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Abstract
In arid and semi-arid regions, rainfall is scarce, limiting primary productivity and animal reproduction. As long-term population
monitoring is limited in remote arid areas, indirect and remote technicals are needed. We investigated if and how populations of
rodents in Sahara-Sahel responded to past events of rainfall. Using short field surveys and remotely sensed rainfall data, spanning
between years 2010 to 2015, we tested if rainfall prior to field surveys affected populations of Gerbillus rodents. Generalized
additive analysis showed that amount of moonlight (the effect of number of days away from full moon) negatively correlatedwith
number of trapped animals. When controlling for moonlight and geographic and temporal variation, rainfall up to 1 year prior to
surveys positively and rainfall 2 years prior to surveys negatively correlated with number of trapped gerbils. We suggest that the
effect of increased number of gerbils resulted from reproduction and population density increase after bursts of primary produc-
tivity. Negative correlation with rainfall could be related to increased predation or other ecological effects (e.g., resource collapse,
pathogens spread) on prey population densities and activity levels. Our results suggest multiphase delayed effect of gerbils
population response to rainfall implying interactive model of population regulation in rodent communities on Sahara-Sahel.
Presented indirect method and results are readily applicable to population monitoring and management of remote and
understudied areas.
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Introduction

Rodents are key species in many ecosystems, having a great
influence on plant communities (Olofsson et al. 2014; Gordon
and Letnic 2016) and on mammalian and bird predators
(Millon et al. 2014; Korpela et al. 2014). Many species are
characterized by multi-annual cycles and fluctuations in pop-
ulation densities, related to dynamics in primary productivity
and predation pressure (Hanski et al. 1991; Hanski and
Korpimäki 1995; Cornulier et al. 2013). Rodents are impor-
tant pests in agricultural and forestry production and as source
of zoonotic diseases, sometimes causing severe economic
losses (John 2014; Cayol et al. 2017; Imholt et al. 2017).
Thus, ability to predict high densities of rodents is of economical
and health importance (Huitu et al. 2009; Korpela et al. 2013).

Variation in rainfall affects primary productivity (Fay et al.
2003; Mowll et al. 2015) and agriculture yield (Prăvălie et al.
2014; Ray et al. 2015) and influences occurrence of crop pests
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(Dickman et al. 1999; Lima et al. 1999). Fluctuating climatic
conditions can shape available food resources that affect pop-
ulation densities and individual activity patterns (Granjon
et al. 2005). But in areas exposed to relatively high degree
of stochasticity in rainfall, it is challenging to forecast dynam-
ics of natural populations. Yet water is a limiting resource in
arid ecosystems and its sporadic availability shapes phenology
of arid-adapted species, sometimes causing rapid population
explosions (Beatley 1969; Brown and Ernest 2002). Changes
in rainfall patterns are also major concerns for mitigating neg-
ative effects of climate change (Weltzin et al. 2003; Lawrence
and Vandecar 2015; Pittelkow et al. 2015). In the dry and
semi-dry areas, like Sahara-Sahel, primary productivity is de-
termined by rainfall (Mowll et al. 2015). The lack of water (the
annual mean rainfall in the Sahara is below 25 mm per year)
and the extreme variation in temperature make this region as
one of the least productive (Huxman et al. 2004), and due to its
remoteness one of the least studied (Brito et al. 2014, 2018),
on Earth. Yet, the region is highly heterogeneous and host-rich
biodiversity (Vale et al. 2016; Brito et al. 2016, including up to
40Gerbillus rodent species (Abiadh et al. 2010). Sahara-Sahel
passed repeatedly through wet and dry climatic phases (Drake
et al. 2011; Tierney et al. 2017), resulting in fluctuation of
extension of desert in North Africa (Kröpelin et al. 2008).
Consequently, the magnitude and the velocity of the climatic
changes are major concerns in this and other arid areas, threat-
ening already vulnerable biodiversity but also hampering food
production for increasing human population (Loarie et al.
2009; Vale and Brito 2015).

In this work, we proposedmethod to study how variation in
rainfall affects population dynamics of species in remote and
hard to access areas. We specifically asked if and how occur-
rence of past rainfall affected population status of West
Sahara-Sahel Gerbillus rodents. Rainfall can have indirect
positive effect on gerbils abundance, affecting primary pro-
duction and emergence of insects, the main food sources for
rodents on Sahara-Sahel (Aulagnier et al. 2009; Yan et al.
2016). Increased prey densities can attract predators, due to
occurrence of localized food resources (Greenville et al.
2014), but also deplete resources and promote spread of path-
ogens (Cayol et al. 2017). Those effects can decrease gerbils
abundance, but also activity (Kotler 1984). Thus, two delayed
phases of rodent population dynamics are expected in re-
sponse to rainfall, faster and positive, signaling rodent popu-
lation grow, and longer and negative, related to population
decrease (Hanski et al. 2001; Krebs and Berteaux 2006). To
overcome the lack of long-term population monitoring on the
Sahara-Sahel, but to assess gerbils population dynamics, we
developed analysis based on the short-term spatial and tem-
poral field surveys accompanied with remotely sensed data.

Materials and methods

Field surveys

Gerbillus rodents were life trapped with Sherman traps (XLK,
extra large folding kangaroo rat traps) placed in lines of ten
traps every 10 m in two to four lines. Traps were set before
sunset, baited with standard dry pellets, and collected around
sunrise. Surveys were conducted only one night in a single
location (in total of 149 locations) to detect the presence of any
of the Gerbillus individuals. Field surveys were conducted
between 2010 and 2015, across the Sahara-Sahel of Mali,
Mauritania, and Morocco (Fig. 1, Electronic Supplemental
Material: Table S1; (Boratyński et al. 2013; Moutinho et al.
2015; Guerreiro et al. 2016). During field surveys, we have
detected the presence of nine Gerbillus species in the study
region (G. amoenus, G. campestris, G. gerbillus, G. henleyi,
G. nancillus, G. occiduus, G. pyramidum, G. tarabuli, and
Gerbillus sp., a species awaiting formal taxonomic descrip-
tion; Ndiaye et al. 2016; Boratyński et al. 2017). Due to diffi-
culties in distinguishing between some of the species and be-
cause, e.g., agricultural management does not necessarily
need particular species information, we have pooled all

Fig. 1 Map of field survey locations of Gerbillus rodents in the West
Sahara-Sahel
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species data to one statistical test. From pooled number of
Gerbillus individuals, we calculated an index, relative number
of trapped individuals divided by the number of traps set in
given location, and used it in statistical analyses as response
variable. All animals were released in their capturing locations
after surveys.

Rainfall data and vegetation indexes

Rainfall data (monthly averages) for each of the 149 trapping
locations was downloaded from the publicly available
Tropical Rainfall Measuring Mission and Other Sources
Rainfall Product dataset (TRMM 3B43; Kummerow et al.
2000). It has been shown that TRMM 3B43 monthly values
are good predictors of ground measures of monthly rainfall
levels (Fleming et al. 2011; Karaseva et al. 2012; Ouatiki et al.
2017). Monthly averages on a 0.25° by 0.25° global spatial
resolution from 50° S to 50° N latitude (Macritchie) were
obtained from January 2007 to August 2015 for all surveyed
locations (Fig. 1, Table S1). Thus, 27 monthly averages prior
to the earliest field survey were collected spanning over the
expected lifespan ofGerbillus species (Aulagnier et al. 2009).
We used vegetation indexes to validate that occurrence of
rainfall affected availability of resources in the environment.
Vegetation indexes (monthly averages; collected by the
MODIS, Moderate Resolution Imaging Spectroradiometer,
Terra satellite; https://terra.nasa.gov/) for randomly selected
50 trapping locations (Table S1) were downloaded from the
publicly available Land Processes Distributed Active Archive
Center (LP DAAC; https://lpdaac.usgs.gov). Monthly
averages (for the years 2010–2015) of normalized difference
vegetation index (NDVI) and enhanced vegetation index
(EVI; Didan 2015) were included on a 0.25° by 0.25° global
spatial resolution for a month of survey and for 3 months
following field surveys.

Statistical analyses

Pearson’s product-moment correlation coefficient was used to
test the associations between monthly averages of rainfall dur-
ing field surveys and monthly averages of vegetation indexes
during and following 1, 2, and 3 months after surveys, and
average for those.We tested the relationship between response
variable (relative number of trapped individuals, Poisson dis-
tribution) and predictors (year and season of surveys, moon
phases, and 3-month averages of rainfalls) using a generalized
additive model (GAM, Bmgcv^ package in R). To account for
variation in sampling effort among study sessions, we calcu-
lated an index of relative number of trapped individuals: num-
ber of trapped individuals divided by number of traps used in a

given trapping location. We calculated 9 averages (log trans-
formed) of rainfalls during three following months (trimesters,
e.g., during and 1 and 2 months prior to surveys, 3–6 months
prior to surveys) for a given location (unimportant trimesters
were excluded from final model by stepwise elimination of
insignificant terms: p > 0.1). We included a variable describ-
ing amount of moon light, number of days away from full
moon (referring to number of days before or after full moon,
0–15 days), to control for Gerbillus activity patterns related to
amount of light in the habitat (Kotler et al. 2010). To control
for seasonal variability in number of captured animals, we
included fixed factor: season of survey (winter, summer, or
fall). Rainfall trimesters, moon light, and season were fitted as
parametric terms in the GAMmodel. We accounted for spatial
autocorrelation between surveyed locations by including lati-
tude and longitude as a smoothed, interaction term (i.e., s(x,y))
and for variation between years as a random, smoothed factor
[i.e., s(year, bs = Bre^); Dormann et al. 2007; Wood 2017].
Finally, we partitioned data by size of the trapped individuals
referring to size classes of Gerbillus species (small species 7 to
16, medium 17 to 27, and big 28 to 40 g) to test persistence of the
detected in the main model effects. The effective degree of free-
dom (Edf) in GAM was estimated for smoothing parameter of
geographic coordinates and its statistical significance was evalu-
ated with the generalized cross validation method. The output of
the GAM included the percentage of explained deviance by the
model. All statistical analyses were performed using the BR^
platform, version 3.4.3 (R Core Team 2016).

Data availability statement Field survey data collected during
this study are included in supplementary information file.

Results

We trapped 97 Gerbillus specimens in 32 out of 149 (21%)
surveyed locations (Fig. 1). We found substantial variation in
monthly rainfall averages in surveyed locations that referred
to rainfall variation between rainy and dry seasons (overall
rainfall average 0.078, median 0.173, maximum 0.677, mini-
mum 0.010, standard deviation 0.102; Fig. 2). We found pos-
itive significant Pearson’s product-moment correlations be-
tween rainfall measured during surveys and both, NDVI and
EVI, vegetation indexes measured during and up to 3 months
after surveys (Figs. 2 and 3; Table S2).

The variation in the relative number of captured individuals
was affected by geographic coordinates of locations, sug-
gesting significant spatial autocorrelation (Edf = 28.21,
F = 2.96, p < 0.001) (Fig. 4). We found that significantly
higher number of gerbils was captured during winter than
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during summer and autumn (Table 1). When controlling
for geographic and temporal variation in the GAM model,
we found that a higher number of animals were captured
during nights with less moon light in comparison to full
moon and waxing moon nights (the effect of number of days

away from full moon: t = 3.25, p = 0.0015; Table 1),
confirming previous results for limited geographic extend
(Kotler et al. 2010; Embar et al. 2011). Most importantly,
our results highlighted significance of rainfall in shaping pop-
ulation dynamics of gerbils. We found that the amount of
rainfall during trimesters up to 1 year prior to the field surveys
positively correlated with relative number of trapped animals

Fig. 4 Regression between relative number of trapped individuals
(number of individuals divided by number of traps; partial values for a
given predictor and its standard errors) and moonlight (number of days
before or after full moon B0^), and rainfall 1 and 2 years prior to surveys,
as derived from generalized additive model (Table 1)

Fig. 3 Association (Pearson’s product-moment correlations) between
monthly averages of rainfall during survey and mean normalized differ-
ence vegetation indexes (NDVI; r = 0.49, df = 48, t = 3.89, p = 0.0003)
and enhanced vegetation index (EVI; r = 0.50, df = 48, t = 4.01, p =
0.0002) derived for month during and 3 months after surveys

Fig. 2 Seasonal variation in rainfall (Tukey boxplots) in surveyed
locations in the West Sahara-Sahel
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(t ≥ 2.24, p ≤ 0.027; Table 1). At the same time, the amount of
rainfall during trimester 2 years prior to surveys negatively
affected the number of trapped animals (t = − 3.53, p =
0.0006; Table 1). When considering limited data that included
only individuals belonging to middle-sized class of Gerbillus
species (17–27 g; small and big species classes consisted too
small data for confident statistical tests), we found similar
positive effect of rainfall 9 to 11 months prior to survey on
gerbils abundance (t = 4.52, p = 0.011), but the other rainfall
effects were insignificant (Table S3). This reduced dataset also
confirmed positive effects of moon light on gerbils abundance
(t = 2.52, p = 0.013) and higher abundance of gerbils during
winter comparing to fall (t = − 2.41, p = 0.017).

Discussion

In this work, we presented a method to assess animal popula-
tion dynamics in remote and inaccessible areas, by combining
remotely sensed data with short-term field surveys. By spatial
and temporal sampling of population relative densities, this
method allowed us to test effects of environmental and geo-
graphic variation (i.e., rainfall level, spatial autocorrelation,
moonlight intensity) on population dynamics in regions where
large-scale and long-term monitoring is infeasible.

Rodent populations from arid and semi-arid regions can
respond to occasional bursts of primary productivity by quick
development of up to several generations (Beatley 1969;
Brown and Ernest 2002; Letnic and Dickman 2009).
Rainfall and following increase in primary productivity affect
quantity of important food sources for rodents, which can

trigger reproduction of desert species (Brown and Ernest
2002). Variation in rainfall can cause diet shift in gerbils
(Degen et al. 1997), and it has been shown that in the com-
munities of arid adapted animals, at least some of the species
can respond to habitat productivity by breeding (Soliman and
Mohallal 2009; Shenbrot et al. 2010; Sarli et al. 2015). Given
the relatively fast reproduction of a typical gerbil (Aulagnier
et al. 2009), it can be hypothesized that observed high densi-
ties in some populations are caused by reproduction and pop-
ulation grow following rainfall up to 1 year prior to the sur-
veys (Table 1). Observed low numbers of gerbils found 2 years
after rainfall might have been caused by increased presence of
predators (Abramsky et al. 1996; Brown and Kotler 2004;
Embar et al. 2011; Boonstra 2013), due to depletion of re-
sources, or due to density-dependent mortality related to in-
fectious diseases or other pathogens (Hanski and Korpimäki
1995; Hochachka and Dhondt 2000).

Indirect methods, like the one presented here, are critical in
pursuance of understanding processes in remote and
understudied regions exposed to environmental changes, and
rodent populations can be a key tool in monitoring dynamics
of desert and semi desert ecosystems (Shenbrot 2014). During
historical dry climatic stages of the Sahara-Sahel, the steppe-
and savanna-like habitats were replaced by hyper-arid bare
areas (Le Houérou 1997). The historical regime shifts that
caused changes in environmental conditions (Foley et al.
2003) can refer to currently observed extended drought events
in the region (Dardel et al. 2013) that hamper biodiversity
conservation (Brito et al. 2016). Multiphase effects of popu-
lation responses to rainfall in rodents suggest interactive reg-
ulation of Sahara-Sahel animal communities, depending on
habitat productivity and population dynamics (Brown and
Ernest 2002). Desertification and land degradation pose chal-
lenges for animal population management and agricultural
planning (Portnov and Safriel 2004; Falkenmark and
Rockström 2008). Understanding model organism population
dynamics is an important first step to predict effects of ongo-
ing ecosystem changes.

Aridification and decrease of rainfall predictability are al-
ready a major concern in many regions, as arid and semi-arid
zones suffer the fastest climatic changes. In this work, we have
showed how publicly and freely available resources on rainfall
data can be successfully applied to study population dynamics
of common species. The method can be applied to manage
fragile desert ecosystems; likewise, it can be translated to any
system worldwide. Above results can be used to optimize
effectiveness of rodent monitoring schemes, for preventing
major crop losses and for mitigating exposure to rodent-
borne pathogens. However, long-term population monitoring
will add to understand ecosystem processes in climate-
sensitive regions and validate above results.

Table 1 Results from generalized additive model analyses for relative
number of trapped Gerbillus individuals, as explained by variation in
rainfall prior to trappings (e.g., Rain0–2 during and 1 and 2 months prior
trapping); differences between years, seasons, and ecoregions; and
number of days before/after full moon. The percentage of explained de-
viance by the model was 80.5% for R2 adj = 0.86, GCV= 0.052, and n =
149. The approximate significance of smooth term, spatial autocorrela-
tion, was Edf = 28.21, F = 2.96, p = < 0.0001. Variance for random, year,
effect was 2.68e−05

Est. SE t p

Intercept 9.58 4.84 1.98 0.050

Seasonsummer − 13.16 3.79 − 3.48 0.0007

Seasonfall − 6.69 1.92 − 3.48 0.0007

Moon light 0.37 0.11 3.25 0.0015

Rain0–2 5.43 2.43 2.24 0.027

Rain6–8 15.57 4.69 3.32 0.0012

Rain9–11 21.56 4.77 4.52 < 0.0001

Rain24–26 − 14.41 4.08 − 3.53 0.0006
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