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The impact of a pathogen on the fitness and behaviour of its natural host

depends upon the host–parasite relationship in a given set of environmental

conditions. Here, we experimentally investigated the effects of Borrelia afzelii,
one of the aetiological agents of Lyme disease in humans, on the fitness of its

natural rodent host, the bank vole (Myodes glareolus), in semi-natural con-

ditions with two contrasting host population densities. Our results show

that B. afzelii can modify the reproductive success and spacing behaviour

of its rodent host, whereas host survival was not affected. Infection impaired

the breeding probability of large bank voles. Reproduction was hastened in

infected females without alteration of the offspring size at birth. At low den-

sity, infected males produced fewer offspring, fertilized fewer females and

had lower mobility than uninfected individuals. Meanwhile, the infection

did not affect the proportion of offspring produced or the proportion of

mating partner in female bank voles. Our study is the first to show that B.
afzelii infection alters the reproductive success of the natural host. The effects

observed could reflect the sickness behaviour due to the infection or they could

be a consequence of a manipulation of the host behaviour by the bacteria.
1. Introduction
The impact of pathogens on the physiology, behaviour and fitness of their natu-

ral hosts is a key determinant for the coevolution between the pathogen and the

host [1–4]. Identifying the effect of a pathogen on all components of host fitness

is also essential for predicting the population dynamics of a host–pathogen

association and is fundamental for anticipating zoonotic outbreaks [5–8]. How-

ever, the study of the impact of parasites on their natural hosts often focuses on

host survival [3,9–11], despite the recognition that host reproduction is an

important component of host fitness [12–14]. Indeed, subtle effects of an ende-

mic pathogen on the reproduction of its natural host can influence the

population dynamics of the wild host [15,16] and ultimately the population

dynamics of the pathogen [17].

Numerous studies have shown that pathogen virulence depends on ecological

factors such as temperature and nutrition [18–21]. Another important ecological

factor is host population density because it generates intra-specific competition

for limited resources such as space, food and mating partners [22–24]. High

host density is, therefore, expected to exacerbate pathogen virulence. Fluctuations

in population density are typical in many small mammal species such as rodents

[25]. However, experimental studies on density-dependent costs of infection in

rodents are rare because it is often difficult to manipulate host density in an

ecologically relevant way (but see [10,26,27]).
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Spirochaete bacteria belonging to the Borrelia burgdorferi
sensu lato (s.l.) complex cause Lyme borreliosis in humans,

which is the most common vector-borne disease in the

Northern Hemisphere [28,29]. Borrelia afzelii, which is trans-

mitted by Ixodes ticks and hosted by rodents, is the most

common aetiological agent of human Lyme borreliosis in

Europe [28,30]. While Lyme borreliosis causes serious morbid-

ity in humans [31,32], there is currently no clear evidence that

B. burgdorferi s.l. reduces the fitness of the rodent or avian

reservoir hosts [6,9,33–36]. However, most studies that have

investigated the virulence of B. burgdorferi s.l. pathogens

were correlational and focused on host survival and, to date,

the potential effects on host reproductive success have been

ignored (but see [37,38] for physiological cost and effect on

host behaviour, respectively).

We conducted a field experiment to test whether B. afzelii
reduces the survival and reproductive success of its rodent

host, the bank vole (Myodes glareolus). Rodent populations

are often strongly influenced by density-dependent effects

[25]. We, therefore, hypothesized that the detrimental effects

of B. afzelii infection on the fitness of bank voles would be

more pronounced at high population density. Here, we

show that while B. afzelii did not affect the host survival, the

infection impaired the reproduction of large bank voles, and

unexpectedly, that male bank voles had lower reproductive

performances at low population density.
2. Material and methods
(a) Experimental design
The schedule of the experimental procedure is shown in electronic

supplementary material, figure S1, and all methods are detailed

in the electronic supplementary material. Male and female bank

voles (M. glareolus) from the laboratory colony at the University

of Jyväskylä were measured and assigned to either the B. afzelii
infection group (injected with a local strain of B. afzelii) or the

uninfected control group (injected with phosphate-buffered

saline (PBS)). All infected and uninfected voles (total of 136 indi-

viduals, 68 females and 68 males) were released in 12 large

outdoor vegetated enclosures (each 0.2 ha) that were assigned

to ‘high’ density (16 individuals per enclosure, 8 females and 8

males, half of each sex infected, 5 enclosures) and ‘low’ density

(8 individuals per enclosure, 4 females and 4 males, half of each

sex infected, 7 enclosures) treatments. In the enclosures, the

bank voles could move and reproduce freely for 18 days, which

is the minimum gestation length in females. During this period,

spacing behaviour was monitored using live trapping. At the

end of this period, all trapped individuals were taken to the

laboratory for measurements and monitoring of parturition.

Male reproductive success was determined by paternity analyses

conducted on the offspring born in the laboratory.

(b) Measurements
Before the enclosure period, individuals were weighed, and the

head width was measured with a calliper ruler (Electronic Digital

Caliper, Scala). These measurements were taken into account

when experimental animals were assigned to treatments and

enclosures. An ear tissue sample was taken for paternity analysis.

A blood sample was taken for an ELISA (enzyme-linked immuno-

sorbent assay) targeting B. burgdorferi s.l.-specific IgG antibodies

[39] (electronic supplementary material).

After the enclosure period, the body measurements and

blood sampling were carried out as described above. Males

were processed shortly after the trapping day, gravid females
were processed after parturition, and females that were not

gravid were processed at the end of the experiment. Pups were

measured (body mass and head width) within 24 h of parturi-

tion. All measurements were performed blind regarding the

infection treatment and density treatment.

(c) Statistical analysis
All statistical analyses were carried out using the statistical

software R v. 3.1.1 [40]. Survival of bank voles in the enclosures

and individual breeding probability are binary variables. For

survival, individuals were assigned 1 or 0 depending on whether

they were trapped at the end of the experiment or not. For the

assessment of the breeding probability, individuals were

assigned 0 or 1 depending on whether their number of produced

offspring was zero or at least one. Moreover, two response vari-

ables of reproductive success were calculated: (1) ‘relative

number of offspring’ is the proportion of offspring produced in

an enclosure by a given individual, (2) ‘relative number of part-

ners’ is the proportion of partners with which a given individual

produced offspring. Eventually, space trapping data allowed

calculation of two different home range variables: home

range perimeter (m) and home range surface (m2) (electronic

supplementary material, table S1).

In the statistical analyses, the injection (B. afzelii versus PBS)

was used to define ‘infection’ treatment (infected versus unin-

fected), and the population density in the enclosure defined the

‘density’ treatment (‘low’ versus ‘high’). The explanatory vari-

ables of the full models always included the two experimentally

manipulated factors, i.e. the infection treatment and the popu-

lation density in the enclosure, sex, body mass before injection

(BM) and relevant two- and three-way interactions. Enclosure

ID was included as a random effect in all models. Three-way inter-

actions involving vole sex were expected in models assessing

bank vole reproductive success because the drivers of reproduc-

tive success differ between male and female bank voles [41–44].

When these three-way interactions were significant in the full

model (see electronic supplementary material, table S1), separate

analyses were conducted for males and females to ease

the interpretation of the interactions. Otherwise, reductions of

the full models were carried out starting from the non-significant

interactions (see electronic supplementary material).

For gravid females, the parturition delay was calculated as the

difference in the number of days between the date the first litter

was observed and the parturition date for the other pregnant

females. This variable was modelled as a function of infection,

density, BM and the interaction infection � density. Moreover,

offspring body mass at birth and head width at birth were mod-

elled as a function of the infection status of the mother and father,

density and all their two- and three-way interactions. Offspring

sex and litter size were included as covariates. Enclosure ID,

mother ID and father ID were included as random effects.

To analyse the data, we used generalized linear mixed

models (GLMMs) with an error distribution that was either

normal (home range perimeter, home range surface, body mass

and head width of offspring), binomial (survival, breeding prob-

ability and variables describing reproductive success: relative

number of offspring and relative number of partners) or negative

binomial (female parturition delay).
3. Results
Out of the 68 female and 68 male bank voles released into the

enclosures at the beginning of the experiment, 48 females and

30 males (one of which was found dead in the trap) were

recovered, and the remaining 58 individuals were considered

as dead. Of these 58 individuals, 56 were never observed

http://rspb.royalsocietypublishing.org/


Table 1. Selected final models for reproductive success and spacing behaviour in bank voles. BM, centred value of body mass before injection; HW, centred
value of head width before injection; low, low population density; inf., infected bank voles; s2 is the variance attributable to random effect; s.d., standard
deviation; s.e. standard error. Significant effects are shown in bold.

response
variable predictors estimates (s.e.) t-value z-value p-value

random effect
(enclosure)

males and

females

breeding

probability

intercept

infection (inf.)

density (low)

sex (male)

BM

infection: BM

sex: BM

1.40 (0.39)

20.53 (0.38)

20.93 (0.38)

20.42 (0.38)

20.11 (0.15)

20.33 (0.17)

0.40 (0.17)

3.60

21.39

22.42

21.10

20.71

22.00

2.27

,0.01

0.16

0.02

0.27

0.48

0.05

0.02

s2: 0.00

s.d.: 0.00

males relative number

of offspring

intercept

infection (inf.)

density (low)

BM

infection: density

22.08 (0.31)

0.20 (0.42)

1.76 (0.47)

0.16 (0.07)

22.72 (0.89)

26.80

0.493.79

2.31

23.06

,0.01

0.63

,0.01

0.03

,0.01

s2: 1.19 � 1029

s.d.: 3.46 � 1025

relative number

of partners

intercept

infection (inf.)

density (low)

BM

infection: density

21.52 (0.28)

0.07 (0.39)

1.24 (0.48)

0.15 (0.06)

21.95 (0.82)

25.51

0.18

2.59

2.31

22.38

,0.01

0.86

0.03

0.03

0.02

s2: 1.11 � 1029

s.d.: 3.33 � 1025

home range

surface

intercept

infection (inf.)

density (low)

infection: density

378.18 (78.24)

146.38 (107.54)

429.71 (126.16)

2594.50 (176.51)

4.83

1.36

3.41

3.37

,0.01

0.19

,0.01

,0.01

s2: 0.00

s.d.: 0.00

females parturition delay intercept

infection (inf.)

density (low)

1.70 (0.18)

20.75 (0.25)

20.27 (0.26)

9.49

23.00

21.04

,0.01

,0.01

0.30

s2: 0.00

s.d.: 0.00
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during the 14 trapping occasions and 2 were not observed

during the six last trapping occasions. As we did not observe

any introduction of unmarked wild bank voles in the enclo-

sures, and all trapped animals were found in their original

enclosure, we assume that missing animals died, rather

than escaped. Of the 78 captured individuals, 39 were from

the B. afzelii infection group (24 females, 15 males), and 39

were from the control group (24 females, 15 males, including

the individual found dead in the trap). There was no effect of

B. afzelii infection or population density on the survival of

bank voles (GLMM: p . 0.35, electronic supplementary

material, table S4), but females survived better than male

bank voles (GLMM: p , 0.01, electronic supplementary

material, table S4).

(a) Borrelia afzelii infection reduces the breeding
probability of large bank voles

Based on the paternity test, 39 of 68 males reproduced during

the study (18 of the 30 males that were trapped and 21 of the

38 males that were not trapped). For the analysis of reproduc-

tive success, all males were included, regardless of whether
they were trapped or not at the end of the study. Out of

the 48 captured females, 45 gave birth in the laboratory. We

found that the effect of B. afzelii infection on bank vole breed-

ing probability was dependent on body size: among small

individuals, there was no difference in the breeding prob-

ability between infected and uninfected animals. However,

uninfected individuals had significantly higher breeding

probability than B. afzelii-infected individuals among large

bank voles (GLMM: body mass � infection, p ¼ 0.05, table 1

and figure 1; electronic supplementary material, table S4

and figure S4).

(b) Borrelia afzelii infection reduces male reproductive
success at low density

Reproductive success was further explored as the analysis of

the relative number of produced offspring and the relative

number of partners. The three-way interaction infection �
density � sex was significant for the relative number of off-

spring (GLMM: p ¼ 0.02, electronic supplementary material,

table S1) and the relative number of partners (GLMM: p¼ 0.03,

electronic supplementary material, table S1), providing

http://rspb.royalsocietypublishing.org/
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Figure 1. The estimated probability of reproduction for a bank vole (+95% CI)
depends on their B. afzelii infection treatment (uninfected individuals in solid
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by contrast, uninfected individuals have higher breeding probability than infected
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evidence that infection and breeding density affected these

components of reproductive success differently in males

and females. In male bank voles, the relative numbers of off-

spring and partners were associated with B. afzelii infection

status, but the effect differed between the population density

treatments (table 1 and figure 2; electronic supplementary

material, table S2). At low density, uninfected control males

sired a higher relative number of offspring (0.42) and fertilized

a higher relative number of females (0.43) than B. afzelii-infected

males (0.05 offspring sired and 0.10 female fertilized). Con-

versely, in high density there was no effect of the infection

treatment: the relative numbers of offspring sired by uninfected

and infected males were 0.13 and 0.11, and the relative numbers

of females fertilized by uninfected and infected males were 0.18

and 0.19, respectively (GLMM: p ¼ 0.004 and p ¼ 0.02, table 1

and figure 2). For female bank voles, the relative numbers of

offspring and partners were not affected by the infection (the

proportion of offspring produced by uninfected and infected

females was 0.27 and 0.26, respectively; GLMM: p ¼ 0.79,

electronic supplementary material, table S3). As expected,

population density influenced the relative number of off-

spring produced by a female bank vole (relative number of

offspring produced by females from low- and high-density

enclosures was 0.41 and 0.18, respectively; GLMM: estimate on

the logit scale (s.e.): density ¼ 0.85 (0.25), p , 0.001, electronic

supplementary material, table S3).
(c) Borrelia afzelii infection reduces male home range
at low density

We found evidence that male and female bank voles differ

in their spacing behaviour as the three-way interaction

infection � density � sex was significant for home range sur-

face and home range perimeter (GLMM: p , 0.01, p ¼ 0.03,

respectively, electronic supplementary material, table S1). For

the uninfected male bank voles, the home range surface was

significantly larger in the low-density enclosures (808 m2)

compared with the high-density enclosures (378 m2) (LMM:
p ¼ 0.003, table 1 and figure 3). By contrast, the home range

surface of the B. afzelii-infected male bank voles was not

significantly different between the low-density (360 m2) and

high-density (524 m2) enclosures (table 1 and figure 3). Female

home range surface and perimeter were not affected by the

infection or the density treatments (electronic supplementary

material, table S3).

(d) Infection caused early reproduction in female
bank voles

Of the 48 females captured from the enclosures, 45 were gravid

and produced a total of 226 pups, with a mean number of 5

pups per female (range: 1–7). Borrelia afzelii-infected females

reproduced on average 3 days earlier than uninfected control

females (GLMM: p ¼ 0.003, figure 4 and table 1) and this

effect was independent of the population density (GLMM:

p ¼ 0.30, table 1). The size of the offspring at birth was not

affected by the infection treatment of the mother or father or

population density (LMM for all variables: p . 0.05, electronic

supplementary material, table S6).
4. Discussion
We examined the hypothesis that B. afzelii infection reduces

the reproductive success of the rodent host and we tested

the density-dependence of this effect. We found that B. afzelii
infection had density-dependent and statistically differing

effects on the relative numbers of partners and offspring of

male and female bank voles. In males, infected individuals

kept at low population density sired a lower proportion of

offspring, fertilized a lower proportion of females and

displayed smaller home range surface than uninfected

males (figures 2 and 3). In females, by contrast, B. afzelii infec-

tion did not affect the relative offspring number, relative

number of partners and home range surface, but infected

individuals gave birth approximately 3 days earlier than

uninfected individuals. The offspring size (head width and

body mass) was not affected by the mother’s infection

status (figure 4; electronic supplementary material, table

S6). Finally, in both sexes, infection reduced the breeding

probability of large individuals but did not affect their survi-

val (figure 1; electronic supplementary material, table S4

and table S5).

Previous studies found no evidence that infection with

B. burgdorferi s.l. reduces the fitness of natural hosts; however,

most of them were correlational or focused on another geno-

species than B. afzelii. For instance, capture–mark–recapture

(CMR) studies on wild populations of the white-footed

mouse (Peromyscus leucopus) or the black-legged kittiwake

found no effect of infection with B. burgdorferi s.l. on the sur-

vival of these hosts [9,34,35]. Similarly, we found that infection

with B. afzelii did not impair survival of the bank vole. Another

study on white-footed mice found no effect of B. burgdorferi
sensu stricto on the wheel-running behaviour over the six

weeks following experimental infection [6]. In our study, by

contrast, the effect of infection on home range size may

result from altered running behaviour. A recent study reports

a trend in increased foraging behaviour in white-footed mice

treated with an anti-B. burgdorferi vaccine compared with

sham-treated individuals, suggesting similarly to our finding,

a wider ranging behaviour in individuals with low or with no

http://rspb.royalsocietypublishing.org/
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infection burden [38]. To our knowledge, our study is the first

to address the effect of B. afzelii infection on host reproduction

experimentally under field conditions. Studying the effects of

infections on host reproduction is challenging in wild rodent

populations, and reproduction is often a latent variable

inferred from observed variables. Our experimental setting

allows controlling for several sources of variation and con-

founding factors (e.g. age of the host), and we were able to

estimate the reproductive success reliably.

The experimental infection was performed by peritoneal

injection of the bacteria rather than the natural infection

route, which involves Ixodes ticks. The infection dose and

route were based on the literature [33,36,45–47]. The intraper-

itoneal route was chosen as it has been shown to give more

widely disseminated infection than the subcutaneous route

[48]. The use of injection instead of the natural transmission
route can be debatable, e.g. due to the lack of tick salivary

compounds that enhance the infectivity of B. burgdorferi
s.l. [49,50]. Molecules present in tick saliva promote the infec-

tion by manipulating or depressing the immune system

(e.g. salps) [51]. The injection of B. burgdorferi s.l. with tick

salivary gland extract led to higher infection success with

higher bacterial dissemination, so-called saliva-assisted

transmission [51,52]. The lack of these molecules could lead

to misestimation of the effects of the infection on the host.

However, the injection allows the experimenter to control

the bacterial dose, and it eliminates the variation linked to

the tick vectorial capacity [53], hence ensuring a controlled

exposure of the study animals to the bacteria. We acknow-

ledge that needle inoculation mimics only grossly the

infection via tick bite. However, we can expect any observed

effect to be caused by the B. afzelii infection given our

controlled experimental conditions.

The demonstration of fitness-related costs caused by

B. burgdorferi s.l. infection is important for understanding

the evolution of resistance in natural hosts. Recent field

studies on the bank vole suggested that polymorphism at

the Toll-like receptor 2 (TLR2) gene, a pathogen recognition

receptor of the innate immune system, was associated with

variation in susceptibility to B. afzelii [54,55]. The prevalence

of B. afzelii infection in bank voles that were homozygous

for the C2 resistance allele was half that of the bank voles

that were homozygous for the C1 susceptibility allele [54].

A study of the TLR2 polymorphism in bank vole populations

across Europe found that the resistance allele against B. afzelii
(C2) was more common in countries with a high incidence of

human Lyme disease [56]. This result led Tschirren to suggest

that B. afzelii was driving the evolution of the resistance

allele at the TLR2 gene in European bank vole populations.

However, without clear evidence of reduced fitness in

infected rodents, the mechanism of selection was unclear.

Our demonstration that infection with B. afzelii reduces

male reproductive success supports the hypothesis that this

pathogen could be driving selection on the TLR2 gene in

bank vole populations.

The effect of the infection on the relative number of off-

spring sired and the relative number of females fertilized

http://rspb.royalsocietypublishing.org/
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by a given male bank vole was density-dependent. In the

low-density populations, uninfected control males fertilized

more females and fathered more offspring compared with

the infected males and males kept in high population density

(figure 2). This result was counterintuitive, as we predicted

that the negative effects of high population density, such

as reduced per capita food availability, more aggressive

interactions and potentially higher stress levels, would

exacerbate the cost of B. afzelii infection [10,43,57–59]. Three

hypotheses can explain this result. First, several studies

have shown that the strength of male–male competition

can vary with population density in a nonlinear fashion

[see, for instance, 60–62]. For example, males can modify

their reproductive strategy in high population density lead-

ing to lower rates of aggression and lower reproductive

success [60,63]. Second, as estimates of the relative number

of partners and the relative number of offspring were based

on paternity tests, cryptic female choice (i.e. a female choice

that occurs in the reproductive tract of the female, leading

to fertilization bias in favour of specific males [64,65])

might have occurred. Thus, a density-dependent female cryp-

tic choice favouring healthy males in low-density populations

cannot be excluded. Finally, a spurious effect linked to the

length of our experiment, which covers only one reproductive

episode, cannot be ruled out [66].

In the low-density populations, uninfected control males

had larger home range sizes than infected males whereas,

in the high-density enclosures, there was no significant differ-

ence in the home range size between uninfected and infected

male bank voles (figure 3). One possible explanation for this

density-dependent home range reduction is that at high den-

sity, males may reduce their exploratory behaviour to avoid

encountering other males and having to engage in aggressive

male–male interactions. Moreover, at high density, with

eight females available in the enclosure, the chance for a

male to encounter a receptive female might be higher than

in the low-density enclosure where only four females are

available. Indeed, female bank voles are territorial and hyper-

dispersed [42,67]. Consequently, at low density, male bank

voles may need to explore a larger home range to search

for receptive females than at high density. As expected, the
uninfected males had a larger home range in low population

density, whereas the infected males presumably allocated

resources to their immune response instead of explorative

behaviour. In contrast, female bank voles had a smaller

home range size than males, which was not affected by popu-

lation density, reflecting the territorial behaviour of females

especially, during late gestation when the space trapping

took place [42,67,68].

We found that the cost of infection was more important in

large bank voles, which are the most frequently infested with

ticks and B. burgdorferi s.l. in nature [9,69,70]. Large infected

individuals showed reduced reproductive success compared

with large healthy individuals. Food resource is generally

known to constrain reproduction and food addition has

been shown to enhance reproductive success in similar

outdoor enclosure setups [43,71,72]. These food constraints

might have a more negative effect on the large individuals,

which have greater energetic needs [73]. Infected large

voles showed altered breeding probability regardless of the

population density.

Infected females plastically modified their life history and

reproduced approximately 3 days earlier than uninfected

females without alteration of the size of the offspring at

birth, i.e. without signs of premature birth (figure 4 and

table 1; electronic supplementary material, table S3). In

nature, reproducing females give birth to 1 or 2 litters per

reproductive season [74], and most individuals live only

one season. The biological importance of giving birth 3 days

earlier is not clear, as concerns population dynamics. At the

individual level, early reproduction can be a compensatory

strategy if parasites reduce the reproductive success of the

adult host later in life via morbidity, mortality or castration

[75–77]. According to the terminal investment theory, indi-

viduals maximize their fitness by allocating resources

to immediate reproduction when the prospects for future

reproduction are reduced, for example by chronic infection

[27,78–80]. It remains to be estimated whether B. afzelii
impairs reproduction of female bank vole during the late

stage of infection.

In summary, our study shows, for the first time, that the

zoonotic pathogen B. afzelii can influence the reproductive

success of its rodent host. The effect of the infection on the rela-

tive numbers of offspring and partners differed between male

and female bank voles. Although large body size favoured

reproduction in uninfected individuals, this size benefit disap-

peared if the individual was infected with B. afzelii. In males,

infected individuals kept at low population density displayed

smaller home range surface than uninfected males. Lower

mobility can be a consequence of sickness behaviour due to

the infection. On the other hand, predation risk by small

carnivores generally increases with vole mobility [81]. By

reducing home range size, infection with B. afzelii could

lower the predation risk of male bank voles by small carni-

vores, enhancing at the same time its own fitness [82]. The

hypothesis of manipulation of the rodent host by B. afzelii is

yet to be explored.
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