
Explaining Causes Behind
SQL Query Formulation Errors

Toni Taipalus
Faculty of Information Technology

University of Jyvaskyla
Jyvaskyla, Finland

https://orcid.org/0000-0003-4060-3431

Abstract—This Full Research Paper presents the most promi-
nent query formulation errors in Structured Query Language
(SQL), and maps these errors to their cognitive explanations.
Understanding query formulation errors is a key to teaching
SQL. more effectively. However, studies on what kind of errors
novices struggle with are relatively scarce when compared to, for
example, programming languages. Although committing errors
is a crucial part in learning, some errors are relatively easy to
fix, and their commonness is not necessarily an indication of
their difficulty. Other errors, however, halt the learning process,
and are never fixed by the query writer. Using a previously
established error taxonomy and queries from four cohorts with
a total of 987 students, we set out to identify common errors
which students are unable to correct, i.e., errors that are likely
to cause query formulation failures. Our results indicate that
on a general level, logical errors are the most common cause
for query formulation failures, while syntax and semantic errors
are usually fixed by query writers. Although query concepts,
for example, expressions, joins and grouping, have a strong
influence on what types of errors are committed, some errors
are common regardless of query concepts. Specifically, our results
indicate that missing expressions, extraneous or omitted grouping
columns, incorrect comparison operators, missing joins, and
missing ordering columns are the most common errors that
novices are unable to fix. Based on the results, we speculate
on the reasons behind the most common persistent errors using
previously identified cognitive explanations. Finally, we present
that solutions for mitigating the causes behind query formulation
errors are already available. In order to more effectively teach
query formulation, educators should emphasize natural language
patterns, query planning, and increasingly ambiguous exercises.

Index Terms—Structured Query Language (SQL); database;
error; education; novice

I. INTRODUCTION

Structured Query Language (SQL) is widely taught in
higher education, and recommended in computer science [1],
software engineering [2] and information systems [3] curricula
guidelines. In industry, SQL remains the de facto language
to query data from databases. Even though programming
languages have received ample attention in educational re-
search [4], SQL, in comparison, has largely remained in the
sidelines [5]. Although it can be argued that studies concerning
programming languages can be generalized to cover SQL as
well, SQL is not a programming language, and the paradigm
behind SQL is declarative, as opposed to the imperative nature
of many programming languages studied [6].

Novices to any computer language commit various different
errors when learning a language, and understanding the nature
of these errors is crucial to understanding the learning process
as a whole. In this regard, educational SQL research has only
in recent years started to systematically study the errors that
novices commit [7] [6] [8] [9] [10]. Even so, many of such
studies did not study errors per se, but rather used a posteriori
error classification as a vehicle for answering their research
questions. Furthermore, as we are beginning to understand
what errors novices commit, we are able to move towards
why these errors occur, and start to mitigate them. However,
research explaining causes behind errors is both scarce, and
in some cases, possibly obsolete [5] due to additional features
introduced in the SQL language. To that end, we conducted
a quantitative study to find out which persistent (i.e., never
corrected) errors are most common in certain types of queries,
and mapped these errors to cognitive explanations introduced
previously [11].

The rest of this study is structured as follows. Next, in
Section II we describe prior work related to SQL education,
key terms, and query formulation errors and their explanations.
In Section III we describe how our data was collected, our
study participants, and show our contribution vis-a-vis prior
work. In Section IV we present both the frequencies of the
most common errors, and map these errors to their respective
causes. In Section V to discuss the practical implications of
our study, and threats to validity. Finally, in Section VI we
present conclusions.

II. BACKGROUND

A. SQL in Educational Research

In terms of educational research, prevalent SQL research
topics are different learning environments [12] [13] [14],
various teaching approach propositions [15] [16] [17], and
understanding novice errors [8] [9]. Although SQL is a versa-
tile language, both SQL education and research usually focus
on data retrieval, i.e., SELECT statements [5]. Much of the
research seem to agree that students should learn SQL in
practice in addition to learning theoretical foundations [18]
[19].

The learning environments that enable and facilitate SQL
learning are aplenty, and differ in terms of maturity and
amount of features. What is mutual in these environments

This is the final draft of the article. This version may differ in pagination. Please cite the original article:
Toni Taipalus (2020). Explaining causes behind SQL query formulation errors. In Proceedings of the 50th IEEE Frontiers in 
Education conference (FIE). IEEE.



is that they usually present the user (i.e., a student) with
the current data demand in natural language (e.g., “List all
customers who have ordered an item in 2019”), and the
database structure. The student is then expected to write an
SQL equivalent for the given data demand, submit the query
to the database management system, and receive the correct
result table. If the database management system outputs an
error message instead of a result table, or the result table is
incorrect for the given data demand, the student has committed
a query formulation error.

B. Query Formulation Errors

Commonly, query formulation errors have been divided into
two classes: syntax and semantic errors [11] [20], arguably
because database management systems can detect the former.
More recently, it has been suggested that there is a subset
of semantic errors which can, in theory, be detected by the
database management systems even if the data demand is
unknown, because queries that contain such errors are “always
wrong” [7]. The remaining subset of semantic errors which
can only be detected if the current data demand is known
is called logical errors [10]. Additionally, complications, i.e.,
unnecessary elements which do not affect the correctness of
the result table, should be considered as well [7]. An error
categorization framework was constructed around these four
classes of errors [10]. The framework is effectively a three
level taxonomy of 105 different errors (Fig. 1).

A key thing to remember regarding SQL errors is that there
is no single stand to what SQL really is. The language is
defined by the SQL standard [21] [22], but different database
management systems implement SQL differently [23], and
what is a syntax error to, e.g., Oracle Database may not
be a syntax error to SQL Server. This problem concretizes
as students sometimes use a single database management
system when learning SQL. Educational research has only
very recently attempted to address the problem of database
management system dependency in error categorization [10].

Successfully formulating an SQL query has been shown
to be related to the query concepts (e.g., joins, ordering,
expressions, and grouping) [6], and certain query concepts
have been shown to invite certain errors [24]. Furthermore,
both syntax and logical errors have been argued to be the main
cause of query formulation failures, and current evidence on
the topic remain under debate. In the center of the discussion
appears to be the equivalence of errors committed during
query formulation versus errors that are never corrected, i.e.,
persistent errors. While some studies have examined error
frequencies during the whole query formulation process [8]
[10], some studies argue that not all errors are equal. While
writing erroneous queries is a natural and beneficial part of the
learning process, an error which is never fixed is an indication
of a problem. For example, syntax errors are frequent in
query formulation, but usually fixed, while logical errors are
similarly frequent, but students are less likely successful in
fixing them [10] [24].

C. Explanations Behind Errors

Explanations behind errors can be divided into causes
stemming from the learner, and causes stemming from the en-
vironment. Regarding environmental causes, it has been shown
that, e.g., data demand ambiguity [25] [26] [27], database
schema representation [28] [29], query complexity [26], and
how well real-world constructs match their equivalents in the
database [26] all affect the number of errors committed. While
these aspects are important, in this study we focus on causes
stemming from the learner.

Attempts have been made to explain causes behind query
formulation errors [30] [31] [20] [32]. As the first version
of the SQL standard was released in 1986, all these cat-
egorizations were constructed when the language was in a
nascent stage. More recently, and in the spirit of Reisner’s
[33] [30] seminal studies, Smelcer [11] discussed causes
behind different errors with cognitive explanations. Even more
recently, Ahadi et al. [9] mapped 551 erroneous SQL queries
regarding selected query concepts to the four aforementioned
categorizations from the 1970s and 1980s. To our knowledge,
these studies are the sole attempts which have tried to uncover
the root causes behind query formulation errors according to a
previously established framework. In contrast, several studies
on SQL errors have speculated causes in their respective
discussion sections.

According to Smelcer [11], there are four root causes for
query formulation errors. First, (human) working memory
overload causes errors of omission in particular. As the num-
ber of joins and expressions in a data demand increase, some
items are displaced from working memory, and never written
in the corresponding query. Second, absence of retrieval cue
is closely related to the data demand. Some data demands
contain more cues or hints about how the corresponding
query should be formulated. However, some data demands
lack such cues. For example, a data demand “Find all US
customers who have ordered an item in 2020” contains cues
for expressions regarding nationality and order year, but lacks
cues regarding the fact that the query possibly requires joins, as
customer and order details are likely stored in different tables.
Third, procedural fixedness refers to query writers becoming
accustomed to writing certain kinds of queries. This may
become a problem when a subsequent query requires different
kind of formulation, but the writer is fixed on solving the
problem with previously used techniques. Finally, absence of
procedural knowledge (i.e., simply ignorance) is effectively
insufficient or incorrect knowledge about how SQL or the
relational model works.

III. RESEARCH SETTING

A. Data Collection

We collected the data from four student cohorts over a
timeframe of four years. The course was an introductory
database course targeted for second year university students
majoring in computer science or information systems, with
no prior knowledge on SQL. The course consisted of lectures,



Semantic errors

Syntax errors

Logical errors

Complications

LOG-2 Join error 

60 join on incorrect column (matches possible)

61 join with incorrect comparison operator

error classes

(4 pcs.)

error categories

(18 pcs.)

errors

(105 pcs.)

general specificcategorical

Fig. 1. Error taxonomy [10]: from general to specific level, 4 classes of errors are divided into 18 categories, which are further divided into 105 different
errors - only a small subset of errors and error categories is illustrated here

voluntary exercises, discussion of said exercises, and an exam.
Concerning data retrieval, exercises were designed using a
previously established query concept framework (Table I). The
15 exercises were divided into three sets A, B, and C, and the
students had approximately one week to complete exercises in
a set. The students were given unlimited number of attempts
within the timeframe, and they could use whatever materials
or ways of communication at their disposal. The exercises
within a set could be attempted in any order, and the the
correct result table and the database schema diagram were
visible during the whole query writing process. The students
were able inspect the table creation statements with built-in
commands, and the learning environment was effectively an
SQLite command prompt embedded into a web page. Once
a weekly deadline had passed, students were presented with
example answers, and an opportunity to discuss alternative
methods of formulating the correct queries. Each cohort had a
similar set of exercises, but with a database using a different
business domain. Relevant query concepts are discussed and
demonstrated in detail in Section IV.

B. Method

Four student cohorts with a total of 987 students yielded
over 176,000 SQL queries, out of which we selected only the
chronologically last query for each student for each exercise
(i.e., final queries) for analysis. We coded these 12,180 final
queries according to the error categorization framework [10],
and, if a query contained at least one syntax, semantic, or
logical error, the query was considered incorrect. We also
coded complications, but did not regard them in this study.
73 students committed no persistent errors, so finally, we were
left with 3,739 incorrect final queries from 914 students which
we selected for further analysis.

Out of the numerous concepts of the query concept frame-
work (cf. Table I), we selected only the ones highlighted in a
previous study [24]: multi-table (the query must be formulated
using multiple tables rather than only one, exercises B4..B8
and B10..C15), equal subqueries (subqueries are on the same
level with each other rather than nested, exercise B8), self-
join (a table is joined with itself, exercises B11 and B13),

TABLE I
QUERY CONCEPTS FOR EACH EXERCISE, BASED ON TAIPALUS ET AL. [10]

Exercise Concepts

A1 single-table; expressions
A2 single-table; expressions; ordering
A3 single-table; wildcard; expressions with nesting
B4 multi-table; expressions; facing foreign keys
B5 multi-table; expressions; ordering
B6 multi-table; expressions with nesting; ordering
B7 multi-table; expressions; does not exist
B8 multi-table; does not exist; equal subqueries
B9 single-table; expressions; aggregate functions
B10 multi-table; expressions; multiple source tables
B11 multi-table; expressions; self-join; aggregate function evalu-

ated against a column value; uncorrelated subquery
B12 multi-table; expressions; aggregate function evaluated against

a constant; correlated subquery; parameter distinct
B13 multi-table; expressions; self-join
C14 multi-table; multiple source tables; aggregate functions;

grouping
C15 multi-table; multiple source tables; aggregate functions;

grouping; grouping restrictions; ordering

multiple source tables (the result table contains columns from
multiple tables rather than only one, exercises B10, C14 and
C15), and aggregate functions (the query must be formulated
using an aggregate function, exercises B9, B11, B12, C14 and
C15). For each of these concepts, we selected final queries
for corresponding exercises, and counted the frequencies of
errors.

C. Relationship with Previous Work

We utilized previously reported query concepts [10] in our
exercise design, and categorized student errors according to
an error categorization framework [10]. The data collected
yielded SQL queries regarding 19 query concepts, out of which
five were selected for further analysis. Specifically, these five
concepts were selected because they have been previously
shown to invite more clearly distinguishable errors than other
concepts [24]. Next, the discovered most common persistent
errors for each of these five query concepts were mapped to
Smelcer’s [11] four cognitive explanations. In the mapping
process, we considered the order in which the queries were



presented to students, query complexity, and query concepts.
Similarly to Smelcer [11], the mapping was speculative.

Now that we have elaborated our research setting and stud-
ies influencing it, it is natural to discuss our main contributions
in relation to prior studies. Regarding the discovery of the
most common persistent errors, Taipalus and Perälä [24] had
a similar research question to us, and they used the same error
categorization framework. However, their unit of observation
was error categories, which all contain more than one error.
We, however, use errors as the unit of observation, which
allow more fine-grained insights. Regarding causes of errors,
both Smelcer [11] and Ahadi et al. [9] had a similar research
question.

IV. THE MOST COMMON ERRORS AND THEIR CAUSES

In this section, we list the most common persistent query
formulation errors, and map the most common errors within
certain query concepts to Smelcer’s [11] cognitive explana-
tions: working memory overload, absence of retrieval cue, pro-
cedural fixedness, and ignorance. Furthermore, we speculate
why certain explanations fit certain errors. We also provide ex-
ample queries which demonstrate the query concepts discussed
in the following subsections. The example queries correspond
to the following database schema. The database schema is not
the same as used in the research setting, but a minimal example
for clarity and brevity:

• CUSTOMER(customerid, name, address)
• ORDERED (productid, customerid, quantity)
• PRODUCT (productid, description, onhand)
• SUPPLIES (supplierid, productid)
• SUPPLIER (supplierid, name)

A. All Concepts

Out of the total 12,180 final queries, 3,739 were incorrect
(i.e., contained at least one syntax, semantic or logical error).
The most common errors in all queries, regardless of the
query concept, were missing expressions (a logical error)
with the frequency of 0.29, extraneous or omitted grouping
column (a syntax error) with the frequency of 0.18, as well
as missing join, and missing column from the ORDER BY
clause (both logical errors), both with the frequency of 0.10.
The most common persistent errors across all queries are
listed in Table II. The most common persistent errors across
different query concepts (multi-table, equal subqueries, self-
join, multiple source tables, aggregate functions) are illustrated
in Fig. 2. In the spirit of Smelcer [11], we consider errors
caused by ignorance theoretically uninteresting, and do not
discuss them in as much detail as the other three causes.

Concerning Fig. 2, it is worth noting that out of the 3,739
incorrect final queries, many were analyzed multiple times,
as one query can test student skill concerning, e.g., multi-
table queries and aggregate functions. In fact, it is impossible
for a query to test student skill with multiple source tables
without testing skill with multi-table queries. Additionally, an
incorrect query can exhibit more than one error, and only the
six most frequent errors for each query concept are reported.

TABLE II
ERROR FREQUENCIES OF THE SIX MOST COMMON PERSISTENT ERRORS

ACROSS ALL QUERIES

Error ID and description Freq.

missing expression 0.29
extraneous or omitted grouping column 0.18
missing join 0.10
missing column from ORDER BY clause 0.10
incorrect comparison. op. or incorrect value compared 0.08
omitting a join 0.06
number of queries analyzed 3,739

TABLE III
ERROR FREQUENCIES OF THE SIX MOST COMMON PERSISTENT ACROSS

MULTI-TABLE QUERIES

Error ID and description Freq. Cause

missing expression 0.31 memory overload
extraneous or omitted grouping column 0.22 ignorance
missing join 0.12 absence of cue
incorrect comparison op. or value compared 0.08 ignorance
omitting a join 0.07 ignorance
missing column from SELECT 0.06 ignorance
number of queries analyzed 2,869

Effectively, this means that the x-axis in Fig. 2 adds up to
more than 1, and that the length of a bar merely represents
the sum of the top six error frequencies within a concept.

B. Multi-table

As can be observed in Table III, our results indicate that
across multi-table queries, missing expressions and grouping
related errors are more common than join errors. The used
error categorization framework [10] divides absent joins into
omitting a join and missing join. The former is a semantic and
the latter a logical error. A prime example of the former would
be the query in (1) without the last line (i.e., the query outputs
a Cartesian product), and a prime example of the latter in (2)
without the last two lines.

SELECT c.name
FROM customer c, ordered o
WHERE c.customerid = o.customerid;

Listing 1. A multi-table query with an explicit join condition

SELECT c.name
FROM customer c
JOIN ordered o
ON (c.customerid = o.customerid);

Listing 2. ANSI SQL-92 join in a multi-table query

Although Smelcer [11] indicates that “omitting the join
clause” is the most common user error, there are two things
worth noting. First, Smelcer [11] demonstrates joins using
an explicit join condition in the WHERE clause, similar to
(1). This alone supports the assumption that Smelcer [11]
uses the term join clause for the explicit join, rather than
the keyword JOIN. Second, if joins are formulated as in (1),
omitting a join (i.e., the WHERE clause) is arguably more
understandable than omitting the last two lines of (2). This



13

13

16

16

16

16

16

40

40

48

48

48

57

57

57

57

58

62

62

62

62

62

64

66

66

66

66

66

68

71

71

71

74

76

81

0 0.2 0.4 0.6 0.8 1 1.2

(all concepts)

aggregate functions

multiple source tables

self-join

equal subqueries

multi-table

Fig. 2. The six most frequent persistent errors by query concept. The bar labels refer to the error IDs [10]: 13 = data type mismatch, 16 = grouping error:
extraneous or omitted grouping column, 40 = implied, tautological or inconsistent expression, 48 = omitting a join, 57 = incorrect comparison operator or
incorrect value compared, 58 = join on incorrect table, 62 = missing join, 64 = improper nesting of subqueries, 66 = missing expression, 68 = extraneous
expression, 71 = missing column from SELECT, 74 = missing column from ORDER BY clause, 76 = extraneous ORDER BY clause, 81 = incorrect column
as function parameter

TABLE IV
ERROR FREQUENCIES OF THE SIX MOST COMMON PERSISTENT ERRORS

ACROSS QUERIES WITH EQUAL SUBQUERIES

Error ID and description Freq. Cause

extraneous expression 0.21 ignorance
missing join 0.17 absence of cue
implied, tautological or inconsistent expr. 0.08 ignorance
join on incorrect table 0.08 ignorance
data type mismatch 0.07 ignorance
improper nesting of subqueries 0.07 procedural fixedness
number of queries analyzed 156

observation propounds the view that the method used for
formulating joins in Smelcer’s [11] research may have been a
factor that increased join omissions. Missing expressions were
common in multi-table queries, which supports Smelcer’s [11]
observations.

C. Equal Subqueries

Writing equal subqueries (3) after its counterpart, nested
subqueries, is a prime example of Smelcer’s [11] concept of
procedural fixedness. As the participants were accustomed to
writing nested subqueries in four preceeding exercises, using
nested subqueries was arguably an intuitive strategy for this
exercise as well. However, nesting the subqueries, illustrated
in (4) is semantically correct, but answers to a different data
demand than (3).

SELECT p.productid, p.description
FROM product p
WHERE NOT EXISTS
(SELECT *
FROM ordered o
WHERE p.productid = o.productid)

AND EXISTS
(SELECT *
FROM supplies s
WHERE p.productid = s.productid);

Listing 3. A query with equal subqueries

SELECT p.productid, p.description
FROM product p
WHERE NOT EXISTS
(SELECT *
FROM ordered o
WHERE p.productid = o.productid
AND EXISTS

(SELECT *
FROM supplies s
WHERE p.productid = s.productid)

);

Listing 4. A query with nested subqueries

Rather surprisingly, the most common error in the equal
subquery exercise was extraneous expression (Table IV). A
possible explanation is that students first formulated nested
subqueries, and, as the nested subqueries example in (3)
always returns more data, students may have tried to eliminate
result table rows by adding expressions. In this case, however,
such expressions are extraneous. While data demands usually
contain cues for expressions, cues for joins are seldom present.
Intuitively, missing joins can be associated with the absence
of cues.

D. Self-join
For novices, self-join is one of the most difficult query

concepts [6] [8] [9] [24]. Self-join queries are also prime
examples of Smelcer’s [11] absence of retrieval cue, as the
data demands of such queries do not contain a cue for a table



TABLE V
ERROR FREQUENCIES OF THE SIX MOST COMMON PERSISTENT ACROSS

SELF-JOIN QUERIES

Error ID and description Freq. Cause

missing expression 0.65 absence of cue
extraneous or omitted grouping column 0.26 ignorance
missing join 0.11 absence of cue
extraneous ORDER BY clause 0.08 ignorance
data type mismatch 0.04 ignorance
implied, tautological or inconsistent expr. 0.04 ignorance
number of queries analyzed 750

join. In fact, a data demand “Find the names of customers
who live in the same address as customer #47” (5) might, to a
novice, even seem to discourage joining tables. Furthermore,
the data demand for the query in (5) typically omits the re-
quired expression on the fifth line. Finally, the data demand for
the query in (6) omits the requirement that product description
must be checked twice. For these reasons, we speculate that
in the case of self-join, missing expressions are not caused by
working memory overload, but absence of retrieval cues (Table
V). However, it can be argued that a missing expression in the
query in (6) is caused by inaccurate procedural knowledge, as
writing both expressions presupposes knowledge about what
the uncorrelated subquery will return during execution.

SELECT c1.name
FROM customer c1
JOIN customer c2

ON (c1.address = c2.address)
WHERE c1.customerid <> 47
AND c2.customerid = 47;

Listing 5. A typical, simple self-join

SELECT productid, onhand
FROM product
WHERE description = ’used’

AND onhand =
(SELECT MAX(onhand)
FROM product
WHERE description = ’used’);

Listing 6. A self-join with an uncorrelated subquery formed by evaluating
an aggregate function against a column value

E. Multiple Source Tables

A query with multiple source tables projects or calculates
column values into the result table from more than one table
(7). In our exercises, this query concept was tested first in
exercise B10, meaning that students formulated queries with
a single source table in the preceeding nine exercises. The
most common errors for this type of queries, however, do not
list errors we could relate to procedural fixedness (Table VI).

SELECT o.productid, c.name, c.address
FROM ordered o
JOIN customer c
ON (o.customerid = c.customerid);

Listing 7. An example of a query with multiple source tables

We believe that the key to successfully writing a basic
query with multiple source tables rests within the method
of writing joins. If joins are written like in (7) or in (1),

TABLE VI
ERROR FREQUENCIES OF THE SIX MOST COMMON PERSISTENT ERRORS

ACROSS QUERIES WITH MULTIPLE SOURCE TABLES

Error ID and description Freq. Cause

extraneous or omitted grouping column 0.31 ignorance
missing column from SELECT 0.17 ignorance
omitting a join 0.15 ignorance
missing expression 0.15 memory overload
missing join 0.11 ignorance
incorrect comparison op. or value compared 0.08 ignorance
number of queries analyzed 807

TABLE VII
ERROR FREQUENCIES OF THE SIX MOST COMMON PERSISTENT ERRORS

ACROSS QUERIES WITH AGGREGATE FUNCTIONS

Error ID and description Freq. Cause

extraneous or omitted grouping column 0.40 ignorance
missing expression 0.34 absence of cue
incorrect column as function parameter 0.10 ignorance
incorrect comparison op. or value compared 0.07 ignorance
extraneous ORDER BY clause 0.06 ignorance
missing column from SELECT 0.06 ignorance
number of queries analyzed 1,486

the query formulation process is relatively easy. If, however,
a student formulates joins with EXISTS (3), scope related
problems arise. Consequently, attempts to fix these problems
while insisting on the use of EXISTS (or alternatively, IN)
leads to a number of different and diverse errors, as can be
observed in Table VI.

F. Aggregate Functions

Aggregate functions often imply grouping (8),(9), and
grouping is a difficult concept [34]. As we have listed in
Table VII, most aggregate function related errors are caused by
ignorance, i.e., inaccurate procedural knowledge about how the
language operates. Again, we believe that missing expressions
are caused by absence of a cue rather than working memory
overload (6).

SELECT productid, SUM(quantity)
FROM ordered
GROUP BY productid;

Listing 8. A query with an aggregate function and grouping

SELECT p.productid
, SUM(o.quantity)
, COUNT(DISTINCT o.customerid)

FROM product p, ordered o
WHERE p.productid = o.productid
GROUP BY p.productid;

Listing 9. A query with aggregate functions, parameter distinct, multiple
source tables and grouping

V. DISCUSSION

A. A Comparison of Results

As we reported previously, the studies of Smelcer [11] and
Ahadi et al. [9] are closely related to ours. Overall, a one–to–
one comparison of results is impossible due to the different



error categorizations, and in the case of Ahadi et al. [9], errors
were also mapped to different causes. Furthermore, in the case
of Smelcer [11], different types of SQL joins pose a threat to
reliable comparison. Therefore, all comparison is subject to
speculation.

The reported error frequencies are partly in line with
Taipalus and Perälä [24], but provide much needed low level
insight on the frequencies of errors, as opposed to error
categories (cf. Fig. 1). As error categories contain several
errors, some of these errors might be persistent in one category
while others might not. Therefore, simply reporting the most
frequent error categories might not convey which errors are
related to particular query concepts. Two patterns regarding
the most frequent errors can be observed in Fig. 2. Missing
expression seems to be the most frequent persistent error
throughout all exercises, as well as in many of the concepts.
This result is in line with previously reported findings [9]. The
next most frequent error appears to be extraneous or omitted
grouping column, and the difficulties around the concept of
grouping in SQL have been speculated even before the release
of the SQL-86 standard [34], and evidence supporting this
view presented in Ahadi et al. [9]. Our most notable extension
to Smelcer’s [11] work is that we present that cognitive
explanations are not merely related to errors, but also to query
concepts. For example, we presented that, depending on the
context, missing expressions may be cause by either memory
overload or the absence of retrieval cues.

B. How to Mitigate Persistent Errors

We presented the most common persistent query formula-
tion errors and speculated on their cognitive explanations. Here
we present how knowledge on the most common errors can be
utilized in mitigating them. We also present that there already
exist solution proposals in scientific literature which can be
used to mitigate the root causes behind query formulation
errors.

The error frequencies provide needed fine-grained infor-
mation on which errors are likely never corrected by SQL
novices. These findings can be used in classroom to emphasize
difficult concepts such as comparison operators, projection,
joins, and grouping. Furthermore, as discussed in Taipalus et
al. [10], the most frequent errors may be taken into account
when designing exercise databases and exercise data. If the
correct result table is presented during query writing, and the
exercise data is designed so that student queries with the most
frequent errors output a different result table, the students are
made aware that their query is incorrect. Several studies have
proposed teaching SQL by showing students incorrect SQL
queries [35] [15] [36]. Rather than formulating all possible or
an arbitrary set of erroneous queries, we suggest that educators
utilize the most common persistent errors identified in this
study. Because this study only considered persistent errors,
the most frequent errors reported may be interpreted as the
most common causes of failure in query formulation.

In addition to SQL in particular, working memory capacity
has received increasing attention in database education in

general [37]. If educators were to strive to increase query
formulation success rates, formulating simple exercises to
mitigate working memory load would be an intuitive solution.
However, as education aims to train future professionals, for-
mulating only simple exercises is not a feasible solution. Given
the centrality of the issue of cognitive load, some solutions
have already been proposed in the form of simpler database
structures [38], query templates [39] [40] and a planning
notation for complex SQL queries [41]. Query planning, in
particular, arguably mitigates working memory constraints as
relevant parts of the data demand are separated from irrelevant,
and explicitly marked as a query plan which is then written
in SQL.

On the subject of retrieval cues, the same argument for
training professionals applies. In industry, data demands are
often ambiguous [42], and students should be prepared to work
with ambiguous data demands. An ambiguous data demand
intuitively lacks retrieval cues, thus possibly increasing related
errors. However, it has been shown that as data demand
complexity increases, the numbers of query formulation errors
in ambiguous and unambiguous data demands converge [27],
i.e., ambiguity has less and less an effect on the number of
errors with more and more complex data demands. Therefore,
it seems justified to suggest that in education, simple data
demands should be presented unambiguously, and as data
demand complexity in consecutive exercises increases, so
should ambiguity.

Finally, procedural fixedness is related to habits or routines
in query formulation. Again, a rather intuitive but counter-
productive approach would be to reveal the query concepts
related to an exercise to a student prior to query writing,
thus possibly mitigating errors caused by procedural fixedness.
Rather, educators should teach students to recognize patterns
in the natural language data demand, and map these patterns
to corresponding SQL constructs. Such approaches have been
presented [43] [44], and we propose that they are a natural fit
to counter procedural fixedness. In summary, it seems justified
to argue that most of the causes of errors could be mitigated by
already presented teaching approaches. However, rather than
in isolation, these approaches should be utilized in tandem, as
they are not mutually exclusive.

C. Threats to Validity

There are several threats to validity possibly affecting the
results. First, it is worth noting that the amount of query
concepts potentially affect the error frequencies, e.g., if more
of the 15 exercises tested student skill with single-table rather
than multi-table queries, it is safe to state that the frequencies
of join related errors would decrease. Second, the order in
which the exercises are presented to students possibly affect
error frequencies, e.g., if a self-join was tested later rather
than earlier, the frequencies of errors unrelated to self-join
would likely decrease, as students would have grown more
accustomed to other query concepts in exercises they have
completed earlier. Third, the used query concept framework
is presented in a high level of detail. Effectively, this means



that a query that is complex enough to be pedagogically in-
teresting, represents numerous query concepts. Consequently,
the amount and nature of auxiliary query concepts affect
the error frequencies for each query concept. Rather than
trying to control these variables, we chose to study student
learning in a more natural setting. Although this approach
introduced several threats to validity, we believe they can be
partly justified by the upsides, which are twofold. First, we
believe a less controlled setting to be a major cause regarding
the number of participants, which, in turn, mitigates risks
associated with small sample sizes. Second, we have studied
student learning in its natural environment, rather than in
a more controlled lab setting, which naturally would have
introduced different threats.

VI. CONCLUSION

This study was an attempt to provide a fine-grained analysis
on which SQL errors are likely to cause novices to fail in SQL
query formulation, and to explain causes behind most common
errors. In all tested exercises, the three most frequent persistent
errors were missing expressions, extraneous or omitted group-
ing columns, and missing joins. Furthermore, it was observed
that the cause of error does not rest solely on the type of
error committed, but also on the query concept. Finally, we
proposed that three of the four most common causes for query
formulation errors may be mitigated by teaching students to
recognize natural language patterns and their SQL equivalents,
a priori query planning, and gradually moving towards more
and more ambiguous data demands.

REFERENCES

[1] Joint Task Force on Computing Curricula, Association for Computing
Machinery (ACM) and IEEE Computer Society, “Computer science
curricula 2013: Curriculum guidelines for undergraduate degree
programs in computer science,” New York, NY, USA, Tech. Rep.,
2013, 999133. [Online]. Available: doi.org/10.1145/2534860

[2] The Joint Task Force on Computing Curricula, “Curriculum
guidelines for undergraduate degree programs in software engineering,”
New York, NY, USA, Tech. Rep., 2015. [Online]. Available:
https://dl.acm.org/citation.cfm?id=2965631

[3] H. Topi, K. M. Kaiser, J. C. Sipior, J. S. Valacich, J. F.
Nunamaker, Jr., G. J. de Vreede, and R. Wright, “Curriculum
guidelines for undergraduate degree programs in information systems,”
New York, NY, USA, Tech. Rep., 2010. [Online]. Available:
https://dl.acm.org/citation.cfm?id=2593310

[4] A. Ko and B. Myers, “Development and evaluation of a model
of programming errors,” in IEEE Symposium on Human Centric
Computing Languages and Environments. IEEE, 2003. [Online].
Available: https://doi.org/10.1109%2Fhcc.2003.1260196

[5] T. Taipalus and V. Seppänen, “SQL education: A systematic
mapping study and future research agenda,” ACM Transactions
on Computing Education, (in press). [Online]. Available:
https://doi.org/10.1145/3398377

[6] A. Ahadi, J. Prior, V. Behbood, and R. Lister, “A Quantitative Study of
the Relative Difficulty for Novices of Writing Seven Different Types
of SQL Queries,” in Proceedings of the 2015 ACM Conference on
Innovation and Technology in Computer Science Education (ITiCSE).
New York, New York, USA: ACM Press, 2015, pp. 201–206. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2729094.2742620

[7] S. Brass and C. Goldberg, “Semantic errors in SQL queries:
A quite complete list,” Journal of Systems and Software,
vol. 79, no. 5, pp. 630–644, May 2006. [Online]. Available:
https://doi.org/10.1016%2Fj.jss.2005.06.028

[8] A. Ahadi, V. Behbood, A. Vihavainen, J. Prior, and R. Lister,
“Students’ Syntactic Mistakes in Writing Seven Different Types
of SQL Queries and its Application to Predicting Students’
Success,” in Proceedings of the 47th ACM Technical Symposium
on Computing Science Education (SIGCSE). New York, New
York, USA: ACM Press, 2016, pp. 401–406. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2839509.2844640

[9] A. Ahadi, J. Prior, V. Behbood, and R. Lister, “Students’ Semantic Mis-
takes in Writing Seven Different Types of SQL Queries,” in Proceedings
of the 2016 ACM Conference on Innovation and Technology in Computer
Science Education (ITiCSE). New York, New York, USA: ACM Press,
2016, pp. 272–277.

[10] T. Taipalus, M. Siponen, and T. Vartiainen, “Errors and complications in
SQL query formulation,” ACM Transactions on Computing Education,
vol. 18, no. 3, pp. 15:1–15:29, August 2018. [Online]. Available:
http://doi.acm.org/10.1145/3231712

[11] J. B. Smelcer, “User errors in database query composition,” International
Journal of Human-Computer Studies, vol. 42, no. 4, pp. 353–381, April
1995. [Online]. Available: https://doi.org/10.1006%2Fijhc.1995.1017

[12] K. Atchariyachanvanich, S. Nalintippayawong, and T. Julavanich, “Re-
verse SQL question generation algorithm in the DBLearn adaptive e-
learning system,” IEEE Access, vol. 7, pp. 54 993–55 004, 2019.

[13] A. Mitrovic and S. Ohlsson, “Implementing CBM: SQL-Tutor after
fifteen years,” International Journal of Artificial Intelligence Education,
vol. 26, no. 1, pp. 150–159, March 2016.

[14] A. Hull and B. du Boulay, “Motivational and metacognitive
feedback in SQL-tutor*,” Computer Science Education, vol. 25,
no. 2, pp. 238–256, April 2015. [Online]. Available:
https://doi.org/10.1080%2F08993408.2015.1033143

[15] C. Myers and P. Douglas, “The un-structured student,” in 24th British
National Conference on Databases (BNCOD), July 2007, pp. 3–9.

[16] L. I. McCann, “On making relational division comprehensible,” in
Proceedings of the 2003 33rd Annual Frontiers in Education Conference
(FIE), vol. 2, November 2003, pp. F2C–6.

[17] A. Fekete, “Teaching transaction management with SQL examples,”
in Proceedings of the 2005 ACM Conference on Innovation and
Technology in Computer Science Education (ITiCSE), ser. ITiCSE ’05.
New York, NY, USA: ACM, 2005, pp. 163–167. [Online]. Available:
http://doi.acm.org/10.1145/1067445.1067492

[18] C. Pahl, R. Barrett, and C. Kenny, “Supporting active database
learning and training through interactive multimedia,” in Proceedings
of the 2004 ACM Conference on Innovation and Technology in
Computer Science Education (ITiCSE), ser. ITiCSE ’04. New
York, NY, USA: ACM, 2004, pp. 27–31. [Online]. Available:
http://doi.acm.org/10.1145/1007996.1008007

[19] M. K. S. Sastry, “An effective approach for teaching database course,”
International Journal of Learning, Teaching and Educational Research,
vol. 12, no. 1, 2015.

[20] C. Welty, “Correcting user errors in SQL,” International Journal of
Man-Machine Studies, vol. 22, no. 4, pp. 463–477, April 1985. [Online].
Available: https://doi.org/10.1016%2Fs0020-7373%2885%2980051-1

[21] ISO/IEC, “ISO/IEC 9075-1:2016, ”SQL - Part 1: Framework”,” 2016.
[Online]. Available: https://www.iso.org/standard/63555.html

[22] ——, “ISO/IEC 9075-2:2016, ”SQL - Part 2: Foundation”,” 2016.
[Online]. Available: https://www.iso.org/standard/63556.html

[23] G. B. Randolph, “The forest and the trees: Using Oracle and SQL
Server together to teach ANSI-standard SQL,” in Proceedings of the
4th ACM Conference on Information Technology Curriculum (CITC),
ser. CITC4 ’03. New York, NY, USA: ACM, 2003, pp. 234–236.
[Online]. Available: http://doi.acm.org/10.1145/947121.947174

[24] T. Taipalus and P. Perälä, “What to expect and what to focus on in SQL
query teaching,” in Proceedings of the 50th ACM Technical Symposium
on Computer Science Education (SIGCSE), ser. SIGCSE ’19. New
York, NY, USA: ACM, February-March 2019, pp. 198–203.

[25] M. Axelsen, A. F. Borthick, and P. L. Bowen, “A model for
and the effects of information request ambiguity on end-user query
performance,” ICIS 2001 Proceedings, p. 68, 2001. [Online]. Available:
http://aisel.aisnet.org/icis2001/68

[26] A. Borthick, P. L. Bowen, D. R. Jones, and M. H. K. Tse, “The effects
of information request ambiguity and construct incongruence on query
development,” Decision Support Systems, vol. 32, no. 1, pp. 3–25,
November 2001. [Online]. Available: https://doi.org/10.1016%2Fs0167-
9236%2801%2900097-5



[27] G. I. Casterella and L. Vijayasarathy, “Query Structure and Data
Model Mapping Errors in Information Retrieval Tasks,” Journal of
Information Systems Education, vol. 30, no. 3, pp. 178–190, 2019.
[Online]. Available: http://jise.org/Volume30/n3/JISEv30n3p178.pdf

[28] J. S. Davis, “Experimental investigation of the utility of data structure
and E-R diagrams in database query,” International Journal of Man-
Machine Studies, vol. 32, no. 4, pp. 449 – 459, 1990. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0020737305801427

[29] R. L. Leitheiser and S. T. March, “The influence of
database structure representation on database system learning
and use,” Journal of Management Information Systems, vol. 12,
no. 4, pp. 187–213, March 1996. [Online]. Available:
https://doi.org/10.1080%2F07421222.1996.11518106

[30] P. Reisner, “Use of psychological experimentation as an aid to
development of a query language,” IEEE Transactions on Software
Engineering, vol. SE-3, no. 3, pp. 218–229, May 1977. [Online].
Available: https://doi.org/10.1109%2Ftse.1977.231131

[31] C. Welty and D. W. Stemple, “Human factors comparison of a
procedural and a nonprocedural query language,” ACM Transactions
on Database Systems, vol. 6, no. 4, pp. 626–649, December 1981.
[Online]. Available: https://doi.org/10.1145%2F319628.319656

[32] R. B. Buitendijk, “Logical errors in database SQL retrieval queries,”
Computer Science in Economics and Management, vol. 1, no. 2, pp. 79–
96, 1988. [Online]. Available: https://doi.org/10.1007%2Fbf00427157

[33] P. Reisner, “Human factors studies of database query
languages: A survey and assessment,” ACM Computing Surveys,
vol. 13, no. 1, pp. 13–31, March 1981. [Online]. Available:
http://doi.acm.org/10.1145/356835.356837

[34] C. J. Date, “Critique of the SQL database language,” SIGMOD Record,
vol. 14, no. 3, November 1983.

[35] J. E. Hollingsworth, “Teaching query writing: An informed instruction
approach,” in Proceedings of the 13th Annual Conference on Innovation
and Technology in Computer Science Education (ITiCSE), ser. ITiCSE
’08. New York, NY, USA: ACM, 2008, pp. 351–351. [Online].
Available: http://doi.acm.org/10.1145/1384271.1384393

[36] R. Zilligen and A. Hidayat, “A misconception module to a
database courseware,” in Proceedings of the 46th ACM Annual
Southeast Regional Conference (ACM-SE), ser. ACM-SE 46. New
York, NY, USA: ACM, 2008, pp. 529–530. [Online]. Available:
http://doi.acm.org/10.1145/1593105.1593250

[37] R. Mason, C. Seton, and G. Cooper, “Applying cognitive load theory
to the redesign of a conventional database systems course,” Computer
Science Education, vol. 26, no. 1, pp. 68–87, January 2016. [Online].
Available: https://doi.org/10.1080%2F08993408.2016.1160597

[38] T. Taipalus, “The effects of database complexity on SQL query formu-
lation,” Journal of Systems and Software, vol. 165, p. 110576, 2020.

[39] H. Al-Shuaily and K. Renaud, “SQL patterns - a new approach for
teaching SQL,” in 8th HEA Workshop on Teaching, Learning and
Assessment of Databases (TLAD), 2010, pp. 29–40.

[40] L. Vijayasarathy and G. Casterella, “The effects of information
request language and template usage on query formulation,”
Journal of the Association for Information Systems, vol. 17,
no. 10, pp. 674–707, October 2016. [Online]. Available:
https://doi.org/10.17705%2F1jais.00440

[41] T. Taipalus, “Teaching Tip: A Notation for Planning SQL Queries,” Jour-
nal of Information Systems Education, vol. 30, no. 3, pp. 160–166, 2019.
[Online]. Available: http://jise.org/Volume30/n3/JISEv30n3p160.pdf

[42] G. I. Casterella and L. Vijayasarathy, “An Experimental Investigation
of Complexity in Database Query Formulation Tasks,” Journal of
Information Systems Education, vol. 24, no. 3, pp. 211–221, 2013.
[Online]. Available: http://jise.org/Volume24/24-3/pdf/Vol24-3pg211.pdf

[43] G. Qian, “Teaching SQL: A divide-and-conquer method for
writing queries,” Journal of Computing Sciences in Colleges,
vol. 33, no. 4, pp. 37–44, Apr. 2018. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3199572.3199577

[44] L. Sundin and Q. Cutts, “Is it feasible to teach query programming
in three different languages in a single session?: A study on a
pattern-oriented tutorial and cheat sheets,” in Proceedings of the 1st
ACM UK & Ireland Computing Education Research Conference, ser.
UKICER. New York, NY, USA: ACM, 2019, pp. 7:1–7:7. [Online].
Available: http://doi.acm.org/10.1145/3351287.3351293


