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Summary

Behavioural and life history polymorphisms are often observed in animal populations. We analyse the
timing of maturation and reproduction in risky and resource-limited environments. Field and laboratory
evidence suggests that female voles and mice, for example, can adjust their breeding according to the level
of risk to their own survival and to survival probabilities and recruitment of young produced under different
environmental conditions. Under risky or harsh conditions breeding can be postponed until later in the
current breeding season or even to the next breeding season. We develop a population dynamics and life
history model for polymorphism in reproduction (co-existence of breeding and non-breeding behaviours) of
females in an age-structured population, with two temporally distinct mating events within the breeding
season. We assume that, after overwintering, the females can breed in spring and again in summer or they
can delay breeding in spring and breed in summer only. Young females born in spring can either mature
and breed in summer or stay immature and postpone breeding over the winter to the next breeding season.
We show that an evolutionarily stable breeding strategy is either an age-structured combination of pure
breeding behaviours (old females breed and young delay maturity) or a mixed breeding behaviour within
age-classes (a fraction of females breed and the rest of the age class postpones breeding). Co-occurrence of
mixed reproductive behaviour in spring and summer within a single breeding season is observed in
fluctuating populations only. The reproductive patterns depend on intraspecific, possibly interspecific, and
ecological factors. The density dependence (e.g. social suppression) and predation risk are shown to be
possible evolutionary mechanisms in adjusting the relative proportions of the different but co-existing
reproductive behaviours.

Keywords: delayed reproduction; evolutionarily stable strategy; life history polymorphism; population
dynamics; chaos

Introduction

Life history theory assumes that reproduction is costly. In the absence of reproductive costs
iteroparous animals should mature at the earliest possible age and then reproduce as often as
possible (Roff, 1992). The reproductive costs are often divided into the two categories of
physiological and ecological (Reznick, 1992). The physiological costs are well characterized as
the trade-off in the energy allocation between growth and reproduction in animals with
indeterminate growth. The ecological costs are due to external factors, such as predation risk or
intra- and interspecific competition, which decrease the survival of breeding animals or their
breeding success. The social dimension in the reproductive costs, that is, the possibility that
breeding behaviour is partly regulated by interactions between conspecific individuals, has not
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been considered theoretically in the literature (but see Wasser and Barash, 1983; Bujalska, 1990;
Ferriére and Clobert, 1992).

In many populations of microtines, breeding behaviour appears to be dimorphic such that one
fraction of females breed while another fraction delays breeding. Experimental studies as well as
field observations in the deer mice Peromyscus maniculatus (Fairbairn, 1977) and in the bank vole
Clethrionomys glareolus (Ylönen, 1989; Nordahl, 1993; Korpimäki et al., 1994; Ylönen and
Ronkainen, 1994; Koskela and Ylönen, 1995) suggest that some females can suppress breeding in
the middle of the breeding season or delay maturation or reproduction to the end of the breeding
season or over the winter. Obviously, females attempt to adjust the timing of breeding to variation
in intraspecific competition and/or predation risk, the factors that are supposed to affect the
reproductive costs.

In the present paper we study the evolutionary question of delayed maturation and reproduction
in an age-structured population in animals that live in a seasonal environment and that may
reproduce twice within the breeding season. We develop a population dynamics and life history
model to analyse the question of whether partially delayed breeding in females could be a mixed
evolutionarily stable life history strategy and under which environmental conditions it could be
expected. By a mixed breeding strategy we mean that one can observe two different types of
breeding behaviours within the same age class. In our modelling techniques we combine
behavioural options or life history traits with non-linear population dynamics models (Kaitala et
al., 1989, 1993; Kaitala, 1990; Kaitala and Getz, 1995). This modelling approach is an effective
alternative in analysing dimorphic or polymorphic behaviours or life histories in evolutionary
modelling studies.

In our study we used the simplest class of models that included delayed reproduction as a
behavioural option in an age-structured population. We assume two temporally distinct mating
events within a single breeding season. Furthermore, we consider an age-structured population,
formed by relatively short-lived (maximally two breeding seasons and a non-breeding season in
between) animals. We assume in particular that, after overwintering, the females can breed in
spring and again in summer or they can delay breeding in spring and breed in summer only.
Young females born in spring can either mature and reproduce in summer or stay immature and
postpone breeding over the winter to the next breeding season. Our approach is restricted to
females as, due to long pregnancy and lactation times, this sex should be more vulnerable in risky
environments when breeding. Male maturation should only be dependent on the frequency of
receptive females and on the density of conspecific old males.

Our purpose is not to develop an exact model for population dynamics of microtines in this
paper (although the age structure and the mating system is conceptually close to those observed,
for example, in P. maniculatus and C. glareolus). Instead, our purpose is to develop a theory to
understand the possible evolutionary mechanisms that are capable of maintaining polymorphic
breeding behaviour in animals. The particular mechanism that we have in mind is frequency-
dependent selection, that is, the fitnesses of individuals behaving in different ways are assumed
to depend on the frequencies of the behaviour chosen by the other individuals in a local
population. We propose that density dependence (social suppression of maturation and breeding;
see e.g. Bujalska, 1973), predation risk (e.g. selective predation towards females in breeding
condition; see e.g. Cushing, 1985) and other social factors (e.g. recruitment of young produced;
see Fairbairn, 1977) are possible factors that regulate frequency-dependent selection.

We next derive a general dynamic model for delayed reproduction in an age-structured
population that reproduces twice during a breeding season. In the third section we analyse the
evolutionarily stable (ES) breeding strategies. We first confine ourselves to an analytical
equilibrium analysis. We show that when the population level remains constant, an ES breeding
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strategy is either an age-structured combination of pure breeding behaviours (old females breed
and young delay maturity) or a mixed breeding behaviour within age classes (a fraction of young
females breed during the summer of their birth and the rest of the age class delay maturity, or a
fraction of overwintered females delay breeding in spring). However, extensive population
fluctuations are a rule in microtines (e.g. Henttonen, 1987; Hansson and Henttonen, 1988) and,
hence, we also consider ES breeding behaviours in fluctuating populations. We show that
breeding systems, including the possibility of delayed reproduction, can resist population invasion
by breeding systems that lack these options. Furthermore, the breeding strategies may depend on
the population density or predation pressure in a very complicated way.

Modelling the population dynamics and breeding behaviour

We next develop a basic model for studying delayed reproduction in age-structured populations.
In particular, we are interested in life histories that are characterized by partially delayed breeding
strategies. By a partially delayed breeding strategy we mean that in a population there are two
different and distinguishable reproductive behaviours within a single age class. Such a
dimorphism can be observed in the timing of maturation of the young or in delayed breeding
among individuals of reproductive age. For example, partially delayed maturation occurs when a
fraction of individuals mature at a certain time and the other fraction of the same cohort will
mature later in different environmental conditions. We first confine ourselves to an analytical
analysis of deterministic equilibria of the population dynamics. We then analyse ES breeding
strategies in fluctuating populations.

We consider a population of animals which reproduces seasonally twice a year. Assume that,
within a year, the first offspring are produced by overwintered females in early spring and the
second litter is produced later during the summer. Thus, in our model, the breeding season
includes the spring and the summer of the same year. For simplicity, the two reproductive events
are assumed to be non-overlapping such that there are two distinct breedings, one in spring and
one in summer.

Assume that the spring-born offspring have the following options for maturation and
breeding:

(1) The offspring born in spring either mature early, breed during the year of their birth and
die, or they mature late, delaying breeding to the next year.

(2) The offspring born in summer delay breeding obligatorily to the next breeding season.

Assume further that the overwintered individuals have an option to delay breeding from spring to
late summer. The overwintered individuals either breed in spring and, if still alive, later during
the summer and die, or they pass breeding in spring, breed once later in summer and die. Note
that the overwintered population is composed of both the spring-born individuals that have
delayed maturity over the summer and the summer-born individuals.

The reproductive season is followed by an overwintering period. We assume that overwintering
survival is independent of density.

In the present model we do not need to take into account the effect of the timing of maturation
on overwintering survival since there are only immature individuals in the overwintering
population. It would be possible to extend the model such that the spring-born females that
mature early and reproduce during the summer of their birth may survive over the winter and
reproduce during the following summer. This extension would not affect our main conclusions
but would complicate the notation considerably.
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Breeding strategies

Consider the individuals born during the previous season. Assume that some of the individuals
choose to breed in spring and the rest of the individuals delay breeding to the summer. We define
here the breeding strategy of the overwintered individuals as the fraction, f 1, of the individuals
delaying breeding to the late summer.

Consider next the offspring produced during spring by the breeding fraction 1 2 f 1. Assume
that some of the individuals who are siblings choose to mature and breed early during the same
summer and the rest of the siblings delay their breeding to the next summer. Then the breeding
strategy of the individuals born in spring is defined here as the fraction f 0 of the offspring of an
individual, i.e. siblings, delaying their maturity to the next summer.

This type of a strategy is a mixed strategy and can be interpreted as the probability that an
individual chooses either the early-breeding or late-breeding behaviour. All the individuals are
assumed to be phenotypically and genotypically identical. Defining the strategy as a fraction or
probability of choosing between two options has the advantage that each newborn individual
among the same litter has the same expected lifetime fitness.

Breeding dynamics within a year

We first develop a model for the dynamics of delayed reproduction within a single year (see Fig.
1). For the purposes of the subsequent analyses, we then present the dynamic version of the
model (see below). We shall study the breeding strategies of females only and make a simplifying
assumption that the reproductive behaviour of males does not affect the reproduction of females.
Furthermore, all density-dependent effects are assumed to depend on the number of females
only.

Figure 1. The dynamics of delayed reproduction within a year. The population reproduces twice a year, first
in spring and then in summer. The population size of identical overwintered females prior to the breeding
season is X. An overwintered female may choose to breed in spring, in which case her survival rate prior
to summer breeding is sM, and again in summer, in which case her survival rate prior to summer breeding
is sJ. Alternatively, an overwintered female may pass breeding in spring and breed in summer, in which case
her survival prior to summer breeding is sJ. The fraction of the females that pass breeding in spring is denoted
as f 1. An offspring born in spring may either mature and breed during the summer of her birth, in which
case her survival prior to summer breeding is sJ and die, or she may delay breeding, overwinter and breed
during the next season once or twice. The fraction of the spring-born females that delay breeding is denoted
as f 0. The overwintering survival rate is sow. The density-dependent per capita reproductive successes in spring
and in summer are YM and YJ, respectively. The population size after the next overwintering period is X'.
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The reproductive seasons are separated from each other by overwintering or diapause periods.
Let X denote the total population size of identical females after the overwintering period and let
XM and XJ denote, respectively, the total sizes of the female parent populations reproducing in
spring (M 5 March–May) and in summer (J 5 June–July). Further, let xM and xJ denote the
sizes of the offspring populations born in spring and in summer.

We next assume that the survival of the reproductive individuals is mainly affected by predators
specialized in chasing pregnant females. We assume in particular that the mortalities caused by
predation occur prior to breeding. Let the survival rates of the pregnant females prior to spring
and summer breedings be denoted as sM and sJ, respectively. Note that we simplify the model here
by assuming the same mortality for the 1-year-old and spring-born females. Further, we do not
assume any other mortality factors in the model except winter mortality (see below).

Spring

We further assume that fraction f 1 of the overwintered individuals will delay reproduction in
spring to make a terminal reproduction later in summer. Thus, the number of females passing
spring breeding is

f 1X (1)

The total number of reproductive females that attempt to breed in spring includes fraction 1 2 f 1

of the overwintered individuals. The actual breeding population in spring, XM, is constituted of
overwintered females that have chosen to breed in spring and have escaped the specialized
predation. Thus, we have

XM 5 (1 2 f 1)sMX (2)

The total number of female offspring produced in spring is

xM 5 XMYM(XM) (3)

where YM(XM) denotes the number of female offspring produced per female individual, when the
breeding population size is XM.

Summer

Assume next that the female offspring born in spring either mature early and breed during the
summer of their birth or delay maturation to the next reproductive season. By the definition of the
maturation strategy, all new female offspring born in spring play the same strategy f 0, where f 0

is the proportion of individuals that delay maturity to the next summer. Hence, a proportion (1 2
f 0) of the female offspring mature and breed during the summer of their birth. The number of the
spring-born females that delay maturity is

f 0xM (4)

and the number of females that do not delay maturity is (1 2 f 0)xM.
The total number of reproductive females in summer during cycle k includes overwintered

individuals (those which have reproduced once and survived the spring reproduction and those
which have passed spring reproduction) and a fraction of newborn female individuals that mature
early, that is

XJ 5 sJ [(1 2 f 1)sMX 1 f 1X(1 2 f 0) xM] (5)

The total number of offspring produced in summer is

xJ 5 XJYJ(X
J) (6)
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where YJ(X
J) denotes the number of female offspring produced per female individual during

summer breeding.

Population dynamics model

We next present the population dynamics model which summarizes the population fluctuations in
time. Assume that a constant fraction, sow, of the overwintering population survives to the
following reproductive season and is alive at the beginning of the next reproductive season.
Assuming the same overwintering survival for the offspring born in spring and summer, the
number of overwintered females becomes

X' 5 sow [f 0xM 1 xJ ] (7)

We finally assume that the per capita reproductive successes, YM(XM) and YJ(X
J), are continuous

and decreasing functions of the densities of the reproductive population sizes XM and XJ,
respectively. These assumptions are sufficient for deriving analytical conclusions of the properties
of ES breeding strategies at an equilibrium population state.

The population dynamics under delayed breeding can be presented as a one-dimensional
population model,

X' 5 H(X; f 0,f 1)X (8)

where the density-dependent population dynamics function H summarizes the assumptions made
in Equations 2–7 and is given, after some algebra, as

H(X; f 0, f 1) 5 sow{f 0(1 2 f 1)sMYM(XM) 1

sJ[(1 2 f 1)sM 1 f 1 1 (1 2 f 0)(1 2 f 1)sMYM(XM)]YJ(X
J)}

(9)

and XM and XJ are given by Equations 2 and 5, respectively.
The population dynamics in Equations 8 and 9 represent the case in which there is only one

phenotype present in the population. In order to emphasize the fact that the population dynamics
depend on the behavioural options (f 0, f 1) we have introduced them explicitly in the model
notation.

Analysis: evolutionarily stable strategies

We next turn to study the evolution of the reproductive systems in terms of the competition
between different phenotypes.

The evolution of behavioural patterns and life history traits has been studied recently by applying
three different measures of fitness which are assumed to be maximized by natural selection. A
strategy (e.g. behaviour or life history trait) maximizing the lifetime production of offspring, R0
(Charlesworth, 1980), may also be an evolutionarily stable strategy (ESS) (Maynard Smith, 1976,
1982; for a review see Hines, 1987), whereas a behaviour maximizing the intrinsic rate of increase
of a clone, r, derived from the Euler–Lotka equation of life history theory (e.g. Roff, 1992; Stearns,
1992), does not usually yield an ESS. It is commonly believed that the R0 criterion provides an
ESS in density-dependent populations. Hastings (1978) specified conditions under which an ESS
maximizes the age-structured population size and the density-dependent R0. Strict results on the
equivalence of the density-independent R0 criterion and ESS are available for density-dependent
populations that are in equilibrium (Mylius and Diekmann, 1995). However, no general results are
available for chaotic or stochastic population dynamics (but see Ellner, 1985a,b; Kaitala et al., 1989;
Metz et al., 1992; Ferriére and Gatto, 1993; Gatto, 1993).

We next analyse delayed breeding strategies using the concept of evolutionarily stable
strategies (ESSs). A particular strategy, the frequency of delayed reproduction in this case, is an
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ESS if no other rare strategy can increase in the population when this particular strategy is
common. Understanding evolutionary changes in populations involves an analysis of which
phenotypes are the most competitive in a population dynamics sense (e.g. Getz and Kaitala, 1993;
Kaitala and Getz, 1995). In this approach, two or more different non-interbreeding female
phenotypes of the same species, differing only in their strategies, compete under the same
environmental conditions. Thus, the strategy is an expression of the phenotype, which in our
model is represented by a pair of breeding behaviours (f 0, f 1). In other words, two different
phenotypes in our model use different values for f 0 and f 1.

Even though the phenotypes are non-interbreeding, they need to be ecologically linked. A way
to link the phenotypes ecologically is to assume that each individual (within the same age class)
uses resources and experiences the intra- and interspecific phenomena in the same way, no matter
what their phenotype (or strategy) is. Thus, the linking of the phenotypes can be carried out through
the frequency- or density-dependent processes of the population dynamics. Here we assume
interactions between individuals can be modelled as density dependence in reproduction.

Let X and Z denote the population sizes of two different (pheno)types applying breeding
strategies (f 0

X, f 1
X) and (f 0

Z, f 1
Z), respectively. Then, recalling Equations 8 and 9, the competition

dynamics between the two types can be modelled as

X' 5 F(X 1 Z)X (10)

Z' 5 G(X 1 Z)Z (11)

where F and G are both defined by Equation 9 such that F(X 1 Z) 5 H(X 1 Z; f 0
X, f 1

X) and
G(X 1 Z) 5 H(X 1 Z; f 0

Z, f 1
Z). Thus, the dynamics equations for the resident and the mutant

types differ in the behavioural strategies that the types apply.
Our treatment of evolutionary stability and invasion resistance follows closely that of Rand et

al. (1994). In an ESS analysis we investigate the competition between the two types assuming
that type X is common and type Z is rare. We also refer to these types as the resident and mutant
types, respectively. If type X is able to resist population invasions by a given mutant type Ẑ, then
the strategy pair (f 0

X, f 1
X) is said to be evolutionary stable to Ẑ. If type X is able to resist population

invasions by any other type, then the strategy pair (f 0
X, f 1

X) is an ESS.
At a possible invasion of the population by a mutant type we need to consider the growth rate

of the mutant type when the resident type X is common in the population. Let the population
dynamics of the common type alone result in an infinite (stable or fluctuating) sequence of
population sizes {X0, X1, X2, . . .} denoted shortly as {Xk}k > 0. We say that mutant type Z invades
common type X if the mean growth rate of mutant type Z along the population sequence {Xk}k > 0
is positive. Technically we require that the invasion exponent of the sequence {G(Xk)}k > 0 is
positive (Rand et al., 1994). Let us denote the invasion exponent as

gX(Z ) 5 lim
k → ∞

1
k

1n * P
k21

i 5 0
G(Xi ) * (12)

Thus, type Z invades type X if

gX(Z ) . 0 (13)

and, alternatively, type X is resistant to invasion by type Z if

gX(Z ) # 0 (14)

Note that the invasion exponent has also been referred to in the ecological literature as the
Lyapunov exponent (see e.g. Metz et al., 1992).
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When the resident population is at equilibrium the invasion exponent gX(Z) is equal to the
logarithm of the magnitude of the eigenvalue corresponding to G(X̄). In this case, gX(Z) is a
continuous function of the parameters of G(X̄). However, when the resident population size
fluctuates, then regularity statements do not easily generalize (R. Ferriére and M. Gatto,
submitted).

We begin the analysis by assuming that the population dynamics of the common type is at a
population equilibrium. Below, we relax this assumption by considering fluctuating population
dynamics. However, although our reference to microtines suggests the importance of analysing
ESS strategies in fluctuating populations, there are two main reasons for a thorough analysis of
ESS strategies in stable population dynamics. First, the ESS strategies successfully suggest some
features that can be observed in dynamic ESS strategies. Second, we expect to encounter delayed
maturity and breeding even in animals in which the population fluctuations are not so pronounced
as they are in microtines.

Stable population dynamics

Assume that the population dynamics of the common type X is at a population equilibrium, that
is, the population dynamics in Equations 8 and 9 satisfy condition Xk 5 X̄ for all k, where X̄ is
a steady state defined by the condition 1 5 F(X̄). Assume further that the steady state X̄ is
locally asymptotically stable such that the population remains at the steady state when no other
types are present. In particular, the population dynamics in Equation 8 are locally asymptotically
stable if (see e.g. Edelstein-Keshet, 1989)

* ∂F(X̄ )
∂X

X̄ 1 1 * # 1 (15)

which is assumed to hold in all equilibrium analyses of this subsection. No general analytical
solution for X̄ is available here for arbitrary but fixed f 0 and f 1.

To study the local dynamics of the competition between the two strategies when the mutant
type is rare, we approximate the dynamics of the non-linear dynamics by linearizing Equations 10
and 11 at (X, Z) 5 (X̄, 0). The eigenvalues of the linearized system are

l1 5
∂F(X̄ )

∂X
X̄ 1 1 (16)

and

l2 5 G(X̄ ) (17)

where

F(X̄ ) 5 sow{[f 0
X 1 sJ (1 2 f 0

X)YJ(X̄
J )](1 2 f 1

X )sMYM(X̄M )

1 sJ[(1 2 f 1
X )sM 1 f 1

X]YJ(X̄
J )}

(18)

and

G(X̄ ) 5 sow{[f 0
Z 1 sJ (1 2 f 0

Z )YJ(X̄
J )] (1 2 f 1

Z)sMYM(X̄M )

1 sJ[(1 2 f 1
Z )sM 1 f 1

Z ]YJ(X̄
J )}

(19)

and X̄M and X̄J are the steady state solutions corresponding to (f 0
X, f 1

X).
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We next assume that an ESS exists and turn to study the possible characterizations of ESS
breeding behaviours. Our main purpose here is to show that delayed maturation or breeding may
occur in non-fluctuating populations.

Recall that we have assumed in this subsection that the single-type population dynamics is
locally asymptotically stable. It follows from Equation 15 that |l1| , 1. It also follows that the
evolutionary stability of a fixed strategy pair (f 0

X, f 1
X), or the local stability of the equilibrium state

(X̄, 0) of the competition dynamics in Equations 10 and 11, depends on the value of l2 5 G(X̄ ).
In particular, (X̄, 0) is locally asymptotically stable if |l2| , 1. Furthermore, a mutant type Z
cannot increase in the population if |l2| # 1 at X̄. Thus, the study of ESS breeding behaviours
requires an investigation of the following ESS conditions:

F(X̄ ) 5 1 (20)

G(X̄ ) # 1, for any (f 0
Z , f 1

Z ) (21)

where F(X̄ ) and G(X̄ ) are given by Equations 18 and 19 respectively. Recall also the stability
condition in Equation 15.

We may have three different types of ESS breeding systems depending on whether, at an ESS,
we have sJYJ(X̄

J) , 1, . 1 or 5 1 (for the proofs, see Appendix 1). In particular, the possible
ESS steady state breeding systems are:

(f 0
X , f 1

X ) 5 { (1,0) and sJYJ(X̄
J ) , 1

(0, f 1
X) and sJYJ(X̄

J ) . 1, where f 1
X 5 1, 5 0 or 0 # f 1

X # 1,
when sM(YM(X̄M) 1 1) , 1, . 1 or 5 1, respectively

(f 0
X, 0) and sJYJ(X̄

J ) 5 1, where 0 # f 0
X # 1 (22)

We note immediatedly that the steady state breeding strategies are density dependent despite the
fact that they deal with equilibrium population sizes. This observation is most important as it
readily suggests that ESS breeding systems are also density dependent in fluctuating populations
(see below).

In the first case, (f 0
X, f 1

X) 5 (1,0), all the spring-born offspring will delay maturity to the next
summer and none of the overwintered individuals will postpone breeding to the late summer.
Thus, no dimorphic behaviour can be observed in this case. Note that sJYJ is the expected per
capita reproductive success (prior to overwintering mortality) both for the spring-born individuals
that do not delay maturity over the winter and for the overwintered individuals that pass breeding
in spring. However, due to the low reproductive success, neither of these options occurs in this
case. As a whole, the expected reproductive success of females that do not pass reproduction in
spring compensates for the winter mortality. That is,

sM{YM(X̄M ) 1 sJYJ(X̄
J )} 5

1
sow

In the second case, (0, f 1
X), none of the spring-born offspring will delay maturity to the next

summer because they can multiply before the overwintering period. However, mixed breeding
behaviour may be observed in spring, in which case the expected per capita reproductive success
of spring-breeding females (that is, sM(YM(X̄M ) 1 1) sJYJ(X̄

J)) is equal to that of females that
delay breeding (sJYJ(X̄

J)). This alternative illustrates clearly that the per capita reproductive
success is measured as the number of own daughters and granddaughters entering the wintering
period. Thus, the per capita reproductive success includes both the own female offspring produced
in summer and the female offspring produced in summer by the own spring-born offspring. Note
also that this case also includes the ‘pure’ breeding systems (0,0) and (0,1).
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In the third case, (f 0
X,0), no delayed breeding is observed in spring, but a fraction of the spring-

born offspring will delay maturity in summer. Thus, the reproductive success in summer is now
balanced such that the spring-born individuals are indifferent between early and delayed maturity.
We also have sM(YM(X̄M ) 1 1) 5 1/sow . 1.

We conclude the analysis by noting that mixed behaviour (that is, (f 0
X, f 1

X), 0 , f i
X , 1, i 5 0,1)

cannot occur simultaneously both in spring and in summer in steady state populations. This
would imply that sJYJ(X̄

J ) 5 1 and sM(YM(X̄M ) 1 1) 5 1, in which case the only possible
steady state would be X̄ 5 0.

Fluctuating population dynamics

We have assumed so far that the population level of the common type remains at a steady state.
However, as the population fluctuations are a rule, for example, in microtines, it is of great general
interest to study the evolutionary stability of the breeding systems when the populations fluctuate.
In particular, we will show that delayed maturity and breeding may be superior as compared to
the ‘basic’ breeding systems that lack the options of adjusting reproduction according to the changing
circumstances.

The results from the steady state analyses above deal with the evolutionary stability of constant
breeding strategies against constant mutant strategies. The strategies specified as constant
fractions may be reasonable, for example, when reproductive conditions ahead are unpredictable
such that the reproductive decisions are made when the conditions are not known (Kaitala et al.,
1989). However, constant strategies are not expected to remain evolutionarily stable when
population levels fluctuate and when the individuals have an opportunity to obtain information,
e.g. on the population density of conspecifics and on the abundance of predators. On the contrary,
motivated by the observation that the steady state strategies (Equation 22) are density dependent,
we expect that the evolutionarily stable strategies remain density dependent in fluctuating
populations depending on the population levels as well as on other ecological factors, such as
predation pressure or environmental uncertainty. Thus, we do not feel it necessary to consider
constant breeding strategies in the context of fluctuating population dynamics.

Let X be an arbitrary but fixed population level. Then, we propose the following pair of
strategies, in which the balancing of the reproductive successes between each option is a most
important property, to be an ESS.

First, assume that f 1
X is fixed. Let f 0

X denote a strategy that balances, when possible, the
reproductive success in summer such that sJ YJ( X

J ) 5 1. That is, the spring-born individuals are
indifferent between early and delayed maturity or between reproducing in summer or over-
wintering. We obtain the following behavioural decision rule for the spring-born females:

f 0
X 5 { 0 if sJYJ(X

J ) . 1 for all  f 0
X

1 if sJYJ(X
J ) , 1 for all  f 0

X

f 0
X otherwise

(23)

Next, let us assume that Equation 23 is given and let us denote the reproductive success of the
overwintered non-delaying type within a reproductive season as:

R(X ) 5 sM[f 0
XYM(XM ) 1 (1 2 f 0

X )YM(XM )sJYJ(X
J ) 1 sJYJ(X

J )] (24)

Further, let f 1
X denote a strategy that balances, when possible, the reproductive successes of the

delaying and non-delaying types such that R(X ) 5 sJYJ(X
J ), where f 0

X is given by Equation 23.
In this case, the overwintered individuals are indifferent between non-delayed and delayed
breeding. We obtain the following behavioural decision rule for the overwintered females:
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f 1
X 5 { 0 if R(X ) . sJYJ(X

J) for all f 1
X

1 if R(X ) , sJYJ(X
J) for all f 1

X

f 1
X otherwise

(25)

The proposed evolutionary stability of Equations 23–25 is based on the following reasoning.
First, under steady state conditions, the dynamic strategy pair (Equations 23–25) yields the same
result as the ESS strategies (Equation 22) derived for the steady state populations above. Second,
when common, the strategy pair in Equations 23–25 prevents any other mutant strategy from
reaching a greater growth rate under any circumstances than that reached by applying Equations
23–25. For example, Equation 25 maximizes the growth rate of the overwintered individuals
except when R(X) 5 sJYJ(X

J). However, because in this particular case each individual is
indifferent between delayed and non-delayed reproduction, no other strategy, when rare, can beat
Equation 25. The same reasoning is valid for Equation 23. A strict analytical treatment of this
problem is beyond the scope of this paper (see Rand et al., 1994). However, we verify
numerically that our ESS candidate (Equations 23–25) can resist population invasion by the most
interesting alternative breeding systems (see below).

The breeding strategies or fractions in Equations 23–25 may produce very complicated
reproductive patterns under fluctuating conditions. Consider next a deterministic case in which the
population dynamics may show periodic or chaotic fluctuations. We assume for simplicity that the
survival values in spring and in summer (sM, sJ) are both constant. The per capita successes are
assumed to be of the Ricker type, which are known to produce complicated population dynamics
(e.g. Gatto, 1993). We have

YM(XM 1 ZM ) 5 erM 2 bM (XM 1 ZM ) (26)

and

YJ(X
J 1 ZJ ) 5 erJ 2 bJ (XJ 1 ZJ ) (27)

where rM, bM, rJ and bJ are the parameters of the Ricker growth functions.
Figure 2 shows three deterministic density-dependent breeding patterns (Equations 23–25) for

different but arbitrary parameter combinations. The predation pressures are identical (sM 5 sJ 5
0.5) but the breeding functions in Equations 26 and 27 differ between the three cases. In Fig. 2a,
the breeding functions are identical in spring and summer. No delayed breeding occurs in spring
among overwintered females at low population levels, whereas at high population levels the
fraction of delayed breeding increases to one-third. The frequency of delayed maturity in young
females is higher both at low and high population levels. In Fig. 2b, the density-independent
breeding success is lower in spring than in summer. Now, all individuals reproduce at the earliest
possible occasion at low population levels. However, at high population levels, all spring-born
individuals delay maturity and the fraction of delayed breeding is also high in overwintered
females. In Fig. 2c, the density-independent breeding success is much lower in summer than in
spring. Delayed maturity is now a rule in young females (except at extremely low population
levels), whereas moderate levels of delayed breeding can be observed among the overwintered
females only at high population levels.

All three cases studied in Fig. 2 produce chaotic population dynamics. This was verified by
calculating numerically the Lyapunov exponents for the population dynamics (e.g. Peitgen et al.,
1992), which were 0.7, 0.3 and 0.5, respectively. Positive Lyapunov exponents mean that the
population dynamics are sensitive to the initial condition, which is one characteristic of chaotic
dynamics. Figure 3a illustrates the chaotic discrete-time population dynamics in the case of Fig.
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Figure 2. Density-dependent breeding patterns (Equations 23–25) for three different deterministic combinations
of breeding functions: (a) ρM = 5.2 and ρJ = 5.2, (b) ρM = 2.5 and ρJ = 5.2, (c) ρM = 5.2 and ρJ = 1.0. The
other model parameters are sow = sM = sJ = 0.5 and βM = βJ = 0.07 (see Equations 26 and 27). The
strategies are given as the functions of the size (density) of the overwintered population: (e) f 0

X (spring-born
females), (+) f 1

X (overwintered females).
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2a. As the population level fluctuates with time, then the breeding strategies fluctuate as well (see
Fig. 3b) and the breeding strategies differ among the years. This is due to the fact that the breeding
strategies in Equations 23–25 depend on the density of the overwintered population. Both the
maturation strategy f 0

X of the spring-born females and the breeding strategy f 0
X of the overwintered

females fluctuate prominently, however, such that the changes in the breeding strategies are more
extreme among the spring-born females than among overwintered females.

Figure 4a illustrates a modification of the case shown in Fig. 2a. Now, the predation is assumed
to be more intensive in summer (sJ 5 0.1) than in spring (sM 5 0.5). Recall that the reproductive
functions in Equations 26 and 27 are identical in this case. At low population levels (X , 100),
no delayed breeding by overwintered females is observed, whereas the frequency of delayed
maturity may be high. For slightly higher population levels (100 , X , 150), all the individuals
reproduce as early as possible. As the population level increases, then delayed breeding becomes
more common among the overwintered females. The increasing fractions of delayed maturity among
spring-born females can be observed only at very high population levels (X . 400).

Figure 4b illustrates an opposite modification of the case of Fig. 2a. Now the predation is more
intensive in spring than in summer (sM 5 0.1 and sJ 5 0.5). Moderate levels of delayed breeding

Figure 3. (a) Population density X fluctuates in time (100 generations) in the case illustrated in Fig. 2a. (b)
The fluctuations in the population level X cause the breeding strategies (Equations 23–25) to fluctuate in
time as well. (e) f 0

X (spring-born females), (+) f 1
X (overwintered females).
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among the overwintered females are observed at high population levels only, whereas delayed
maturity is common among the spring-born females at all but very low population levels.

As a whole, the breeding strategies in Equations 23–25 may produce very complicated patterns
that vary from year to year when the individuals adjust their breeding behaviours according to
varying population densities and other environmental conditions. The breeding strategies are
sensitive with respect to differences between the reproductive periods producing different
breeding patterns, e.g. when strong predation occurs mainly in spring or in summer (see Figs 2
and 4). This can be the case, e.g. in our microtus example, where the predation pressure by
specialized small mustelids varies between spring and summer depending on the phase of the
cycle (Korpimäki et al., 1991; Ylönen, 1994). The simulation results also suggest that younger

Figure 4. The breeding patterns (Equations 23–25) change as the predation parameters of Fig. 2a are
changed. (a) High predation mortality in summer (sM = 0.5 and sJ = 0.1). (b) High predation mortality in
spring (sM = 0.1 and sJ = 0.5). Other parameters are as in Fig. 2a. (e) f 0

X (spring-born females), (+) f 1
X

(overwintered females).

118 Kaitala et al.



age classes are more flexible in adjusting the timing of reproduction and that the fraction of
spring-born females delaying maturity tends to be higher than that of overwintered individuals
delaying breeding. It is also interesting to note that, unlike in the steady state populations,
temporal co-existence of partially delayed maturity and supressed breeding can be observed from
time to time. (This is observed, for example, in Fig. 2a when the population level is slightly
below 200.) Finally, the results show that intraspecific factors (e.g. density and social regulation
mechanisms) as well as ecological factors (predation and interspecific competition) may strongly
affect the breeding and maturation patterns in the population.

No general principles or analytical results are available at the moment for proving the
evolutionary stability of Equations 23–25 when the population levels fluctuate. Consequently, we
need to rely on numerical simulations in checking the evolutionary stability of the strategies. It
should be noted, however, that it is impossible to test the evolutionary stability against all
possible density-dependent strategies. (A complete analysis of this problem is beyond the scope
of this paper.) Instead, our aim is to show that delayed maturity or breeding may be
evolutionarily superior as compared to the breeding systems that lack the option of adjusting the
breeding behaviour according to changing conditions. Thus, the candidates of interest are the
following mutant ‘pure’ breeding systems:

(1) (f 0
Z, f 1

Z) 5 (0, 0) – no reproductive delay at any time, the overwintered females breed in
spring and their young mature early and breed during the summer of their birth.

(2) (f 0
Z, f 1

Z) 5 (1, 0) – no delayed breeding in spring and spring-born offspring delay maturity
to the next spring.

(3) (f 0
Z, f 1

Z) 5 (f 0
Z, 1) – all the overwintered individuals pass breeding in spring (the reproductive

behaviour of spring-born offspring is here immaterial since the mutants do not breed in spring).

The invasion exponents of these three candidate breeding systems are all strictly , 0 when
computed along the population trajectories of the cases studied in Fig. 2a–c: 2 0.17, 2 0.25 and
2 0.45 for (f 0

Z, f 1
Z) 5 (0, 0), 2 0.25, 2 0.85 and 2 0.016 for (f 0

Z, f 1
Z) 5 (1, 0) and 2 1.5,

2 0.66 and 2 2.8 for (f 0
Z, f 1

Z) 5 (f 0
Z, 1) (f 0

Z arbitrary), respectively. An analysis of the invasion
exponents in Fig. 4 further illustrates the evolutionary stability of the strategies in Equations
23–25 to the three ‘pure’ breeding systems. In both cases the attractor of the population dynamics
under the behavioural decision rules (Equations 23–25) is a cycle. When sM 5 0.5 and sJ 5 0.1
(see Fig. 4a), then the population dynamics ultimately become cyclical, oscillating between the
levels 432 and 216. The corresponding invasion exponents are 0.00, 2 0.24 and 0.00 for the
mutant strategy pairs (0, 0), (1, 0) and (f 0

Z, 1), respectively. When sM 5 0.1 and sJ 5 0.5 (see
Fig. 4b), then the population dynamics become cyclical, oscillating between the levels 439 and
220. The corresponding invasion exponents are 0.00, 0.00 and 2 0.69 for the mutant strategy
pairs as above. These results show that the density-dependent strategy (Equations 23–25) is
evolutionary stable to these three ‘pure’ breeding systems, at least under the population dynamics
studied in Figs 2 and 4.

It is worth noting that the invasion exponents for mutant strategies may be exactly zero. This
occurs when both components Equations 23 and 25 of an ESS are mixed strategies along the
population trajectory such that the reproductive successes between the two available options are
balanced each year, or when either Equation 23 or Equation 25 is a non-mixed strategy (0 or 1)
and the other component of the ESS is a mixed strategy along the population trajectory. An
obvious example of the latter case is a breeding system in which an ESS, characterized by (f 0

Z,
f 1

Z) 5 (f 0
Z, 0), 0 , f 0

Z , 1, results in an equilibrium population size (see Equation 22). Then
the invasion exponent of the mutant strategy (f 0

Z, f 1
Z) 5 (0, 0) would be zero. However, the

inverse result that the invasion exponent of the same ESS attempting to invade other strategies
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would also be zero does not hold. To see this, consider the previous example and assume that
(f 0

Z, f 1
Z) 5 (0, 0) is common in the population resulting in an equilibrium population dynamics.

Assume further that the reproductive successes between the delayed and undelayed breeding in
summer are different. Then, the ESS, being dimorphic in summer breeding but unable to balance
the reproductive successes, would either be better off or worse off than the resident strategy
(f 0

Z, f 1
Z) 5 (0, 0). Thus, the invasion exponent of the ESS would either be positive or negative.

Note also that a strictly negative invasion exponent of the ESS would mean that either the ESS
is non-unique or there exists some other strategy that can invade the population occupied by the
(0, 0) type. These results generalize to more complicated population dynamics.

Conclusions

In this paper, we have studied the evolutionary question of delayed maturation and reproduction
in age-structured animal populations reproducing in seasonal environments. We have traded in our
study realism to generality by using the simplest population dynamics model that can show both
delayed maturation and delayed breeding as behavioural options in an age-structured population.
We considered a population of short-lived (maximum two breeding seasons) animals which can
breed twice within a breeding season. Spring-born females can either mature early and breed in
the summer of their birth or postpone breeding to the next season. The overwintered females can
breed in spring and again later in summer or they can pass breeding in spring and breed only once
in summer. Our aim was to develop a theoretical model to understand the evolutionary mechanisms
that are capable of maintaining mixtures of these behaviours in a population.

Populations at equilibrium

Our results show that three breeding patterns can be evolutionarily stable in our model under non-
fluctuating conditions. First, when the expected per capita reproductive success in summer is ‘poor’
(the first option in Equation 22), no matter what the maturation strategy of the spring-born females
is, then all of the spring-born individuals will delay maturity over next winter. Furthermore, none
of the overwintered individuals will pass breeding in spring. Thus, the main breeding in this
population is carried out by the overwintered females and the summer breeding is only due to the
females that are carrying out their ‘terminal’ breeding. In this case no mixed strategies can be
observed within any age class. Second, when the expected per capita reproductive success in
summer is ‘good’ (the second option in Equation 22), no matter what the maturation strategy of
the spring-born females is, then none of the spring-born individuals will delay maturity over winter.
The reproductive behaviour of the overwintered individuals can range from undelayed spring
breeding to a complete passing of spring breeding. In the latter case we observe a population in
which breeding occurs in summer only. Note that this case also includes the alternative that a small
fraction of overwintered females breed in spring prior to the main breeding season (see Fairbairn,
1977). Finally, a mixed strategy can be observed among the overwintered individuals, in which
case summer breeding includes females from both age classes. Third, when the expected per capita
reproductive success in summer depends of the frequencies of behaviours and stabilizes to 1 (the
third option in Equation 22), a mixed maturation behaviour can be observed among the spring-born
individuals. This is due to the fact that the final reproducers will reproduce in any case and the
group of females that is able to balance their reproductive success is the spring-born one. This case
occurs only when delayed breeding in spring is never an advantageous option for overwintered
individuals. In this case all overwintered individuals breed in spring and the summer breeding is
carried out by old females and by a fraction of spring-born individuals maturing early.
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Fluctuating populations

The steady state analysis dealt with constant breeding strategies only. Because population
fluctuations are common in microtines, we also raised the question of evolutionarily stable breeding
and maturation under fluctuating conditions. We showed that, in fluctuating populations, breeding
strategies may become dynamic depending on the population level and on other ecological factors,
such as predation or environmental uncertainty. Such strategies may produce complicated
reproductive patterns. For example, the reproductive patterns can vary from year to year and follow
the changes in the population levels, predation and other environmental conditions in a way that is
difficult, if not impossible, to derive, for example, from the estimates of population sizes and mean
breeding successes. Furthermore, the reproductive patterns are sensitive with respect to differences
among the breeding conditions in spring and in summer. Our results also suggest that younger age
classes more commonly delay maturity than the older individuals postpone breeding.

Since the reproductive patterns strongly depend on intraspecific factors (density and social
regulation mechanisms) and ecological factors (predation and interspecific competition), all
empirical work on testing the predictions related to breeding behaviours need to be carefully
controlled. This problem could possibly be approached by analysing the long-term data on
fennoscandian microtine population fluctuations. In particular, it should be recognized that the
reproductive behaviours may differ among females experiencing high conspecific population
densities and females expecting or experiencing a population crash. Furthermore, the conclusion
is valid with respect to predator densities as well, that is, the reproductive behaviours of females
may differ at high predator densities and at post-crash low predator densities (Ylönen, 1994).

There are two key factors in our model that explain the breeding patterns observed. First, the
expected per capita reproductive success in summer tells the spring-born individuals whether or
not it is worth reproducing before the onset of the overwintering period. If, for example, an
individual can expect to make at least one offspring of her own sex overwinter despite her own
death due to reproduction, then it is worth not delaying maturity. In the opposite case it may be
better to delay maturity and overwinter herself instead of ‘suicidal breeding and zero survival of
the young’. The second key factor is the ‘final reproduction’ of the overwintered individuals.
Knowing the expected per capita reproductive success of the final reproduction in summer, the
overwintered individuals are able to compare the relative advantages of breeding and postpone
breeding in spring. For example, if the breeding conditions in spring are poor due to high
predation pressure but the final reproduction can be expected to succeed, then delayed breeding
can be observed. As shown above, the frequencies of different breeding behaviours can regulate
the relative advantages of these behaviours.

It is interesting to note that none of the steady state ESS breeding patterns includes the case in
which a mixed breeding behaviour would have been observed within each age class at the same
time. Such a co-existence of partial maturation and partially delayed breeding seems to occur in
microtines (Ylönen and Ronkainen, 1994; Koskela and Ylönen, 1995) and, indeed, this possibility
is observed in the case of fluctuating population levels (Korpimäki et al., 1994). Thus, the
analysis of non-equilibrium behaviour of populations may add to the theory features that cannot
be observed otherwise.

Because the breeding behaviours are density dependent, there exists a mutual interaction between
the population dynamics and the breeding system: the population dynamics affect the breeding
strategies and the breeding decisions affect the population dynamics. Thus, one may raise the
question of whether more simple strategies, such as constant fractions of cohorts delaying breeding,
would produce more simple or complicated population dynamics. The same question can be posed
in a more general and meaningful evolutionary context as follows: is it possible that destabilization
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of the population dynamics could be an essential part of evolutionary stability? Indeed, Gatto (1993)
has shown that iteroparity (reproducing many times) may evolve as an ESS in some species only
in the context of complex population dynamics. Ferriére and Gatto (1993) have also shown that
individual selection may favour oscillatory or chaotic population dynamics.

It is illuminating to compare the present study with the papers by Felsenstein (1979) and Orzak
and Tuljapurkar (1989). Felsenstein (1979) studied the evolution of growth rates and carrying
capacities (that is, r–K selection) in chaotic populations in non-fluctuating environments. The
population dynamics model was characterized by two constant growth rates, one below and another
above a threshold population level. It was shown that natural selection will favour cycles with more
time spent above the threshold population level and will also favour an increase in the threshold.
However, no behavioural or life history interpretation was given to the growth rates or carrying
capacity. Orzak and Tuljapurkar (1989) studied the evolution of iteroparity in age-structured
density-independent populations living in fluctuating environments. They concluded that no
general reason for the evolution of iteroparity in a fluctuating environment can be specified and
that the direction of evolution of reproductive schedules depends on the environmental variation
and the correlation structure of the vital rates between age classes. However, the evolutionary
criterion used was a stochastic density-independent growth rate and, hence, their analysis does not
cover the evolution of reproductive schedules in populations where the age-specific reproductive
successes are sensitive to population density, as is the case in the present study. (For broader
reviews of the theories of iteroparity, see Roff (1992) and Stearns (1992).)

We have defined the breeding behaviours of the females as a mixed strategy in which a fraction
of females in each age class can delay breeding. We have proposed, by using the paradigm of
evolutionarily stable strategies applied in the context of population dynamics models, that the
selection for this kind of breeding behaviour can be frequency dependent such that relative expected
per capita reproductive successes will be balanced when co-existence of different behaviours
(within an age class) can be observed. We have proposed that density dependence in ecological
processes could be one mechanism through which frequency-dependent selection will be realized.
Furthermore, other ecological factors, such as predation, can have an intensive effect on frequency-
dependent selection. The mechanisms through which the animals can realize the balancing between
the behaviours are expected to vary among the animal species. It has been suggested, for example,
that social breeding or pregnancy suppression can be related to several factors in microtine
populations: (1) restricted availability of exclusive home ranges or breeding territories and population
density (Boonstra and Rodd, 1983; Bujalska, 1985; Kawata, 1987), (2) balance between population
density and environmental capacity (Bujalska, 1985), (3) intensive social interaction among
young females due to crowding (Saitoh, 1981), (4) individual quality (Teferi and Millar, 1993) or
(5) recruitment of the young produced (Fairbairn, 1977). The direct effects of specialized
predators on breeding suppression or delayed maturity are controversial (Ylönen, 1989;
Korpimäki et al., 1994; Ylönen and Ronkainen, 1994; Koskela and Ylönen, 1995). Nevertheless,
our model predicts that the specialized predation pressure (see Cushing, 1985) can have an
equally important effect on the breeding behaviour of small rodents and that the role of predation
becomes more clear when studied in the context of the social regulation of breeding.

We finally note that neither the timing of the mortalities prior to breedings nor their assumed
connection to specialized predation are crucial for the general results obtained in this paper.
Mortality could have been assumed to occur, for example, during or after breedings due to
physiological reasons or it could have been introduced in the form of juvenile mortality.
Specialized predation was identified as the mortality factor for the sake of easy argumentation in
the context of microtine population dynamics.
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Any change in the assumptions will change the details and the interpretation of the population
dynamics model. However, our general result, stating that partially or totally delayed breeding
and maturity (within an age class) may occur in fluctuating populations due to ecological (e.g.
predation) or intraspesific reasons (e.g. density or social control), will remain valid. Deterministic
and stochastic modifications introducing different behavioural options, life history trade-offs or
ecological relationships (e.g. fluctuating predation) will be most interesting extensions of our
study.
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Ferriére, R. and Gatto, M. (1993) Chaotic population dynamics can result from natural selection. Proc. R.

Soc. Lond. B 251, 33–8.
Gatto, M. (1993) The evolutionary optimality of oscillatory and chaotic dynamics in simple population

models. Theor. Pop. Biol. 43, 310–36.
Getz, W.M. and Kaitala, V. (1993) Ecogenetic analysis and evolutionary stable strategies in harvested

populations. In The Exploitation of Evolving Resources. Lecture Notes in Biomathematics, Vol. 99
(T.K. Stokes, J.M. McGlade and R. Law, eds), pp. 187–203. Springer-Verlag, Berlin.

Hansson, L. and Henttonen, H. (1988) Rodent dynamics as community process. Trends Ecol. Evol. 3,
195–200.

Hastings, A. (1978) Evolutionary stable strategies and the evolution of life history strategies: I. Density
dependent models. J. Theor. Biol. 75, 527–36.

Henttonen, H. (1987) The impact of spacing behaviour in microtine rodents on the dynamics of least
weasels Mustela nivalis – a hypothesis. Oikos 50, 366–70.

123Delayed female reproduction



Hines, W.G.S. (1987) Evolutionary stable strategies: a review of basic theory. Theor. Pop. Biol. 31,
195–272.

Kaitala, V. (1990) Evolutionary stable migration in salmon – a simulation study of homing and straying.
Ann. Zool. Fenn. 27, 131–38.

Kaitala, V. and Getz, W.M. (1995) Population dynamics and harvesting of semelparous species with
phenotypic and genotypic variability in reproductive age. J. Math. Biol. 33, 521–56.

Kaitala, V., Kaitala, A. and Getz, W.M. (1989) Evolutionary stable dispersal of a waterstrider in a
temporally and spatially heterogeneous environment. Evol. Ecol. 3, 283–98.

Kaitala, A., Kaitala, V. and Lundberg, P. (1993) A theory of partial migration. Am. Nat. 142, 59–81.
Kawata, M. (1987) Pregnancy failure and suppression by female–female interaction in enclosed populations

of the red-backed vole, Clethrionomys rufocanus bedfordiae. Behav. Ecol. Sociobiol. 20, 89–97.
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Appendix 1: ESSs under equilibrium population dynamics

The equilibrium ESS analyses are based on studying the necessary conditions in Equations 20 and
21.

(1) Assume that, at an ESS, we have

sJYJ(X̄
J) , 1 (A1)
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We show that (f 0
X, f 1

X) 5 (1, 0) is an ESS.
We begin the proof by noting that f 1

X 5 1 cannot be an ESS, since the population would
become extinct.

We next show that f 0
X 5 1 is an ESS. Let us make a counter-assumption that f 0

X , 1 is an
ESS and consider a mutant strategy pair (f 0

Z, f 1
Z) 5 (1, f 1

X), f 1
X , 1. Then Equation 21 reads

G(X̄ ) 5 sow{(1 2 f 1
Z )sM YM(X̄M)} 1 sow{sJ[(1 2 f 1

Z ) sM 1 f 1
Z ] YJ (X̄J)} # 1

Since f 1
Z 5 f 1

X, expression F(X̄) (see Equation 18) differs from G(X̄) in that the first term of the
sum above is multiplied by the factor f 0

X 1 (1 2 f 0
X)sJ YJ(X̄

J). It follows that for Equation 20 to
be satisfied we must have f 0

X 1 (1 2 f 0
X )sJYJ(X̄

J) > 1. Recalling Equation A1, this is achieved
only if we take f 0

X 5 1, meaning that f 0
X , 1 cannot satisfy the necessary conditions for an ESS.

Thus, f 0
X 5 1 must be included in an ESS.

We next show that f 1
X 5 0 is an ESS. Again, let us consider a counter-assumption that f 1

X . 0
is an ESS. Now, f 0

X 5 1 yields

F(X̄ ) 5 (1 2 f 1
X)sowsM[YM(X̄M) 1 sJYJ(X̄

J)] 1 f 1
XsowsJYJ(X̄

J) 5 1 (A2)

Assume next that a mutant strategy (f 0
Z, f 1

Z) 5 (1, 0) attempts to invade the population where
(1, f 1

X), f 1
X . 0, is common. Then Equation 21 becomes

G(X̄ ) 5 sowsM[YM(X̄M ) 1 sJYJ(X̄
J)] < 1

Since sowsJYJ(X̄
J) , 1, Equation A2 is a linear combination of two terms, one of which is < 1

and the other is strictly , 1. Thus, it is necessary for Equation A2 to hold that f 1
X 5 0, which

contradicts the counter-assumption. Thus, if an ESS exists such that Equation A1 holds, then
(1, 0) is an ESS. Furthermore, sowsM[YM(X̄M) 1 sJYJ(X̄

J)] 5 1.

(2) Assume that, at an ESS, we have

sJYJ(X̄
J) , 1

Then, (f 0
X, f 1

X) 5 (0, f 1
X), 0 < f 1

X < 1, is an ESS.
Consider the counter-assumption that f 0

X . 0 is an ESS. Taking (f 0
Z, f 1

Z) 5 (0, f 1
X) yields ESS

condition

G(X̄ ) 5 sow{sJYJ(X̄
J)(1 2 f 1

Z )sMYM(X̄M ) 1 sJ[(1 2 f 1
Z )sM 1 f 1

Z]YJ(X̄
J)} < 1

Since f 1
X 5 f 1

Z, Equation 20 can only be satisfied by choosing f 0
X such that f 0

X 1 (1 2 f 0
X)sJ

YJ(X̄
J ) > sJYJ(X̄

J ). Thus, f 0
X 5 0 is an ESS.

Next, assuming that f 0
X 5 f 0

Z 5 0 and using the same type of reasoning as above, it is possible
to show that an ESS f 1

X 5 0, 5 1 or 0 > f 1
X > 1 if sM(YM(X̄M ) 1 1) . 1, , 1 or 5 1,

respectively.

(3) Assume that, at an ESS, we have

sJYJ(X̄
J) 5 1

It follows that f 0
X does not occur explicitly in the ESS conditions. Thus we have 0 < f 0

X < 1.
The ESS condition becomes

F(X̄ ) 5 sow{(1 2 f 1
X )sM[YM(X̄M ) 1 1] 1 f 1

X } 5 1 (A3)

G(X̄ ) 5 sow{(1 2 f 1
Z)sM[YM(X̄M ) 1 1] 1 f 1

Z } # 1 (A4)

From Equation A3, we have sM(YM (X̄M) 1 1) . 1. It follows that f 1
X 5 0 is an ESS, since any

f 1
Z , f 1

X will violate Equation A4 if f 1
X . 0.
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Appendix 2: list of symbols

Basic population dynamics

Symbols are listed in the order of their appearance in the text or in equations.

M, J: upper indexes denoting spring (M 5 March–May) and summer (J 5 June–July)
breedings, respectively
X: overwintered population size of a common type
X': overwintered population size ‘next year’ (Equation 7)
X̄: equilibrium population size (Equation 15)
XM, XJ: population sizes breeding in spring and summer, respectively (Equations 2 and 5)
xM, xJ: offspring population sizes born in spring and summer, respectively (Equations 3 and 6)
f 1, f 0: fractions that delay breeding in spring and summer, respectively (Equations 1 and 4)
YM, YJ: density-dependent per capita reproductive rates in spring and summer, respectively
(Equations 3 and 6)
sM, sJ: survival rates of females reproducing in spring and in summer, respectively (Equations 2
and 5)
sow: overwintering survival rate (Equation 7)
H: population dynamics function (Equations 8 and 9)

Evolutionary dynamics

Z: overwintered population size of a mutant type
F: population dynamics function for common type X (Equation 10)
G: population dynamics function for mutant type Z (Equation 11)
g: invasion exponent (Equation 12)
k: time index updating the reproductive seasons or years (Equation 12)
l: eigenvalue variable (Equations 16 and 17)
f 1, f 0: breeding strategies balancing reproductive successes (Equations 23 and 25)
R: reproductive success within the whole reproductive season of the overwintered non-delaying
type (Equations 24 and 25)
rM, bM, rJ, bJ: parameters of the Ricker reproductive functions in spring and summer, respectively
(Equations 26 and 27)
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