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Synopsis Conflict between mates, as well as conflict between parents and offspring are due to divergent evolutionary

interests of the interacting individuals. Hormone systems provide genetically based proximate mechanisms for mediating

phenotypic adaptation and maladaptation characteristic of evolutionary conflict between individuals. Testosterone (T) is

among the most commonly studied hormones in evolutionary biology, and as such, its role in shaping sexually dimorphic

behaviors and physiology is relatively well understood, but its role in evolutionary conflict is not as clear. In this review,

we outline the genomic conflicts arising within the family unit, and incorporate multiple lines of evidence from the bank

vole (Myodes glareolus) system to outline how T impacts traits associated with reproduction and survival, resulting in a

sexually antagonistic genetic trade-off in fitness. A major prediction arising from this work is that lower T is favored in

females, whereas the optimal T level in males fluctuates in relation to social and ecological factors. We additionally

discuss future directions to further integrate endocrinology into the study of sexual and parent–offspring conflicts.

Testosterone in evolution

As genetically based signalling systems that are capa-

ble of efficiently responding to environmental stim-

uli, hormones play crucial roles in adaptation by

mediating life history trade-offs (McGlothlin and

Ketterson 2008; Mills et al. 2008, 2009, 2012; John-

Alder et al. 2009; Hau and Wingfield 2011;

Mokkonen and Crespi 2015). One of the most stud-

ied hormones in evolutionary biology is the andro-

gen testosterone (T)—a sexually dimorphic hormone

that exhibits similar endocrinological functions

across vertebrate taxa (Adkins-Regan 2005; Mills et

al. 2008; Hau and Wingfield 2011; Cox et al. 2015).

T is involved in the process of masculinizing the

male brain, as well as the female phenotype for pla-

cental species that have mixed-sex offspring in one

litter where T in utero is secreted maternally and

fraternally (Hernández-Tristán et al. 1999; Kerin et

al. 2003; Lummaa et al. 2007). These prenatal effects

can have life-long consequences on the behavior and/

or physiology of individuals (Ruuskanen and

Laaksonen 2010). Recent work has argued that the

programming effects of T on mammalian fetal brains

is associated with psychiatric dysregulation

(Lombardo et al. 2012; Baron-Cohen et al. 2015),

and may also epigenetically influence sexual prefer-

ence (Rice et al. 2012). Being an anabolic steroid, it

is responsible for stimulating somatic tissue growth

(including muscle mass, bone density, and strength)

as well as secondary sex characteristics (e.g., Alatalo

et al. 1996; but see Pizzari et al. 2004). It is also

important in spermatogenesis, where it interacts

with testicular Sertoli cells in the maturation of sper-

matagonia to spermatozoa (McLachlan et al. 1996;

Zirkin 1998; Preston et al. 2012). The benefits of

higher T for reproduction inherently trade off with

other fitness-related traits such as parental effort

(McGlothlin et al. 2007), as well as immunity and

survival (Folstad and Karter 1992; John-Alder et al.

2009; Mills et al. 2009, 2010). Clearly, T impacts a
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range of traits that directly influence fitness across

different ontogenetic stages. In this review, we con-

sider the impact of T on competing evolutionary

interests in mammals, concentrating on bank vole

(Myodes glareolus) life histories to draw together be-

havioral, genetic, physiological, and ecological

perspectives.

Evolutionary conflicts

Trade-offs between life history traits

Individuals are aggregates of interacting traits, some

fixed, some exhibiting diverse variation in their ex-

pression. When this phenotypic variation is heritable

and linked to variation in fitness, selection can act on

a given trait to adapt a population of individuals

towards an optimum value in a given environment

(Falconer and MacKay 1996; Bell 2008; Mills et al.

2014). However, due to physiological constraints in

morphology and energetics, fitness-related traits

often represent a compromise value due to evolu-

tionary trade-offs between them in an individual

(Roff 1992; Stearns 1992). In such a classic life his-

tory trade-off, selecting for (or against) a value of a

given trait will produce an effect on fitness, but will

additionally produce an indirect effect on any corre-

lated trait that may have an opposing effect on fit-

ness (Oksanen et al. 2003). These trade-offs are

apparent during reproduction, where females typi-

cally invest more resources in offspring, and must

carefully balance the fitness benefits of current and

future reproductive success with the associated fe-

cundity costs that may also impact their own survival

(Trivers 1972, 1974; Oksanen et al. 2002; Koivula et

al. 2003; Mappes et al. 2008). In contrast, males

maximize their reproductive success directly by bal-

ancing their investment in mating success with sur-

vival costs (Mills et al. 2009), and indirectly through

genetic benefits that improve offspring survival via

greater resource acquisition from mothers (Parker

et al. 2002; Rutkowska et al. 2011; Collet et al.

2014; but see Oksanen et al. 1999). When these

traits are genetically based and negatively correlated,

the trade-off is the result of (intra)genomic con-

flict—an unresolved genetic conflict within an indi-

vidual (Mappes and Koskela 2004; Schroderus et al.

2012; Haig 2014b).

Multiple lines of evidence (correlative observa-

tional data from the wild, as well as manipulation

experiments involving phenotypic engineering with

T-implants, or artificial selection) have demonstrated

that T is one of the main determinants of reproduc-

tive success in male bank voles (Mills et al. 2007b,

2009). Males selected for higher T levels have higher

behavioral dominance in male–male reproductive

competition, leading to higher mating and reproduc-

tive success (Mills et al. 2009, 2012; Mokkonen et al.

2012). Despite directional (sexual) selection of this

hormone in males, considerable phenotypic variation

exists in populations. Manipulated field experiments

and quantitative genetic analysis of a laboratory

colony were conducted on individuals to reveal the

costs of selecting for T. Individuals with higher T

levels suffered lower specific (anti-BGG) immune re-

sponses making them more susceptible to pathogens,

and had shorter lifespans due to decreased survival

(Mills et al. 2009, 2010). Negative genetic correla-

tions between T and immune function were observed

in males (Schroderus et al. 2010).

Sexual selection and conflict

The reproductive differences between males and fe-

males have come under increasing scrutiny in evolu-

tionary biology. Since females tend to bear the costs

of gestation and parental care, the reproductive suc-

cess of males is primarily limited by the number of

mates and the reproductive success of females is

mostly limited by the resources available (and phys-

iological capacity) for producing the offspring

(Bateman 1948; Parker and Birkhead 2013). Thus,

to understand the evolution of sex roles, one must

consider both pre-copulatory and post-copulatory

processes in reproduction such as the adult and op-

erational sex ratios, sexual selection, multiple mating,

and the resource needs of the offspring (Mills and

Reynolds 2003; Kokko and Jennions 2008).

More recent research has complemented existing

knowledge of sexual selection by focusing on sexually

antagonistic (SA) selection (Parker 1979; Rice 1992;

Arnqvist and Rowe 2005; Bonduriansky and

Chenoweth 2009; Cox and Calsbeek 2009;

Mokkonen et al. 2011). When acting on a shared

genetic locus, this type of selection often results in

a ‘‘compromise’’ between males and females over a

trait. The evolutionary interests between parent and

offspring, as well as between mates, are dissimilar

enough to result in genetic conflicts between the in-

teracting individuals (i.e., intergenomic conflict; Rice

2013). Sexual and parent–offspring conflicts occur

during reproduction and are essentially due to the

differences in paternal versus maternal evolutionary

interests (Trivers 1974; Rice 1998; Parker et al. 2002;

Arnqvist and Rowe 2005; Wedell et al. 2006; Aloise

King et al. 2013). It is possible to minimize these

genetic conflicts by evolving processes such as sex-

biased gene expression (Rice 1984; Stewart et al.

2010). However, genome-wide resolution of conflict
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is unlikely to occur due to the changing (ontogenetic

and sexual) environment of the alleles in conflict

(Chippindale et al. 2001). Expression of SA alleles

can result in genetic conflict in a variety of physio-

logical, behavioral, and morphological characteristics

important in reproduction (Fig. 1). Given that the

expression of those genes often differs depending on

the sex, it causes the trait to be sexually dimorphic

(Rice 1984; Cox and Calsbeek 2009). If this dimor-

phism is due to sex-limited gene expression, so that

only one sex expresses that gene product, then it may

possibly solve the conflict between the sexes (though

this has recently been questioned, e.g., Connallon et

al. 2010).

The spread of genes that have sex-specific fitness

effects is facilitated by sex-biased transmission

(Pizzari and Birkhead 2002, and references therein),

which has been further confirmed by studies on

Drosophila melanogaster that show the X-chromo-

some is rife with SA genetic variation (Gibson et al.

2002; Innocenti and Morrow 2010). If sexual dimor-

phism is simply a difference in the value of the trait

expressed by both sexes (with corresponding sex-spe-

cific fitness optima), then it can be said that there is a

divergence in the evolutionary interests between the

sexes for that trait (Parker 1979). Only when the fit-

ness of one sex is negatively affected by the fitness

gains of the other sex is the conflict realized. A ‘‘gen-

der load’’ exists when the sex-specific values of a fit-

ness-related trait are not at their optimal fitness

values (Bedhomme and Chippindale 2007), thus con-

straining a population from attaining a maximum

fitness value. Sexual conflicts arise over the genes at

the same locus in males and females (intralocus con-

flict/sexual antagonism), or between different sets of

genes located at different loci (interlocus conflict)

(Parker and Partridge 1998; Arnqvist and Rowe

2005; Bonduriansky and Chenoweth 2009). Here,

we focus primarily on conflicts over a shared locus,

sexual antagonism. Under sexual antagonism, genetic

benefits associated with good genes models of sexual

selection can potentially be overwhelmed by the

mounting fitness costs of SA alleles (Pischedda and

Chippindale 2006). Sexually dimorphic phenotypes,

such as those associated with hormones, indicate po-

tential for sexual antagonism.

In a variety of taxa, males with higher plasma T

are more dominant in male–male competition for

mates and as a result, sire more offspring (Alatalo

et al. 1996; Ketterson and Nolan 1999; Hau 2007).

Since greater T has been shown to be advantageous

in male–male competition, the classic good genes

and sexy sons models of sexual selection predict

that females should mate with males with higher T,

as their offspring (sons) will derive genetic benefits

and fare better in future reproduction (Andersson

1994). However, these models have frequently failed

to consider the fitness consequences of T selection in

females, especially in the light of newer models of

sexual conflict. As T and dihydrotestosterone medi-

ate male primary and secondary sexual characteris-

tics, respectively, males gain a fitness benefit when

selection favors the aggregated phenotype character-

ized by higher T levels. However, mounting evidence

has revealed that the sexes have different phenotypic

optima for T levels (Ketterson et al. 2005; Cox et al.

2009a; John-Alder et al. 2009; Mills et al. 2012;

Gerlach and Ketterson 2013). For example, among

mammalian taxa, fitness in red deer, horn phenotype

in Soay sheep, horn length in bighorn sheep, body

mass in mountain goats, body size in primates, as

well as 2D:4D digit ratios, height, cholesterol levels,

facial attractiveness, schizophrenia risk, and homo-

sexuality in humans all bear the hallmarks of

sexual antagonism, and are likely mediated to vary-

ing degrees by the action of T (Manning et al. 2000;

Lindenfors 2002; Robinson et al. 2006; Foerster et al.

2007; Ciani et al. 2008; Mainguy et al. 2009; Garver-

Apgar et al. 2011; Stearns et al. 2012; Stulp et al.

2012; Mitchem et al. 2014; Power et al. 2013;

Martin et al. 2014; Mokkonen and Crespi 2015).

Selecting for a higher or lower T level will benefit

one sex, while enacting sexually antagonistic fitness

costs on the other.

In bank voles, negative genetic correlations be-

tween T and immune function were observed in

males, and additionally, hinted that a difference in

female and male phenotypic optima could potentially

explain variation in T levels (Schroderus et al. 2010).

Female bank voles would suffer deleterious fitness

effects due to the genetic correlation between T

and immune function (Schroderus et al. 2010), yet

do not gain reproductive benefits from higher T

levels as males do. In separate laboratory and field

experiments, females were found to benefit from

lower T: artificially selecting for higher T increased

male reproductive success but decreased that of their

sisters, while selecting for lower T increased femaleFig. 1 Potential for sexual conflict over life history parameters.
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reproductive success but decreased that of their

brothers (Mills et al. 2012). These observations cor-

responded with sex differences in mating behavior,

whereby males with higher T levels had greater

mating success. In the laboratory, females from fam-

ilies selected for lower T had higher mating success

compared to females from families selected for

higher T levels (Mokkonen et al. 2012). This associ-

ation between T and mating behavior was important

for fitness because, like males, females can improve

their reproductive success by increasing their number

of mates, though, in accordance with Bateman’s

principles, female reproductive success is more con-

strained than male reproductive success (Mills et al.

2007b). Based on this set of studies, we conclude that

a lower T level benefits female reproduction, while a

higher T level benefits male reproduction. Despite

the gender load imposed, sexually antagonistic alleles

(and genetic variance) associated with T are main-

tained in the population due to processes such as

balancing selection (Mappes et al. 2008; Mokkonen

et al. 2011) or genotype–environment interactions

(Mills et al. 2007a, 2014).

In general, the evolutionary interests are expected

to be most similar between mates in monogamous

systems: the only offspring produced by the male or

female are jointly shared (Holland and Rice 1999;

Hosken et al. 2001, 2009), though this is thought to

be extremely rare among mammals (Kleiman 1977).

Female bank voles employ a polyandrous mating

strategy (Fig. 2a), which provides them with genetic

benefits (Klemme et al. 2014). This strategy differs

markedly from the reproductive outcome in paternity

(Fig. 2b; Mokkonen et al. 2012) as most litters from

polyandrous matings are sired by a single male. This

difference in female behavioral and genetic mating

strategies during polyandrous mating can constrain

male reproductive success when mated males have

unequal paternity probabilities (Mokkonen et al.

2012). Furthermore, this reduction in male mating

success between copulation and conception can ob-

scure paternity, which may be a female counter-tactic

to combat sexual conflict through infanticide

(Klemme and Ylönen 2010; Mokkonen and

Lindstedt 2015), while it also introduces relatedness

asymmetries within the family. Thus, the coevolution

of parent and offspring can inform our understand-

ing of evolutionary conflict between mates.

Grandparent–parent–offspring conflict and related-

ness asymmetries

Parents—usually the mother—and offspring are

often in conflict over the optimal level of parental

investment (Fig. 3; Trivers 1972, 1974; Parker et al.

2002). From the mother’s perspective, the investment

placed in the current litter (or brood, etc.) should be

balanced against her future reproductive interests

(Trivers 1972; Royle et al. 2004). As the evolutionary

success of an individual is largely determined by the

number of offspring produced, individuals are pre-

dicted to maximize their lifetime reproductive suc-

cess through the balance of current versus future

reproductive effort (Williams 1966; Clutton-Brock

1991; Mappes et al. 1995). However, the interests

of offspring can be quite different from those of

the mother (Trivers 1974; Haig 2000). In a species

where the probability of survival and reproduction is

positively correlated with the amount of resource

investment in offspring, it is generally in the interests

of the offspring to obtain the maximum amount of

resources possible (e.g., food, protection from pred-

ators, or heat loss), though recent work suggests that

this type of conflict drives coadaptation between

parent and offspring traits (Hinde et al. 2010).

Nonetheless, a further consideration is that an off-

spring’s investment needs are often dependent on

sex, with males often proving to be more energeti-

cally costly to produce (Trivers and Willard 1973;

Rutkowska et al. 2011). This feature reminds us

that life history strategies and parental investment

may be influenced by offspring sex ratios (Koskela

et al. 2004).

Epigenetic processes, including genomic imprint-

ing, alter the expression and not the sequence of

DNA (Gregg et al. 2010a, 2010b), which can result

in genomic conflict within an individual.

Interestingly, the parental conflict hypothesis in

mammals (also referred to as the kinship theory of

genomic imprinting, Haig 2004, 2014a) pits the

genes acquired from the mother against the genes

acquired from the father within the offspring (i.e.,

maternally derived versus paternally derived genes

within offspring): the father provides genes that are

expressed to promote offspring growth (and hence,

survival), whereas the mother confers genes that are

expressed to limit growth. Mammals possess these

imprinted genes (Barton et al. 1984), which are ex-

pressed in a parent-of-origin specific manner (e.g.,

IGF2R from mothers, Barlow et al. 1991; IGF2

from fathers, DeChiara et al. 1991). The silencing

of alleles is primarily achieved through DNA meth-

ylation or histone protein changes. This hypothesis is

supported in mammals through research into IGF2,

KCNQ1OT1, and Air, growth enhancers that are pa-

ternally expressed, as well as IGF2R, CDKN1C, and

Grb10, growth inhibitors that are maternally ex-

pressed (Haig 2004). Hence, the growth enhancers
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provided by fathers may affect mother–offspring

conflict. This type of conflict demonstrates that dis-

tinguishing between these intra-familial conflicts is

often not clear-cut. However, an important distinc-

tion with kinship theory is that it should not be

equated with sexual antagonism, as the conflict be-

tween paternally versus maternally derived genes is

intragenomic, while the conflict between paternal

versus maternal genes is intergenomic (Haig

2014a). Conversely, the dynamics of parent–offspring

conflict (genes in mother versus genes in offspring)

are more analogous to sexual antagonism, as this

form of conflict is also intergenomic, arising from

different maternal and paternal evolutionary inter-

ests. The main interest of the offspring is to ensure

a maximum probability of survival, which can be

achieved through either the interaction with the par-

ent(s) providing care, or the interaction with sib-

lings. Thus, the various intra-familial conflicts can

render decisions about resource allocation particu-

larly important.

In addition to sexual conflicts, there are further

opportunities for evolutionary conflict in various

bank vole life history features (Figs. 1 and 3). As

with most species that invest much in their offspring,

female reproduction is constrained by the trade-off

between offspring size (quality) and number (Fig. 4;

Smith and Fretwell 1974; Stearns 1992; Mappes and

Koskela 2004; Schroderus et al. 2012). Sexual con-

flicts are most conspicuous when they manifest in

the reproductive success component of fitness, and

may thus indirectly affect life histories through this

size-number trade-off (Koskela et al., unpublished

data). In bank voles, the size at birth of females

from families selected for lower T (but not higher

T) exhibited a positive correlation with their future

reproductive success (Fig. 5; Supplementary data 1).

This finding indicates that T can mediate associa-

tions between life history measures, and may poten-

tially provide an additional fitness cost for selecting

lower T. In a population, average litter sizes are ap-

proximately 4–6 pups, ranging between 1 and 10

pups (Koivula et al. 2003; Mills et al. 2014), provid-

ing appreciable phenotypic and genetic variation

Fig. 2 A female’s (A) behavioral mating strategy and (B) genetic outcome during reproduction. Data derived from, and methods found

in Mokkonen et al. (2012).

Fig. 4 Life history trade-off between body mass at birth (g) and

litter size (number of offspring). Description of methods and data

from Mokkonen et al. (2011).

Fig. 3 Parent–offspring conflict over life history parameters.
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(Mappes and Koskela 2004; Schroderus et al. 2012)

for selection to act upon. However, females invest

resources during the pre- and postnatal periods of

offspring development, thus reducing the ‘‘time in’’

period available for courtship and mating compared

to males, which ultimately results in a lower intensity

of sexual selection acting upon them.

Physiologically, higher T levels tend to be associ-

ated with greater aggression and somatic tissue

growth, which may cause offspring to both have a

greater need for resources from the parent, and more

intense competition with siblings. Under a resource-

limited scenario, it is generally in an individual’s in-

terests to have fewer siblings due to the increase in

sibling conflict that arises (Parker et al. 2002), while

it may also be advantageous for parents to limit sib-

ling competition among offspring due to the associ-

ated fitness costs (Godfray and Parker 1992). This

type of conflict can generate interesting dynamics

between siblings given the uncertain relatedness of

individuals to each other (TABLE 1). In non-monog-

amous mating systems, ‘‘half-sibs’’ share only one

parent and are predicted to compete more intensely

for parental resources, and uncertain paternity can

select for time-consuming mate guarding or sperm

competition and constrain male success in reproduc-

tion (Simmons 2001; Arnqvist and Rowe 2005).

Relatedness asymmetries are an important consid-

eration in understanding the conflicts between family

members. While we understand now that an individ-

ual’s mating decisions can impact the quality of its

offspring for better or worse through various genetic

and non-genetic effects (e.g., maternal effects,

Mousseau and Fox 1998), we have less understanding

of how more distant ancestors can also impact indi-

viduals. In a recent study, female bank voles with a

higher T-profile had patrilineal grandsons with a

greater birth body mass, suggesting that hormones

such as T can exert transgenerational effects on life

histories (Mokkonen et al., unpublished data). While

the exact mechanism of this transgenerational effect

of T is unknown and requires further study, an in-

teresting feature of mammalian (and other XY spe-

cies) chromosomes is their sex-biased inheritance to

offspring. Y chromosomes are patrilineally inherited,

while the X chromosome is derived from maternal

grandparents or paternal grandmother. Hence, on

average, females are slightly more related to their

female ancestors than male ancestors, and the inher-

itance of sex chromosomes is more certain from the

paternal—compared to maternal—grandparents

(Fig. 6). The implications of this feature have only

recently been gaining attention (Michalski and

Shackelford 2005; Chrastil et al. 2006; Rice et al.

2010), but are still relatively under-explored. A

recent hypothesis by Rice et al. (2010) called sexually

antagonistic zygotic drive proposed an evolutionary

explanation for the interests of grandparents in

humans, a species with direct grandparental care

(Friberg and Rice 2015). Taking into account the

relatedness asymmetry of the sex chromosomes be-

tween male and female descendants, they proposed

that grandmothers should evolve grandson-harming

(or granddaughter-helping) phenotypes because of

their closer expected relatedness to granddaughters.

This human example demonstrates that there is po-

tential for evolutionary conflicts to exist across the

different life stages of an individual.

Ontogenetic conflict

Senescence, which is the biological deterioration of

an organism associated with age, affects the evolution

of fitness related traits. Interestingly, it has been sug-

gested that the costs of ageing should begin to accu-

mulate around sexual maturity as well, since the

‘‘usefulness’’ of the reproducing individual begins

to decline in proportion to their reproductive success

for species that experience age-related declines in fer-

tility (Williams 1957). Williams (1957) proposed an-

tagonistic pleiotropy to explain the evolution of

senescence, whereby genes that confer a benefit ear-

lier in life provide a fitness cost later in life. This

hypothesis contrasts with other evolutionary explana-

tions for aging such as the mutation accumulation

Fig. 5 Size at birth in relation to a female’s future reproductive

success. Open circles and dashed line indicate females derived

from parents with high T-profiles, while closed circles and sold

line indicate females derived from parents with low T-profiles.

Linear regression for low-T individuals; y ¼ 3.59x�0.56,

R2
¼ 0.384, �� SE¼ 3.59� 1.23, N¼ 13, t¼ 2.91, p¼ 0.014.
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hypothesis (Medawar 1952) or disposable soma hy-

pothesis that focuses on energetic constraints

(Kirkwood 1977). However, despite currently being

the favored hypothesis to explain the evolution of

ageing, the antagonistic pleiotropy model has so far

received weak support at best (Williams et al. 2006).

If indeed reproductive benefits trade-off with ageing

costs, then it is particularly important to consider

evolutionary factors that influence reproduction to

better understand ageing (Archer et al. 2015).

Evolutionary conflicts between life stages can arise

due to changing selection pressures across these

stages, and have implications particularly for sexually

selected traits (Lancaster et al. 2014; Plesnar Bielak et

al. 2014). Working with Drosophila, Chippindale et

al. (2001) demonstrated that conflict arises between

juvenile and adult life history stages by measuring

the changing fitness correlation between the sexes.

Similarly, Sinervo and McAdam (2008) found sex

differences in survival to maturation in relation to

breeding values, indicating a trade-off between life

stages. These ontogenetic conflicts arise after sexual

maturity due to the addition of the reproductive

components of fitness and the resulting fitness

shifts between females and males. Further integration

of endocrinology into the study of ontogenetic con-

flicts would provide fruitful avenues to explore, given

the dramatic divergence of androgen and estrogen

levels between the sexes at the onset of sexual

maturation.

Caveats and conclusions

One of the main aims of research in evolutionary

biology is to understand the factors that contribute

to the maintenance of phenotypic and genetic varia-

tion. Hormones, and T in particular, mediate impor-

tant traits that directly determine the outcome of

how well individuals survive and reproduce. It is

likely that evolution by means of selection on hor-

mone systems will inevitably harbour conflicts of in-

terest between individuals. The very nature of

selection translates to some individuals being more

successful than others, which is rarely agreeable to

all. As Darwin (1871) envisioned, reproduction is a

‘‘sexual struggle’’. By utilizing an integrative ap-

proach in evolutionary endocrinology, we can

better understand the fitness costs of this struggle

through proximate mechanisms. Sexual conflicts

have implications for many areas of the biological

sciences and related disciplines. For example, this

perspective has recently been applied to understand-

ing mental disorders in humans (Crespi and Badcock

2008; Badcock and Crespi 2008), density dependence

in population ecology (Kokko and Rankin 2006),

and speciation (Parker and Partridge 1998). Far

from being a narrow topic, the study of genetic con-

flicts in reproduction encompasses different levels of

organization, from genes to individuals to popula-

tions. Yet ultimately, it is grounded within the interac-

tions that occur within a biological family.

Complicating the inheritance of biological infor-

mation are maternal (and paternal) effects

(Mousseau and Fox 1998; Schroderus et al. 2012).

These effects can impose attributes of the maternal

environment (e.g., availability of food resources) on

the offspring without direct genetic control. In

Table 1 Example of parent-offspring relatedness in a polygynandrous mating system with uniparental care

Family member Relatedness (r) Conflicting interests

Mother 0.5 to all offspring she produces Father, offspring

Father 0 or 0.5 to mate’s offspring uncertain paternity Mother

Offspring 0.5 to mother Mother, siblings

0 or 0.5 to mother’s mate

0.5 to full siblings

0.25 to half siblings

Coefficient of relatedness (r) is expressed as a value between 0 and 1, which denotes the probability that the alleles between relatives are

identical by descent.

Fig. 6 Relatedness asymmetries of sex chromosomes in mam-

mals. Solid lines indicate that sex chromosomal relatedness is

assured, while broken lines indicate that the probability of sex

chromosomal relatedness is only �50%.
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addition to promoting physiological growth, T exerts

profound behavioral effects on offspring during the

prenatal period. It plays an important role in orga-

nizing the fetal brain, and may over-masculinize

female brains in dysregulated fetal development

(Adkins-Regan 2005; Lummaa et al. 2007).

Masculinization by T may cause females to provide

lower quality care to offspring (Adkins-Regan 2005

and references therein). Yet, non-genetic effects are

not the only potential caveat to elucidating evolu-

tionary conflicts of interest mediated by hormones

such as T.

Classifying sexual conflicts through purely pheno-

typic associations may misrepresent the genetic

Live fast vs. live long – how both strategies may allow males to prosper

Fig. 7 The live fast/live long life history axis in (A) males and (B) females.

The contrasting strengths and directions of selection acting on the sexes during reproduction may be

indicative of alternative life history strategies co-evolving. Bank voles, like many small mammals, experi-

ence multi-annual (3-4 year) population density fluctuations in the Northern hemisphere that peak in

the summer/autumn and crash in the spring (Rikalainen et al. 2012; Krebs 2013; Korpela et al. 2014).

These changes in density affect availability of food resources and territories (Krebs 2013), pathogen

pressure (Soveri et al. 2000) and immunological parameters (Huitu et al. 2007). Combined with varia-

tion in predation pressure (Korpimäki et al. 2005; Korpela et al. 2014), these factors ensure that the

environments of the peak and crash phases are distinct selective regimes that can impact the hypotha-

lamus-pituitary-adrenal axis through chronic stress (Boonstra et al. 1998; Fletcher et al. 2015). Future

work would benefit from also focusing on how population dynamics affect intrinsic factors in females

relative to males during reproduction (Andreassen et al. 2013).

Given the divergent sex roles, the absence of paternal care may be selecting male life histories to

evolve along a ‘‘live fast—live long’’ axis of strategies that is influenced by the social environment and

corresponding ecological factors affected by conspecifics (Fig. 7a). Males selected for higher T level will

benefit from greater reproductive success but have a fitness cost of lower survival, while males selected

for a lower T level will have higher survival but reduced reproductive success. T can impact behavioral

dominance and aggressive behavior in male bank voles, and will thus be sensitive to population density

fluctuations (Mills et al. 2009; Mokkonen et al. 2011, 2012). Balancing selection associated with T levels

during population density fluctuations may allow both strategies to be selected during different phases.

As a result, we would predict males to experience balancing selection between the ‘‘live fast’’ (lower

survival, greater RS) and ‘‘live long’’ (higher survival, lower RS) strategies associated with higher and

lower T levels, respectively.

In contrast, given their relatively even mating success outside of peak densities, females are primarily

concerned with optimizing the number and size of offspring (Mappes et al. 2008). Because they expe-

rience sexual antagonism over T that results in lower survival and reproductive success, they are not

predicted to benefit from selection that results in higher T levels (Fig. 7b). This conflict renders direc-

tional selection for a life history strategy associated with lower T the more optimal female strategy

throughout a changing social environment. Thus, we would predict females to experience directional

selection that results in lower T levels throughout population density fluctuations (Mokkonen et al.

2011).
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underpinnings of the conflict. Pleiotropic genes can

influence multiple traits in an organism, and the

nature of these genes is still relatively unknown

(Williams 1957; Fitzpatrick 2004; McGuigan et al.

2011). Caution is warranted when attempting to

characterize relationships between traits. If these

pleiotropic genes are found to act antagonistically

across the sexes, then what may appear to be an

interlocus sexual conflict involving different traits

(e.g., immune function and T level) can actually be

an intralocus conflict constraining individual optima

(Schroderus et al. 2010). Focusing on gene expres-

sion data will help elucidate the link between phe-

notype and genotype (Mank et al. 2013), while the

cascading effects of hormones, both upstream and

downstream need to be further studied to better

understand their role in pleiotropic interactions

(Mills et al. 2008; Cox et al. 2009b).

The genetic mechanisms associated with how T

mediates evolutionary conflicts are still relatively un-

known, and require further study. For example, T

may be acting through both shared and unique tran-

scriptional pathways in the sexes (Peterson et al.

2014), or sexually dimorphic neural gene expression

(Peterson et al. 2013). Coupling trait expression to

sex differences in circulating T levels presents a plau-

sible mechanism for how androgens can mediate

sexual dimorphism (Cox et al. 2015). Work in the

bank vole system has provided empirical support

from manipulated laboratory and field experiments

that shows that selecting on T levels produces a re-

sponse in a variety of traits important for fitness,

including circulating plasma levels. Yet, we acknowl-

edge that the T system is a complex pathway, and

selection could be acting on T precursors, aromatase,

estradiol levels, T receptor densities, or additional

elements important for the phenotypic expression

of T.

While this article has focused primarily on the

impact of T on evolutionarily salient traits important

for reproduction and survival, individuals are awash

in exogenous and endogenous endocrine signals (e.g.,

corticosteroids, Bonier et al. 2007). In the context of

social interactions during reproduction, the oxytocin

family of neuropeptides present particularly intrigu-

ing possibilities for future research to explore (Crespi

2016; Mokkonen and Crespi 2015). Oxytocin is im-

portant during parturition, copulation/intercourse,

and promotes affiliative behaviors particularly be-

tween parents, offspring and mates (Adkins-Regan

2005; McCall and Singer 2012). These peptides,

along with the closely related arginine vasopressin,

are sexually dimorphic in plasma titers, behavioral

effects, and physiological function. Given their

central role in reproduction, much like T, these hor-

mones (and their receptors) are predicted to mediate

evolutionary conflicts between individuals through

eco-evolutionary interplay in a fluctuating social en-

vironment (Lönn et al. unpublished data). An inte-

grative approach can successfully bridge this gap in

our understanding.

Supplementary data

Supplementary Data available at ICB online.
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