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The diet of an individual is a result of the availability of dietary items and the
individual’s foraging skills and preferences. Behavioural differences may thus
influence diet variation, but the evolvability of diet choice through behavioural
evolution has not been studied. We used experimental evolution combined
with a field enclosure experiment to test whether behavioural selection leads
to dietary divergence. We analysed the individual dietary niche via stable iso-
tope ratios of nitrogen (δ15N) and carbon (δ13C) in the hair of an omnivorous
mammal, the bank vole, from four lines selected for predatory behaviour and
four unselected control lines. Predatory voles had higher hair δ15N values than
control voles, supporting our hypothesis that predatory voles would consume
a higher trophic level diet (more animal versus plant foods). This difference
was significant in the early but not the late summer season. The δ13C values
also indicated a seasonal change in the consumedplantmatter and a difference
in food sources among selection lines in the early summer. These results imply
that environmental factors interact with evolved behavioural tendencies to
determine dietary niche heterogeneity. Behavioural selection thus has poten-
tial to contribute to the evolution of diet choice and ultimately the species’
ecological niche breadth.
1. Introduction
The diet an individual consumes is a result of the availability of different food
items, the species-specific dietary range, and individual specialization [1,2]. The
realized dietary niche is thus a combination of the species’ fundamental niche (e.g.
the hypothetical ideal diet), and the constraints on access to the ideal diet [3,4].
Differences among individuals in dietary niche are generated by environmental
and genetic variation as well as phenotypic plasticity [1,2], but the relative
effects of these factors have rarely been tested [2,5–7]. Inherited effects might
manifest through various morphological, physiological, or behavioural traits
that shape preferences for certain foods and specialized behaviours connected
to seeking or processing food items [5]. For example, stable individual differ-
ences have been observed in hunting behaviours (antlions Myrmeleon hyalinus
[8], guillemots Uria lomvia [9]). Genetically determined behavioural differences
could thus contribute to dietary specialization at the individual level, with
significant consequences for resource competition and even community func-
tioning [2,10,11]. Yet, the role of evolved behavioural traits in shaping diet
choice remains poorly understood [5] and research has focused primarily on
predatory behaviour of carnivores, which may specialize more than other
trophic groups [2]. Deciphering the relative effects of genetic and environmental
influences on realized diets of individuals is challenging but essential for under-
standing the evolvability and plasticity of the dietary niche [7]. In this study, we
address this problem by combining artificial selection for a predatory behaviour
in an omnivorous mammal with a field experiment.
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Omnivores, animals that consume diets from more than
one trophic level [12], are an understudied but exceptionally
interesting group for diet choice studies because of the broad
range of different types of dietary items they can potentially
consume. This potential could facilitate trophic niche hetero-
geneity among individuals under intraspecific competition
[13]. The wide potential dietary breadth of omnivores involves
morphological and physiological adaptations such as changes
in dentition, gut length and structure, digestive enzymes and
stomach acidity compared to related herbivorous or carnivor-
ous species [12,14–16]. Individual-level variation in trophic
niche has not been previously linked with behaviours,
although such divergence could be widespread and under
selection in omnivores [17]. Behavioural adaptations such as
capturing and processing prey would be required to transition
from strict herbivory to omnivory. Yet, the significance and
evolvability of behavioural traits associated with the diet
breadth of omnivores remains unknown.

In this study, we assessed the significance of a behavioural
adaptation on diet choice in an omnivorous rodent, the bank
vole (Myodes [Clethrionomys] glareolus).We assessed the relative
importance of a genetically determined behavioural type and
environmental variation on the realized diet of individuals.
We compared the dietary niche of bank voles from lines artifi-
cially selected for an increased predatory tendency [18] with
unselected lines by measuring stable isotope ratios of carbon
and nitrogen in the hair of field-reared individuals of both
types. Stable isotopemethods are suited to studying individual
dietary niches as they permit an evaluation of the consumed
diet based on the isotopic signatures in the animal’s tissues,
integrating dietary information over longer time periods
[4,19]. A higher isotope ratio of nitrogen (15N/14N), relative
to other organisms in the same system, indicates consumption
of food items from a higher trophic level because 15N is
enriched along the food chain [20]. Isotope ratios of carbon
(13C/12C) in turn are more conserved through the food webs
but variable among primary producers [20] and allow differen-
tiation among consumers’ diet sources. Using these isotope
ratios as indicators of long-term diet choice, we evaluated the
potential for behavioural selection to shape the dietary niche.
We specifically hypothesized that the artificially selected
tendency for predatory behaviour would lead to the consump-
tion of a diet from a higher trophic level (higher proportion of
animal sources, such as invertebrate prey) in field conditions,
indicated by a higher δ15N ratio in the hair of predatory relative
to control line voles.
2. Material and methods
(a) Study system
The bank vole is a common, widespread rodent, whose dietary
profile is uniquely placed among European rodent species, occu-
pying an intermediate niche between herbivorous arvicoline
species and granivorous–insectivorous murine species [21,22].
The majority of their diet consists of different plant sources
(seeds, leaves, flowers, roots, bark) [21,23–25], but the proportion
of animal matter (primarily invertebrates) in stomach contents
can range from 0 to 23% [25–28] and the proportion of fungi
from 0 to 10% [22,25–29] among populations and seasons. The
majority of the animal food consists of insect larvae especially
in the early season, but adult insects, worms or molluscs and ver-
tebrate remains are infrequently consumed [22,25,29]. Possible
heterogeneity in diet among individual bank voles remains
poorly known because the relative proportions of different dietary
items consumed by individuals over time has been difficult to
assess with gut content analyses (but see [24]). The degree of
dietary niche divergence among individuals is therefore unknown.

To test the importance of artificial selection (overall genotypic
differences) in the realized diet, we used bank voles from a unique
long-term selection experiment (for details see [18,30,31]). Briefly,
several selection lineswere established from a source population of
320 voles captured in Poland in the years 2000–2001. To generate
voles with a ‘predatory’ phenotype, voles are allowed to interact
with a live cricket and the state of the cricket is checked at standar-
dized time intervals. The voles that captured a cricket in the
shortest time period in each generation were selected to breed.
The selection has influenced both the time lag and overall propen-
sity to predate a cricket relative to control lines. Four parallel
predatory (P) and four unselected control (C) lines are maintained.
The continued selection has resulted in significant divergence in
predatory efficiency, with predatory voles catching the cricket
more than five timesmore often than control voles by the 24th gen-
eration [31]. In the present study, we used descendants (offspring
and grand-offspring) of the 25th selected generation. The voles
used in this experiment were never exposed to live prey prior to
the experiment. The parental generation (founders) were born
and reared in laboratory conditions at the University of Jyväskylä,
Finlandwith ad libitumwater and standard rodent chow (Avelsfo-
der för råtta och mus R36; Lactamin, Stockholm, Sweden;
301 kcal per 100 g; macronutrient content: 18.5% protein; 4.0%
fat; 55.7% carbohydrate) until release to field enclosures.
(b) Field experiment
To test whether the voles selected for a predatory tendency con-
sumed a diet from a higher trophic level than control voles, we
performed a field experiment. Founder voles were released into
eleven 0.2 ha field enclosures near Konnevesi research station
in Central Finland over two replicate experimental rounds in
early (June–July) and late (August–September) summer (here-
after: early versus late season) in 2018 (total 22 enclosure
replicates). The field enclosures had early succession vegetation
consisting primarily of grasses, forbs and shrubs. This study
was performed in connection with a larger field experiment
designed to test density- and frequency-dependent selection
on behavioural tactics (Z. Boratyński, A.M. Hämäläinen,
M. Kiljunen, E. Koskela, P. Koteja, T. Mappes, P.C. Watts 2022,
unpublished data in preparation), for which the initial density
(8 or 16 adults per enclosure) and ratio of the P- and C-line
adults (1 : 3 or 3 : 1) varied among the enclosures. The initial
adult sex ratio was 1 : 1 in all enclosures.

The founders were mated (maintaining selection line separ-
ation) in spring-summer 2018 in the animal facilities in
Jyväskylä. Females were monitored daily to determine the exact
date of delivery. Within a day of the birth of a litter, the pups
were individually marked by distal phalanx removal, sexed,
weighed and their head widths measured. After parturition, the
females with their newborn litters were transported into the enclo-
sures in their home cage [32]. The cages were placed open and on
their side on the groundwith partial shelter and a small quantity of
food (approx. 2 days minimum energy requirement) so that the
females could transport the pups out at leisure. Litter size
ranged 2–7 (C mean = 4.13, P mean = 4.47), with the total initial
number of pups released per enclosure ranging 15–38.

The dams were left to rear the young to independence on a
natural diet. After ca 25 days, when the juveniles move around
independently, all animals were captured from the enclosures
using live traps baited with sunflower seeds and potato (details
on enclosures and live trapping e.g. [33]). In total, 133 weaned
young (65 P-line, 68 C-line) were captured from the enclosures
in the two rounds (first: n = 50, second: n = 83). The number of
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weaned offspring per enclosure per round ranged from 0 to 28
individuals. One enclosure had no surviving offspring in either
round and another two enclosures had none in the first round.
Captured young voles were identified, sexed, weighed, head
width measured and a small patch of hair was clipped from
the back with scissors (aiming to collect entire hair shafts) for iso-
tope analyses. All hair samples for isotope analyses were thus
derived from individuals that had spent their entire lifetime,
from age 1–3 days (i.e. before growing any fur) until sampling,
in the field enclosures. The dams relied on natural food items
after the first few days of lactation. The pups begin to feed on
solid food by the age of ca two weeks (A.M. Hämäläinen, E. Kos-
kela, P. Koteja, T. Mappes 2022, personal observations from
laboratory conditions) and are weaned by age 20 days [18,34].
Thus, the isotope composition in the hair of the weaned juveniles
consists of the combined (and indistinguishable) effects of the
diet consumed by the individual and by its mother. The hair
samples were stored in Eppendorf tubes in room temperature
until analyses in summer 2019.

(c) Collection of possible dietary items
To relate the isotope ratios in the voles’ hair to the available food
items, we collected samples of plants, invertebrates and fungi
from the field enclosures and analysed their isotope signatures.
The detailed methods are provided in the electronic supplemen-
tary material.

(d) Isotopes of captive voles
To account for the possibility that any differences between the
selection lines are owing to intrinsic differences in physiology
(e.g. differential fractionation into hair owing to differences in
metabolism), we collected hair samples from individuals that
had lived their entire lives in the laboratory on the standard
rodent diet supplied to the adults in this experiment before
their release into the field enclosures. We shaved hair from the
backs of two females from each of the four parallel predatory
selection lines and the four control lines, producing eight
samples per selection direction (total n = 16). The samples were
analysed in the same manner as the samples derived from the
field conditions.

(e) Isotope analyses
Lipids were removed from the hair samples with a chloroform–
methanol extraction [35], samples were dried and then 0.5–
0.7 mg of each sample was weighed into tin capsules (see also
the electronic supplementary material). All samples representing
vole diet (invertebrates, plant material, fungi) were freeze-dried
to a constant weight, ground to a fine powder using a ball mill
or mortar and pestle, and then also weighed into tin capsules.
Stable isotope analyses for carbon and nitrogen were conducted
using a Thermo Finnigan DELTAplus Advantage continuous-flow
stable isotope-ratio mass spectrometer (CF-SIRMS) coupled with
a FlashEA 1112 elemental analyser. Results are expressed using
the standard δ notation as parts per thousand (‰) differences
from the international standard. The reference materials used
were internal standards of known relation to the international
standards of Vienna PeeDee Belemnite (for carbon) and atmos-
pheric N2 (for nitrogen). Precision was always better than
0.13‰ for carbon and 0.38‰ for nitrogen, based on the standard
deviation of replicates of the internal standards.

( f ) Trophic enrichment factors
To relate the stable isotopes in vole hair to the isotope ratios of
possible food items, we determined the average trophic enrich-
ment factor (TEF, Δ), i.e. difference in isotope ratios between
the consumed food items and the measured isotope ratios in
hair. We used the 16 samples collected from captive voles main-
tained on a standard diet of rodent pellets to determine the TEFs
(i.e. the degree of fractionation). We computed the average iso-
tope values for the rodent pellets fed to the captive voles as
δ15N = 1.778 ± 0.268 (mean ± s.d.), and δ13C =−26.613 ± 2.491.
We related these to the isotope values measured from the hair
of the captive voles (δ15N = 7.11 ± 0.55, δ13C =−24.47 ± 0.24)
and determined the TEFs as Δ15N = 5.335 ± 0.553, and Δ13C =
2.145 ± 0.239. These values were used to correct the isotope
ratios of the food source samples from the field experiment to
associate the food items with the vole isotopes.
(g) Statistics
Inspection of the isotope data indicated an outlier in δ15N
(δ15N = 8.73, 4 s.d. divergence from mean δ15N; Grubbs’s outlier
test: G = 5.12996, U = 0.79912, p < 0.001) that skewed the δ15N
data disproportionately. As the reason for the exceptionally
high reading was unknown but might indicate e.g. a sample
handling error, we chose to conduct all further analyses without
this observation, with a final sample size of n = 132 for all ana-
lyses. Including the outlier in the models did not qualitatively
change the analysis outcomes but reduced the significance of
some results (electronic supplementary material, table S2). The
isotope data with both seasons combined were not normally dis-
tributed (Shapiro–Wilk test of δ13C and δ15N both p < 0.001), so
we used Wilcoxon tests for bivariate analyses of the raw data.
Differences in dietary variation (i.e. individual niche differen-
tiation) between seasons and selection lines were explored with
Levene’s test for homogeneity of variance (median-centred
approach; car-package [36]).

We constructed linear mixed effects models (LME) to exam-
ine the effects of selection and environment on isotope values
while accounting for maternal and enclosure effects. We per-
formed Box-Cox power transformation of the isotope values
(δ15N: λ =−1, δ13C: λ = 2) and used a Gaussian error distribution
with an identity link function for both models (see the electronic
supplementary material for details). We present the model-
derived estimates for the Box-Cox- transformed data and
back-transformed estimates for the variables of interest.

For each response variable (δ15N and δ13C values in hair), we
created a full LME-model including as predictor variables the
selection regime (C = control, P = predatory), season (1 = early,
2 = late summer), density treatment (high, low), sex (male,
female) and body condition (residual body mass relative to head
width). We also included an interaction term of selection regime
and season to test for the possibility that the seasonal food avail-
ability would influence the realized diets of the selection regimes
differently. As intraspecific competition is thought to increase
selection for niche divergence [2,37–39] we also evaluated the
possibility that niche divergence between the lines is higher in
high-density conditions by including an interaction term of den-
sity treatment and selection regime. When an interaction term
was statistically non-significant ( p > 0.05), it was dropped from
the model to facilitate easier interpretation of the main effects.
For δ15N, we included the random effects of the enclosure (1–10;
possible differences in microhabitat and in the social environment)
and mother’s identity (n = 52). For δ13C, including enclosure
caused non-convergence owing to a singularity, thus onlymother’s
identity was included as a random effect. The relative strength of
the effects (standardized estimates) of all variables included in
the final models are shown in figure 1.

All analyses were completed using R program v.4.0.3 [40].
We fitted LMEs with restricted maximum likelihood estimation
using the R-package lme4 [41]. p-values were computed using
Satterthwaite’s method with the package lmerTest [42].
Pseudo-R2-values were computed using the MuMIn package
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Figure 1. Effects of predictor variables on isotope ratios of δ15N and δ13C. Forest plots for (a) δ15N and (c) δ13C show standardized (divided by 2 s.d.) estimates for
fixed effects derived from linear mixed-effects models (electronic supplementary material, table S1) with Box-Cox-transformed isotope ratios as the response vari-
ables. The dots and associated numbers denote the relative effect, horizontal lines indicate 95% confidence intervals (CIs) and asterisk notation refers to the effect
significance ( p-value). The predicted values and 95% CI for the marginal interactive effects of season x selection regime from these models are shown in panel (b)
for δ15N and (d ) for δ13C. For raw data and details on the random effects, see the electronic supplementary material. (Online version in colour.)
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[43]. The results were visualized using packages ggplot2 [44],
ggsignif [45], sjPlot [46].
3. Results
(a) Isotope ratios of captive voles
In the laboratory, no significant difference was found between
the predatory and control voles in δ13C (W = 43, p = 0.279) or
δ15N (W = 50, p = 0.065; electronic supplementary material,
figure S1). Thus, any differences between the lines observed
in the field conditions are probably not owing to intrinsic
differences in physiology (e.g. differential assimilation
of macronutrients).

(b) Models of isotope ratios in the field
The δ15N values were strongly affected by an interaction
between the effects of selection regime and the experiment
round (figure 1; electronic supplementary material, figure S2
and table S1). In line with our hypothesis, the δ15N values of
the predatory selection direction were higher than those of
the control-line voles, indicating that voles selected for preda-
tory behaviour consumed a diet from a higher average
trophic level than non-selected voles. The back-transformed
estimates indicate a ca 12% difference in δ15N between C and
P regimes in the early season (predicted δ15N for C: 5.88
[95% CI: 5.88, 6.25]; for P: 6.67 [6.25, 6.67]). However, in the
late season, no difference between the selection regimes was
found (predicted δ15N for C: 5.88 [5.56, 6.25]; for P: 5.88
[5.56, 5.88]). δ15N values were on average slightly higher in
the low-density treatment, suggesting that higher intraspecific
competition may lead to an overall lower-level dietary niche.
This effect of density was not dependent on selection regime
(interaction of density and selection p > 0.1).

Similarly, the δ13C-values were higher in the predatory
lines in the early but not in the late summer (figure 1; elec-
tronic supplementary material, figure S2 and table S1). The
back-transformed estimates indicate a ca 3% difference in
δ13C between C and P regimes in the early season (C:
−25.77 [95% CI: −26.24, −25.39]; for P: −24.99 [−25.23,
−24.77]) and a 0.2% difference in the late season (C: −24.32
[−24.48, −24.16]; for P: −24.39 [−24.56, −24.22]). The
δ13C -values were also significantly higher in the second
replicate overall, suggesting that the voles’ diet probably con-
sisted of different plant sources in early and late season
(figure 1; electronic supplementary material, figure S2; table
S1). Density treatment did not influence δ13C (interaction
with selection regime and main effect of density both p > 0.1).

Mother’s identity (random effect, n= 52) had a significant
influence on both δ13C (χ251= 111.02, p < 0.001; electronic sup-
plementary material, figure S4A) and δ15N (χ51

2 = 108.89, p <
0.001, electronic supplementary material, figure S4B) and
δ15N varied among enclosures (χ29 = 33.894, p < 0.001; elec-
tronic supplementary material, figure S4C). The differences
in marginal and conditional pseudo-R2 (electronic sup-
plementary material, table S1) suggest that mother’s
identity explained ca 25% of the variation in δ13C. In δ15N,
the random effects of enclosure and mother’s identity
together explained ca 48% of the variation (in a model
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excluding enclosure, mother’s identity explained ca 45% of
variation). The average number of juveniles per mother did
not significantly differ between selection regimes (on average
2.6 juveniles with the same mother in C, 2.5 in P).

(c) Variances of isotope ratios
The variances of isotope ratios were significantly higher in
the early than in the late season for both δ15N (F1,130 =
22.479, p < 0.001; electronic supplementary material, figure
S2A) and δ13C (F1,130 = 15.548, p < 0.001; electronic sup-
plementary material, figure S2B), suggesting an overall
higher degree of niche differentiation among individuals in
the early relative to late summer (see also the electronic sup-
plementary material, figure S3). When split by selection
regime, the seasonal differences remained significant for
both selection regimes for δ15N (control: F1,66 = 12.196, p <
0.001; predatory: F1,62 = 4.461, p = 0.039) but not for δ13C (con-
trol: F = 0.879, p = 0.352; predatory: F = 3.245, p = 0.076). There
were no significant differences in variance between selection
regimes in δ13C ( p > 0.1 overall and when split by season).
For δ15N, variance was significantly higher overall for preda-
tory relative to control line voles (F1,130 = 6.137, p = 0.015), but
this difference did not hold within seasons. Variances of δ13C
or δ15N did not significantly differ among density treatments
in either P or C voles.

(d) Vole isotopes relative to isotopes of food sources
Vole isotope values were mainly within the isotope bi-plot
area bounded by the TEF-corrected dietary source values
(figure 2; for raw data, see the electronic supplementary
material, figure S5). As the isotope ratios of the voles are
derived from the combination of the different food items they
consumed, these results imply that the voles consumed a pri-
marily herbivorous diet (δ15N values low relative to animal
sources), with the higher δ13C values especially in the late
season suggesting a high consumption of grass inflorescences
and seeds and possibly fungi. Although the vole hair samples
fall within the range of isotope values of the sampled food
items, the slight bias towards the lower right corner suggests
a possibility that some food sources were missed from the ana-
lyses (e.g. lichens [22,25,27] with high δ13C and low δ15N [47]
were not encountered during sampling). This hampered the
use of stable isotope mixing models (e.g. MixSIAR) to formally
estimate dietary proportions (analyses not shown).
4. Discussion
(a) Interaction of evolved behavioural type and

environment create dietary niche variation
Individual dietary preferences are frequently observed, but
the significance of a genetic component in foraging beha-
viours and thus the heritability of the dietary niche remains
unresolved [1,2]. Individual heterogeneity in dietary niche
of omnivores and especially diet partitioning among different
trophic levels is largely unknown (but see [17]) despite the
potentially significant implications for community function-
ing. This study provides, to our knowledge, the first
evidence of an inherited foraging behaviour affecting the
niche divergence of an omnivorous rodent in a field setting.
As predicted, an artificially selected predatory tendency
was associated with a higher trophic level diet (higher δ15N
isotope ratio suggesting consumption of more animal food
relative to plants) relative to control line animals inhabiting
the same field enclosures. This difference was limited to the
early summer season, however, and disappeared later in
the season, suggesting plasticity in dietary niche despite an
underlying genetic tendency for dietary divergence. The
diets of the predatory and control line animals also diverged
in terms of carbon isotopes in the early summer, confirming
that the realized diets of the selection lines differed. Thus,
the predatory and control line voles occupied slightly differ-
ent positions in the food web in the early season, probably
owing to a low availability of preferred high-energy seeds
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in the early season. We conclude that differences in an inher-
ited behaviour were associated with a small but significant
effect in dietary niche differentiation in interaction with the
seasonal environment.

(b) The evolution of foraging behaviour contributes to
dietary niche differentiation

The genetic basis of individual niche variation remains
poorly understood [2] but variation in realized diet may
depend on e.g. preference, capacity to capture or process cer-
tain items, competitive ability and behavioural types, which
all have a genetic component (reviewed in [1,2,5]). Many
foraging behaviours such as prey recognition or preference
[6,48,49] as well as morphological traits relevant to prey selec-
tion are partly heritable [50], including the predatory
tendency selected for in the vole selection lines used in this
study [18,31]. This study shows that artificial selection for a
behaviour contributes to dietary niche divergence under
natural food conditions (the diet consumed in the field
being subject to a range of foraging behaviours). Interestingly,
a complement of this association was found in sea otters [39],
in which dietary specialization (owing to food limitation)
had consequences for behavioural phenotype divergence.
Together, these studies indicate a possibly bidirectional
association between diet and behaviour. This first evidence
of behavioural selection generating variation in diet suggests
an intriguing prospect for a broader role of behavioural evol-
ution contributing to dietary niche differentiation, as
suggested previously for adaptive radiation of species into
different trophic niches [51]. Future studies should evaluate
the possibility that selective pressures acting on behavioural
syndromes [52] or traits such as risk taking, exploration and
aggression could simultaneously impact on the niche breadth
or specialization of individuals, contributing to associations
between ecological roles and behavioural types.

Diet could be further shaped by other traits coevolving
with the selected behavioural traits. Consistent behavioural
traits frequently correlate with physiological or life-history
traits that facilitate adaptation to specific environments [53–
55]. For example, individuals with active personalities are
expected to have a highmetabolism and a high energy require-
ment, which in turn should be met by higher energy
consumption, and possibly a broader dietary niche [5]. Thus,
associations between dietary preferences and behavioural
traits may be reinforced, e.g. by the differing energetic needs
and digestive efficiency associated with behavioural types
[56–58]. Several other traits have been indirectly selected along-
side the directional selection for an increased predatory
tendency and prey catching speed in our study system
[18,31]. Predatory lines tend to have a proactive behavioural
style [30], possible stress sensitivity [31], and tendencies for
aggression and an elevated sensitivity to hunger (according
to transcriptome analysis [59]). The predatory phenotype is
thus characterized by various mechanisms that can drive
predatory foraging behaviours.

In addition to directly selected behaviours, niche diver-
gence could also be facilitated by behavioural plasticity in
diet choice and foraging [13,37]. Dietary flexibility itself can
improve fitness [60] and if selection operates on genes that
increase plasticity per se [61], behavioural plasticity in fora-
ging and diet choice could be under selection. Predatory
voles in this study might have higher dietary plasticity,
manifesting as either (i) predatory individuals’ diets consist-
ing of a broader range of food items, or (ii) different
individuals specializing in different subsets of available
items. In support of the latter possibility, predatory voles
tended to have overall higher trophic niche heterogeneity
over the summer (higher overall variance in δ15N among
predatory line individuals relative to control animals).
Trophic niche position was determined only once per indi-
vidual, preventing assessment of within-individual diversity
or consistency of diet choice. Thus, we can only speculate
whether the observed plasticity results from specialization or
stochasticity involved in the selection of rare food items, such
as animal foods. Specialization to certain dietary items can
have fitness benefits through the improved ability to effectively
exploit those specific resources [62–64] but entails possible
trade-offs because of the limited flexibility in dietary range or
foraging behaviours [5,65] (see also [60]). Specializing could
also allow individuals to escape direct competition (e.g. switch-
ing to hunting instead of competing for plant protein), but we
found no evidence of higher competition (density) influencing
the dietary niche of predatory voles more than control voles.

The genetic component of the dietary niche development
may be reinforced by cross-generational transmission of prefer-
ences in species with parental care (see also cross-generational
host fidelity in insects [66]). This possibility is suggested by the
observedmaternal effects in the isotope profiles of the juveniles
(random effect of mother’s identity), which might result from
maternal genetic and epigenetic effects, possible differences
owing to e.g. litter size or the timing of weaning, a direct influ-
ence of thematernal diet choice throughmilk, or preferences or
skills the young voles learned from their mothers. Juvenile
nutrition during nursing is derived frommaternal diet choices
(guided by their genetic background) in the form of milk. The
resulting isotope profile may be fine tuned by the fractionation
in isotopes between mother’s diet, isotope ratios in milk, and
consolidation in offspring tissues. The foraging behaviours of
the juvenile voles themselves may develop in part through
observation and exposure to specific foods in early life
(described for sea otters [67]). It is not possible here to differen-
tiate the contribution of the mother’s versus the juvenile’s diet
on the resulting isotope ratios in the hair of juveniles because
no information is currently available on the fractionation
frommother to offspring in voles or the time lag in their effects
(e.g. for how long are the elements/isotope ratios derived from
milk retained in offspring hair). Importantly, however, we
have no reason to assume that this constraint influences
the effect of selection on trophic niche. Our sample also cap-
tures the dietary niche variation of surviving young voles
only and we do not have information on the diets of those
voles that died early in the experiment, but body condition
of the surviving voles was unassociated with their isotope
profiles. Dietary niche variation can have fitness effects
(e.g. in pigeon guillemots [62], isopods [63], toads [60]
and insect herbivores [68], see also [7]), thus the observed
niche variation could result from the selective survival of
those individuals that were able to best adapt their diet to
the environment and intraspecific competition.
(c) Niche divergence is tempered by the environment
Features of the physical and social environment definewhat food
resources are available to individuals. We observed overall seaso-
nal differences in the isotope ratios in the hair of voles, probably
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owing to the phenology of plants, animals and fungi altering the
availability of specific dietary items over the summer. Energy-
dense seeds are a preferred food [69] and seed abundance is
lowest in the early summer, which might limit total energy
availability and enforce diet shifting to alternative sources.
For example, in German farmland, animals and green plants
made up the majority of bank vole diet in early summer,
whereas cereals, seeds and fruits were consumed in later
summer [24]. Stomach content analyses suggest that animal
matter consumption typically peaks in the summer months
[25–28].

Individuals are thought to benefit from specializing to
avoid competition when food is limited [1,64], especially in
generalist species [70]. The early-season difference among
the selection regimes could be explained by stronger compe-
tition leading to higher specialization in the absence of seeds,
with the control and predatory voles preferring different
alternative food items, the predatory lines foraging more
e.g. insect larvae. In the late season, both C and P voles
more likely fed on abundant seeds, eliminating this differ-
ence. Intraspecific competition for resources can lead to
dietary niche expansion [13] or specialization [71], depending
on the environmental conditions [2] and genetic variation of
the population [37]. The specific outcome of the environment
and intrinsic mechanisms of niche divergence can have sig-
nificant effects on the stability of ecological networks [1,5].
In this study, high-density treatment did not seem to increase
specialization (variances did not differ between density treat-
ments), but high density was associated with a lower overall
trophic niche, possibly implying higher competition for food
items from a higher trophic level in both P and C lines.
5. Conclusion
Given the possible genetic basis and potential fitness benefits
of dietary niche flexibility or specialization under resource
competition [37,60], traits associated with diet choice may
be important targets for selection. We demonstrated that arti-
ficial selection for a predatory behaviour shapes the diet of
an omnivorous rodent in field conditions by increasing the
predatory individuals’ trophic level. The dietary niche of indi-
viduals measured in the long term via stable isotopes in hair
indicated a small but consistent difference in dietary niche in
interaction with the environment. Behavioural selection could,
therefore, play a role in defining the trophic niche of individ-
uals. Individual differences in diet choice and diet breadth
can, in turn, have significant ecological consequences [1,5].
Our results point to the necessity of considering the significance
of consistent behavioural variation in foraging when assessing
the overall role of omnivores in the ecological community.
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