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Abstract

Tick-borne diseases pose an increasingly important public health problem in Europe. Rodents are the reservoir
host for many tick-transmitted pathogens, including Anaplasma phagocytophilum and Babesia microti, which can
cause human granulocytic anaplasmosis and babesiosis, respectively. To estimate the presence of these patho-
gens in rodents in Finland, we examined blood samples from 151 bank voles (Myodes glareolus) and demonstrate,
for the first time, that A. phagocytophilum and B. microti commonly infect bank voles (in 22% and 40% of animals,
respectively) in Finland. Sequence analysis of a fragment of 18S rRNA showed that the B. microti strain isolated
was identical to the Munich strain, which is considered to be nonzoonotic. The A. phagocytophilum strain (based
on a fragment of the msp4 gene) was identical to one found earlier in rodents in the United Kingdom that is
transmitted by the tick Ixodes trianguliceps, all the life stages of which feed on small mammals. The infection
probability of B. microti in the bank voles was the greater the older the individual was, and males were more
often infected than females. A. phagocytophilum infection probability first increased and then decreased with the
age of individual without any difference between sexes. While these pathogens presumably pose a limited
zoonotic risk to humans in Finland, they might have important interactions with other rodent pathogens and
therefore affect infection dynamics of, for example, zoonotic pathogens.
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Introduction

Tick-borne zoonotic diseases are an increasingly im-
portant health problem in Europe for a number of reasons.

For example, following the expansion in the geographic range
of the tick Ixodes ricinus ( Jaenson et al. 2012a, Medlock et al.
2013), tick-borne diseases such as tick-borne encephalitis (TBE)
and Lyme borreliosis are being found in new areas (Rizzoli et al.
2011, Jaenson et al. 2012b). Moreover, different interactions
between people and the environment increase the numbers of
humans exposed to ticks and tick-borne pathogens (Sumilo
et al. 2008). In addition, several emerging zoonoses, such as
human granulocytic anaplasmosis (HGA) and babesiosis, that
are caused by the obligate intracellular bacterium Anaplasma
phagocytophilum and members of the protozoan hemoparasitic
genus Babesia, respectively, are posing risks to humans in Eur-
ope (Doudier et al. 2010, Hildebrandt et al. 2011).

Babesia microti is the main causative agent for human bab-
esiosis in the United States (Gray et al. 2010). Although there is
only one confirmed human infection by B. microti in Europe
(Hildebrandt et al. 2007), because most cases are caused by B.
divergens (Gray et al. 2010), serological studies indicate that
human B. microti infections are more common than previously
recognized (Hunfeld et al. 2002). B. microti is widely distrib-
uted across the Northern Hemisphere (Goethert and Telford
2003), and at least two B. microti strains (Munich and Jena),
which may differ in terms of their association with human
disease, are found in Europe (Pieniazek et al. 2006, Siński et al.
2006, Bown et al. 2008, Beck et al. 2011, Katargina et al. 2011).

In Europe, some 70 confirmed HGA cases have been re-
ported to date (Dumler et al. 2005, Edouard et al. 2012). How-
ever, seroepidemiological studies have revealed high (up to
21%) A. phagocytophilum antibody prevalences in some areas in
Europe (Dumler et al. 2005), suggesting that asymptomatic
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2Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
3School of Environment and Life Sciences, University of Salford, Salford, United Kindgom.

VECTOR-BORNE AND ZOONOTIC DISEASES
Volume 14, Number 6, 2014
ª Mary Ann Liebert, Inc.
DOI: 10.1089/vbz.2013.1383

389



human infections might be common (Doudier et al. 2010). A.
phagocytophilum also has indirect implications for humans
because it causes, for example, a tick-borne fever in livestock
and febrile fevers in companion animals (cats and dogs) (Rar
and Golovljova 2011). Many wildlife mammalian species,
such as rodents, shrews, and cervids, are naturally infected
with A. phagocytophilum (Rar and Golovljova 2011). Different
genetic variants of A. phagocytophilum circulate in different
tick and mammalian species (Bown et al. 2008), and these
strains may differ in their pathogenicity to humans (Doudier
et al. 2010). The distribution of A. phagocytophilum is world-
wide (Rar and Golovljova 2011).

Wild rodents and shrews are important reservoir hosts for
many tick-borne pathogens, and therefore they have a key
role in the natural circulation of tick-borne infections, in-
cluding A. phagocytophilum and B. microti (Goethert and Tel-
ford 2003, Bown et al. 2008, Bown et al. 2011). In the rodent
reservoirs, A. phagocytophilum infection is transient, lasting for
1–2 months, whereas B. microti infection is chronic (Bown et al.
2003, Bown et al. 2008). The transmission of both A. phagocy-
tophilum and B. microti is transstadial, i.e., an uninfected tick
(larvae or nymph) becomes infected while feeding on an in-
fectious reservoir host that itself had become infected while
feeding an infected tick (nymph or adult) (Gray et al. 2002,
Woldehivet 2006, Hunfeld et al. 2008). The primary vectors of
A. phagocytophilum and B. microti are ticks from the genus
Ixodes (Gray et al. 2002, Woldehivet 2006, Hunfeld et al. 2008).

Here we quantify the presence and prevalence of A. pha-
gocytophilum and B. microti in Finland in the bank vole (Myodes
glareolus) and identify the pathogen strains that are circulating
in the host population. We find that A. phagocytophilum and
B. microti infection prevalence in bank voles is high (22% and
40%, respectively), and we provide the first evidence that
these pathogens are circulating in Finnish rodents.

Materials and Methods

Rodent trapping was carried out in July, 2008, as a part of
an ongoing long-term study on bank vole (M. glareolus)
populations in the Konnevesi area in central Finland
(62�83’79’’ N, 26�82’09’’ E) (for details of the study sites and
trapping procedures, see Kallio et al. 2009). The bank vole
dominates the small rodent community in the study sites (our
unpublished data). All captured bank voles (63 females and
88 males) were taken to the laboratory where their body mass,
head width, and sex were recorded and a blood sample was
taken from the retro-orbital sinus with capillary tubes (Hae-
matocrit Capillaries, Hirschmann Laborgeräte, Germany).
The presence of ticks was not examined. The samples were
placed on dry ice immediately after collecting and stored at
- 80�C until use.

Presence or absence of pathogens was assessed using PCR-
based assays. Briefly, total DNA was extracted from bank vole
blood using alkaline digestion (for details, see Bown et al.
2003). Negative controls (one per every four samples) were
included in the DNA extraction and in the PCR assays, and
none of the negative controls were found positive in the PCR
assays. Detection of A. phagocytophilum used a nested PCR-
assay that targets the 16S rRNA gene (primers in Massung
et al. 1998; PCR conditions are described by Bown et al. 2006).
The positive control was a DNA extract derived from a strain
of A. phagocytophilum isolated from a sheep (Ovis aries) in the

United Kingdom. To quantify the strain variation, six ran-
domly chosen positive samples were screened using a sepa-
rate nested PCR that targets a fragment of the msp4 gene, with
thermal cycling conditions and primers described by Bown
et al. (2007); amplicons were sequenced. B. microti was de-
tected using an Apicomplexa-specific nested PCR that targets
a fragment of the 18S rRNA gene (Simpson et al. 2005). The
positive control used was B. microti Munich strain. Because this
method is not B. microti specific, all putative positive samples
were sequenced to separate B. microti from Hepatozoon sp. in-
fections. Sequence identify was determined by BLAST search
(Altschul et al. 1990) against the National Center for Bio-
technology Information (NCBI) Nucleotide database. Only
samples that were confirmed to be infected by B. microti on the
basis of the sequence data were considered as positive results.

We analyzed separately the probability of being infected
(binary response variable) with A. phagocytophilum and B.
microti using a generalized linear mixed model (GLMM) ap-
proach with a logit link function and binomial distribution.
The explanatory variables assessed in the full model were
gender, head width, and head width squared and whether the
individual was co-infected with the other parasite. Body size
is often used as a proxy for age in wild rodents. In central
Finland, for example, bank vole head width is approximately
on average 8.1–8.4 mm at birth, 11.6–12.0 mm at weaning (*3
weeks age), 12.7 mm and 13.4 mm at the age of *2 and *5
months, respectively, and 13.8–14.0 at the age of 10 months
(Koskela et al. 1998, Oksanen et al. 2001, Kallio et al. 2006, our
unpublished data). Models were fitted using the Laplace ap-
proximation method (lmer function in lme4 package in R
software, available under GNU license at www.r-project.org).
To control for the potential correlation amongst individuals
that were captured at the same location, the trapping site was
included as a random effect in the models. Starting from the
full model, terms were omitted if they did not reduce the
Akaike information criterion (AIC) by more than 2 units when
included (Burnham and Anderson 2002).

Results

Out of the 151 bank voles captured in July, 2008, 33 indi-
viduals (21.9%; 95% confidence interval [CI] 15.3–28.5) were
infected with A. phagocytophilum, 60 individuals (39.7%; 95% CI
31.9–47.5) were infected with B. microti, and 11 individuals
(7.3%; 95% CI 3.1–11.4) were infected with both pathogens. The
probability of a bank vole being infected with A. phagocyto-
philum peaked at intermediate ages (i.e., head width of *12.5–
13.5 mm, which corresponds approximately the age of 2–5
months; see Materials and Methods) (Fig. 1, Table 1). Neither
host sex nor B. microti infection status had a significant effect on
A. phagocytophilum infection probability. B. microti infection
probability increased with age (increasing head width) in both
sexes with males being more likely to be infected than females
(Fig. 2, Table 2). A. phagocytophilum infection did not influence
the probability of being infected with B. microti.

Analysis of the msp4 fragment showed the strain of A.
phagocytophilum to be identical to that previously reported in
field voles in the United Kingdom (GenBank accession no.
FJ469653) (Bown et al. 2007). All 60 sequences of 18S rRNA
fragment from putative positive B. microti–infected animals
were identical to the Munich strain of B. microti (GenBank
accession no. AB071177).
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Discussion

In this study we present the first evidence that B. microti
and A. phagocytophilum pathogens are present in wild rodents
in Finland. A. phagocytophilum is known to cause tick-borne
fever in cattle in Finland (Tuomi 1966), and, recently, a do-
mestic cat was diagnosed with A. phagocytophilum infection
(Heikkilä et al. 2010). B. microti, in turn, has been reported in a
single Ixodes persulcatus tick in western Finland (Alekseev
et al. 2007). However, this is the first study examining the
presence of A. phagocytophilum and B. microti in wildlife res-
ervoir host species.

The B. microti Munich strain found in this study has been
suggested not to be pathogenic to humans (Gray 2006, Siński
et al. 2006), although it may be transmitted by I. ricinus ticks
(Welc-Falęciak et al. 2012), which is the most important tick
species in transmitting tick-borne pathogens to humans in
Europe ( Jaenson et al. 2012a). In the United Kingdom,
however, B. microti Munich is transmitted by the nidiculous
tick Ixodes trianguliceps, all life stages of which feed on ro-
dents (Randolph 1995, Bown et al. 2008). Similarly, the A.
phagocytophilum strain found here is identical to the one
found in the field vole (Microtus agrestis) in the United
Kingdom, which was apparently restricted to an enzootic
small mammal–I. trianguliceps cycle (Bown et al. 2006, Bown
et al. 2008, Bown et al. 2009). Therefore, it is not likely that

the B. microti or A. phagocytophilum strains found here pose
any direct risk to humans in Finland. However, this study
was carried out in only one location, and only bank voles
were examined. Because different strains of A. phagocyto-
philum may exploit different tick and mammal species sup-
porting separate enzootic cycles (Bown et al. 2008), it is
possible that other genetic variants are circulating in Fin-
land. Moreover, B. microti strain Jena, which is considered
to be zoonotic, has been found in neighboring Estonia
(Katargina et al. 2011), which may suggest that this strain
could be also found in Finland. Hence, further work has to
widen the scope of sampling and, especially, focus on
questing Ixodes ticks, which pose a risk to humans, to de-
termine whether zoonotic A. phagocytophilum or B. microti
strains exist in Finland.

Even if the A. phagocytophilum and B. microti found in bank
voles do not pose a direct risk to humans in Finland, these
pathogens may interact with other pathogens, within their
rodent hosts, because these pathogens have significant inter-
actions with other infections in field voles in the United
Kingdom (Telfer et al. 2010). For instance, A. phagocytophilum
infection increases cowpox virus and decreases Bartonella sp.
and B. microti infection probabilities, whereas B. microti de-
creases the risk of Bartonella sp. infection while increasing the

FIG. 1. Predicted probability of being infected with A.
phagocytophilum in relation to individual’s head width (mm).

FIG. 2. Predicted probability of being infected with B. microti
in relation to individual’s head width (mm) and sex. (Black
line, top) male; (grey line, bottom) female.

Table 1. Bank Vole Individual’s Likelihood of Being

A. phagocytophilum Infected (in Logit Scale)

in Relation to its Head Width

Source of variation Estimate (SE) z value P value

Intercept - 165.464 (85.30) - 1.932 0.053
Head width 24.450 (13.011) 1.956 0.051
Head width squared - 0.984 (0.494) - 1.994 0.046
r2 0.637

r2 is the variance attributable to random effect.
sd, standard deviation of r2; SE, standard error.

Table 2. Bank Vole Individual’s Likelihood

of Being B. microti Infected (in Logit Scale)

in Relation to Its Sex and Head Width

Source of variation Estimate (SE) z value P value

Intercept - 19.667 (4.181) - 4.703 < 0.001
Head width 1.370 (0.308) 4.443 < 0.001
Sex Male 1.373 (0.414) 3.316 < 0.001
r2 0.225
sd 0.474

r2, the variance attributable to random effect.
sd, standard deviation of r2; SE, standard error.
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risk of A. phagocytophilum infection. These strong individual
level effects are likely to be translated to infection dynamics at
the population level (Telfer et al. 2010), and for zoonotic
pathogens may be further reflected in human epidemics.

We do not know yet which tick species is responsible for the
circulation of these pathogens in our study area, where both
I. ricinus and I. trianguliceps are found (our unpublished data).
In the United Kingdom, the same strains of A. phagocytophilum
and B. microti are transmitted primarily by I. trianguliceps
(Bown et al. 2008). The distribution of I. trianguliceps covers
most of Finland (Ulmanen 1972), thus the pathogens trans-
mitted by I. trianguliceps might also be found across Finland.
Moreover, I. trianguliceps infests many small mammal species,
such as bank voles (Myodes glareolus), field voles (Microtus
agrestis), root voles (Microtus oeconomus), common shrews
(Sorex araneus), and pygmy shrews (S. minutus) (Ulmanen
1972, Nilsson 1974, Randolph 1975, Bown et al. 2003, Bown
et al. 2011), many of which are competent reservoir hosts
species for a variety of tick-borne pathogens, including A.
phagocytophilum and B. microti (Randolph 1995, Liz et al. 2000,
Bown et al. 2003, Bown et al. 2006). Therefore, it is likely that
A. phagocytophilum and B. microti are widely distributed in
small mammal species in Finland.

The infection prevalences reported here are in line with
earlier studies on A. phagocytophilum and B. microti in rodents
from elsewhere in Europe (e.g., Liz 2002, Duh et al. 2003,
Siński et al. 2006, Bown et al. 2008, Bown et al. 2011, Beck et al.
2011, Rar et al. 2011). The peak in A. phagocytophilum infection
likelihood at intermediate individual age (i.e., head width) is
likely to reflect the transient nature of this infection (Bown
et al. 2003), whereas the constantly increasing likelihood of B.
microti infection with age reflects a chronic infection (Bown
et al. 2008). Although both pathogens are likely to be trans-
mitted by the same vector species, only B. microti showed
some difference in infection probability between sexes (more
common among males).

Conclusion

To summarize, A. phagocytophilum and B. microti are prev-
alent in bank voles in central Finland. Because they are
transmitted by I. trianguliceps ticks (Bown et al. 2008), whose
distribution range covers most of Finland (Ulmanen 1972), we
predict that these pathogens might be widespread in Finland.
Although it is unlikely that B. microti or A. phagocytophilum
strains found here cause any direct risk to humans in Finland,
these pathogens may interact with other pathogens (Telfer
et al. 2010) and therefore affect infection dynamics of, for ex-
ample, zoonotic pathogens. Therefore, further studies are
needed to examine the role of these B. microti and A. phago-
cytophilum strains in the pathogen community of Finnish ro-
dents and to examine the presence of other, potentially
zoonotic strains in Finland.
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