/tse.1977.231131

[44] Phyllis Reisner. 1981. Human Factors Studies of Database Query Languages: A Survey and Assessment. Comput. Surveys 13, 1 (March

1981), 13ś31. https://doi.org/10.1145/356835.356837

[45] Phyllis Reisner, Raymond F. Boyce, and Donald D. Chamberlin. 1975. Human factors evaluation of two data base query languages. In

Proceedings of the national computer conference and exposition AFIPS '75. ACM Press. https://doi.org/10.1145/1499949.1500036

[46] Shin-Shing Shin. 2020. Structured Query Language Learning: Concept Map-Based Instruction Based on Cognitive Load Theory. IEEE

Access 8 (2020), 100095ś100110. https://doi.org/10.1109/ACCESS.2020.2997934

[47] Ben Shneiderman. 1982. Designing computer system messages. Commun. ACM 25, 9 (1982), 610ś611. https://doi.org/10.1145/358628.

358639

[48] Ben Shneiderman, Catherine Plaisant, Maxine S Cohen, Steven Jacobs, Niklas Elmqvist, and Nicholas Diakopoulos. 2016. Designing the

user interface: strategies for efective human-computer interaction. Pearson.

[49] John B. Smelcer. 1995. User errors in database query composition. International Journal of Human-Computer Studies 42, 4 (1995), 353ś381.

https://doi.org/10.1006/ijhc.1995.1017

[50] Toni Taipalus. 2020. The efects of database complexity on SQL query formulation. Journal of Systems and Software 165 (2020), 110576.

https://doi.org/10.1016/j.jss.2020.110576

[51] Toni Taipalus. 2020. Explaining Causes Behind SQL Query Formulation Errors. In 2020 IEEE Frontiers in Education Conference (FIE). 1ś9.

https://doi.org/10.1109/FIE44824.2020.9274114

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/3551392
https://doi.org/10.1145/3524610.3529158
https://doi.org/10.1145/77481.77486
https://doi.org/10.1145/77481.77486
https://doi.org/10.1145/1352135.1352193
https://doi.org/10.1109/TSE.2011.110
https://doi.org/10.1145/259963.260333
https://doi.org/10.1145/259963.260333
https://doi.org/10.1145/97243.97281
https://doi.org/10.1145/1352322.1352192
https://doi.org/10.1145/3428757.3429131
https://doi.org/10.1109/hcc.2002.1046372
https://doi.org/10.1145/3003665.3003674
https://doi.org/10.1145/3003665.3003674
https://doi.org/10.1145/3017680.3017768
https://doi.org/10.1145/3105726.3106169
https://doi.org/10.1145/947121.947174
https://doi.org/10.1145/947121.947174
https://doi.org/10.1109/tse.1977.231131
https://doi.org/10.1145/356835.356837
https://doi.org/10.1145/1499949.1500036
https://doi.org/10.1109/ACCESS.2020.2997934
https://doi.org/10.1145/358628.358639
https://doi.org/10.1145/358628.358639
https://doi.org/10.1006/ijhc.1995.1017
https://doi.org/10.1016/j.jss.2020.110576
https://doi.org/10.1109/FIE44824.2020.9274114


18 • Toni Taipalus and Hilkka Grahn

[52] Toni Taipalus. 2023. Query Execution Plans and Semantic Errors: Usability and Educational Opportunities. In Extended Abstracts of the

2023 CHI Conference on Human Factors in Computing Systems (Hamburg, Germany) (CHI EA ’23). Association for Computing Machinery,

New York, NY, USA, Article 239, 6 pages. https://doi.org/10.1145/3544549.3585794

[53] Toni Taipalus and Hilkka Grahn. 2023. NewSQL Database Management System Compiler Errors: Efectiveness and Use-

fulness. International Journal of HumanśComputer Interaction (2023), 1ś12. https://doi.org/10.1080/10447318.2022.2108648

arXiv:https://doi.org/10.1080/10447318.2022.2108648

[54] Toni Taipalus, Hilkka Grahn, and Hadi Ghanbari. 2021. Error messages in relational database management systems: A comparison of

efectiveness, usefulness, and user conidence. Journal of Systems and Software 181 (2021), 111034. https://doi.org/10.1016/j.jss.2021.111034

[55] Toni Taipalus and Piia Perälä. 2019. What to Expect and What to Focus on in SQL Query Teaching. In Proceedings of the 50th ACM

Technical Symposium on Computer Science Education (SIGCSE) (SIGCSE ’19). ACM, New York, NY, USA, 198ś203. https://doi.org/10.1145/

3287324.3287359

[56] Toni Taipalus and Ville Seppänen. 2020. SQL Education: A Systematic Mapping Study and Future Research Agenda. ACM Transactions

on Computing Education 20, 3, Article 20 (2020), 33 pages. https://doi.org/10.1145/3398377

[57] Toni Taipalus, Mikko Siponen, and Tero Vartiainen. 2018. Errors and Complications in SQL Query Formulation. ACM Transactions on

Computing Education 18, 3, Article 15 (2018), 29 pages. https://doi.org/10.1145/3231712

[58] Jess Tan, Desmond Yeo, Rachael Neoh, Huey-Eng Chua, and Sourav S Bhowmick. 2022. MOCHA: A Tool for Visualizing Impact of

Operator Choices in Query Execution Plans for Database Education. Proceedings of the VLDB Endowment 15, 12 (2022), 3602ś3605.

https://doi.org/10.14778/3554821.3554854

[59] Heikki Topi, Kate M. Kaiser, Janice C. Sipior, Joseph S. Valacich, J. F. Nunamaker, Jr., G. J. de Vreede, and Ryan Wright. 2010. Curriculum

Guidelines for Undergraduate Degree Programs in Information Systems. Technical Report. New York, NY, USA. https://dl.acm.org/citation.

cfm?id=2593310

[60] V. Javier Traver. 2010. On Compiler Error Messages: What They Say and What They Mean. Advances in Human-Computer Interaction

(2010), 1ś26. https://doi.org/10.1155/2010/602570

[61] Weiguo Wang, Sourav S. Bhowmick, Hui Li, Shaiq Joty, Siyuan Liu, and Peng Chen. 2021. Towards Enhancing Database Education:

Natural Language Generation Meets Query Execution Plans. In Proceedings of the 2021 International Conference on Management of Data.

Association for Computing Machinery, New York, NY, USA, 1933ś1945. https://doi.org/10.1145/3448016.3452822

[62] C. Welty. 1985. Correcting user errors in SQL. International Journal of Man-Machine Studies 22, 4 (1985), 463ś477. https://doi.org/10.

1016/s0020-7373(85)80051-1

[63] Charles Welty and David W. Stemple. 1981. Human factors comparison of a procedural and a nonprocedural query language. ACM

Transactions on Database Systems 6, 4 (1981), 626ś649. https://doi.org/10.1145/319628.319656

[64] John Wrenn and Shriram Krishnamurthi. 2017. Error messages are classiiers: a process to design and evaluate error messages. In

Proceedings of the 2017 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Relections on Programming and

Software. ACM. https://doi.org/10.1145/3133850.3133862

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/3544549.3585794
https://doi.org/10.1080/10447318.2022.2108648
https://arxiv.org/abs/https://doi.org/10.1080/10447318.2022.2108648
https://doi.org/10.1016/j.jss.2021.111034
https://doi.org/10.1145/3287324.3287359
https://doi.org/10.1145/3287324.3287359
https://doi.org/10.1145/3398377
https://doi.org/10.1145/3231712
https://doi.org/10.14778/3554821.3554854
https://dl.acm.org/citation.cfm?id=2593310
https://dl.acm.org/citation.cfm?id=2593310
https://doi.org/10.1155/2010/602570
https://doi.org/10.1145/3448016.3452822
https://doi.org/10.1016/s0020-7373(85)80051-1
https://doi.org/10.1016/s0020-7373(85)80051-1
https://doi.org/10.1145/319628.319656
https://doi.org/10.1145/3133850.3133862


Framework for SQL Error Message Design • 19

A SUGGESTED IMPROVEMENTS AND MODIFIED ERROR MESSAGES

SELECT name

FROM supplier

JOIN delivery

ON (supplier.id = delivery.supplier_id)

JOIN product

ON (delivery.product_id = product.id)

WHERE product.price_usd > 50

AND product.brand = 'Apple ';

(a) Erroneous query

SELECT supplier.name

FROM supplier

JOIN delivery

ON (supplier.id = delivery.supplier_id)

JOIN product

ON (delivery.product_id = product.id)

WHERE product.price_usd > 50

AND product.brand = 'Apple ';

(b) Fixed query

Suggested improvement Count (out of 108)

Suggest how to ix the error 25 (23%)

Rephrase the error message in plain English 19 (18%)

Specify the line number of the erroneous part 18 (17%)

Specify error position and cause more accurately 10 (9%)

Tell which tables contain the column that causes the error 6 (6%)

Explain that there are multiple column with a similar name 5 (5%)

Rephrase the error message in a way that the important parts come irst 5 (5%)

Explain that table alias or identiier is missing 3 (3%)

Remove unclear terms (łield listž) 2 (2%)

(c) Suggestions for improvements

Line 1: SELECT name

^

There are multiple columns named 'name '.

HINT: Did you mean column 'name ' in table 'supplier ' or in table 'product '? Use identifiers to refer to

columns with similar names. Typical identifiers are table names with the following syntax: <table >.<

column >.

EXAMPLES:

SELECT product.name

FROM product;

(d) Modified error message

Fig. 1. Test T01 (ambiguous column)

ACM Trans. Softw. Eng. Methodol.



20 • Toni Taipalus and Hilkka Grahn

SELECT fname , sname

FROM employee

WHERE id IN

(SELECT employee_id

FROM works

WHERE project_id IN

(SELECT id

FROM project

WHERE name = QA

OR name = HR)

);

(a) Erroneous query

SELECT fname , sname

FROM employee

WHERE id IN

(SELECT employee_id

FROM works

WHERE project_id IN

(SELECT id

FROM project

WHERE name = 'QA '

OR name = 'HR ')

);

(b) Fixed query

Suggested improvement Count (out of 122)

Suggest single quotes around strings 38 (31%)

Mention all errors 23 (19%)

Suggest how to ix the error 18 (15%)

Remove unnecessary information 14 (11%)

Tell why the query is erroneous 14 (11%)

Specify the line number of the erroneous part 8 (7%)

Rephrase the error message in plain English 7 (6%)

Rephrase the error message in a way that the important parts come irst 7 (6%)

Remove dramatic choices of words 2 (2%)

Include a link to documentation 2 (2%)

(c) Suggestions for improvements

Line 9: WHERE name = QA

^

Part of the query is not recognized.

HINT: If you are searching for the string "QA", it should be enclosed in single quotation marks.

Alternatively , if you are joining two tables and "QA" is a column name , check spelling. There seem to

be no columns with a name that is "QA" or similar.

EXAMPLES:

SELECT *

FROM product

WHERE name = 'machine ';

SELECT product.id , product.price

FROM product , order

WHERE product.id = order.product_id;

(d) Modified error message

Fig. 2. Test T02 (omiting quotes around character data)

ACM Trans. Softw. Eng. Methodol.



Framework for SQL Error Message Design • 21

SELECT brand , model

FROM product

WHERE price_usd IS 350

AND id IN

(SELECT product_id

FROM delivery

WHERE amount > 100);

(a) Erroneous query

SELECT brand , model

FROM product

WHERE price_usd = 350

AND id IN

(SELECT product_id

FROM delivery

WHERE amount > 100);

(b) Fixed query

Suggested improvement Count (out of 141)

Suggest replacing IS with = 53 (38%)

Remove unnecessary information 40 (28%)

Specify the error position 14 (10%)

Explain what causes the error and why the error occurs 12 (9%)

Suggest how to ix the error 9 (6%)

Specify the line number of the erroneous part 7 (6%)

Rephrase the error message in a way that the important parts come irst 6 (4%)

Error message should point to the erroneous position 6 (4%)

(c) Suggestions for improvements

Line 3: WHERE price_usd IS 350

^

You have used IS to compare a number.

HINT: The keyword IS is used in finding empty values (NULL). If you are searching for empty values , use IS.

Alternatively , if you are searching for rows with specific values , use appropriate operators such as

comparison operators or LIKE.

EXAMPLES:

SELECT *

FROM product

WHERE price IS NULL;

SELECT *

FROM product

WHERE price = 100;

(d) Modified error message

Fig. 3. Test T03 (IS where not applicable)

ACM Trans. Softw. Eng. Methodol.



22 • Toni Taipalus and Hilkka Grahn

SELECT id, name , status

FROM project

WHERE name LIKE ('H%', 'J%', 'K%')

AND manager_id IN

(SELECT id

FROM employee

WHERE sname = 'Smith ');

(a) Erroneous query

SELECT id, name , status

FROM project

WHERE (name LIKE 'H%'

OR name LIKE 'J%'

OR name LIKE 'K%')

AND manager_id IN

(SELECT id

FROM employee

WHERE sname = 'Smith ');

(b) Fixed query

Suggested improvement Count (out of 129)

Specify that the erroneous part concerns LIKE 39 (30%)

Specify the line number of the erroneous part 17 (13%)

Suggest how to ix the error 14 (11%)

Rephrase the error message in plain English 13 (10%)

Specify error position, a reference to a comma is ambiguous 10 (8%)

Remove unnecessary information 9 (7%)

Rephrase the error message in a way that the important parts come irst 5 (4%)

Should not point to parentheses, now gives incorrect error position 5 (4%)

Explain that LIKE expects one value, not a list 4 (3%)

Suggest to use logical operators AND or OR 3 (2%)

(c) Suggestions for improvements

Line 3: name LIKE ('H%', 'J%', 'K%')

^

LIKE cannot be used with a list of values.

HINT: If you are using wildcards , consider using logical operators AND or OR between expressions.

Alternatively , if you are not using wildcards , try replacing LIKE with IN.

EXAMPLES:

SELECT *

FROM product

WHERE name LIKE 'A%'

OR name LIKE 'B%';

SELECT *

FROM product

WHERE name IN ('Alpha ', 'Beta ');

(d) Modified error message

Fig. 4. Test T04 (confusing the syntax of keywords)

ACM Trans. Softw. Eng. Methodol.



Framework for SQL Error Message Design • 23

SELECT e.sname , e.fname

FROM employee e

JOIN supplier s ON (e.city = s.city)

WHERE s.id = 409

OR s.id = 309

GROUP BY e.sname ASC , e.fname ASC;

(a) Erroneous query

SELECT e.sname , e.fname

FROM employee e

JOIN supplier s ON (e.city = s.city)

WHERE s.id = 409

OR s.id = 309

ORDER BY e.sname ASC , e.fname ASC;

(b) Fixed query

Suggested improvement Count (out of 75)

Explain that ASC cannot be used in GROUP BY 34 (45%)

Explain what causes the error and why the error occurs 12 (16%)

Suggest how to ix the error 10 (13%)

Specify error position 6 (8%)

Rephrase the error message in plain English 5 (7%)

Identify the error position correctly 3 (4%)

Remove unnecessary information 3 (4%)

(c) Suggestions for improvements

Line 5: GROUP BY e.sname ASC , e.fname ASC

^

You have used ASC or DESC in a GROUP BY clause.

HINT: ASC and DESC are used in the ORDER BY clause to specify the ordering of rows in the result table , and

GROUP BY is used to group rows together. Did you mean "ORDER BY e.sname ASC , e.fname ASC"?

EXAMPLES:

SELECT price , COUNT (*)

FROM product

GROUP BY price;

SELECT name , price

FROM product

ORDER BY name ASC , price DESC;

(d) Modified error message

Fig. 5. T05 (confusing the logic of keywords)

ACM Trans. Softw. Eng. Methodol.



24 • Toni Taipalus and Hilkka Grahn

SELECT id, fname , sname

FROM employee

WHERE id IN

(SELECT employee_id

FROM works

WHERE project_id IN

(SELECT id, manager_id

FROM project

WHERE manager_id =

(SELECT id

FROM employee

WHERE city = 'Paris ')

)

);

(a) Erroneous query

SELECT id, fname , sname

FROM employee

WHERE id IN

(SELECT employee_id

FROM works

WHERE project_id IN

(SELECT id

FROM project

WHERE manager_id =

(SELECT id

FROM employee

WHERE city = 'Paris ')

)

);

(b) Fixed query

Suggested improvement Count (out of 102)

Specify the error position 41 (40%)

Specify the line number of the erroneous part 32 (31%)

Suggest how to ix the error 9 (9%)

Rephrase the error message in plain English 8 (8%)

Identify the error position correctly 5 (5%)

Tell why the query is erroneous 5 (5%)

Tell that a subquery formulated with IN accepts only one column 5 (5%)

Remove unnecessary information 3 (3%)

(c) Suggestions for improvements

Line 7: (SELECT id, manager_id

^

You have used IN followed by a subquery that returns several columns.

HINT: IN is expecting one list of values (i.e., values from one column), but cannot handle several lists (i

.e., values from several columns). Try specifying only one column in the subquery 's SELECT clause ,

depending on which column you wish to use to join the tables.

EXAMPLES:

SELECT *

FROM project

WHERE id IN

(SELECT project_id

FROM order);

(d) Modified error message

Fig. 6. Test T06 (too many columns in subquery)

ACM Trans. Softw. Eng. Methodol.



Framework for SQL Error Message Design • 25

SELECT name

FROM employee

WHERE (city = 'New York '

OR city = 'Minneapolis ')

AND id IN

(SELECT manager_id

FROM project

WHERE status = 0);

(a) Erroneous query

SELECT fname , sname

FROM employee

WHERE (city = 'New York '

OR city = 'Minneapolis ')

AND id IN

(SELECT manager_id

FROM project

WHERE status = 0);

(b) Fixed query

Suggested improvement Count (out of 64)

Specify the line number of the erroneous part 20 (31%)

Suggest how to ix the error 13 (20%)

Replace uncommon nomenclature (message reads łield listž instead of łSELECT clausež) 10 (16%)

Explain what causes the error and why the error occurs 7 (11%)

Remove unnecessary error codes 5 (8%)

Rephrase the error message in plain English 5 (8%)

Should not show parts of the replicated query with altered letter case 4 (6%)

Propose close matches for column names 3 (5%)

Tell which tables contain likely candidates 2 (3%)

(c) Suggestions for improvements

Line 1: SELECT name

^

You have referred to a column "name" which is not in table "employee ".

HINT: did you mean "employee.sname" or "employee.fname"? Alternatively , ensure that the FROM clause

contains the table which contains the column you wish to refer to.

EXAMPLES:

SELECT name , price

FROM product;

(d) Modified error message

Fig. 7. Test T07 (undefined column)

ACM Trans. Softw. Eng. Methodol.



26 • Toni Taipalus and Hilkka Grahn

SELECT name , price_usd , brand , model

FROM product

WHRE (brand LIKE 'S%' OR brand LIKE 'C%')

AND picture IS NULL

ORDER BY name DESC;

(a) Erroneous query

SELECT name , price_usd , brand , model

FROM product

WHERE (brand LIKE 'S%' OR brand LIKE 'C%')

AND picture IS NULL

ORDER BY name DESC;

(b) Fixed query

Suggested improvement Count (out of 140)

Identify the error position correctly 30 (21%)

Remove unnecessary information 18 (13%)

Explain what causes the error and why the error occurs 17 (12%)

Identify WHRE as a typographic error in one the common clause keywords 9 (6%)

Should not suggest a misleading ix 7 (5%)

Specify the line number of the erroneous part 6 (4%)

(c) Suggestions for improvements

Line 3: WHRE (brand LIKE 'S%' OR brand LIKE 'C%')

^

You have written an expression without specifying a proper clause , or misspelled an SQL keyword.

HINT: Expressions in the form of <column > <operator > <value > are typically placed in a WHERE or HAVING

clause. Check that you have a WHERE or a HAVING clause. You have written "WHRE". Did you mean "WHERE"?

EXAMPLES:

SELECT *

FROM product

WHERE price > 100;

SELECT color , AVG(price)

FROM product

GROUP BY color

HAVING AVG(price) > 100;

(d) Modified error message

Fig. 8. Test T08 (misspellings)

ACM Trans. Softw. Eng. Methodol.



Framework for SQL Error Message Design • 27

SELECT s.id, s.name , s.email

FROM supplier s

WHERE (s.email LIKE '%gmail.com '

OR '%icloud.com ')

AND EXISTS

(SELECT *

FROM delivery d

WHERE s.id = d.supplier_id);

(a) Erroneous query

SELECT s.id, s.name , s.email

FROM supplier s

WHERE (s.email LIKE '%gmail.com '

OR s.email LIKE '%icloud.com ')

AND EXISTS

(SELECT *

FROM delivery d

WHERE s.id = d.supplier_id);

(b) Fixed query

Suggested improvement Count (out of 75)

Specify that the expression is incomplete 19 (25%)

Specify the error position 19 (25%)

Rephrase the error message in plain English 11 (15%)

Suggest how to ix the error 10 (13%)

Specify the line number of the erroneous part 9 (12%)

Explain what causes the error and why the error occurs 6 (8%)

Explain that as many LIKEs are required as there a columns in the WHERE clause 3 (4%)

(c) Suggestions for improvements

Line 4: OR '%icloud.com ')

^

The expression is incomplete.

HINT: Expressions typically take the form of <column > <operator > <value >. You can specify multiple

expressions in a WHERE clause by using logical operators AND and OR. Did you mean "s.email LIKE '%

icloud.com '"?

EXAMPLES:

SELECT *

FROM product

WHERE name LIKE 'A%'

OR name LIKE 'B%';

(d) Modified error message

Fig. 9. Test T09 (failure to specify column name twice)

ACM Trans. Softw. Eng. Methodol.



28 • Toni Taipalus and Hilkka Grahn

SELECT name , brand , model

FROM product

WHERE brand IN ('Google ', 'Microsoft ')

AND picture IS NOT NULL

AND price_usd > AVG(price_usd);

(a) Erroneous query

SELECT name , brand , model

FROM product

WHERE brand IN ('Google ', 'Microsoft ')

AND picture IS NOT NULL

AND price_usd >

(SELECT AVG(price_usd)

FROM product);

(b) Fixed query

Suggested improvement Count (out of 92)

Specify that aggregate functions cannot be placed in the WHERE clause 24 (26%)

Specify the line number of the erroneous part 23 (25%)

Explain where aggregate functions can be placed 14 (15%)

Suggest how to ix the error 10 (11%)

Rephrase the error message in plain English 6 (7%)

Specify which function causes the error 5 (5%)

Replace uncommon nomenclature (message reads łgroup functionž instead of łaggregate functionž) 5 (5%)

Explain what causes the error and why the error occurs 4 (4%)

(c) Suggestions for improvements

Line 5: AND price_usd > AVG(price_usd);

^

You have used an aggregate function (AVG) in a WHERE clause. Aggregate functions are not allowed in the

WHERE clause.

HINT: depending on what you are trying to accomplish , consider either moving the aggregate function in a

HAVING clause or a SELECT clause. In the latter case , you may need to use a subquery.

EXAMPLES:

SELECT COUNT (*)

FROM product;

SELECT COUNT (*), color

FROM product

GROUP BY color

HAVING COUNT (*) > 10;

SELECT name

FROM product

WHERE price >

(SELECT AVG(price)

FROM product);

(d) Modified error message

Fig. 10. Test T10 (using an aggregate function outside SELECT or HAVING)

ACM Trans. Softw. Eng. Methodol.



Framework for SQL Error Message Design • 29

SELECT e.city

, p.status

, COUNT(w.employee_id) AS number_of_emp

FROM employee e, project p, works w

WHERE e.id = w.employee_id

AND p.id = w.project_id

AND p.id BETWEEN 1000 AND 2000

GROUP BY e.city;

(a) Erroneous query

SELECT e.city

, p.status

, COUNT(w.employee_id) AS number_of_emp

FROM employee e, project p, works w

WHERE e.id = w.employee_id

AND p.id = w.project_id

AND p.id BETWEEN 1000 AND 2000

GROUP BY e.city , p.status;

(b) Fixed query

Suggested improvement Count (out of 55)

Specify the line number of the erroneous part 12 (22%)

Suggest how to ix the error 11 (20%)

Remove unnecessary information 9 (16%)

Explain that all grouping columns much also appear in the GROUP BY clause 9 (16%)

Rephrase the error message in plain English 8 (15%)

Explain what causes the error and why the error occurs 4 (7%)

Confusingly, this message also speciies the database name łtest.p.statusž 3 (5%)

(c) Suggestions for improvements

Line 8: GROUP BY e.city;

^

SELECT clause contains grouping columns not present in the GROUP BY clause.

HINT: Depending on what you are trying to accomplish , you may want to add the column "p.status" to the

GROUP BY clause. Alternatively , you may want to remove the column "p.status" from the SELECT clause.

EXAMPLES:

SELECT COUNT (*)

FROM product;

SELECT COUNT (*), color

FROM product

GROUP BY color;

SELECT COUNT (*), color , price

FROM product

GROUP BY color , price;

(d) Modified error message

Fig. 11. Test T11 (grouping error: extraneous grouping column)

ACM Trans. Softw. Eng. Methodol.



30 • Toni Taipalus and Hilkka Grahn

SELECT name , price_usd

FROM product

WHERE brand == 'Oracle '

AND id IN

(SELECT product_id

FROM delivery

WHERE project_id IN

(SELECT id

FROM project

WHERE name LIKE 'data%')

);

(a) Erroneous query

SELECT name , price_usd

FROM product

WHERE brand = 'Oracle '

AND id IN

(SELECT product_id

FROM delivery

WHERE project_id IN

(SELECT id

FROM project

WHERE name LIKE 'data%')

);

(b) Fixed query

Suggested improvement Count (out of 84)

Remove unnecessary information 14 (17%)

Should be more speciic 13 (15%)

Specify that the operator is erroneous 13 (15%)

Suggest how to ix the error 11 (13%)

Explain what causes the error and why the error occurs 11 (13%)

Specify the line number of the erroneous part 9 (11%)

Suggestion to ix the error should not cause uncertainty 7 (8%)

Should explain that == is not a valid comparison operator, and suggest using = instead 5 (6%)

Identify the error position correctly 4 (5%)

Rephrase the error message in plain English 3 (4%)

Error message should be shorter 3 (4%)

Rephrase the error message in a way that the important parts come irst 2 (2%)

(c) Suggestions for improvements

Line 3: WHERE brand == 'Oracle '

^

The operator '==' is not recognized.

HINT: For equal comparison , SQL uses the '=' operator , which can be used to compare data types such as

numbers and strings. Did you mean "brand = 'Oracle '"?

EXAMPLES:

SELECT *

FROM product

WHERE price = 100;

(d) Modified error message

Fig. 12. Test T12 (nonstandard operators)

ACM Trans. Softw. Eng. Methodol.



Framework for SQL Error Message Design • 31

SELECT s.name , s.email , s.city , s.tel

FROM supplier s

JOIN delivery d ON (s.id = d.supplier_id)

JOIN project p ON (p.id = d.project_id)

WHERE s.name = 'Athens '

WHERE p.name = 'HR '

ORDER BY s.city ASC , s.name ASC;

(a) Erroneous query

SELECT s.name , s.email , s.city , s.tel

FROM supplier s

JOIN delivery d ON (s.id = d.supplier_id)

JOIN project p ON (p.id = d.project_id)

WHERE s.name = 'Athens '

AND p.name = 'HR '

ORDER BY s.city ASC , s.name ASC;

(b) Fixed query

Suggested improvement Count (out of 101)

Explain that multiple WHERE clauses are not allowed 37 (37%)

Suggest how to ix the error 17 (17%)

Explain what causes the error and why the error occurs 13 (13%)

Specify the line number of the erroneous part 6 (6%)

Simplify the error message because the error is simple 6 (6%)

Rephrase the error message in plain English 4 (4%)

Should be more speciic 4 (4%)

Rephrase the error message in a way that the important parts come irst 3 (3%)

Remove unhelpful error codes 2 (2%)

(c) Suggestions for improvements

Line 6: WHERE p.name = 'HR '

^

The query seems to contain several WHERE clauses , yet a query may only contain one WHERE clause.

HINT: this is typically fixed by replacing the latter WHERE keyword with AND or OR, depending on what you

are trying to accomplish. You may use logical operators (AND , OR) to write multiple expressions in a

WHERE clause.

EXAMPLES:

SELECT *

FROM product

WHERE name LIKE 'A%'

OR name LIKE 'B%';

(d) Modified error message

Fig. 13. Test T13 (using WHERE twice)

ACM Trans. Softw. Eng. Methodol.



32 • Toni Taipalus and Hilkka Grahn

SELECT p.name , p.status

FROM project p

WHERE 10 =

(SELECT COUNT(w.employee_id)

FROM works w

WHERE p.id = w.project_id

AND JOIN

(SELECT *

FROM employee e

WHERE e.id = w.employee_id

AND e.city = 'London ')

);

(a) Erroneous query

SELECT p.name , p.status

FROM project p

WHERE 10 =

(SELECT COUNT(w.employee_id)

FROM works w

WHERE p.id = w.project_id

AND EXISTS

(SELECT *

FROM employee e

WHERE e.id = w.employee_id

AND e.city = 'London ')

);

(b) Fixed query

Suggested improvement Count (out of 84)

Suggest how to ix the error 15 (18%)

Specify that JOIN requires ON 9 (11%)

Explain what causes the error and why the error occurs 9 (11%)

Should be more speciic 9 (11%)

Remove unnecessary information 9 (11%)

Show examples of how diferent table joins are used 7 (8%)

Message should not be long without being speciic 7 (8%)

Specify error position 7 (8%)

Specify the line number of the erroneous part 4 (5%)

Specify that JOIN cannot be used in a WHERE clause 4 (5%)

Suggest using EXISTS instead of JOIN 2 (2%)

(c) Suggestions for improvements

Line 7: AND JOIN

^

The JOIN clause does not contain an ON keyword which is used to specify which tables and which columns are

used for a table join.

HINT: Syntactically , the JOIN clause is placed between a FROM and a WHERE clause (if a WHERE clause is

present). The JOIN keyword is followed by a table name , which is typically followed by the keyword ON

(or alternatively , USING) which is used to specify the columns used for a table join. A query may

contain several JOIN clauses.

EXAMPLES:

SELECT product.id

FROM product

JOIN order

ON (product.id = order.product_id);

SELECT product.id

FROM product

JOIN order

ON (product.id = order.product_id)

JOIN customer

ON (order.customer_id = customer.id)

WHERE customer.sname = 'Smith ';

(d) Modified error message

Fig. 14. Test T14 (nonstandard keywords or standard keywords in wrong context)

ACM Trans. Softw. Eng. Methodol.



Framework for SQL Error Message Design • 33

SELECT p.name , p.price

FROM product p

JOIN delivery d ON (p.id = d.product_id)

JOIN project j ON (d.project_id = j.id)

WHERE p.picture IS NULL

AND j.status = 1;

(a) Erroneous query

SELECT p.name , p.price_usd

FROM product p

JOIN delivery d ON (p.id = d.product_id)

JOIN project j ON (d.project_id = j.id)

WHERE p.picture IS NULL

AND j.status = 1;

(b) Fixed query

Suggested improvement Count (out of 48)

Propose close matches for column names 14 (29%)

Specify the line number of the erroneous part 10 (21%)

In addition to erroneous column name, specify which table did not contain this column 7 (15%)

Suggest how to ix the error 5 (10%)

Remove unhelpful error codes 5 (10%)

Specify the error position 4 (8%)

Replace uncommon nomenclature (message reads łield listž instead of łSELECT clausež) 4 (8%)

Explain what causes the error and why the error occurs 3 (6%)

Rephrase the error message in plain English 2 (4%)

Should not show parts of the replicated query with altered letter case 2 (4%)

(c) Suggestions for improvements

Line 1: SELECT p.name , p.price

^

There is no column "price" in table "product ".

HINT: Table "product" contains the following columns quite similar to "price": "price_usd ". Perhaps you

meant to write "price_usd" instead of "price"?

EXAMPLES:

SELECT product.id , order.id

FROM product , order

WHERE product.id = order.product_id;

(d) Modified error message

Fig. 15. Test T15 (synonyms)

ACM Trans. Softw. Eng. Methodol.



34 • Toni Taipalus and Hilkka Grahn

SELECT name , manager_id

FROM project

WHERE id IN

(SELECT project_id

FROM delivery

WHERE supplier_id IN

SELECT id

FROM supplier

WHERE city = 'Sydney ')

);

(a) Erroneous query

SELECT name , manager_id

FROM project

WHERE id IN

(SELECT project_id

FROM delivery

WHERE supplier_id IN

(SELECT id

FROM supplier

WHERE city = 'Sydney ')

);

(b) Fixed query

Suggested improvement Count (out of 85)

Specify that the parentheses are unmatched 40 (47%)

Explain what causes the error and why the error occurs 24 (28%)

Remove unnecessary information 10 (12%)

Specify the line number of the erroneous part 10 (12%)

Suggest how to ix the error 4 (5%)

Rephrase the error message in plain English 3 (4%)

(c) Suggestions for improvements

Line 7: SELECT id

^

The query contains unmatched parentheses. It seems like at least one opening parenthesis is missing.

HINT: check that each parenthesis that is opened is also closed. Also check that all subqueries start with

a parenthesis.

EXAMPLES:

SELECT product.id

FROM product

WHERE EXISTS

(SELECT *

FROM order

WHERE product.id = order.product_id);

(d) Modified error message

Fig. 16. Test T16 (curly, square or unmatched brackets)

ACM Trans. Softw. Eng. Methodol.



F
ra
m
ew

o
rk

fo
r
S
Q
L
E
rro

r
M
essa

g
e
D
esig

n
•

35
B ERROR MESSAGE CODING

DBMS Error message brief positive constructive speciic comprehensible

MySQL Error: ER_NON_UNIQ_ERROR: Column 'name ' in field list

is ambiguous

Oracle Database ORA -00918: column ambiguously defined

PostgreSQL
ERROR: column reference "name" is ambiguous

LINE 1: SELECT name

^

SQL Server Msg 209, Level 16, State 1, Server q7410 , Line 2

Ambiguous column name 'name '.

CockroachDB pq: column reference "name" is ambiguous

(candidates: supplier.name , product.name)

Singlestore ERROR 1052 ER_NON_UNIQ_ERROR: Column 'name '

in field list is ambiguous

NuoDB Error 42000: field "NAME" is ambiguous

VoltDB

SQL error while compiling query: Error in

"SELECT name

FROM supplier

JOIN delivery

ON (supplier.id = delivery.supplier_id)

JOIN product

ON (delivery.product_id = product.id)

WHERE product.price_usd > 50

AND product.brand = 'Apple ';"

Column "NAME" is ambiguous.

It 's in tables: PRODUCT , SUPPLIER

Fig. 17. Error messages and coding for test T01

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.



36
•

T
o
n
i
T
a
ip
a
lu
s
a
n
d
H
ilk

k
a
G
ra
h
n

DBMS Error message brief positive constructive speciic comprehensible

MySQL Error: ER_BAD_FIELD_ERROR: Unknown column 'QA' in

'where clause '

Oracle Database ORA -00904: "HR": invalid identifier

PostgreSQL
ERROR: column "qa" does not exist

LINE 9: WHERE name = QA

^

SQL Server

Msg 207, Level 16, State 1, Server q7410 , Line 10

Invalid column name 'QA '.

Msg 207, Level 16, State 1, Server q7410 , Line 11

Invalid column name 'HR '.

CockroachDB pq: column "qa" does not exist

SingleStore ERROR 1054 ER_BAD_FIELD_ERROR: Unknown column 'QA '

in 'where clause '

NuoDB Error 58000: can 't resolve field "HR"

VoltDB

SQL error while compiling query: Error in

"SELECT fname , sname

FROM employee

WHERE id IN

(SELECT employee_id

FROM works

WHERE project_id IN

(SELECT id

FROM project

WHERE name = QA

OR name = HR)

);" - object not found: QA

Fig. 18. Error messages and coding for test T02

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.



F
ra
m
ew

o
rk

fo
r
S
Q
L
E
rro

r
M
essa

g
e
D
esig

n
•

37
DBMS Error message brief positive constructive speciic comprehensible

MySQL

Error: ER_PARSE_ERROR: You have an error in your SQL

syntax; check the manual that corresponds to your

MySQL server version for the right syntax to use near

'350 AND id IN (SELECT product_id FROM delivery WHERE

' at line 3

Oracle Database ORA -00908: missing NULL keyword

PostgreSQL
ERROR: syntax error at or near "350"

LINE 3: WHERE price_usd IS 350

^

SQL Server Msg 102, Level 15, State 1, Server q7410 , Line 4

Incorrect syntax near '350'.

CockroachDB

invalid syntax: statement ignored: at or near "350":

syntax error

DETAIL: source SQL:

SELECT brand , model

FROM product

WHERE price_usd IS 350

^

HINT: try \h SELECT

SingleStore

ERROR 1064 ER_PARSE_ERROR: You have an error in your

SQL syntax; check the manual that corresponds to your

MySQL server version for the right syntax to use near

'350

AND id IN

(SELECT product_id

FROM delivery

WH ' at line 3

NuoDB
Error 42000: syntax error on line 3

WHERE price_usd IS 350

^ expected NOT or NULL got 350

VoltDB

SQL error while compiling query: SQL Syntax error in

"SELECT brand , model

FROM product

WHERE price_usd IS 350

AND id IN

(SELECT product_id

FROM delivery

WHERE amount > 100);" unexpected token: 350

Fig. 19. Error messages and coding for test T03

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.



38
•

T
o
n
i
T
a
ip
a
lu
s
a
n
d
H
ilk

k
a
G
ra
h
n

DBMS Error message brief positive constructive speciic comprehensible

MySQL Error: ER_OPERAND_COLUMNS: Operand should contain 1

column(s)

Oracle Database ORA -00907: missing right parenthesis

PostgreSQL

ERROR: operator does not exist: character varying

~~ record

LINE 3: WHERE name LIKE ('H%', 'J%', 'K%')

^

HINT: No operator matches the given name and

argument types. You might need to add explicit

type casts.

SQL Server Msg 102, Level 15, State 1, Server q7410 , Line 4

Incorrect syntax near ','.

CockroachDB pq: unsupported comparison operator: <varchar > LIKE

<tuple{string , string , string}>

SingleStore

ERROR 1064 ER_PARSE_ERROR: You have an error in your

SQL syntax; check the manual that corresponds to your

MySQL server version for the right syntax to use near

', 'J%', 'K%')

AND manager_id IN

(SELECT id

FROM employe ' at line 3

NuoDB Error 0A000: multi -column value only allowed in

comparison operators

VoltDB

SQL error while compiling query: SQL Syntax error in

"SELECT id, name , status

FROM project

WHERE name LIKE ('H%', 'J%', 'K%')

AND manager_id IN

(SELECT id

FROM employee

WHERE sname = 'Smith ');" unexpected token:

, required: )

Fig. 20. Error messages and coding for test T04

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.



F
ra
m
ew

o
rk

fo
r
S
Q
L
E
rro

r
M
essa

g
e
D
esig

n
•

39
DBMS Error message brief positive constructive speciic comprehensible

Oracle Database ORA -00933: SQL command not properly ended

PostgreSQL
ERROR: syntax error at or near "ASC"

LINE 6: GROUP BY e.sname ASC , e.fname ASC;

^

SQL Server Msg 156, Level 15, State 1, Server q7410 , Line 7

Incorrect syntax near the keyword 'ASC '.

CockroachDB

invalid syntax: statement ignored: at or near

"asc": syntax error

DETAIL: source SQL:

SELECT e.sname , e.fname

FROM employee e

JOIN supplier s ON (e.city = s.city)

WHERE s.id = 409

OR s.id = 309

GROUP BY e.sname ASC , e.fname ASC

^

SingleStore

ERROR 1064 ER_PARSE_ERROR: You have an error in your

SQL syntax; check the manual that corresponds to your

MySQL server version for the right syntax to use near

'ASC , e.fname ASC ' at line 6

NuoDB
Error 42000: syntax error on line 6

GROUP BY e.sname ASC , e.fname ASC;

^ expected end of statement got ASC

VoltDB

SQL error while compiling query: Error in

"SELECT e.sname , e.fname

FROM employee e

JOIN supplier s ON (e.city = s.city)

WHERE s.id = 409

OR s.id = 309

GROUP BY e.sname ASC , e.fname ASC;" - expression

not in aggregate or GROUP BY columns: E.FNAME

Fig. 21. Error messages and coding for test T05; MySQL tolerated the syntax error

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.



40
•

T
o
n
i
T
a
ip
a
lu
s
a
n
d
H
ilk

k
a
G
ra
h
n

DBMS Error message brief positive constructive speciic comprehensible

MySQL Error: ER_OPERAND_COLUMNS: Operand should contain 1

column(s)

Oracle Database ORA -00913: too many values

PostgreSQL
ERROR: subquery has too many columns

LINE 6: WHERE project_id IN

^

SQL Server
Msg 116, Level 16, State 1, Server q7410 , Line 14

Only one expression can be specified in the select

list when the subquery is not introduced with EXISTS.

CockroachDB pq: unsupported comparison operator: <int > IN

<tuple{tuple{int AS id, int AS manager_id }}>

SingleStore ERROR 1241 ER_OPERAND_COLUMNS: Operand should

contain 1 column(s)

NuoDB Error 0A000: multi -column subquery not supported

VoltDB

SQL error while compiling query: Error in

"SELECT id, fname , sname

FROM employee

WHERE id IN

(SELECT employee_id

FROM works

WHERE project_id IN

(SELECT id, manager_id

FROM project

WHERE manager_id =

(SELECT id

FROM employee

WHERE city = 'Paris ')

)

);" - row column count mismatch

Fig. 22. Error messages and coding for test T06

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.



F
ra
m
ew

o
rk

fo
r
S
Q
L
E
rro

r
M
essa

g
e
D
esig

n
•

41
DBMS Error message brief positive constructive speciic comprehensible

MySQL Error: ER_BAD_FIELD_ERROR: Unknown column 'name ' in

'field list '

Oracle Database ORA -00904: "NAME": invalid identifier

PostgreSQL

ERROR: column "name" does not exist

LINE 1: SELECT name

^

HINT: Perhaps you meant to reference the column

"employee.fname" or the column "employee.sname".

SQL Server Msg 207, Level 16, State 1, Server q7410 , Line 2

Invalid column name 'name '.

CockroachDB pq: column "name" does not exist

SingleStore ERROR 1054 ER_BAD_FIELD_ERROR: Unknown column 'name '

in 'field list '

NuoDB Error 58000: can 't resolve field "NAME"

VoltDB

SQL error while compiling query: Error in

"SELECT name

FROM employee

WHERE (city = 'New York '

OR city = 'Minneapolis ')

AND id IN

(SELECT manager_id

FROM project

WHERE status = 0);" - object not found: NAME

Fig. 23. Error messages and coding for test T07

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.



42
•

T
o
n
i
T
a
ip
a
lu
s
a
n
d
H
ilk

k
a
G
ra
h
n

DBMS Error message brief positive constructive speciic comprehensible

MySQL

Error: ER_PARSE_ERROR: You have an error in your SQL

syntax; check the manual that corresponds to your

MySQL server version for the right syntax to use near

'(brand LIKE 'S%' OR brand LIKE 'C%')

AND picture IS NULL ORDER BY name DESC ' at line 3

Oracle Database ORA -00933: SQL command not properly ended

PostgreSQL
ERROR: syntax error at or near "LIKE"

LINE 3: WHRE (brand LIKE 'S%' OR brand LIKE 'C%')

^

SQL Server Msg 321, Level 15, State 1, Server q7410 , Line 4

"brand" is not a recognized table hints option.

CockroachDB

invalid syntax: statement ignored: at or near

"like": syntax error

DETAIL: source SQL:

SELECT name , price_usd , brand , model

FROM product

WHRE (brand LIKE 'S%' OR brand LIKE 'C%')

^

HINT: try \h <SOURCE >

SingleStore

ERROR 1064 ER_PARSE_ERROR: You have an error in your

SQL syntax; check the manual that corresponds to your

MySQL server version for the right syntax to use near

'(brand LIKE 'S%' OR brand LIKE 'C%')

AND picture IS NULL

ORDER BY name DE' at line 3

NuoDB
Error 42000: syntax error on line 3

WHRE (brand LIKE 'S%' OR brand LIKE 'C%')

^ expected end of statement got parenthesis

VoltDB

SQL error while compiling query: SQL Syntax error in

"SELECT name , price_usd , brand , model

FROM product

WHRE (brand LIKE 'S%' OR brand LIKE 'C%')

AND picture IS NULL

ORDER BY name DESC;" unexpected token: LIKE

required: )

Fig. 24. Error messages and coding for test T08

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.



F
ra
m
ew

o
rk

fo
r
S
Q
L
E
rro

r
M
essa

g
e
D
esig

n
•

43
DBMS Error message brief positive constructive speciic comprehensible

Oracle Database ORA -00920: invalid relational operator

PostgreSQL

ERROR: invalid input syntax for type boolean:

"% icloud.com"

LINE 4: WHERE (s.email LIKE '%gmail.com '

OR '%icloud.com ')

^

SQL Server
Msg 4145, Level 15, State 1, Server q7410 , Line 4

An expression of non -boolean type specified in a

context where a condition is expected , near ')'.

CockroachDB pq: could not parse "% icloud.com" as type bool:

invalid bool value

NuoDB Error 22000: error converting to boolean from

'%icloud.com ' of type string

VoltDB

SQL error while compiling query: Error in

"SELECT s.id, s.name , s.email

FROM supplier s

WHERE (s.email LIKE '%gmail.com '

OR '%icloud.com ')

AND EXISTS

(SELECT *

FROM delivery d

WHERE s.id = d.supplier_id);"

- data type of expression is not boolean

Fig. 25. Error messages and coding for test T09; MySQL and SingleStore tolerated the syntax error

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.



44
•

T
o
n
i
T
a
ip
a
lu
s
a
n
d
H
ilk

k
a
G
ra
h
n

DBMS Error message brief positive constructive speciic comprehensible

MySQL Error: ER_INVALID_GROUP_FUNC_USE: Invalid use of

group function

Oracle Database ORA -00934: group function is not allowed here

PostgreSQL
ERROR: aggregate functions are not allowed in WHERE

LINE 5: AND price_usd > AVG(price_usd);

^

SQL Server

Msg 147, Level 15, State 1, Server q7410 , Line 6

An aggregate may not appear in the WHERE clause

unless it is in a subquery contained in a HAVING

clause or a select list , and the column being

aggregated is an outer reference.

CockroachDB pq: avg(): aggregate functions are not allowed in

WHERE

SingleStore ERROR 1111 ER_INVALID_GROUP_FUNC_USE: Invalid use of

group function

NuoDB Error 42000: Aggregate functions not allowed in WHERE

clause

VoltDB

SQL error while compiling query: Error in

"SELECT name , brand , model

FROM product

WHERE brand IN ('Google ', 'Microsoft ')

AND picture IS NOT NULL

AND price_usd > AVG(price_usd);"

- invalid WHERE expression

Fig. 26. Error messages and coding for test T10

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.



F
ra
m
ew

o
rk

fo
r
S
Q
L
E
rro

r
M
essa

g
e
D
esig

n
•

45
DBMS Error message brief positive constructive speciic comprehensible

MySQL

Error: ER_WRONG_FIELD_WITH_GROUP: Expression #2 of

SELECT list is not in GROUP BY clause and contains

nonaggregated column 'test.p.status ' which is not

functionally dependent on columns in GROUP BY clause;

this is incompatible with sql_mode=only_full_group_by

Oracle Database ORA -00979: not a GROUP BY expression

PostgreSQL

ERROR: column "p.status" must appear in the

GROUP BY clause or be used in an aggregate function

LINE 2: , p.status

^

SQL Server

Msg 8120, Level 16, State 1, Server q7410 , Line 2

Column 'project.status ' is invalid in the select list

because it is not contained in either an aggregate

function or the GROUP BY clause.

CockroachDB pq: column "status" must appear in the GROUP BY

clause or be used in an aggregate function

NuoDB Error 42000: column P.STATUS must appear in the

GROUP BY clause or be used in an aggregate function

VoltDB

SQL error while compiling query: Error in

"SELECT e.city

, p.status

, COUNT(w.employee_id) AS number_of_emp

FROM employee e, project p, works w

WHERE e.id = w.employee_id

AND p.id = w.project_id

AND p.id BETWEEN 1000 AND 2000

GROUP BY e.city;" - expression not in aggregate

or GROUP BY columns: P.STATUS

Fig. 27. Error messages and coding for test T11; SingleStore tolerated the syntax error

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.



46
•

T
o
n
i
T
a
ip
a
lu
s
a
n
d
H
ilk

k
a
G
ra
h
n

DBMS Error message brief positive constructive speciic comprehensible

MySQL

Error: ER_PARSE_ERROR: You have an error in your SQL

syntax; check the manual that corresponds to your

MySQL server version for the right syntax to use near

'== 'Oracle ' AND id IN (SELECT product_id

FROM delivery WHERE ' at line 3

Oracle Database ORA -00936: missing expression

PostgreSQL

ERROR: operator does not exist: character varying

== unknown

LINE 3: WHERE brand == 'Oracle '

^

HINT: No operator matches the given name and

argument types. You might need to add explicit

type casts.

SQL Server Msg 102, Level 15, State 1, Server q7410 , Line 4

Incorrect syntax near '='.

CockroachDB

invalid syntax: statement ignored: at or near

"=": syntax error

DETAIL: source SQL:

SELECT name , price_usd

FROM product

WHERE brand == 'Oracle '

^

HINT: try \h SELECT

SingleStore

ERROR 1064 ER_PARSE_ERROR: You have an error in your

SQL syntax; check the manual that corresponds to your

MySQL server version for the right syntax to use near

'=' at line 3

NuoDB
Error 42000: syntax error on line 3

WHERE brand == 'Oracle '

^ unexpected =

VoltDB

SQL error while compiling query: Error in

"SELECT name , price_usd

FROM product

WHERE brand == 'Oracle '

AND id IN

(SELECT product_id

FROM delivery

WHERE project_id IN

(SELECT id

FROM project

WHERE name LIKE 'data%')

)" - object not found: =

Fig. 28. Error messages and coding for test T12

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.



F
ra
m
ew

o
rk

fo
r
S
Q
L
E
rro

r
M
essa

g
e
D
esig

n
•

47
DBMS Error message brief positive constructive speciic comprehensible

MySQL

Error: ER_PARSE_ERROR: You have an error in your SQL

syntax; check the manual that corresponds to your

MySQL server version for the right syntax to use near

'WHERE p.name = 'HR ' ORDER BY s.city ASC , s.name ASC '

at line 6

Oracle Database ORA -00933: SQL command not properly ended

PostgreSQL
ERROR: syntax error at or near "WHERE"

LINE 6: WHERE p.name = 'HR'

^

SQL Server Msg 156, Level 15, State 1, Server q7410 , Line 7

Incorrect syntax near the keyword 'WHERE '.

CockroachDB

invalid syntax: statement ignored: at or near

"where": syntax error

DETAIL: source SQL:

SELECT s.name , s.email , s.city , s.tel

FROM supplier s

JOIN delivery d ON (s.id = d.supplier_id)

JOIN project p ON (p.id = d.project_id)

WHERE s.name = 'Athens '

WHERE p.name = 'HR'

^

SingleStore

ERROR 1064 ER_PARSE_ERROR: You have an error in your

SQL syntax; check the manual that corresponds to your

MySQL server version for the right syntax to use near

'WHERE p.name = 'HR '

ORDER BY s.city ASC , s.name ASC ' at line 6

NuoDB
Error 42000: syntax error on line 6

WHERE p.name = 'HR'

^ expected end of statement got WHERE

VoltDB

SQL error while compiling query: SQL Syntax error in

"SELECT s.name , s.email , s.city , s.tel

FROM supplier s

JOIN delivery d ON (s.id = d.supplier_id)

JOIN project p ON (p.id = d.project_id)

WHERE s.name = 'Athens '

WHERE p.name = 'HR'

ORDER BY s.city ASC , s.name ASC;" unexpected token:

WHERE

Fig. 29. Error messages and coding for test T13

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.



48
•

T
o
n
i
T
a
ip
a
lu
s
a
n
d
H
ilk

k
a
G
ra
h
n

DBMS Error message brief positive constructive speciic comprehensible

MySQL

Error: ER_PARSE_ERROR: You have an error in your SQL syntax;

check the manual that corresponds to your MySQL server version

for the right syntax to use near

'JOIN (SELECT * FROM employee e WHERE e.id = w.emplo ' at line 7

Oracle Database ORA -00936: missing expression

PostgreSQL
ERROR: syntax error at or near "SELECT"

LINE 8: (SELECT *

^

SQL Server

Msg 156, Level 15, State 1, Server q7410 , Line 8

Incorrect syntax near the keyword 'JOIN '.

Msg 102, Level 15, State 1, Server q7410 , Line 13

Incorrect syntax near ')'.

CockroachDB

invalid syntax: statement ignored: at or near "select ": syntax error

DETAIL: source SQL:

SELECT p.name , p.status

FROM project p

WHERE 10 =

(SELECT COUNT(w.employee_id)

FROM works w

WHERE p.id = w.project_id

AND JOIN

(SELECT *

^

SingleStore

ERROR 1064 ER_PARSE_ERROR: You have an error in your SQL syntax;

check the manual that corresponds to your MySQL server version

for the right syntax to use near

'JOIN

(SELECT *

FROM employee e

WHERE e.id = w.em' at line 7

NuoDB
Error 42000: syntax error on line 7

AND JOIN

^ unexpected JOIN

VoltDB

SQL error while compiling query: SQL Syntax error in

"SELECT p.name , p.status

FROM project p

WHERE 10 =

(SELECT COUNT(w.employee_id)

FROM works w

WHERE p.id = w.project_id

AND JOIN

(SELECT *

FROM employee e

WHERE e.id = w.employee_id

AND e.city = 'London ')

);" unexpected token: JOIN

Fig. 30. Error messages and coding for test T14

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.



F
ra
m
ew

o
rk

fo
r
S
Q
L
E
rro

r
M
essa

g
e
D
esig

n
•

49
DBMS Error message brief positive constructive speciic comprehensible

MySQL Error: ER_BAD_FIELD_ERROR: Unknown column 'p.price '

in 'field list '

Oracle Database ORA -00904: "P"." PRICE": invalid identifier

PostgreSQL
ERROR: column p.price does not exist

LINE 1: SELECT p.name , p.price

^

SQL Server Msg 207, Level 16, State 1, Server q7410 , Line 2

Invalid column name 'price '.

CockroachDB pq: column "p.price" does not exist

SingleStore ERROR 1054 ER_BAD_FIELD_ERROR: Unknown column

'p.price ' in 'field list '

NuoDB Error 58000: can 't resolve field "P.PRICE"

VoltDB

SQL error while compiling query: Error in

"SELECT p.name , p.price

FROM product p

JOIN delivery d ON (p.id = d.product_id)

JOIN project j ON (d.project_id = j.id)

WHERE p.picture IS NULL

AND j.status = 1;" - object not found: P.PRICE

Fig. 31. Error messages and coding for test T15

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.



50
•

T
o
n
i
T
a
ip
a
lu
s
a
n
d
H
ilk

k
a
G
ra
h
n

DBMS Error message brief positive constructive speciic comprehensible

MySQL

Error: ER_PARSE_ERROR: You have an error in your SQL syntax; check

the manual that corresponds to your MySQL server version for the

right syntax to use near

'SELECT id FROM supplier WHERE city = 'Sydney ') '

at line 7

Oracle Database ORA -00936: missing expression

PostgreSQL
ERROR: syntax error at or near "SELECT"

LINE 7: SELECT id

^

SQL Server

Msg 156, Level 15, State 1, Server q7410 , Line 8

Incorrect syntax near the keyword 'SELECT '.

Msg 102, Level 15, State 1, Server q7410 , Line 10

Incorrect syntax near ') '.

CockroachDB

invalid syntax: statement ignored: at or near "select ": syntax error

DETAIL: source SQL:

SELECT name , manager_id

FROM project

WHERE id IN

(SELECT project_id

FROM delivery

WHERE supplier_id IN

SELECT id

^

HINT: try \h SELECT

SingleStore

ERROR 1064 ER_PARSE_ERROR: You have an error in your SQL syntax; check the

manual that corresponds to your MySQL server version for the right syntax

to use near

'SELECT id

FROM supplier

WHERE city = 'Sydney ')

' at line 7

NuoDB
Error 42000: syntax error on line 7

SELECT id

^ expected parenthesis got SELECT

VoltDB

SQL error while compiling query: SQL Syntax error in "SELECT name , manager_id

FROM project

WHERE id IN

(SELECT project_id

FROM delivery

WHERE supplier_id IN

SELECT id

FROM supplier

WHERE city = 'Sydney ')

);" unexpected token: SELECT

required: (

Fig. 32. Error messages and coding for test T16

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.


	Abstract
	1 Introduction
	2 Theoretical Background
	2.1 Query Execution
	2.2 SQL Syntax Errors
	2.3 Error Message Qualities

	3 Research Setting
	3.1 Research Scope and Goals
	3.2 Data Collection
	3.3 Data Preparation
	3.4 Data Analyses

	4 Factors Affecting Error Message Effectiveness
	5 Error Message Design Framework and Modified Error Messages
	5.1 Error Message Design Framework
	5.2 Suggested Improvements and Modifications

	6 Discussion
	6.1 General Discussion
	6.2 Limitations and Threats to Validity
	6.3 Future Directions

	7 Conclusion
	Acknowledgments
	References
	A Suggested Improvements and Modified Error Messages
	B Error Message Coding

