Purpose:

How to train an MLP neural network in MatLab environment!

that is

For good computations, we need good formulae for good algorithms; and good visualization for good illustration and proper testing of good methods and succesfull applications!

Learning/Training the MLP:

1. Learning data: given set of input-output vector-pairs $\left\{\mathbf{x}_{i}, \mathbf{y}_{i}\right\}_{i=1}^{N}, \mathbf{x}_{i} \in \mathbf{R}^{n_{0}}$ and $\mathbf{y}_{i} \in \mathbf{R}^{n_{2}}$

- to enhance the next step prescaling into the range of the activation functions

2. Learning problem: optimization problem to train the network according to data:

$$
\begin{equation*}
\min _{\left(\mathbf{W}^{1}, \mathbf{W}^{2}\right)} \mathcal{J}\left(\mathbf{W}^{1}, \mathbf{W}^{2}\right) \tag{1}
\end{equation*}
$$

where (LMS = least-mean squares)

$$
\begin{equation*}
\mathcal{J}\left(\mathbf{W}^{1}, \mathbf{W}^{2}\right)=\frac{1}{2 N} \sum_{i=1}^{N}\left\|\mathcal{N}\left(\mathbf{x}_{i}\right)-\mathbf{y}_{i}\right\|^{2}=\frac{1}{2 N} \sum_{i=1}^{N}\left\|\mathbf{W}^{2} \widehat{\mathbf{F}}\left(\mathbf{W}^{1} \hat{\mathbf{x}}_{i}\right)-\mathbf{y}_{i}\right\|^{2} \tag{2}
\end{equation*}
$$

- tradional perspective: chain-rule in an index jungle!
- our approach: layer-wise treatment according to network structure!

3. Training method: a way to solve the optimization problem

- tradional perspective: backprop, quickprop, rpprop, *prop etc.
- our approach: efficient optimization algorithm that solves problem (1)

Layerwise calculus for sensitivity analysis:

Every local solution $\left(\mathbf{W}^{1^{*}}, \mathbf{W}^{2^{*}}\right)$ for minimization problem (1) characterized by the conditions

$$
\nabla_{\left(\mathbf{W}^{1}, \mathbf{W}^{2}\right)} \mathcal{J}\left(\mathbf{W}^{1^{*}}, \mathbf{W}^{2^{*}}\right)=\left[\begin{array}{l}
\nabla_{\mathbf{W}^{1}} \mathcal{J}\left(\mathbf{W}^{1^{*}}, \mathbf{W}^{2^{*}}\right) \\
\nabla_{\mathbf{W}^{2}} \mathcal{J}\left(\mathbf{W}^{1^{*}}, \mathbf{W}^{2^{*}}\right)
\end{array}\right]=\left[\begin{array}{l}
\mathbf{O} \\
\mathbf{O}
\end{array}\right] .
$$

- assume that activation functions are differentiable

Lemma 1. Let $\mathbf{v} \in \mathbf{R}^{m_{1}}$ and $\mathbf{y} \in \mathbf{R}^{m_{2}}$ be given vectors. The derivative-matrix $\nabla_{\mathbf{W}} J(\mathbf{W}) \in \mathbf{R}^{m_{2} \times m_{1}}$ for the functional

$$
J(\mathbf{W})=\frac{1}{2}\|\mathbf{W} \mathbf{v}-\mathbf{y}\|^{2}
$$

is of the form

$$
\nabla_{\mathbf{W}} J(\mathbf{W})=[\mathbf{W} \mathbf{v}-\mathbf{y}] \mathbf{v}^{T}
$$

Lemma 2. Let $\mathbf{W} \in \mathbf{R}^{m_{2} \times m_{1}}$ be a given matrix, $\mathbf{y} \in \mathbf{R}^{m_{2}}$ a given vector, and $\mathbf{F}=$ $\operatorname{Diag}\left\{f_{i}(\cdot)\right\}_{i=1}^{m_{1}}$ a given diagonal function-matrix. The gradient $\nabla_{\mathbf{u}} J(\mathbf{u}) \in \mathbf{R}^{m_{1}}$ for the functional

$$
\begin{equation*}
J(\mathbf{u})=\frac{1}{2}\|\mathbf{W} \mathbf{F}(\mathbf{u})-\mathbf{y}\|^{2} \tag{3}
\end{equation*}
$$

reads as

$$
\nabla_{\mathbf{u}} J(\mathbf{u})=\operatorname{Diag}\left\{\mathbf{F}^{\prime}(\mathbf{u})\right\} \mathbf{W}^{T}[\mathbf{W} \mathbf{F}(\mathbf{u})-\mathbf{y}]
$$

Lemma 3. Let $\overline{\mathbf{W}} \in \mathbf{R}^{m_{2} \times m_{1}}$ be a given matrix, $\mathbf{F}=\operatorname{Diag}\left\{f_{i}(\cdot)\right\}_{i=1}^{m_{1}}$ a given diagonal function-matrix, and $\mathbf{v} \in \mathbf{R}^{m_{0}}, \mathbf{y} \in \mathbf{R}^{m_{2}}$ given vectors. The derivative-matrix $\nabla_{\mathbf{W}} J(\mathbf{W}) \in \mathbf{R}^{m_{1} \times m_{0}}$ for the functional

$$
\begin{equation*}
J(\mathbf{W})=\frac{1}{2}\|\overline{\mathbf{W}} \mathbf{F}(\mathbf{W} \mathbf{v})-\mathbf{y}\|^{2} \tag{4}
\end{equation*}
$$

is of the form

$$
\nabla_{\mathbf{W}} J(\mathbf{W})=\operatorname{Diag}\left\{\mathbf{F}^{\prime}(\mathbf{W} \mathbf{v})\right\} \overline{\mathbf{W}}^{T}[\overline{\mathbf{W}} \mathbf{F}(\mathbf{W} \mathbf{v})-\mathbf{y}] \mathbf{v}^{T}
$$

Layerwise optimality conditions for MLP (I):

Theorem 1. Derivative-matrices $\nabla_{\mathbf{W}^{2}} \mathcal{J}\left(\mathbf{W}^{1}, \mathbf{W}^{2}\right)$ and $\nabla_{\mathbf{W}^{\mathbf{1}}} \mathcal{J}\left(\mathbf{W}^{1}, \mathbf{W}^{2}\right)$ for the cost functional (2) are of the form
(i)

$$
\nabla_{\mathbf{W}^{2}} \mathcal{J}\left(\mathbf{W}^{1}, \mathbf{W}^{2}\right)=\frac{1}{N} \sum_{i=1}^{N}\left[\mathbf{W}^{2} \widehat{\mathbf{F}}\left(\mathbf{W}^{1} \hat{\mathbf{x}}_{i}\right)-\mathbf{y}_{i}\right]\left[\widehat{\mathbf{F}}\left(\mathbf{W}^{1} \hat{\mathbf{x}}_{i}\right)\right]^{T}
$$

$$
=\frac{1}{N} \sum_{i=1}^{N} \mathbf{e}_{i}\left[\widehat{\mathbf{F}}\left(\mathbf{W}^{1} \hat{\mathbf{x}}_{i}\right)\right]^{T}
$$

$$
\nabla_{\mathbf{W}^{1}} \mathcal{J}\left(\mathbf{W}^{1}, \mathbf{W}^{2}\right)=\frac{1}{N} \sum_{i=1}^{N} \operatorname{Diag}\left\{\mathbf{F}^{\prime}\left(\mathbf{W}^{1} \hat{\mathbf{x}}_{i}\right)\right\}\left(\mathbf{W}_{1}^{2}\right)^{T}\left[\mathbf{W}^{2} \widehat{\mathbf{F}}\left(\mathbf{W}^{1} \hat{\mathbf{x}}_{i}\right)-\mathbf{y}_{i}\right] \hat{\mathbf{x}}_{i}^{T}
$$

$$
=\frac{1}{N} \sum_{i=1}^{N} \operatorname{Diag}\left\{\mathbf{F}^{\prime}\left(\mathbf{W}^{1} \hat{\mathbf{x}}_{i}\right)\right\}\left(\mathbf{W}_{1}^{2}\right)^{T} \mathbf{e}_{i} \hat{\mathbf{x}}_{i}^{T}
$$

In (ii), \mathbf{W}_{1}^{2} is the submatrix obtained from \mathbf{W}^{2} by removing the first column \mathbf{W}_{0}^{2} containing the bias nodes.

In MatLab:
for $i=1: N$
[o,o1,d1] = mlp_out(x(:,i),w1,w2);
e = o - y(:,i);
$\mathrm{f}=\mathrm{f}+\mathrm{e}^{\mathrm{\prime}} \mathrm{e} /\left(2 \mathrm{~A}_{\mathrm{N}} \mathrm{N}\right)$;
o1_ext = [1; o1];
dw1 = dw1 + diag(d1)*w2(:,2:n1+1)'*e*[1 x(:,i)']/N;
dw2 = dw2 + e*o1_ext'/N;
end
OR
[o,o1,d1] = mlp_out2 ($\mathrm{x}^{\prime}, \mathrm{w} 1, \mathrm{w} 2$) ;
$e=0-y^{\prime}$;
$\mathrm{f}=\operatorname{sum}\left(\operatorname{sum}\left(\mathrm{e} .{ }^{\wedge} 2\right)\right) /(2 * \mathrm{~N})$;
dw1 = (d1.*(w2 (:, 2:n1+1)'*e)) *[ones (N,1) x]/N;
dw2 $=$ e*[ones (N,1) o1']/N;

Layerwise optimality conditions for MLP (II):

For more-than-two-layers problem

$$
\begin{equation*}
\mathcal{J}\left(\left\{\mathbf{W}^{l}\right\}_{l=1}^{L}\right)=\frac{1}{2 N} \sum_{i=1}^{N}\left\|\mathbf{W}^{L} \hat{\mathbf{o}}_{i}^{(L-1)}-\mathbf{y}_{i}\right\|^{2} \tag{5}
\end{equation*}
$$

where $\mathbf{o}_{i}^{0}=\mathbf{x}_{i}$ and $\mathbf{o}_{i}^{l}=\mathbf{F}^{l}\left(\mathbf{W}^{l} \hat{\mathbf{o}}_{i}^{(l-1)}\right)$ for $l=1, \ldots, L-1$
we have the general result

Theorem 2. Derivative-matrices $\nabla_{\mathbf{W}^{l}} \mathcal{J}\left(\left\{\mathbf{W}^{l}\right\}_{l=1}^{L}\right), l=L, \ldots, 1$, for the cost functional (5) are of the form

$$
\nabla_{\mathbf{W}^{l}} \mathcal{J}\left(\left\{\mathbf{W}^{l}\right\}_{l=1}^{L}\right)=\frac{1}{N} \sum_{i=1}^{N} \mathbf{d}_{i}^{l}\left[\hat{\mathbf{o}}_{i}^{(l-1)}\right]^{T},
$$

where

$$
\begin{align*}
\mathbf{d}_{i}^{L} & =\mathbf{e}_{i}=\mathbf{W}^{L} \hat{\mathbf{o}}_{i}^{(L-1)}-\mathbf{y}_{i} \tag{6}\\
\mathbf{d}_{i}^{l} & =\operatorname{Diag}\left\{\left(\mathbf{F}^{l}\right)^{\prime}\left(\mathbf{W}^{l} \hat{\mathbf{o}}_{i}^{l-1)}\right)\right\}\left(\mathbf{W}_{1}^{(l+1)}\right)^{T} \mathbf{d}_{i}^{(l+1)} . \tag{7}
\end{align*}
$$

Where's the beef?

- efficient (and correct) implementation
- computation of \mathbf{o}_{i}^{l} 's in forward loop
- overwritten by \mathbf{d}_{i}^{l},s in backward loop
- realization of (7) in single loop (for sigmoidal activation)
- possibilites for analysis opened up

What does the MLP actually learn?

Corollary 1. (i) The average error $\frac{1}{N} \sum_{i=1}^{N} \mathbf{e}_{i}^{*}$ made by the locally optimal MLP-network satisfying the conditions in Theorem 2 is zero.
(ii) The correlation between the error-vectors and the action of layer $L-1$ is zero.

Some consequences:

- just having final bias yields Cor. 1 (i)
\Rightarrow valid for all (linear or nonlinear) transformations having such structure
- Cor. 1 (i) shows that every $\mathcal{N}\left(\left\{\mathbf{W}^{l^{*}}\right\}\right)$ treats optimally Gaussian noise with zero mean for the regression model $\mathbf{y}_{i}=\phi\left(\mathbf{x}_{i}\right)+\boldsymbol{\varepsilon}_{i}$.
- final layer activation does not give Cor. 1 (i) (unless zero-residual case)

Note: sensitivity analysis also for this case follows

- backprop does not give Cor. 1
- (most likely on-line mode does not give Cor 1 (i))
- early stopping does not give Cor. 1 (i)
\Rightarrow all these can work better than the rigorous LMS-MLP for non-Gaussian (and/or non-functional) learning datas
\Rightarrow BUT: learning rate, number of epocs, stopping criterion, etc.
cannot be explicitly controlled for this purpose! (termination due to algorithm or data?)
- Cor. 1 (i) explains how and why explicit change of prior frequency of different samples effects the trained MLP

Practical Difficulties with MLP:

- lots of local minima in optimization problem
\Rightarrow single local optimization not enough!
- large variation on number of iterations
\Rightarrow backprop and early stopping give what?
- How to choose the best MLP from local minima and from different configurations (e.g., size of hidden layer(s) and large set of activation functions) rigorously?

Possible remedy: regularization

Underlying idea: augment the LMS-cost with a penalization term that smooths the MLPtransformation (cf. Bayesian statistics):

$$
\mathcal{J}_{\beta}\left(\mathbf{W}^{1}, \mathbf{W}^{2}\right)=\frac{1}{2 N} \sum_{i=1}^{N}\left\|\mathcal{N}\left(\mathbf{x}_{i}\right)-\mathbf{y}_{i}\right\|^{2}+\frac{\beta}{2} \sum_{l, i, j}\left|\mathbf{W}_{i j}^{l}\right|^{2}
$$

Note: other possibilities for single weight penalization exist, but very often nonconvex and nonsmooth
in light of Cor. 1 (i): final bias should be excluded from regularization \Rightarrow different possibilities (cf. Cor. 1 (ii)):

I: regularize all other components except the bias-terms \mathbf{W}_{0}^{2} in \mathbf{W}^{2}
II: exclude all components of \mathbf{W}^{2} from regularization
III: exclude all bias-terms of $\left(\mathbf{W}^{1}, \mathbf{W}^{2}\right)$ from regularization (cf. Holmström et al., 1997).

IV: exclude all components of \mathbf{W}^{2} and bias-terms of \mathbf{W}^{1} from regularization

Without further ado:

- less (but still plenty of) local minima for I and III than for II, IV, and $\beta=0$
- numerical confirmation that Cor. 1 (i) valid for all methods
- by means of number of iterations and CPU time I and III improved the performance, whereas II and IV made it worse compared to unregularized approach $\beta=0$
- all regularization approaches (I and III in more stable way than II and IV) improved the generalization in simple nonlinear regression problem by preventing unnecessary oscillation
- Conclusions: I and III are more preferable than II and IV in every respect; between I and III no difference found

Effect of regularization III for $\beta=10^{-3}$:

$n_{1}=15:$ minimum of \mathcal{J}^{*} (left) and maximum of \mathcal{J}^{*} (right).

